
A UML profile and Tool Support for Evolutionary
Requirements Engineering

Isabelle Côté
University Duisburg-Essen

Oststr. 99, Duisburg, Germany
Email: isabelle.cote@uni-due.de

Maritta Heisel
University Duisburg-Essen

Oststr. 99, Duisburg, Germany
Email: maritta.heisel@uni-due.de

Abstract—In this paper, we present a method to perform the
first steps of software evolution, namely evolutionary require-
ments engineering, where new requirements have to be analyzed
in the context of a set of already given requirements. The basic
idea is to adjust an existing requirements engineering process
so that evolution is supported. In the requirements engineering
process we consider, the original software development problem
is decomposed into a number of subproblems that are analyzed
according to the problem frame approach [1]. Evolution is
performed by defining rules for each process step and each
document that is generated in the respective step to incorporate
the new evolution requirements into the existing requirements
documents or to create, when necessary, additional documents.
We show that the evolution task benefits from the chosen problem
decomposition. The described software evolution method is tool-
supported. Our tool UML4PF, which is based on the Eclipse
Modeling Framework, supports the problem frame approach to
software engineering by a specifically defined UML profile. We
extend that profile so that it also covers software evolution.

I. INTRODUCTION

In the late 1960’s Lehman investigated the evolution of a
large software system. Based on the observations gained he
derived the laws of software evolution [2] such as “Continuing
Change” and “Declining Quality”. Both of the mentioned
laws point out, that if a software system is not continually
adapted and maintained, it will degrade. Parnas [3] states that
software ages for two reasons: first, because it is changed.
These changes affect the structure of the software, and, at a
certain point, further changes become infeasible. The second
reason for software aging is not to change the software. Such
software becomes outdated soon, because it does not reflect
new developments and technologies. We can conclude that
software evolution is indispensable for obtaining long-lived
software. Taking into account that today only a small fraction
of software is written from scratch, it is important to provide
support for coping with situations where an existing software
needs to be changed in order to remain operational. For this
reason, it is necessary to provide systematic support for the
evolution task. Ideally, this support can be embedded into
an existing development process. In conclusion, to avoid the
legacy problems of tomorrow [4], we first need appropriate
development processes that provide a good basis for future
evolutions. Second, we need systematic evolution approaches
that can make use of that basis. In this paper, we base software
evolution on a development process where a complex soft-
ware development problem is decomposed into a number of

subproblems that are analyzed according to the problem frame
approach [1]. We have defined a number of evolution operators
that support engineers in performing the evolution task. These
operators guide the engineering process in evolving given
artifacts. They also assist in the reuse of related development
artifacts in successive development phases. The development
process we present is tool-supported. To this end, we have
defined a UML profile [5] that allows us to represent problem
frames in UML as well as to model the requirements analysis
phase by introducing appropriate stereotypes. We show how
this UML profile can be augmented with stereotypes that
support software evolution. The stereotypes are complemented
by constraints and queries expressed in OCL [6] that can be
checked by existing UML tools. These constraints express
important integrity conditions, whereas the queries help us in
finding relevant documents by following the linkages between
the different artifacts. This enables us to decrease the effort
for performing the evolution by determining only a subset of
relevant artifacts that have to be considered.

The paper is organized as follows: Section II introduces
a description of the vacation rentals system serving as a
case study in this paper. In Sect. III we briefly describe the
software development process we start out with, illustrated by
the vacation rentals system. Section IV presents the currently
existing tool support for the software development process.
Section V illustrates the requirements engineering steps of
our evolution method and its application to the case study.
Section VII discusses related work, and Sect. VIII concludes
the paper with a summary and directions for future work.

II. CASE STUDY: VACATION RENTALS

In this section, we introduce the running example for our
paper, namely the development of a simple online vacation
rentals system. The vacation rentals system shall allow a
potential guest to browse and book available holiday offers.
After booking an offer the guest receives an invoice and the
holiday offer is reserved. The guest has now 14 days to pay
the invoice via bank transfer. Should this not be the case then
the offer is automatically set available again. Staff members
are responsible for recording the incoming payments and to
rate the status of a vacation home after the guests have left.
A negative rating means that the guest receives an additional
invoice. A further responsibility of the staff member is to make
new holiday offers available.

(R03) A guest can book available holiday offers, which then are
reserved.

(R04) After a guest books a holiday offer, she is provided a corre-
sponding invoice.

(R05) If a reserved holiday offer is not paid within 14 days, it is
automatically set available again.

(R07) A staff member can rate the status of a vacation home, after
a guest left it.

(R08) If the status of a vacation home is rated negatively, the guest
receives an additional invoice.

TABLE I
SUBSET OF INITIAL SET OF REQUIREMENTS FOR VACATION RENTALS

In the subsequent section, we illustrate the development of
the vacation rentals system using a development process called
ADIT (Analysis, Design, Implementation, Testing; see [7] for
more details).

III. DEVELOPMENT PROCESS

ADIT is a model-driven, pattern-based development process
also making use of components. The different phases of
software development are divided into several steps. In this
paper, we focus on the requirements analysis steps of the
analysis phase which forms the basis for our evolutionary
requirements engineering method, called EADIT. We describe
these steps in the following subsections.

A. Problem elicitation and description

The analysis phase starts by stating the requirements that
define properties of the desired system. Table I shows a subset
of the initial requirements for the vacation rentals system.
Furthermore, we need to state the characteristics of the part of
the “real world” (environment) that is relevant for our problem,
i.e., the relevant domain knowledge. The domain knowledge
consists of assumptions and facts. Assumptions are conditions
that are needed, so that the requirements are accomplishable.
Usually, they describe required user behavior. Facts describe
fixed properties of the problem environment. “A guest pays the
fee completely within 14 days or not at all.“ is an example
for an assumption and ”A vacation home can be only used by
one guest (+ accompanying persons) at the same time“ is a
fact for the vacation rentals system.

