Towards Systematic Integration of Performance and
Security Requirements into Software Architecture ”

Azadeh Alebrahim
azadeh.alebrahim@uni-
duisburg-essen.de

Denis Hatebur
denis.hatebur@uni-
duisburg-essen.de

Maritta Heisel
maritta.heisel@uni-
duisburg-essen.de

Software Engineering
Department of Computer Science and Applied Cognitive Science
Faculty of Engineering, University Duisburg-Essen
Duisburg, Germany

ABSTRACT

We present a model- and pattern-based method that allows
software engineers to take quality requirements into account
right from the beginning of the software development pro-
cess. The method comprises requirements analysis as well as
the derivation of a software architecture from requirements
documents. In that architecture, quality requirements are
reflected explicitly.

For requirements analysis, we use an enhancement of the
problem frame approach [14], where software development
problems are represented by problem diagrams. In our en-
hanced version of the problem frame approach, we use UML
notation, and we have added the possibility to complement
functional requirements with quality requirements, such as
security or performance requirements.

The derivation of a software architecture starts from a
set of problem diagrams, annotated with functional as well
as quality requirements. First, we set up an initial soft-
ware architecture, taking into account the decomposition of
the overall software development problem into subproblems.
Next, we incorporate quality requirements into that archi-
tecture by using security or performance patterns or mech-
anisms. To obtain the final architecture, (functional) design
patterns are applied. The method is tool-supported, which
allows developers to check semantic integrity conditions in
the different models.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms

Design, Security, Performance

*Part of this work is funded by the German Research Foun-
dation (Deutsche Forschungsgemeinschaft - DFG) under
grant number HE3322/4-1.

Permission to make digital or hard copies of all or part of tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

Qo0SA 2011, Boulder, Colorado, USA

Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords

Quality-driven design, quality requirements, software archi-
tecture, software architecture design

1. INTRODUCTION

Taking quality (or non-functional) requirements into ac-
count when developing a software architecture is a demand-
ing task, for which satisfactory solutions are still sought for.
There are several reasons for this situation. First, quality re-
quirements must be elicitated, analyzed, and documented as
thoroughly as functional ones, which is often not the case.
Second, requirements engineering and architectural design
are often regarded as separate phases in software develop-
ment, between which no seamless connection and no feed-
back exists. Hence, the knowledge gained in the require-
ments engineering phase is not used in a systematic way
when developing a software architecture. Third, the current
techniques for incorporating quality requirements into soft-
ware architectures are even less developed than the ones that
concentrate on functional requirements only. As a result,
quality requirements seem to be fulfilled more “by chance”
than by construction.

In this paper, we want to contribute to overcome this un-
satisfactory situation. We present a method that

1. provides a seamless transition from requirements anal-
ysis to architectural design,

2. takes quality requirements (in particular, security and
performance requirements) into account explicitly,

3. is model- and pattern-based, and for which

4. tool support exists.

We consider security and performance requirements, because
they are quite different in nature. Security requirements
can often be transformed into functional ones. For exam-
ple, the confidential transmission of data can be achieved
through encryption, which is an added functionality. Per-
formance requirements, on the other hand, can hardly be
transformed into functional ones. Therefore, these two kinds
of requirements are appropriate representatives of quality re-
quirements. If these two can be treated in a similar way, we
may hope that our results are generalizable also for other
kinds of quality requirements.

As a basis for requirements analysis, we use Jackson’s
problem frame approach [14]. We have carried over prob-
lem frames to UML [21] by defining a specific UML profile,
and we have implemented a tool supporting requirements

analysis and architectural design based on problem frames
[12]. The tool, called UML/PF, provides the possibility to
automatically check semantic integrity conditions for indi-
vidual requirements or architectural models, as well as co-
herence conditions between different models. As a basis for
architectural design, we use a method that we developed for
deriving architectures based on functional requirements [7].

In the present paper, we extend our previous requirements
analysis and architectural design methods by explicitly tak-
ing into account quality requirements. The analysis docu-
ments are extended by quality requirements that comple-
ment functional ones. For this purpose, we have extended
the UML profile described in [12]. The so enhanced problem
descriptions form the starting point for architectural design.
In a first step, we proceed similarly as described in [7]. That
is, we define an initial software architecture that is oriented
on the decomposition of the overall software development
problem into subproblems. In a second step, we transform
that architecture according to the quality requirements to be
considered. For this purpose, we apply appropriate security
or performance patterns, or we introduce components pro-
viding proven security or performance mechanisms, such as
encryption or load balancing. Furthermore, we apply func-
tional design patterns [10], such as Facade, to obtain a clean
and modular software architecture. Finally, we have defined
quality stereotypes that serve as hints for implementers.

The rest of the paper is organized as follows. In Sect. 2,
we introduce the case study that serves as a running exam-
ple throughout the paper. We then present the basics on
which our method builds in Sect. 3, namely problem frames
and security and performance patterns and mechanisms. In
Sect. 4, we present the UML profile we defined to carry over
the problem frame approach to UML, as well as the tool
UMLAPF. Section 5 is devoted to describing our method in
detail. Related work is discussed in Sect. 6, and conclusions
and future work are given in Sect. 7.

