
Towards Systematic Integration of Quality
Requirements into Software Architecture ∗

Azadeh Alebrahim, Denis Hatebur, and Maritta Heisel

University Duisburg-Essen, Germany, {azadeh.alebrahim, denis.hatebur,
maritta.heisel}@uni-duisburg-essen.de

Abstract. We present a model- and pattern-based approach that allows
software engineers to take quality requirements into account right from
the beginning of the software development process. The approach com-
prises requirements analysis as well as the software architecture design,
in which quality requirements are reflected explicitly.

1 Introduction

Taking quality (or non-functional) requirements into account when developing
a software architecture is a demanding task, for which satisfactory solutions are
still sought for. In this paper, we want to contribute to improve this situation.
We present a model- and pattern-based approach for architectural design that
explicitly takes quality requirements (in particular, security and performance
requirements) into account.
As a basis for requirements analysis, we use Jackson’s problem frame approach
[6]. We have carried over problem frames to UML [11] by defining a specific
UML profile, and we have implemented a tool, called UML4PF 1 supporting
requirements analysis and architectural design based on problem frames [4]. As
a basis for architectural design, we use an method that we developed for deriving
architectures based on functional requirements [2].
In the present paper, we extend our previous requirements analysis and archi-
tectural design methods by explicitly taking into account quality requirements.
The analysis documents are extended by quality requirements that complement
functional ones. For this purpose, we have extended the UML profile [5]. The
so enhanced problem descriptions form the starting point for architectural de-
sign. To design the architecture, we apply appropriate security or performance
patterns and mechanisms and define quality stereotypes that serve as hints for
implementers.
The rest of the paper is organized as follows. We present the basics on which our
approach builds in Sect. 2, namely problem frames and security and performance
patterns and mechanisms. In Sect. 3, we present the UML profile we defined
to carry over the problem frame approach to UML. Section 4 is devoted to
describing our approach in more detail. Related work is discussed in Sect. 5, and
conclusions and future work are given in Sect. 6.

∗Part of this work is funded by the German Research Foundation (Deutsche
Forschungsgemeinschaft - DFG) under grant number HE3322/4-1.

1Available under http://swe.uni-duisburg-essen.de/en/research/tool/



2 Basic Concepts

In this section, we introduce the basic concepts our approach relies on.

2.1 Requirements Description using Problem Frames

Problem frames are patterns to describe software development problems. They
were proposed by Michael Jackson [6]. A problem frame basically consists of
domains, interfaces between them, and a requirement. The task is to construct a
machine (i.e., software) that improves the behavior of the environment (in which
it is integrated) in accordance with the requirements.
Software development with problem frames proceeds as follows: first the envi-
ronment in which the machine will operate is represented by a context diagram.
A context diagram consists of machines, domains and interfaces. Then, the prob-
lem is decomposed into subproblems, which are represented by problem diagrams
that can be instances of problem frames. A problem diagram consists of a sub-
machine of the machine given in the context diagram, the relevant domains, the
interfaces between these domains, and a requirement. Figure 1 shows a problem
diagram in UML notation.

2.2 Mechanisms and Patterns for Performance and Security

To satisfy performance and security requirements, different mechanisms – also
called patterns – are available [3, 10]. Load Balancing is such a mechanism that
is used to distribute computational load evenly over two or more hardware com-
ponents. The load balancing pattern consists of a component, which is called
Load Balancer, and multiple hardware components that implement the same
functionality. Encryption is an important means to achieve confidentiality. A
plaintext is encrypted using a secret key and decrypted either using the same
key (symmetric encryption) or a different key (asymmetric encryption).

3 Requirements Engineering

It is important that the results of the requirements analysis with problem frames
can be easily re-used in later phases of the development process. Since UML is
a widely used notation to express analysis and design artifacts in a software
development process, we defined a new UML profile [4, 2] that extends the UML
meta-model to support problem-frame-based requirements analysis with UML.
This profile can be used to create the diagrams for the problem frame approach.
To address quality requirements in the requirement engineering process we en-
hance our UML profile with annotations for quality requirements as stereotypes.