After having collected the requirements and domain knowl-
edge of the problem, we analyze its structure by setting up
a context diagram [1]. The context diagram represents the
overall problem situation. An example of a context diagram
is shown in Fig. 1. A context diagram consists of boxes,
called domains. There are different types of domains. Jackson
distinguishes the domain types biddable domains that are
usually people, causal domains that comply with some phys-
ical laws, and lexical domains that are data representations.
We introduced an additional domain type, namely display
domains that are used to provide feedback to users [8]. We
represent context diagrams as UML class diagrams, using
specific stereotypes, see Sect. IV. The domains are connected
with each other via shared phenomena. A shared phenomenon
is an event, a message or an operation observable by at
least two domains, but controlled by only one domain. An
example for such shared phenomena is given in Fig. 2. The no-
tation G!{browseAvailableHolidayOffers, bookHolidayOffer}

Fig. 1. Vacation Rentals: Original Context Diagram

means that the phenomena browseAvailableHolidayOffers and
bookHolidayOffer are controlled (indicated by “!”) by the
domain Guest (G).

Fig. 2. Vacation Rentals: Interface between domains Guest and Vacation-
Rentals

B. Problem decomposition
In the second analysis step, we decompose the overall

problem into subproblems. One way of performing this de-
composition is by setting up problem diagrams [1]. In a
problem diagram, the knowledge for a sub-problem described
by a set of requirements is represented. A requirement in a
problem diagram refers to some domains and constrains at
least one domain. A problem diagram can be systematically
derived from the context diagram by means of decomposition
operators. Examples for such operators are:

• introduce connection domain: such a domain serves to
mediate the communication between other domains. An
example is a display domain that outputs feedback to e.g.
a biddable domain.

• reduce interface between domains: phenomena between
domains which are not relevant for the current subprob-
lem are left out.

Figure 3 shows the problem diagram for the (composed)
requirement (R03,R04).

We see that a connection domain Email with corresponding
phenomena has been introduced to handle the distribution
of invoices (application of decomposition operator introduce
connection domain).

Whenever possible, the decomposition is done in such a way
that the subproblems fit to given problem frames. Problem
frames are a means to describe software development prob-
lems. They were proposed by Jackson [1], who describes them
as follows: “A problem frame is a kind of pattern. It defines an
intuitively identifiable problem class in terms of its context and
the characteristics of its domains, interfaces and requirement.”

2

Fig. 3. Vacation Rentals: Problem Diagram for book (R03, R04)

All elements of a problem frame diagram act as place-
holders, which must be instantiated to represent concrete
problems. Doing so, one obtains a problem description that
belongs to a specific problem class. The instantiated frame
diagram is a problem diagram. For example, the requirements
R03 and R04 constitute an instance of the update frame [9]
shown in Fig. 4. All requirements must be covered by some
problem diagram. Similar to the context diagram, the problem
diagrams as well as the problem frames are represented as
class diagrams. In addition to context diagrams, problem
diagrams and problem frames take a requirements reference
into account (see Sect. IV).

The subsequent steps (not covered in this paper) would then
be to

1. derive abstract specifications. Requirements refer to the
environment in which the machine must operate. In
contrast, the specification describes the machine and is
the starting point for its development. It has to be derived
using domain knowledge.

2. create a technical context diagram. This technical con-
text diagram describes the technical infrastructure in
which the machine will be embedded.

3. specify operations and data structures. The operations
and internal data structures identified while deriving the
abstract specifications are specified in detail.

4. define a software life-cycle. The overall behavior of the
machine is specified.

IV. ADIT TOOL SUPPORT

We have developed a tool called UML4PF [10] to support
the requirements engineering method sketched in Section III.
Its basis is the Eclipse platform [11] together with its plug-
ins Eclipse Modeling Framework (EMF) [12] and Object
Constraint Language (OCL) [6]. EMF allows engineers to
create structured data models compliant to UML. The data
models are equipped with meta-data, which can be queried and
updated via a Java interface. EMF stores model information
using the XML Meta-data Interchange (XMI) [13] format.
With OCL it is possible to formally specify constraints over
a given model. The graphical representation of the different
diagram types can be manipulated by using any EMF-based
editor. We selected Papyrus [14] as it is available as an Eclipse

Fig. 4. Update problem frame

plug-in, open-source, and EMF-based. UML4PF provides the
necessary UML profile to use UML diagrams for the problem
frame approach. Our UML profile is conceived as an Eclipse
plug-in, extending the EMF meta-model.

With the profile, it is possible to model the domains in
the context diagram as well as in the problem diagrams
by classes and assign to them corresponding stereotypes,
e.g., <<biddableDomain>> or <<lexicalDomain>> for the
respective domain types (see Figs. 1 and 3). The class with the
stereotype <<machine>> represents the software to be devel-
oped. The shared phenomena are represented as associations
between classes. Such an association is marked with the stereo-
type <<connection>> (or any of its subtypes, e.g., <<ui>>
for user interface), and the name of the association contains
the phenomena and the domain controlling the phenomena (see
Fig. 2). Our tool automatically transforms a <<connection>>
(or any of its subtypes) into an interface controlled by a
domain and observed by other domains. To express this, the
stereotypes <<observes>> and <<controls>> are used (see
Fig. 5). The interface contains all phenomena as operations.
We use the name of the association (or relevant parts of
it) as name for the interface. Requirements are represented

Fig. 5. Vacation Rentals: Generated interface

as classes, as well. They are denoted by the stereotype
<<requirement>>. As a requirement in a problem diagram
refers to some domains and constrains at least one domain.
We express this using the stereotypes <<refersTo>> and
<<constrains>> (see dependencies on right-hand side of
Fig. 3).