2. CASE STUDY

As a case study, we use a chat application. Users should
be able to log into the system after they are successfully
registered. They should be able to join given chat rooms,
where they can communicate with other chat participants in
the same chat room. The system mission can be described
as follows:

“A text-message-based communication platform
should be developed, which allows multi-user com-
munication via private I/O devices.”

After that, functional and quality requirements should be
elicitated. In this paper, we focus on the most important
functional requirement and its corresponding quality require-
ments. The functional requirement in focus is:

Communicate: Users can send text messages to
a chat room, which should be shown to the users
in that chat room in the current chat session in
the correct temporal order on their displays.

We consider some corresponding quality requirements. As a
performance requirement we define the following:

Response Ttme: The sent text message should
be shown on the receiver’s display in less than
1500 ms in 95% of all cases.

Note that we need to describe a usage model in order to fulfill
a performance requirement appropriately. We capture the
usage model in a Load Profile that specifies the size of the
data to be transmitted, the number of concurrent users, and
their behavior. We will describe the load profile in Sect. 5.2
in detail.

As a security requirement we consider the following:

Confidentiality: Text messages should be trans-
mitted in a confidential way.

Besides the confidentiality of text messages, their integrity
is also important. For reasons of space, however, we do not
address integrity in this paper.

In following sections, we describe our method to derive
a quality-based software architecture from problem descrip-
tions, and illustrate its application to the chat case study
with the aforementioned requirements.

3. BASIC CONCEPTS

In this section, we introduce the basic concepts our method
relies on. First, we describe a requirements engineering pro-
cess based on problem frames. Second, we describe a set
of established patterns and mechanisms that we integrate
into software architecture in order to meet performance and
security requirements.

3.1 Requirements Description using Problem
Frames

Problem frames are a means to describe software devel-
opment problems. They were proposed by Michael Jack-
son [14], who describes them as follows:

“A problem frame is a kind of pattern. It defines an intu-
itively identifiable problem class in terms of its context and
the characteristics of its domains, interfaces and require-
ment.”

A problem frame is described by a frame diagram, which
basically consists of domains, interfaces between them, and
a requirement. The task is to construct a machine (e.g.,
software) that improves the behavior of the environment (in
which it is integrated) in accordance with the requirements.

Software development with problem frames proceeds as
follows: first the environment in which the machine will op-
erate is represented by a context diagram. A context dia-
gram consists of machines, domains and interfaces. Then,
the problem is decomposed into subproblems, which are rep-
resented by problem diagrams. A problem diagram consists
of a submachine of the machine given in the context dia-
gram, the relevant domains, the interfaces between these
domains, and a requirement. Figures 1 and 3-5 show prob-
lem diagrams in UML notation.

3.2 Mechanisms and Patterns for Performance

To satisfy performance requirements, different mechanisms,
also called patterns [9], are available. We describe two such
mechanisms.

3.21 LoadBalancing

Load Balancing is a mechanism that is used to distribute
computational load evenly over two or more hardware com-
ponents. The load balancing pattern consists of a compo-
nent, which is called Load Balancer, and multiple hardware
components that implement the same functionality. The
load balancer can be realized as a hardware or a software

component. Note that the load balancer itself may become
a bottleneck and therefore should be analyzed appropriately.

Applying this pattern may also increase the availability of
an application or a component through redundancy. This
needs additional mechanisms for the load balancer to switch
from a failed component to a working component in the case
of a failure.

3.2.2 Master-Worker

Master- Worker makes it possible to serve requests in par-
allel, similarly to load balancing. In contrast to load bal-
ancing that distributes the load through hardware compo-
nents, the master-worker pattern provides a software solu-
tion. When a request is complex and takes a long time to
complete, it should be divided into parallel smaller tasks.
This pattern consists of a software component, which is
called Master and two or more other software components,
called Worker. The task of the master is to divide the re-
quest into parallel tasks and to forward them to the work-
ers. The worker components manage the smaller tasks. If
the required hardware does not exist to increase the perfor-
mance or buying extra hardware is not affordable, applying
the master-worker pattern is the only option for speed-up.
Since parallelization algorithms could cause overhead cost,
it should be determined, under which conditions applying
this pattern is profitable.

3.3 Mechanisms and Patterns for Security

Like design patterns for functional requirements, security
patterns for security requirements are available. Although
these patterns do not cover all security issues, they pro-
vide a structured basis to integrate security into software
architecture. We describe the security pattern Single Access
Point and and the Encryption mechanism that can be ap-
plied when developing secure applications. We only give an
overview and do not describe them in detail. A collection of
security patterns can be found in [25, 19, 26].

3.3.1 Single Access Point

It may be difficult and expensive to provide security for
an application, which has multiple entry points. Protecting
an application is easier when there is only one way to access
an application. The typical solution is applying the Single
Access Point pattern, which provides only one entry point
into the system. An example for this pattern is to create a
login screen that collects user information such as user name
and password.

3.3.2 Encryption

Encryption is an important means to achieve confiden-
tiality. A plaintext is encrypted using a secret key and de-
crypted either using the same key (symmetric encryption)
or a different key (asymmetric encryption). One advantage
of symmetric encryption is that it is faster than asymmet-
ric encryption. The disadvantage is that both communi-
cation parties must know the same key, which has to be
distributed securely or negotiated. Asymmetric encryption
uses key pairs. A sender uses the public key of the receiver
to encrypt a message, and only the receiver can decrypt the
message using its private key. In asymmetric encryption,
there is no key distribution problem, but a trusted third
party is needed that issues the key pairs. It is also slower
than symmetric encryption, which may cause performance
problems.