3.1 UML Profile for Problem Frames

Using specialized stereotypes, our UML profile allows us to express the different
diagrams occurring in the problem frame approach using UML diagrams.
A class with the stereotype�machine� represents the software to be developed
(possibly complemented by some hardware). Jackson distinguishes the domain
types biddable domains (represented by the stereotype �BiddableDomain�)
that are usually people, causal domains (represented by the stereotype�Causal-
Domain�) that comply with some physical laws, and lexical domains (repre-
sented by the stereotype �LexicalDomain�) that are data representations.
In problem diagrams, interfaces connect domains, and they contain shared phe-
nomena. Shared phenomena may be events, operation calls, messages, and the



Fig. 1. Problem diagram for the requirement Communicate

like. They are observable by at least two domains, but controlled by only one do-
main, as indicated by an exclamation mark. For example, in Fig. 1 the notation
U!sendTM (between CA communicate and User) means that the phenomenon
sendTM is controlled by the domain User. The interfaces are marked with spe-
cializations of the stereotype �connection�, e.g., a user interface (�ui�)
between User and CA communicate machine in Fig. 1.
The stereotype�requirement� represents a functional or quality requirement.
When we state a requirement we want to change something in the world with
the machine to be developed. Therefore, each requirement constrains at least
one domain. This is expressed by a dependency from the requirement to a do-
main with the stereotype �constrains�. A requirement may refer to several
domains in the environment of the machine. This is expressed by a dependency
from the requirement to a domain with the stereotype �refersTo�.
The problem diagram in Fig. 1 considers a chat application introduced in more
detail in Sect. 4. It describes the requirement Communicate, e.g., it states that
the CA communicate machine can show to the User the CurrentChatSession on
its Display (CAC!{displayCCS}). The requirement constrains the CurrentChat-
Session of the User and its Display. The requirement refers to the users and the
text messages.
The problem frame approach substantially supports developers in analyzing
problems to be solved. It points out what domains have to be considered, and
what knowledge must be described and reasoned about when analyzing a prob-
lem in depth. Developers must elicit, examine, and describe the relevant proper-
ties of each domain. These descriptions form the domain knowledge are specified
in domain knowledge diagrams.

3.2 Annotating Problem Descriptions with Quality Requirements

The problem frame approach proposed by Jackson provides a method that
addresses functional requirements only. Quality requirements are not consid-
ered. We extended our UML profile for problem frames to complement func-
tional requirements with security requirements [5]. Classes with stereotypes



such as �confidentiality�, �integrity� and corresponding attributes
such as attacker or stakeholder address security requirements. The dependency
from a quality requirement to a requirement is expressed with the stereotype
�complements� (see Fig. 1). To provide support for annotating problem de-
scriptions with performance requirements, we use the UML profile MARTE
(Modeling and Analysis of Real-time and Embedded Systems) [12]. We focused
on the GQAM package (Generic Quantitative Analysis Modeling) that contains
basic concepts for modeling and analysis of domains based on software behavior,
in particular performance. To define workload and behavior concerns we make
use of the GQAM Workload package by instantiating the appropriate attributes
of this package. Each BehaviorScenario is composed of Steps, each of which can
be refined as another BehaviorScenario. A behavior scenario is triggered by the
WorkloadEvent, which may be generated by a stated ArrivalPattern such as
the ClosedPattern that allows us to model a number of concurrent user and a
think time (the time that the user waits between two requests) by instantiating
the attributes population and extDelay. We define a BehaviorScenario composed
of one Step for the requirement Communicate RT (see Sect. 4.2), which is re-
fined in three BehaviorScenario instances, each of which is composed of a single
Step. The Step instances represent the requirements Send RT, Forward RT and
Receive RT that stand in the precedence relationship Sequence [12, p. 289].

4 Deriving quality-based Architectures

We now present our approach to derive software architectures, taking quality
requirements into account. It comprises requirements analysis as well as the
software architecture design. We illustrate our approach by a chat application,
which allows a text-message-based communication via private I/O devices. Users
should be able to communicate with other chat participants in a same chat
room. We consider the Communicate functional requirement with the descrip-
tion ”Users can send text messages to a chat room, which should be shown to
the users in that chat room in the current chat session in the correct tempo-
ral order on their displays” and its corresponding quality requirement Response
Time with the description ”The sent text message should be shown on the re-
ceiver’s display in 1500 ms maximum”. Moreover, Confidentiality of the text
messages should be preserved. Note that in order to specify performance and
confidentiality requirements properly, more details have to be given.

4.1 Problem Diagrams
As described in Sect. 2.1, the first step in the software development process based
on problem frames is to create a context diagram (not shown). We decompose
the overall problem into subproblems represented by problem diagrams. Each
problem diagram describes one subproblem with the corresponding requirement.
We focus on the requirement Communicate. The corresponding problem diagram
using our UML profile for problem frames is depicted in Fig. 1. It consists of the
domains User, TextMessage, CurrentChatSession and Display. The requirement
Communicate refers to the domains User and TextMessage, expressed by the
stereotype �refersTo� and constrains the domains CurrentChatSession and
Display, expressed by the stereotype �constrains�.