To check the validity and consistency of the models set up
when performing requirements analysis according to ADIT,
we use OCL constraints. An example for such an OCL-
constraint is given in Listing 1. We mentioned earlier that

3

Fig. 6. Inheritance hierarchy of domain types

we have several domains types. Some of the domain types
are not disjoint, so more than one stereotype can be applied
on one class. However, not all combinations of stereotypes are
permitted. For example, the stereotypes <<CausalDomain>>
(or subtypes) and <<BiddableDomain>> are not allowed
to be applied together on one class. Hence, we provide an
OCL expression that checks whether this condition is fulfilled.
Listing 1 depicts the corresponding expression. It is read as
follows: in line 1, all the classes of the model are selected that
satisfy the condition stated in the select-statement. In line 2,
we gather the set of stereotypes for each class cl and assign it
to the variable st. However, only those classes in st should be
selected that have the stereotype <<BiddableDomain>> or a
direct subtype of <<BiddableDomain>> and the stereotype
<<CausalDomain>> or a subtype of <<CausalDomain>>.
Unfortunately, it is not possible to iterate through the different
inheritance hierarchies of stereotypes with EMF. Therefore, we
must explicitly move to each level of inheritance (keyword
general). An overview of the hierarchy is shown in Fig. 6. As
we currently have three hierarchy levels in our meta-model, we
limit our constraints to this number (lines 3-8). If new domain
types are introduced, this limit may need to be adapted. In
line 9, we finally check by comparing the size of the set to 0
whether st is empty.

1 C l a s s . a l l I n s t a n c e s ()−>s e l e c t (c l |
2 l e t s t : S e t (S t e r e o t y p e) =

c l . oclAsType (C l a s s) . g e t A p p l i e d S t e r e o t y p e s () in
3 (s t . name−>i n c l u d e s (’ BiddableDomain ’) or
4 s t . g e n e r a l . name−>i n c l u d e s (’ BiddableDomain ’)
5) and (
6 s t . name−>i n c l u d e s (’ CausalDomain ’) or
7 s t . g e n e r a l . name−>i n c l u d e s (’ CausalDomain ’) or
8 s t . g e n e r a l . g e n e r a l . name−>i n c l u d e s (’ CausalDomain ’)
9))−>s i z e () =0

Listing 1. Domain cannot be Causal and Biddable

All in all we currently have 40 OCL constraints that check
the analysis diagrams of ADIT.

V. EVOLUTIONARY REQUIREMENTS ENGINEERING

The lifespan of software often covers several years, in
some cases even decades. During this time it is unavoidable
that the environment as well as the requirements change or
additional requirements occur. These changes or additions in
the requirements or the environment form the basis on which
the evolution takes place. In this section, we describe a method
to systematically perform the first steps of such an evolution,
i.e., evolutionary requirements engineering. The method is
based on the development process described in Sect. III. This
means that we rely on documents that are generated during the
development. In our case, we rely on documents of the analysis
phase e.g. requirements, context diagram etc. Furthermore, we
need an evolution task. Usually, this task is described by a
shortcoming of the current software system. The evolution task
is then to overcome this shortcoming. A shortcoming for the
vacation rentals system may be stated as follows: “So far, a
guest can only browse and book a holiday offer. (S)he has no
possibility to cancel a previously booked offer other than to
wait 14 days for the offer to expire.“ In order to eliminate
this shortcoming, we can state that ”It shall be possible for
guests to cancel their previously booked holiday offer(s). The
cancellation is confirmed via an Email.“

As a preliminary step, we derive requirements, similarly to
ADIT. In order to distinguish the requirements of the original
development from those requirements derived now, we refer
to the latter as evolution requirements. For our example, we
can state the following evolution requirements:

A guest can cancel a booking as long as it has not
been paid. (R10)

and
If a guest cancels a booking, a confirming email will
be sent. (R11)

In this case, no additional domain knowledge is required.
With the evolution requirements, possibly the additional

domain knowledge as well as the results of the steps described
in Sect. III, we meet all prerequisites to perform the evolution.

A. Relate requirements and revise problem decomposition
1) Relate requirements: The idea behind this first step is to

narrow down the documents that need to be considered during
the evolution. To identify those documents it is necessary to re-
late the evolution requirements to the (original) requirements.
Since relations between requirements are important for the
evolution task, we also identify relations between evolution
and between original requirements. The following relations
are of importance:

• complements: one requirement complements another re-
quirement. In this case, both requirements are treated in
the same problem diagram. This relation is similar to the
<<includes>> relation used in use cases.

• extends: one requirement extends another requirement.
Both requirements should be treated in the same prob-
lem diagram. This relation is basically the same as the
<<extends>> relation used in use cases.

Taking the requirements shown in Tab. I, we can find the
following relations between them:

4

• R04 complements R03
• R08 extends R07

Considering the evolution requirements we find that:
• R11 complements R10

Now we relate the evolution requirements to the original
requirements. In addition to the above-mentioned relations, we
also have the following ones at our disposition:

• modifies: the evolution requirement changes an original
requirement, e.g. by restricting it.

• replaces: the evolution requirement replaces the original
requirement.

• similar: the same domain types are referred to or con-
strained. It may occur that more than one similar-relation
exists for one requirement. In that case, we should check
for the best match. This is achieved by comparing the
number of constrained and referenced domains that coin-
cide. The best match is if all constrained and referenced
domains coincide. The second best match is achieved if
all constrained domains coincide, etc.

• new: none of the above-mentioned relations applies.
Applying the relations to our case study yields the following:

• R10 modifies R05: resetting a reserved holiday offer
(booking) is only necessary if it has not been canceled or
14 days have passed without payment. Thus, requirement
R05 must be adapted. The resulting requirement is:

If a reserved holiday offer is not paid nor has
been canceled within 14 days, it is automatically
set available again.

• (R10, R11) is similar to (R03, R04) because the same
domain types are being referred to or constrained.

• (R10, R11) is similar to (R07, R08) because the same
domains are constrained. However, a different domain is
referenced.