4. TOOL-SUPPORTED REQUIREMENTS
ENGINEERING

It is important that the results of the requirements analy-
sis with problem frames can be easily re-used in later phases
of the development process. Since UML is a widely used no-
tation to express analysis and design artifacts in a software
development process, we defined a new UML profile [12,
7] that extends the UML meta-model to support problem-
frame-based requirements analysis with UML. This profile
can be used to create the diagrams for the problem frame
approach. To address quality requirements in the require-
ment engineering process we enhance our UML profile with
annotations for quality requirements as stereotypes. In addi-
tion, the tool UMLA4PF supports the requirements engineer-
ing process as well as architectural design using the UML
profile.

4.1 UML Profile for Problem Frames

As mentioned in Sect. 3.1, during the problem analysis
phase, a number of diagrams are set up that provide a de-
tailed description of the software development problem to
be solved. Using specialized stereotypes, our UML profile
allows us to express the different diagrams occurring in the
problem frame approach using UML diagrams.

A class with the stereotype <machine>> represents the
software to be developed (possibly complemented by some
hardware). Jackson distinguishes the domain types biddable
domains that are usually people, causal domains that com-
ply with some physical laws, and lexical domains that are
data representations. The domain types are modeled by the
stereotypes <BiddableDomain>> and <CausalDomain>> be-
ing subclasses of the stereotype <Domain>>. A lexical do-
main (<KLexicalDomain>) is modeled as a special case of
a causal domain (see Fig. 1). To describe the problem
context, a connection domain between two other domains
may be necessary. Connection domains establish a con-
nection between other domains by means of technical de-
vices. They are modeled as classes with the stereotype
< ConnectionDomain’>. Connection domains are, e.g., video
cameras, sensors, or networks. This kind of modeling allows
one to add further domain types, such as <DisplayDomain>
(introduced in [8]), being a special case of a causal domain.

In problem diagrams, interfaces connect domains, and
they contain shared phenomena. Shared phenomena may be
events, operation calls, messages, and the like. They are ob-
servable by at least two domains, but controlled by only one
domain, as indicated by an exclamation mark. For example,
in Fig. 1 the notation UlsendTM (between CA_communicate
and User) means that the phenomenon sendTM is con-
trolled by the domain User. The interfaces are marked
with specializations of the stereotype < connection>>, e.g.,
a user interface (<ui>>>) between User and CA_communicate
machine in Fig. 1.

The stereotype <requirement>> represents a functional
requirement. When we state a requirement we want to
change something in the world with the machine to be de-
veloped. Therefore, each requirement constrains at least
one domain. This is expressed by a dependency from the re-
quirement to a domain with the stereotype < constrains>>.
Such a constrained domain is the core of any problem de-
scription, because it has to be controlled according to the
requirements.

A requirement may refer to several domains in the en-

«problembDiagrans
PD_communicate

«Requirement

«confidertizlity, requiremernts
text = Presene confidentiality of data transmission for TextMessage Communicate Conf
i <biddableDomains sendTh !
User

Ul zendTM} - arefersTox
«lexicalDomain:
TextMessage

“connection:
T contentOfTh}

contentofccsg - o7

onstrainss~ L

i
} «complemesnts:
|

«rafersTos -

emachine»
CA_communicate

= «connections
CCSHcontentOICCS],
CAlistoreTMintoCCS}

contentOfT _ - - - «requirements
< -7 _ -7/ Communicate

W «complements:

+responseTimes
/| Communicate_RT
v

«
alexicalDornzin:
CurrentChatSession &~ .
«ResponseTime:
probahility = 35%
LPStatic = [LoadProfile]
respTimevalue_ms = 1500

CANdispyCTS} 7
3 < displayCCs
«connection: «dizplayDonnzin: ! /“cgnl]strginS:

Display

"iadP?;'es‘;:‘c’ «LoadPrafileStatics
oadProfile userCount = 100

flow = [Flow]

D «Flanis
Flow thinkTime_ms = 1000

dataSize_kh = §

Figure 1: Problem Diagram for the requirement
Communicate

vironment of the machine. This is expressed by a depen-
dency from the requirement to a domain with the stereotype
<KrefersTo>.

The problem diagram in Fig. 1 describes the requirement
Communicate in more detail, e.g., it describes that the CA_c-
ommunicate machine can show to the User the CurrentChat-
Session on its Display (CAX{displayCCS}). The require-
ment constrains the CurrentChatSession of the User and its
Display. The requirement refers to the users and the text
messages.

The problem frame approach substantially supports devel-
opers in analyzing problems to be solved. It points out what
domains have to be considered, and what knowledge must
be described and reasoned about when analyzing a problem
in depth. Developers must elicit, examine, and describe the
relevant properties of each domain. These descriptions form
the domain knowledge and are specified in domain knowl-
edge diagrams. Domain knowledge consists of assumptions
annotated with the stereotype < assumption> and facts
annotated with the stereotype <fact>. Assumptions are
conditions that are needed, so that the requirements are ac-
complishable. Usually, they describe required user behavior.
For example, it must be assumed that a user ensures not to
be observed by a malicious user when entering a password.
Facts describe fixed properties of the problem environment
regardless of how the machine is built.