4.2 Annotate Problem Diagrams with Quality Requirements
In this step, we address quality requirements by annotating problem diagrams
with suitable stereotypes. The requirement Communicate is complemented by



the confidentiality requirement Communicate Conf that requires confidentiality
of data transmission for TextMessage and the response time requirement Com-
municate RT representing one BehaviorScenario composed of one Step described
with the stereotype �gaStep� (see Fig. 1). The response time requirement is
modeled by instantiating the relevant attributes of the Step class in the MARTE
GQAM Workload package described in Sect. 3.2. The cause attribute represents
the triggered event, which is in our case a ClosedPattern with 100 concurrent
users (population), each of which needs a think time of 1000 ms (extDelay). The
respT attribute states that the required response time for sending text messages
should be 1500 ms maximum. The msgSize attribute states that the sending text
messages should be 5 KB maximum.

4.3 Choose Design Alternative and Create Architecture

We first create an initial architecture, where each machine domain in a problem
diagram is mapped to a component. The initial architecture for the chat appli-
cation (not shown) contains – among others – a component CA communicate
corresponding to the machine domain CA communicate of Fig. 1.
The software architect then needs to take a design decision concerning the kind
of distribution, e.g., client-server, peer-to-peer, or standalone. In the following,
we describe the approach for a client-server architecture in more detail.
After having chosen a client-server architecture, we go back to the requirements
description and split the problem diagrams in such a way that each subprob-
lem is allocated to only one of the distributed components. This may lead us
to introduce connection domains2, e.g., networks. In our example, the problem
diagram depicted in Fig. 1 is split into three problem diagrams, which address
the problems of sending text messages to the server that belongs to the client
(Send), forwarding text messages from the server to the receivers that belongs
to the server (Forward), and receiving text messages that belongs to the client
(Receive). For each of these three subproblems, we introduced the connection
domain Network to achieve the distribution.
Analogously to splitting the problem diagrams, we also have to split the cor-
responding quality requirements. In case of a response time requirement,
the response time should be divided so that all subproblems together satisfy the
desired response time. The Communicate requirement states a response time
of 1500 ms maximum. This must be achieved through the three subproblems
Send, Forward, Receive and the time for data transmission over the network.
We cannot meet the performance and specifically response time requirements, if
we have no knowledge about the real circumstances in the environment. There-
fore we specify knowledge about the network and the computational power of
clients and server in a domain knowledge diagram. It contains specific knowledge
about client and server, e.g., the number of processor cores, processor speed and
memory. Additionally, we assume that the response time to transmit data over
a network with 64 kb/s minimum is 400 ms.
To fulfill the confidentiality requirement for the problem PD communicate (Fig. 1),
we require confidentiality for each subproblem. Therefore, we annotate each sub-
problem with a corresponding refined confidentiality requirement. This require-
ment contains a stakeholder that is interested in preserving the confidentiality
of data, and an attacker that the chat application should be protected against.

2These are domains needed to establish a connection between other domains [6].



Fig. 2. Concretized quality problem diagram for the quality requirement Forward RT

The stakeholder in our case is the User, and the attacker is a NetworkAttacker
who is able to attack the data transported over the network.
Concretized Quality Problem Diagrams describe solution approaches in
terms of mechanisms and patterns. We elaborate the problem diagrams anno-
tated with quality requirements from the previous step by introducing domains
reflecting specific solution approaches.
For example, the problem diagram for the Send problem describes the problem of
sending text messages with two additional quality requirements for security and
performance, respectively. The requirement for performance states that sending a
text message should be performed within 200 ms (allocated part of the 1500 ms).
However, this requirement cannot be achieved by architectural means. Instead,
it must be taken care of in the implementation. In such a case, we annotate
the corresponding machine with a stereotype that serves as a hint to develop
a particularly efficient implementation (�gaStep�) or an implementation that
does not leak information (�confidentiality�).
The security requirement describes that a text message should be transmitted
confidentially over an insecure network. To take this quality requirement into
account, we specify the concretized quality problem diagram including an En-
cryption machine and domains for keys used for asymmetric encryption. This
decision necessitates to also introduce new components on the receiver side,
namely a new machine Decryption and a domain ReceiverUserPrivateKey.
In order to address the response time requirement in the Forward problem even
under high load, we introduce a new machine LoadBalancer (see Fig. 2). It
distributes the load from the network across several server components.
By now we have provided a suitable basis for quality-aware architectural design
in the requirements analysis phase. To design an architecture that achieves
the required level of performance and security, we make use of the split problem
diagrams to allocate components to the client and to the server. Each machine
in the split problem diagrams belongs to a component in the client or in the
server according to functionality of that submachine. To design the architecture,
we merge related components, apply design patterns (e.g., Facades), and use the
solution domains for quality requirements (e.g.,LoadBalancer). The resulting
software architecture for the chat application – represented as a UML composite
structure diagram – is shown in Fig. 3.