Therefore, the best match is with requirement (R03, R04).
2) Revise problem decomposition: In this second step, we

must revise the existing problem decomposition. In order to
find the problem diagrams which might undergo some change
we can use the capability of OCL provided by EMF to carry
out queries on the model information. Basically, we need to
write a query in OCL that retrieves all problem diagram names
that are related to a given evolution requirement. Such a query
is discussed in detail in Listing 3 in Sect. VI.

Incorporating an evolution requirement into the problem
diagram it is assigned to is a non-trivial task. To support this
task, we have identified a number of operators that help to
perform the required changes:

addPhenomena
The requirements and/or domain knowledge intro-
duce phenomena that can be added to an already
existing interface. Listing 4 in Sect. VI shows the
specification for this operator.

addDomain
The requirements and/or domain knowledge intro-
duce a new relevant domain. Relevant means that
the domain is necessary to understand and solve

the problem. This domain must be added to the
corresponding problem diagram. Listing 5 in Sect. VI
contains the specification for this operator. The new
phenomena that occur have to be treated with oper-
ator newPhenomena.

newPhenomena
In contrast to operator addPhenomena, it is not
possible to add the phenomena to an already existing
interface. Therefore, a new interface between the par-
ticipating domains must be created with the provided
phenomena.

modifyDomain
The requirements and/or domain knowledge trigger
a modification of existing domains. Possible mod-
ifications are for example splitting or merging of
domains.
In contrast to addDomain, modifying a domain does
not necessarily result in introducing a new domain.

modifyPhenomena
The shared phenomena have to be changed in order
to handle the modified behavior derived from evo-
lution requirement and/or additional domain knowl-
edge, .e.g., by renaming. It may also be the result of
operator modifyDomain.

The operators replacePhenomena, replaceDomain,
removePhenomena, and removeDomain are defined
analogously.

To analyze the evolution requirements, we must distinguish
two cases. The decision, which case applies is lead by the
relations we identified in Step V-A1. The above-mentioned
operators help us in performing the necessary changes.
Case 1: The evolution requirement can be integrated into an
existing problem diagram

• An evolution requirement complements an original re-
quirement:

– Add the evolution requirement to the existing prob-
lem diagram.

– Check if all required domains are present.
1) If they are: add any necessary phenomena to

the interface between the mentioned domains
(operator addPhenomena).

2) If they are not: apply operator addPhenomena
to those phenomena referring to the existing
domains. Afterwards, apply operator introduce
connection domain or add the new domain ac-
cordingly (operator addDomain). The phenomena
that occur in this case have to be introduced with
operator newPhenomena.

• An evolution requirement modifies an original require-
ment:

– Check the type of modification:
∗ A phenomenon is affected: modify (e.g., by re-

naming) the corresponding phenomena (operator
modifyPhenomena).

∗ A domain is affected: modify the corresponding
domain (operator modifyDomain).

5

Fig. 7. Vacation Rentals: Problem Diagram for cancel (R10, R11)

Case 2: The evolution requirement cannot be added to an
existing problem diagram

• An evolution requirement is similar to an original re-
quirement: The domains of the original problem diagram
are used as a skeleton for the new problem diagram. The
necessary phenomena are introduced with the operator
newPhenomena.

• An evolution requirement is new. Proceed according to
ADIT to create a new problem diagram.

This procedure is carried out for every evolution requirement.
Note that in some cases, it may occur that neither domains

nor shared phenomena are newly introduced or that the mod-
ification cannot be captured in the problem diagram (e.g. a
parameter is modified). Then, no changes to the problem dia-
grams are necessary. However, the new requirements/domain
knowledge may require changes in later steps. This is due to
the fact that only the static aspects of the software and not the
dynamic aspects are taken into account at this stage.

In the case study, we have to treat two relations. The first re-
lation describes that evolution requirement R10 modifies R05.
We see that the modification refers to a change in the dynamic
behavior. Therefore, no adaptation of the corresponding prob-
lem diagram is necessary. The second relation describes that
evolution requirement (R10, R11) is similar to two original
requirements (R03, R04) and (R07, R08), respectively. As the
problem diagram for (R03, R04) constitutes the best match, we
use it as the skeleton for (R10, R11). As all required domains
are present, we can focus on the phenomena:

• phenomenon cancelingBooking: apply operator newPhe-
nomena to create the interface between the domains
VR Cancel and Booking

• phenomenon cancelBooking: apply operator newPhenom-
ena to create the interface between the domains VR Cancel
and Guest

• phenomenon sendEmail: apply operator newPhenomena
to create the interface between the domains VR Cancel
and Email

The resulting problem diagram is shown in Fig. 7.

B. Revise context diagram
We revise the context diagram according to the changes

made in Step Relate requirements and revise problem de-
composition. To this end, we can re-apply the operators of

Fig. 8. Vacation Rentals: Evolved Interface between Guest and Vacation-
Rentals

Step V-A2, with one exception, however: connection domains
as well as their corresponding phenomena are not added to the
context diagram.

In Sect. V-A2, we saw that the modification of R05 has no
impact on the static aspects. Thus, no changes to the context
diagram are necessary. For the evolution requirement (R10,
R11) we applied operator newPhenomena three times. One op-
erator application was to add the phenomenon “sendInvoice”
between the sub-machine and the connection domain “Email”.
We can omit this phenomenon as connection domains are
not part of the context diagram. Hence, only two phenomena
remain to be added.

Listing 2 illustrates the operator call to add
the phenomenon cancelBooking to the interface
G!{browseAvailableHolidayOffers, bookHolidayOffer}
(details are given in Listing 4 in Sect. VI). The resulting
evolved interface is shown in Fig. 8.