4.2 Annotating Problem Descriptions with
Quality Requirements

The problem frame approach proposed by Jackson pro-
vides a method that addresses functional requirements only.
Quality requirements are not considered. We extend our
UML profile for problem frames to complement functional
requirements with quality requirements. Classes with stereo-
types such as <confidentiality>>, <integrity>>, <res-
ponseTime> or <throughput>> represent quality require-
ments. The dependency from a quality requirement to a re-
quirement is expressed with the stereotype < complements>>
(see Fig. 1). The profile can be extended with other quality
requirements, e.g., usability. From the problem descriptions,
we derive a software architecture that is suitable to solve the
software development problem specified by the problem de-
scriptions. The elements of problem diagrams, namely ma-
chine and lexical domains, can be mapped to components of
an architecture in a fairly straightforward way.

4.3 Tool Support

We provide tool support for the software development pro-
cess based on the

problem frame approach. Our tool, called UML4PF !, can
be used to create diagrams, which are mapped to a part of
a global model and a graphical representation of this part.
Basis is the Eclipse platform [1] together with its plug-ins
Eclipse Modeling Framework (EMF) [2] and OCL. Our UML
profile for problem frames is conceived as an Eclipse plug-in,
extending the EMF meta-model.

The graphical representation of the different diagram types
can be manipulated by using any EMF-based editor. We se-
lected Papyrus [3] as it is available as an Eclipse plug-in,
open-source, and EMF-based.

To ensure the integrity and coherence of the model, we
set up OCL constraints. Based on the model information,
UML4PF can automatically detect semantic errors in the
model by evaluating the constraints. Elements of the created
model can be re-used in later development steps. We can
also validate that the artifacts of later development steps
are consistent with the requirements engineering diagrams
For more details, see [12].

5.DERIVING QUALITY-BASED ARCHITEC-
TURES FROM PROBLEM DESCRIPTIONS

We now present our method to derive software architec-
tures, taking quality requirements into account. The method
comprises requirements analysis, as well as the derivation of
a software architecture from requirements documents.

5.1 Problem Diagrams

As described in Sect. 3.1, the first step in the software
development process based on problem frames is to create a
context diagram, which represents the environment in which
the machine will operate. For reasons of space we do not
show this diagram for the chat application and continue
with the problem decomposition step. We decompose the
whole problem into subproblems represented by problem di-
agrams. FEach problem diagram describes one subproblem
with the corresponding requirement. We focus on the re-
quirement Communicate described in Sect. 2. The corre-
sponding problem diagram using our UML profile for prob-
lem frames is depicted in Fig. 1. It consists of the domains
User, TextMessage, CurrentChatSession and Display. The
requirement Communicate refers to the domains User and
TextMessage, expressed by the stereotype <refersTo>> and
constrains the domains CurrentChatSession and Display, ex-
pressed by the stereotype < constrains>>.

5.2 Annotate Problem Diagrams with
Quality Requirements

In this step, we address quality requirements by annotat-
ing problem diagrams with suitable stereotypes. In Sect. 2,
we defined one security and one performance requirement
related to the functional requirement Communicate. The
requirement Communicate is complemented by the confi-
dentiality requirement Communicate_conf that requires con-
fidentiality of data transmission for TextMessage and the
response time requirement Communicate_ RT. The response
time requirement states that the response time for sending

! Available under
http://swe.uni-duisburg-essen.de/en/research/tool/

«machinex

chat_application

. “COMPONEnts
CA_phrase

. *COMpOnents
CA_communicate []

HCOMpOnemnts
TexiMessage
wcomponents
. CurrentChatSession

. <componerts
ChatHistol
“components
1 U:

€COMPOnents
CA_storeCCS .

SCOMPOnEents
. CA_reqister
<COMpanents
. CA_login .
ACOMPOnEnts . =
] Ll Components
CAS{oinCR . ChatRoom

Figure 2: Initial Architecture

text messages should be less than 1500 ms in 95% of all cases
by using a defined load profile (attributes for <responseTi-
me>> in Fig. 1). The load profile specifies the load by defin-
ing the attributes userCount and flow. The attribute user-
Count describes the number of concurrent users, in this case
100, and flow describes a scenario by defining the attributes
thinkTime_ms, which is the time that the user waits between
two actions and dataSize_kb. The think time in our case is
1000 ms, and the maximum data size is 5 kb.

5.3 Initial Architecture

During the requirements analysis phase, we create a set
of problem diagrams, annotated with quality requirements.
In the initial architecture, each machine domain in a prob-
lem diagram is mapped to a component. The initial ar-
chitecture for the chat consists of one component for the
overall machine with stereotype <machine>>, in our case,
chat_application, see Fig. 2. The submachines associated
with the subproblems of the chat application, including Com-
municate are components of the chat_application. There is
one component for each submachine identified in the prob-
lem diagrams. If lexical domains should be part of the ma-
chine, they are contained in the initial architecture, e.g.,
TextMessage in Fig. 2.