Fig. 3. Client-server architecture for the chat application

5 Related Work

Previous work often considers only one type of quality requirements during the
software development process, e.g., security.
An approach to transform security requirements to design is provided by Moura-
tidis and Jürjens [9]. It starts with the goal-oriented security requirements engi-
neering approach Secure Tropos [8], and connects it with a model-based security
engineering approach, namely UMLsec [7].
Yskout et al. [14] present a semi-automated approach to support the transition
from security requirements to architecture. They focus on delegation, autho-
rization and auditing as security requirements. They presuppose an architecture
that fulfills the functional requirements, and they apply security solutions to the
functional architecture by transforming security requirements.
Attribute Driven Design (ADD) [13] is a method to design a conceptual architec-
ture. It focuses on the high-level design of an architecture, and hence does not
support detailed design. Identifying mechanisms to achieve quality attributes
relies on the architect’s expertise.
Q-ImPrESS [1] is a project that focuses on the generation and evaluation of
architectures according to quality properties, in particular performance. The
phases design and implementation of the software development process are par-
ticularly in focus. In contrast to our contribution, it does not use requirements
descriptions as a starting point.

6 Conclusion

In this paper, we have presented a UML-based approach to design software archi-
tectures from requirements, taking quality requirements into account. We pro-
vide means to specify quality requirements thoroughly with problem diagrams,



and we incorporate mechanisms or patterns addressing these requirements ex-
plicitly in the software architecture.
Our approach builds on established techniques such as problem frames, secu-
rity and performance patterns. Its novelty lies in the fact that the different
approaches are integrated and intertwined explicitly by an underlying method-
ology and a common notation. The notation as well as the methodology are open
and can be developed further to enhance the power and breadth of the approach.
In the present work, we have not investigated possible conflicts between different
quality requirements. We strive for a more systematic treatment of conflicting
quality requirements. Moreover, we have concentrated on structural descriptions
of software architectures. In the future, we will extend our approach to also
support deriving behavioral descriptions for the developed architectures and
automatically checking their coherence with the structural descriptions.

References

1. S. Becker, S. Dešić, J. Doppelhamer, D. Huljenić, H. Koziolek, E. Kruse,
M. Masetti, W. Safonov, I. Skuliber, J. Stammel, M. Trifu, J. Tysiak, and R. Weiss.
Q-ImPrESS Project Deliverable D1.1 – Requirements document. final version, Q-
ImPrESS Consortium, 2009.

2. C. Choppy, D. Hatebur, and M. Heisel. Systematic architectural design based on
problem patterns. In P. Avgeriou, J. Grundy, J. Hall, P. Lago, and I. Mistrik,
editors, Relating Software Requirements and Architectures, chapter 9. Springer,
2011. To appear.

3. C. Ford, I. Gileadi, S. Purba, and M. Moerman. Patterns for Performance and
Operability. Auerbach Publications, 2008.

4. D. Hatebur and M. Heisel. Making Pattern- and Model-Based Software Develop-
ment More Rigorous. In J. S. Dong and H. Zhu, editors, Proc. of 12th Int. Conf.
on Formal Engineering Methods, LNCS 6447, pages 253–269. Springer, 2010.

5. D. Hatebur and M. Heisel. A UML profile for requirements analysis of dependable
software. In E. Schoitsch, editor, Proc. of the Int. Conf. on Computer Safety,
Reliability and Security (SAFECOMP), LNCS 6351, pages 317–331. Springer, 2010.

6. M. Jackson. Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

7. J. Jürjens. Secure Systems Development with UML. Springer, 2005.
8. H. Mouratidis. A Security Oriented Approach in the Development of Multiagent

Systems: Applied to the Management of the Health and Social Care Needs of Older
People in England. PhD thesis, University of Sheffield, U.K., 2004.

9. H. Mouratidis and J. Jürjens. From goal-driven security requirements engineering
to secure design. Int. J. Intell. Syst., 25:813–840, 2010.

10. M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Som-
merlad. Security Patterns: Integrating Security and Systems Engineering. Wiley
& Sons, 2005.

11. ”UML Revision Task Force”. OMG Unified Modeling Language (UML), Super-
structure. http://www.omg.org/spec/UML/2.3/Superstructure/PDF.

12. ”UML Revision Task Force”. UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded Systems. http://www.omg.org/spec/MARTE/1.0/PDF.

13. R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B. Wood.
Attribute-Driven Design (ADD). Version 2.0, Software Engineering Institute, 2006.

14. K. Yskout, R. Scandariato, B. D. Win, and W. Joosen. Transforming security
requirements into architecture. In Proc. of the 3rd Int. Conf. on Availability,
Reliability and Security, pages 1421–1428, USA, 2008. IEEE Computer Society.