1addPhenomena ({ ’ cance lBook ing ’} ,
’G!{ b r o w s e A v i l a b l e H o l i d a y O f f e r s ,

b o o k H o l i d a y O f f e r } ’ ,
’G!{ b r o w s e A v i l a b l e H o l i d a y O f f e r s ,

bookHol idayOf fe r ,
c a n c e l B o o k i n g } ’)

Listing 2. Call of operator addPhenomena with corresponding parameters
for phenomenon cancelBooking

In summary, we can state that we started with nine original
requirements and seven problem diagrams. The evolution task
introduced two evolution requirements, two new shared phe-
nomena in the context diagram, one new problem diagram and
modified one original requirement. The evolution requirements
shared a relation with three original requirements. However,
only two out of the seven original problem diagrams had to
be considered. The modification of the original requirement
was related to a change in the dynamic behavior. Therefore, it
did not become apparent in the requirements analysis steps of
EADIT as they only treat static aspects. The subsequent steps
consist of:

• revise abstract specification: specifications for newly in-
troduced subproblems must be derived. The specifications
for modified or replaced subproblems must be adapted
according to the changes in the subproblems. All other
specifications remain untouched.

• revise technical context diagram: in some cases the
technical infrastructure suffices. If not, adapt the technical
context diagram, accordingly.

• revise specify operations and data structures: operations
included in newly derived specifications need to be spec-
ified. Operations for modified or replaced specifications

6

Fig. 9. Vacation Rentals: Relation of R10 to R05 and evolved R05

must be adapted according to the changes in specifica-
tions. All other operations remain untouched.

• adjust software life-cycle: revise the life-cycle and incor-
porate new behavior appropriately.

The further steps of the evolution concern the software archi-
tecture and the code and are not treated in this paper.

VI. EADIT TOOL SUPPORT

In this section we describe how our tool UML4PF can be
enhanced to integrate evolution support. In Sect. V we saw
that existing documents must be adapted or new ones must
be created. This makes it necessary to mark the documents
in order to keep track of them during the subsequent steps of
the evolution. A convenient way to mark those documents is
to assign special keywords to them. We use the stereotypes
<<evolved X>> and <<new Y>>, where X and Y serve
as placeholders for the evolved elements, e.g., requirement,
interface, etc. (see bottom of Fig. 9 and top of Fig. 10). These
stereotypes serve as special keywords throughout the complete
evolution process to indicate additions, modifications, and
replacements. These markings also help us to keep track of
those elements that need to be validated at the end of the
corresponding evolution step. After the final validation at
the end of the evolution the stereotypes <<evolved X>>
and <<new Y>> are removed. This prevents confusion,
as we know that all elements that are marked with those
stereotypes are relevant for the current evolution task and
are not remainders of previous evolutions. To capture the
relations between requirements we introduce the stereotypes
<<modifies>>, <<replaces>>, <<complements>>, and
<<similar>> extending the UML meta-class dependency.
Examples are given in Figures 9 (top) and 10.

So far, we only used OCL constraints to check the validity
of our diagram types. For the evolution we now provide OCL
query expressions to retrieve specific information. An example
for such a query expression is given in Listing 3.

The precondition given in Listing 3 states that we can only
guarantee the result if the provided requirement (in parameter
Req) exists (line 6).

The postcondition states that the function returns the names
of the problem diagrams sharing a relationship with the
provided evolution requirement. It works as follows: in lines 8
and 9 we select all packages that satisfy the select-statement,
i.e., packages where the stereotype <<ProblemDiagram>>
has been applied. To obtain all classes within these packages,
we select all dependencies (clientDependency) where the target
end includes the stereotype <<isPart>> (lines 10 and 11).

Fig. 10. Vacation Rentals: Relation of R10 and R11

As only classes possessing the stereotype <<Requirement>>
are relevant, we select those classes (line 12). Within the set of
these classes we select the first occurrence of the class where
the name equals the provided evolution requirement indicated
by Req. From this requirement we follow the dependencies and
select those classes where the target class has the stereotype
<<Requirement>> (line 16). We intersect the resulting sets
(line 13) and select those (line 15) where the intersection is
not empty (line 20). This results in a set of problem diagram
names.

1g e t R e l a t e d P r o b l e m D i a g r a m s (Req : S t r i n g) : S t r i n g []
2
3PRE : C l a s s . a l l I n s t a n c e s ()
4−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name
5−>i n c l u d e s (’ Requi rement ’))
6−>e x i s t s (name=Req)
7
8POST : r e s u l t = Package . a l l I n s t a n c e s ()
9−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name

−>i n c l u d e s (’ ProblemDiagram ’))
10−> s e l e c t (pd | pd . c l i e n t D e p e n d e n c y

−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name
11−>i n c l u d e s (’ i s P a r t ’)) . t a r g e t
12−>s e l e c t (o c l I s T y p e O f (C l a s s))
13−> i n t e r s e c t i o n (
14C l a s s . a l l I n s t a n c e s ()
15−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name
16−>i n c l u d e s (’ Requi rement ’))
17−>s e l e c t (name=Req)−>asSequence ()−> f i r s t ()
18. c l i e n t D e p e n d e n c y . t a r g e t
19−>s e l e c t (g e t A p p l i e d S t e r e o t y p e s () . name
20−>i n c l u d e s (’ Requi rement ’)))−>s i z e ()<>0)

. name

Listing 3. Query with pre-and postcondition for
getRelatedProblemDiagrams

In Listing 3 we use the stereotype <<isPart>>. According to
the UML superstructure specification [5], it is not possible that
one UML element is part of several packages. Nevertheless,
several UML tools (e.g.Papyrus, MagicDraw, Topcased, etc.)
allow one to put the same UML element into several packages
within graphical representations. We want to make use of
this information from graphical representations and add it
to the model (using stereotypes of the profile). Thus, we
have to relate the elements inside a package explicitly to
the package. This is achieved with a dependency stereotype
<<isPart>> from the package to all included elements (e.g.,
classes, interfaces, comments, dependencies, associations).