5.4 Choose Design Alternative

In order to refine the initial architecture, we need to take
a design decision. We decide on the kind of the applica-
tion, e.g., client-server, peer-to-peer, or standalone, which is
either given by the stakeholder or decided by the software
architect. For standalone applications, we can skip two steps
and continue with the step described in Sect. 5.4.3.

For distributed applications, we split the components of
the initial architecture so that each component is allocated
to only one computer. In the following, we describe the
method for a client-server architecture in more detail. Peer-
to-peer systems can be developed according to a similar pro-
cedure.

5.4.1 Split Problem Diagrams

Due to the fact that requirements analysis and architec-
tural design are often intertwined, a separation of these
two steps is difficult. Therefore, they should be considered
concurrently during the software development process. De-
sign decisions can constrain meeting the requirements, and
changing requirements affects the architecture. Nuseibeh
calls this process the Twin Peaks model [18]. We proceed in

=problemCiagram=
PD_send_client

«Reguirements

text = Presene confidentiality of TextMessage on Netwark.
for User and prevent disclosure by MNetworkAttacker
«Confidentiality»

attacker = [MetworkAttacker]

stakeholder = [User]

«ResponseTime»
respTimevalue_ms = 200
probability = 95%
LPStatic = [LoadProfile]

[wrequirement, confidentiality®
Send_Conf

sendTh |
<~ o srefersTo:

Ul sendTh}

Uiz

«machines
CA_send
CCS{contentOICCST,
Al storeTMintaCCS)

“biddebleDamains
User
Aevicalbomains «refersor =~ . _
TextMessage contentOfTM) ey
storeTMintoCCS_ - - Send

1
1 «eomplementss
\J

Thil{conte O}

«connections:
onnection:

«lexicalDomainz
CurrentChatSession

#COnNEctionomain:
Network

«constraing: . - i

1
. «romplementss!

‘s?e’ndintnNW «responseTime, requirements

CAsendTMintol W} Send_RT
end_|

«connection: «constrains:

Figure 3: Problem Diagram for the requirement
Send annotated with quality requirements

a similar way. After having chosen a client-server architec-
ture for the chat application, we go back to the requirements
description and decompose the problem diagrams in such a
way that each subproblem is allocated to only one of the
distributed components. This may lead us to introduce con-
nection domains, e.g., networks (see Sect. 4.1). In the exam-
ple of the chat application, the problem diagram depicted in
Fig. 1 is split into three problem diagrams, which address
the problems of sending text messages to the server that
belongs to the client (see Fig. 3), forwarding text messages
from the server to the receivers that belongs to the server
(see Fig. 4), and receiving text messages that belongs to the
client (see Fig. 5). For each of these three subproblems, we
introduced the connection domain Network to achieve the
distribution.

54.2 Split Quality Regquirements

Analogously to splitting the problem diagrams and so
splitting the functional requirements, we also have to split
the corresponding quality requirements. In case of a re-
sponse time requirement, the response time should be di-
vided so that all subproblems together satisfy the desired
response time. The Communicate requirement states a re-
sponse time of 1500 ms maximum. This must be achieved
through the three subproblems Send, Forward and Receive.
We must also consider the time that the data needs to be
transported over the network. In our case study, each of
the machines CA_send and CA_forward is required to send
a text message to the server or to forward the text message
to the receivers, respectively, within 200 ms. The machine
CA_receive may take 300 ms to process the received text
message and display it, in 95% of all cases with the load pro-
file we described in Sect. 5.2. This leaves 800 ms to transmit
data from the client to the server and back. As mentioned
in Sect. 4.1, we specify assumptions and facts about the
environment in a domain knowledge diagram. We cannot
meet the performance and specifically response time require-
ments, if we have no knowledge about the real circumstances
in the environment. Therefore we specify knowledge about
the network and the computational power of clients and
server in the domain knowledge diagram for performance de-
picted in Fig. 6. It contains specific knowledge about client
and server, e.g., the number of processor cores, processor
speed and memory. Additionally, we assume that the re-
sponse time to transmit data over a network with 64 kb/s
minimum is 400 ms.

«problemDiagrams
PD_forward_server

«Raeguirements:

text = Presemne confidentiality of Texthessage on Metwark
for User and prevent disclosure by NetworkAttacker,
«Confidentiality:

attacker = [MNetworkAttacker]

stakeholder = [User]

«confidertizlity, requirements
- Forward_Conf

wecomplements:

wconnections sendintalw,

"
=
CA_Torward |y sendintaSendiachine}, Network et IOy A

i

CAl{sendintaMW}

I
«ResponseTimes «complements:!
I

respT|m.EVaIuE_mS =208 «responseTime, requirements
probakllity = 85% Forward RT

LPStatic = [LoadProfile]

Figure 4: Problem Diagram for the requirement
Forward annotated with quality requirements

To fulfill the confidentiality requirement for the problem
PD_communicate (Fig. 1), we require confidentiality for each
subproblem. Therefore, we annotate each subproblem with
a corresponding refined confidentiality requirement. This
requirement contains a stakeholder that is interested in pre-
serving the confidentiality of data, and an attacker that the
chat application should be protected against, as attributes.
The stakeholder in our case is the User, and the attacker
is a NetworkAttacker who is able to attack the data trans-
ported over the network. Possible attributes of an attacker
are specified more precisely in [11]. The refined confidential-
ity requirements for each subproblem are shown in Figs. 3-5.