We also specify the operators presented in Sect. V by
stating pre- and postconditions for the respective operator.
An example of such an operator is given in Listing 4. The
preconditions for this operator are that

• an interface exists that is named like the interface we

7

provide (parameter intfName; line 6) and
• the provided phenomena are not already owned opera-

tions of the interface (lines 8-10).

1 addPhenomena (phenNames : S t r i n g [] ,
2 in t fName : S t r i n g ,
3 newIntfName : S t r i n g)
4
5 PRE :
6 I n t e r f a c e . a l l I n s t a n c e s ()−>e x i s t s (name= in t fName)
7 and
8 phenNames−>f o r A l l (pn |
9 not I n t e r f a c e

. a l l I n s t a n c e s ()−>s e l e c t (name= in t fName)
10 . oclAsType (I n t e r f a c e) . ownedOpera t ion

. name−>i n c l u d e s (pn))
11
12 POST :
13 I n t e r f a c e . a l l I n s t a n c e s ()−>e x i s t s (name=newintfName)
14 and
15 I n t e r f a c e

. a l l I n s t a n c e s ()−>s e l e c t (name=newintfName)

. g e t A p p l i e d S t e r e o t y p e s ()

. name−>i n c l u d e s (’ e v o l v e d i n t e r f a c e ’)
16 and
17 not I n t e r f a c e

. a l l I n s t a n c e s ()−>e x i s t s (name= in t fName)
18 and
19 phenNames−>f o r A l l (pn |
20 I n t e r f a c e

. a l l I n s t a n c e s ()−>s e l e c t (name=newintfName)
21 . oclAsType (I n t e r f a c e) . ownedOpera t ion

. name−>i n c l u d e s (pn)
22 and
23 I n t e r f a c e

. a l l I n s t a n c e s ()−>s e l e c t (name=newintfName)
24 . oclAsType (I n t e r f a c e)

. ownedOpera t ion−>s e l e c t (name=pn)

. g e t A p p l i e d S t e r e o t y p e s ()

. name−>i n c l u d e s (’ new op ’)
25)
26 and
27 I n t e r f a c e

. a l l I n s t a n c e s ()−>s e l e c t (name=newintfName)
28 . oclAsType (I n t e r f a c e) . ownedOpera t ion−>s i z e () =
29 I n t e r f a c e

. a l l I n s t a n c e s () @pre−>s e l e c t (name= in t fName)
30 . oclAsType (I n t e r f a c e)

. ownedOpera t ion−>s i z e () +phenNames−>s i z e ()

Listing 4. Operator addPhenomena with pre-and postcondition

The postcondition is fulfilled, if

• an interface with the new name (parameter newIntfName)
exists (line 13),

• the stereotype <<evolved interface>> has been as-
signed to the new interface (line 15),

• the old interface (parameter intfName) does not exist
anymore (line 17),

• the new phenomena are now owned operations of the new
interface (lines 19-21),

• the stereotype <<new op>> has been assigned to all
new phenomena (lines 23 and 24), and

• the number of operations owned by the new interface
(lines 27 and 28) is increased by the number of added
phenomena compared to the operations owned by the old
interface (lines 27-30).

Another example for an operator is given in Listing 5. In the
precondition we state that no domain should be existing that

as the same name as the domain to add (parameter domName)
(line 3).

The postcondition verifies that afterwards there exists a
domain with the provided name (line 5) and that the provided
stereotype (parameter domType) as well as the stereotype
<<new domain>> has been assigned to the domain (lines 6-
9).

1addDomain (domName : S t r i n g , domType : S t r i n g)
2
3PRE : not

C l a s s . a l l I n s t a n c e s ()−>e x i s t s (name= ’domName ’)
4
5POST : C l a s s . a l l I n s t a n c e s () −>e x i s t s (name= ’domName ’)
6and
7C l a s s . a l l I n s t a n c e s () −>s e l e c t (name= ’domName ’)

. g e t A p p l i e d S t e r e o t y p e s () . name
−>i n c l u d e s (’ domTyppe ’)

8and
9C l a s s . a l l I n s t a n c e s () −>s e l e c t (name= ’domName ’)

. g e t A p p l i e d S t e r e o t y p e s () . name
−>i n c l u d e s (’ new domain ’)

Listing 5. Operator addDomain with pre-and postcondition

The general procedure to use the tool for an evolution task
is as follows:

• Load the existing development project into eclipse.
• Create new classes for the evolution requirements and

mark them with the stereotype <<new R>>.
• Relate the requirements to each other according to

Sect. V-A1.
• Choose one evolution requirement and query the re-

lated problem diagrams, if any. Proceed as described in
Sect. V-A2.

• Revise the context diagram according to Sect. V-B.
Our paper concludes with this step. However, to accom-
plish the evolution task the remaining steps described at
the end of Sect. V (as well as adjusting the implemen-
tation and testing) must be performed. The final steps of
the evolution method are then to:

• remove all stereotypes starting with <<new >> and
<<evolved >>.

• automatically check integrity and consistency constraints
provided by UML4PF.

In summary the tool support described in Sect. IV is enhanced
by :

• an extended UML profile providing stereotypes specific
to the evolution, e.g., <<evolved R>>, <<modifies>>.

• OCL expressions to query model information.
• a set of operators specified by pre- and postconditions

expressed in OCL.

VII. RELATED WORK

This work takes up ideas from modern software engineer-
ing approaches and processes, such as the Rational Unified
Process (RUP) [15], Model-Driven Architecture (MDA) [16],
and Service-Oriented Architecture (SOA) [17]. All these ap-
proaches are model-driven, which means that in principle, an
evolution process for them can be defined in a similar way as
for the development process ADIT presented here.

8

The work of O’Cinnéide and Nixon [18] aims at applying
design patterns to existing legacy code in a highly automated
way. They target code refactorings. Their approach is based on
a semi-formal description of the transformations themselves,
needed in order to make the changes in the code happen.
They describe precisely the transformation itself and under
which pre- and postconditions it can successfully be applied.
Our approach not just performs code changes, but updates all
development documents.

Researchers have used versions and histories to analyze
different aspects considering software evolution. Ducasse et al.
[19] propose a history meta-model named HISMO. A history
is defined as a sequence of versions. The approach is based
on transformations aimed at extracting history properties out
of structural relationships. Our approach does not consider
histories and how to analyze them. In contrast, we introduce
a method for manipulating an existing software and its corre-
sponding documentation in a systematic way.

Detecting logical coupling to identify dependencies among
modules has been the research topic of Gall et al. [20]. Those
dependencies can be used to estimate the effort needed to carry
out maintenance tasks, to name an example. Descriptions in
change reports are used to verify the detected couplings. The
technique is not designed to change the functionality of a given
software.

Pizka [21] investigates software evolution at run-time.
Evolving a software system at run-time puts even more de-
mands on the method used than ordinary software systems.
Our approach does not take run-time evolution into account.

Sillito et al. [22] conducted a survey to capture the main
questions programmers ask when confronted with an evolution
task. These fit well to our method as they can be used to refine
the understanding of the software at hand, especially in later
phases.

We agree with Mens and D’Hondt [23] that it is necessary to
treat and support evolution throughout all development phases.
They extend the UML meta-model by their so-called evolution
contracts for that reason. The aim is to automatically detect
conflicts that may arise when evolving the same UML model
in parallel. This mechanism can very well be integrated into
our method to enhance the detection of inconsistencies and
conflicts. Our approach, however, goes beyond this detection
process. It strives towards an integral method for software
evolution guiding the software engineer in actually performing
an evolution task throughout all development phases.

The field of software evolution cannot be examined in
isolation as it has contact points with other disciplines of
software engineering. An example is the work of Demeyer
et al. [24]. They provide a pattern system for object-oriented
reengineering tasks. Since software evolution usually involves
some reengineering and also refactoring [25] efforts, it is only
natural that known and successful techniques are applied in
software evolution, as well. Software evolution, however, goes
beyond restructuring source code. Its main goal is to change
the functionality of a given software.

Furthermore, software evolution can profit from the research
performed in the fields of feature location e.g. [26], [27], re-

documentation, e.g. [28], [29], and agile development pro-
cesses such as extreme programming [30].

Lencastre et al. [31] define a meta-model for problem
frames using UML. Their meta-model considers Jackson’s
whole requirements analysis approach based on context di-
agrams, problem frames, and problem decomposition. In con-
trast to our meta-model, it only consists of a UML class model.
Hence, the OCL integrity conditions of our meta-model are
not considered in their meta-model. Their approach does not
qualify for a meta-model in terms of MDA because, e.g., the
class Domain has subclasses Biddable and Given, but an object
cannot belong to two classes at the same time (c.f. Figs. 5 and
11 in [31]).

We agree with Haley [32] on adding cardinality to standard
problem frames to enhance the detailing of shared phenomena
at the interfaces. In contrast to Haley though, we do not extend
the problem frames notation by introducing a new notational
element. We adopt the means provided by UML to annotate
problem frames in our meta-model instead.

Charfi et al. [33] use a modeling framework called Gas-
pard2 to design high-performance embedded systems-on-chip.
They use model transformations to move from one level of
abstraction to the next. To validate that their transformations
have been correctly performed, they use the OCL language
to specify the properties that must be checked in order to
be considered as correct with respect to Gaspard2. We have
been inspired by this approach. However, we do not focus
on high-performance embedded systems-on-chip. Instead, we
target general software development challenges.

Colombo et al. [34] model problem frames and problem
diagrams with SysML. They state that “UML is too oriented to
software design; it does not support a seamless representation
of characteristics of the real world like time, phenomena
sharing [...]”. We do not agree with this statement. So far,
we have been able to model all necessary means of the
requirements engineering process using UML.

We are not aware of other tools supporting the work with
problem frames on the semantic level, as does UML4PF.

VIII. CONCLUSION

In this paper, we have presented an evolution method and
an extension to our UML profile [10] for problem frames to
handle evolutionary requirements evolution as first steps of a
complete software evolution process. In this profile extension,
we defined a set of stereotypes supporting software evolution.
We introduced OCL queries in addition to OCL constraints.
One query has been presented in this paper. Furthermore, we
introduced operators that help the engineer in performing the
necessary changes in the different steps.

In summary, our concept has the following advantages:
• The evolution method is embedded in a development

process.
• We have defined a number of rules and operators that

guide the engineer when performing software evolution.
• Statements expressed using our profile help to structure

and classify the evolution task. For example, it is possible
to trace allartifacts that refer to one evolution require-
ment.

9

• Artifacts from the analysis phase that are part of a model
created with our profile can be re-used in later phases in
the software development process.

• The notation used is based on UML. UML is commonly
used in software engineering and many developers are
able to read our models.

• The evolution method is tool-supported.
In the future, we plan to extend our tool to support identifying
priorities within the set of evolution requirement. Currently,
we are working on expanding the evolution method to include
later phases of the development cycle based on the method
presented in this paper. Furthermore, we plan on conducting
further evolution tasks on open source projects to validate the
method as well as the tool.

REFERENCES

[1] M. Jackson, Problem Frames. Analyzing and structuring software de-
velopment problems. Addison-Wesley, 2001.

[2] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M.
Turski, “Metrics and laws of software evolution - the nineties view,”
in METRICS ’97: Proceedings of the 4th International Symposium on
Software Metrics. Washington, DC, USA: IEEE Computer Society,
1997, p. 20.

[3] D. L. Parnas, “Software aging,” in ICSE ’94: Proc. of the 16th Int. Conf.
on Software Engineering. Los Alamitos, CA, USA: IEEE Comp. Soc.
Press, 1994, pp. 279–287.