5.4.3 Concretized Quality Problem Diagrams

The goal of this step is to find solution approaches in terms
of mechanisms and patterns to prepare for solving the given
security and performance problems. We have given exam-
ples of such solutions in Sect. 3.2. We elaborate the prob-
lem diagrams annotated with quality requirements from the
previous step by introducing domains reflecting specific so-
lution approaches. We call the elaborated problem diagrams
containing solution approaches Concretized Quality Problem
Diagrams.

<problemDizgranm:
PD_receive_client

«iomainknowledgeDiagrams
DKD_performance

«ResponseTime:s 4assUMption, responzeTimes
respTimevalue_ms = 400 |~ R_rt

q
«constrainss ~
2

«hetwork_connections

«connectionDomainz
Network

description = Intemet, min B4kb/s

«local»
client

«concratizess
.

" = «local»
«netwark_connections server

Clirequest} Slresponse s
-

«Local» «Locals
Corelumber = 1 CareMumber = 4
ProcessorSpeed = 1.2 GHz ProcessorSpeed = 2 66 GHz
Memory = 1 GB Memary = 16 GB

«Requirements
text = Preserve confidentiality of Texthessage on Metwork

far User and prevent disclosure by NetworkAttacker.

«Confidentiality: .
attacker = [Networkattacker] .
stakeholder = [User] e

«confidentizlity, requirements
econnectionDomains
Network <

Recieve Conf
T
contentOmi™ ~ _

wrefersTos >«
«lexicalDomain:
GurrentChatSession
displayCes -~ |
P)
cdisplayDomae .= “wronstrainss {COMplementss
I
Display _
“TesponseTime, requirements
. Receive_RT
«ResponseTirmes

respTimevalue_ms = 300 | -~
probability = 95% i
LPStatic = [LoadProfile]

MW contentOfw}
«connections

ammachings
CA_receive

CAldisplayCC3}
«cohnection:

"«cumplemems-

«connections
CAKstareintoCCS}

Figure 5: Problem Diagram for the requirement Re-
cetve annotated with quality requirements

For example, the problem diagram for the Send prob-
lem describes the problem of sending text messages with
two additional quality requirements for security and perfor-
mance, respectively (see Fig. 3). The requirement for per-

Figure 6: Domain Knowledge Diagram for perfor-
mance

formance states that sending a text message should be per-
formed within 200 ms in 95% of all cases. However, there is
no architectural mechanism or pattern that can achieve the
performance requirement for the Send problem. If the fulfill-
ment of a quality requirement relies on the implementation,
we annotate the corresponding machine with a stereotype
that serves as a hint to develop a particularly efficient im-
plementation or an implementation that does not leak infor-
mation. In this case, we annotate the CA_send machine with
the stereotype <responseTime>> (see Fig. 7). But even if
an additional functionality (or a component) is added to
fulfill the requirement, it may be useful to add stereotypes
that serve as hints for implementation. Therefore, we add
the stereotype < confidentiality>> to the Encryption ma-
chine in Fig. 7.

The security requirement describes that a text message
should be transmitted confidentially over an insecure net-
work. To take this quality requirement into account, we
specify the concretized quality problem diagram given in
Fig. 7 that provides an encryption mechanism to solve the
problem. We first apply a symmetric and then an asym-
metric encryption mechanism. In order to solve the prob-
lem using these mechanisms, we need to introduce a new
machine Encryption that provides the encryption function-
ality as a part of the CA_send machine. The Encryption
machine encrypts the text message with a generated ran-
dom number that serves as a symmetric key. For each re-
ceiver, we encrypt the symmetric key with its public key,
using an asymmetric encryption mechanism. For this rea-
son, we introduce the new domain ReceiverUserPublicKey.
The sender machine sends the message and the encrypted
symmetric key to the server, and the server forwards them to
all receivers. Since encryption takes time, we annotate the
Encryption machine with the stereotype <responseTime>
to point implementers towards efficient algorithms and im-
plementations.

On the receiver side, we introduce a new machine, De-
cryption, as a part of the CA_receive machine. Thus, the
receiver is able to decrypt the symmetric key with its own
private key (ReceiverUserPrivateKey). With the decrypted
symmetric key, the receiver can decrypt the text message
(see Fig. 8).

The alternative solution is to encrypt the text message
through the sender with a public key that belongs to the
server and send the encrypted text message to the server.
The server is able to decrypt the text message with its own
private key and encrypt it again with the public keys of each

[#problemDiagrams
CQPD_coni_send

«Confidentiality»

attacker = [NetworkAttacker]

stakeholder = [User]
«Requirements

text = Presenve confidentiality of Texthessage on MNetwork for User and prevent disclosure by
NetworkAttacker.

wattacker:
NetworkAttacker |

RUPKlrupk},EHencrypt) [,]‘ S

y {
«conngction 1

= «refersTox 1
RE\:elverUserFublcheyj‘v St diseaDBMaT 1

«Confidertialty, responseTimes
Encryption h

e e
[>
conf___| e, Ganfidentily
it Send_Conf

—xeonstraingt——————————

«constraingss . = \scomplements:
i~ . - Uata source ¥

- relersTon
contentofTh ~ Send

«refersTox .=

«connections
TM\{camentOI‘r@,-
CAlfsendTintoNW} _—

<cornection: " connections

amashine, respanseTimes T TMicontentOmMy

CA_send

e meniofecsy, ——— eabomans |42 sETHImCES
CAlstoreTMINtOCCS} CurrentChatSession | 7"

Figure 7: Concretized Quality Problem Diagram for
the quality requirement Send Conf

of the receivers. In this scenario, the server needs more time
for processing a message. Therefore, we decide to use the
first solution.

The Decryption machine is also annotated with the stereo-
type <responseTime> to be implemented efficiently. As is
the case with performance, we describe the necessary as-
sumptions and facts in a domain knowledge diagram for se-
curity. We assume that each user keeps the text message to
be sent, the current chat session and the own private key
confidential. Generation of key pairs and secure distribu-
tion of the public key is covered by other problem diagrams.
For reasons of space, we do not show the domain knowledge
diagram for security.

By now we have considered the parts of the problem Com-
municate that belong to the client. Now we specify the qual-
ity problem diagram for the part that belongs to the server,
namely Forward. This problem requires to satisfy both confi-
dentiality and response time requirements as shown in Fig. 4.
The sent text message arrives at the server in encrypted
form. It will directly be forwarded to the receivers. So
the confidentiality of the text messages on the server is pre-
served, and we do not need to take any further measures
concerning the confidentiality requirement.

When many users are connected to the server concurrently
and communicate, the server can be overloaded. This might
lead to longer response times than permitted. We previously
introduced load balancing and master-worker as mechanisms
or patterns that solve performance problems. We will con-
sider both of them for the Forward problem.

“problembiagram>
CQPD_coni_receive
«Confidentiality
attacker = [MetworkAttacker]
stakehnlder = [User]
«Requirements
text = Presere confidentiality of Texthessage on Network for User and prevent disclosure by MNetworkAttacker,

Dromain

RUPKYrupk},Di{decrypt} alexicalDomaine k«re!&rﬂux ‘|
Recei i [~ |

i
rfidErany,
«connections cont - -~ Recieve_Conf
Wi conterntQIN} | SCommecionComane Lt refersTos i
B Network = __contentOiNw «complementss |
—— - @ }

«machine, confidertialty, responssTime:
Decryption

Nl contentOft — = wrefersTos
«connections»__— ke
S, respaneeTmEs |- Al - = erequirements
CA_receive ___ CAlfstoreintocCs} | CurrentChatSession storeintoc Receive

edisplayDomais

I ’A displaycCs

B
CANdisplayCCSs) \|

Figure 8: Concretized Quality Problem Diagram for
the quality requirement Receive_Conf

=problembiagrams
CQPD_RT_forward_server

reguest fram netwaork,
« _response to network
~_«constraings

i) " sresponseTime, requirements
. Forward_RT
«rongtraings «
Thto servers, ,*

smachine, respanseTimes
LoadBalancer

LE{forwardTHinto Server)

«complementssyy |

response frorr senie {

whetwork_connections ’ «requirement:: |

g Forward |

«ResponseTimes» 7 |
fespTimevale ms =100 |/ «ResponseTimas

N respTimevalue_ms = 200
/. probahbility = 95%
LPStatic = [LoadProfile]

«ResponseTima:
respTimeValue_ms = 100

Figure 9: Concretized Quality Problem Diagram for
the quality requirement Forward_RT

In Fig. 9, we specify the concretized quality problem di-
agram that uses the load balancing mechanism to solve the
response time problem. We introduce a new machine Load-
Balancer that distributes the load from the network across
several server components, each of which contains one ma-
chine for solving the Forward problem. To satisfy the re-
sponse time requirement for the problem Communicate, a
text message should be forwarded within 200 ms. The load
balancer should conduct its task within 100 ms. This means
another 100 ms for all servers to forward a text message. A
suitable proportion between the number of servers and the
time each server needs should be found.

Figure 10 shows a different concretized quality problem
diagram. It is the result of applying the master-worker pat-
tern to the Forward problem. We introduce a new machine
domain Master that distributes the task received from the
network to several CA_forward machines. In contrast to the
previous solution, this solution consists of a single server,
which contains a master and several machines that provide
the forward functionality. The master machine is required
to satisfy its task in less than 100 ms. The same applies to
the several CA_forward machines.

«problemDiagrams
CQPD_RT_forward_server_alternative,

«ResponseTime»
respTimevalue_ms = 200
probability = 95%

LPStatic = [LoadProfile]

«RespanseTimes
respTimevalue_ms = 100

«connections . .
MifarwardTMintoFarwardMachines} .9 “maching, responseTime, swe| request, response Y

& CA_formard = sconstraings \

hi Ti - >
~ [espeneeTine e
T [_ Forward_RT
i -=connectionDomainz -7
‘ T _] TECUCENIEID AN ‘<<EUmF'|E‘mE‘"(S>
| NwiforwardThintomastert Network 4 Y

response to network

&y «constrainss

“requirements
Forward

Figure 10: Alternative concretized Quality Problem
Diagram for the quality requirement Forward RT

«ResponseTimes
respTimevalue_ms = 100

5.5 Implementable Architecture

The purpose of this step is to derive an architecture, which
is implementable and achieves the required level of perfor-
mance and security. We make use of problem diagrams an-
notated with quality requirements and concretized quality
problem diagrams.