[4] G. Engels, M. Goedicke, U. Goltz, A. Rausch, and R. Reussner, “Design
for Future – Legacy-Probleme von morgen vermeidbar?” Informatik-
Spektrum, 2009.

[5] ”UML Revision Task Force”, OMG Unified Modeling Language:
Superstructure, February 2009, http://www.omg.org/docs/formal/09-02-
02.pdf.

[6] U. R. T. Force, OMG Object Constraint Language: Reference, May
2006, http://www.omg.org/docs/formal/06-05-01.pdf.

[7] D. Hatebur and M. Heisel, “Deriving software architectures from prob-
lem descriptions,” in Software Engineering 2009 - Workshopband. GI,
2009, pp. 383–302.

[8] I. Côté, D. Hatebur, M. Heisel, H. Schmidt, and I. Wentzlaff, “A
systematic account of problem frames,” in Proceedings of the Euro-
pean Conference on Pattern Languages of Programs (EuroPLoP 2007).
Universitätsverlag Konstanz, 2008.

[9] C. Choppy and M. Heisel, “Une approache à base de “patrons” pour
la spécification et le développement de systèmes d’information,” in
Proceedings Approches Formelles dans l’Assistance au Développement
de Logiciels - AFADL’2004, 2004, pp. 61–76.

[10] D. Hatebur and M. Heisel, “Making pattern- and model-based software
development more rigorous,” in Proceedings of 12th International
Conference on Formal Engineering Methods, ICFEM 2010, Shanghai,
China, ser. LNCS 6447, J. S. Dong and H. Zhu, Eds. Springer, 2010.

[11] “Eclipse - An Open Development Platform,” May 2008,
http://www.eclipse.org/.

[12] “Eclipse Modeling Framework Project (EMF),” May 2008,
http://www.eclipse.org/modeling/emf/.

[13] “XMI - XML Metadata Interchange,” May 2008,
http://www.omg.org/docs/formal/05-09-01.pdf.

[14] “Papyrus UML Modelling Tool,” Jan 2010, http://www.papyusuml.org/.
[15] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Devel-

opment Process. Addison-Wesley, 1999.
[16] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, MDA Distilled. Addison-

Wesley Professional, 2004.
[17] T. Erl, Service-Oriented Architecture (SOA): Concepts, Technology, and

Design. Prentice Hall PTR, 2005.
[18] M. O’Cinnéide and P. Nixon, “A methodology for the automated intro-

duction of design patterns,” in ICSM ’99: Proc. of the IEEE Int. Conf.
on Software Maintenance. Washington, DC, USA: IEEE Computer
Society, 1999, p. 463.

[19] S. Ducasse, T. Gı̂rba, and J.-M. Favre, “Modeling software
evolution by treating history as a first class entity,” in
Proc. on Software Evolution Through Transformation (SETra 2004).
Amsterdam: Elsevier, 2004, pp. 75–86. [Online]. Available:
http://www.iam.unibe.ch/ scg/Archive/Papers/Duca04fHismo.pdf

[20] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in ICSM ’98: Proc. of the Int. Conf.
on Software Maintenance. Washington, DC, USA: IEEE Computer
Society, 1998, p. 190.

[21] M. Pizka, “STA – a conceptual model for system evolution,” in Int.
Conf. on Software Maintenance. Montreal, Canada: IEEE CS Press,
Oct. 2002, pp. 462 – 469.

[22] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers
ask during software evolution tasks,” in SIGSOFT ’06/FSE-14: Proc.
of the 14th ACM SIGSOFT Int. Symposium. on Foundation of Software
Engineering. New York, NY, USA: ACM, 2006, pp. 23–34.

[23] T. Mens and T. D’Hondt, “Automating support for software evolution
in UML,” Automated Software Engineering Journal, vol. 7, no. 1, pp.
39–59, February 2000.

[24] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented Reengi-
neering Patterns. Morgan Kaufmann, 2002.

[25] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[26] D. Edwards, S. Simmons, and N. Wilde, “An approach to feature location
in distributed systems,” in Journal of Systems and Software, 2006.

[27] R. Koschke and J. Quante, “On dynamic feature location,” in ASE
’05: Proc. of the 20th IEEE/ACM Int. Conf. on Automated Software
Engineering. New York, NY, USA: ACM, 2005, pp. 86–95.

[28] F. Chen and H. Yang, “Model oriented evolutionary redocumentation,”
in COMPSAC ’07: Proc. of the 31st Annual Int. Computer Software and
Applications Conference - Vol. 1- (COMPSAC 2007). Washington, DC,
USA: IEEE Computer Society, 2007, pp. 543–548.

[29] K. Wong, S. R. Tilley, H. A. Muller, M. D. Storey, and T. A. Corbi,
“Structural redocumentation: A case study,” IEEE Software, vol. 12, pp.
46–54, 1995.

[30] K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[31] M. Lencastre, J. Botelho, P. Clericuzzi, and J. Araújo, “A meta-model for
the problem frames approach,” in WiSME’05: 4th Workshop in Software
Modeling Engineering, 2005.

[32] C. B. Haley, “Using problem frames with distributed architectures: A
case for cardinality on interfaces,” The Second International Software
Requirements to Architectures Workshop (STRAW’03), May 2003.

[33] A. Charfi, A. Gamatié, A. Honoré, J.-L. Dekeyser, and M. Abid,
“Validation de modèles dans un cadre d’IDM dédié à la conception
de systèmes sur puce,” in 4èmes Jounées sur l’Ingénierie Dirigée par
les Modèles (IDM 08), 2008.

[34] P. Colombo, V. del Bianco, and L. Lavazza, “Towards the integration
of SysML and problem frames,” in IWAAPF ’08: Proceedings of the
3rd international workshop on Applications and advances of problem
frames. New York, NY, USA: ACM, 2008, pp. 1–8.

10