5.5.1 Allocate Components

The implementable architecture consists of one compo-
nent for the overall machine (in our case, chat application),
with stereotypes <machine> and < implementable_archi-
tecture>>, see Fig. 11. In the case of a standalone applica-
tion, we skip this step and carry on with the next step. In

maching, distributed, implementable_architectures
chat application

<local»
el client

«local, regponseTimes

Server

“Components
CA_phrase

HCOMPOnents ECOMPOnents
CA_storeGCS ChatHistory

COMPOnEnt, authentication, confidentizliy:

“COMmponents |
CA_login_register_join_server

CA_forward

Uiz

«COMmpOnerts
TextMessage

“COMmponerts
UserFacade

ACOMPOnErnt:
UserCoordinator

«component, responseTime:
CA_send

€COMPONEnts
CurrentChatSession

«call_returns «call_returnz

“Components syl

CA_getCR

®COMPONENt, responseTimes:
ServerFacade

«call_returnz «gils

| ReceiveruserPublicKey |

ool
ChatRoom_Userinfo

«confidentiality, responseTime, component:
Encryption —

LT

L
“COMpOonent, responseTimes
CA_receive

|

L——ji

«confidertialty, responseTime, components:

Decryption
. . . ReceiverUserPrivateKe

«COMmpOnerts
ClientFacade

.7

“responseTime, components
LoadBalancer

SEOMpONErt, ConfioetEy
CA_login_register_join_client

1
L

«network_connections

Figure 11: Implementable Architecture

the case of a distributed architecture, we add the stereotype
< distributed>> to the architecture component. Inside the
component for the whole machine, there are two components
representing client and server, respectively, annotated with
stereotype <local>. Now we make use of the split prob-
lem diagrams we described in Sect. 5.4.1. Each submachine
in the split problem diagrams belongs to a component in
the client or in the server according to functionality of that
submachine. The stereotype < component>> is added to all
components. By taking the example of the chat applica-
tion, the submachines CA_send and CA_receive belong to
the client component, because they are related to the user.
The submachine CA_forward belongs to the server, because
it has the functionality of forwarding text messages to all
receivers.

55.2 Merge Components

Related components that realize a similar functionality
and contain at least one similar domain in their problem
diagrams can be merged to one component. In the chat
application, we could merge the login and register compo-
nents of the initial architecture shown in Fig. 2. In both
problems, the user enters user data, which should be trans-
mitted to the server, the server connects to a database to
process the user data, and in the end sends some feedback
to the user. In general, the decision about the merging of
components should be taken by an experienced architect.

5.5.3 Apply Design Patterns

We introduce a Facade component [10], if several inter-
nal components are connected to one external interface in
the initial architecture. As a Facade component, we intro-
duce the UserFacade component that realizes the Single Ac-
cess Point pattern described in Sect. 3.3 as a single entry
and exit point into the system. By providing only one ac-
cess point, it is much easier to protect the system. It can

be implemented as an input screen that receives the user
inputs and forwards it to the server to be verified. Ad-
ditionally, we provide the ClientFacade component on the
client side in order to prevent that each single component
communicates with the server directly. On the server side,
we introduce the ServerFacade component. Adding a Fa-
cade component causes only one method invocation more
and hence does not impair the performance of the software.
If interaction restrictions have to be taken into account, i.e.,
actions have to happen in a certain order, we have to add
one or more Coordinator components. In our example of
the chat application, the user must first authenticate before
taking any action. Therefore, we introduce a UserCoordina-
tor. To obtain a clear structure of the software architecture,
we integrate the UserCoordinator in the UserFacade. The
implementable architecture after applying these patterns is
shown in Fig. 11.

5.5.4 Apply Quality Mechanisms and Patterns

Now we make use of the mechanisms and patterns we
introduced in Sect. 3.2 and 3.3 and the concretized quality
problem diagrams we specified in Sect. 5.4.3.

Considering solution domains (e.g., Encryption) in con-
cretized quality problem diagrams provides a seamless in-
tegration of quality mechanisms into software architecture.
We extend the existing architecture with new domains we
obtain from the concretized quality problem diagrams. All
new domains are annotated with stereotype < component>>.
Additionally to this stereotype, the new domains retain their
< responseTime> and < confidentiality > stereotypes
from the concretized quality problem diagrams that serve as
hints for the technical realization. For example, the Encryp-
tion machine is integrated in the CA_send component and
annotated with stereotypes <responseTime>> and < conf-
identiality>>». The domain ReceiverUserPublicKey is con-
nected to the Encryption machine. The Decryption machine

«local, responseTime:
Server

component, authertication, confidentizlity:
CA_login_register_join_server

Omponent, responseTimes
CA_forward

“Cormponent, responseTimes
ServerFacade

«call_returns «sils

#COMPONEnts .
ChatRoom_Userinfo

L|_l

Figure 12: Alternative Implementable Architecture

is integrated in the CA_receive component and annotated

with stereotypes <responseTime> and <confidentiality>.

The domain ReceiverUserPrivateKey is connected to the De-
cryption machine. The LoadBalancer is placed before the
servers and is annotated with stereotype <responeTime>>.
Its port multiplicity [1..*] (see Fig. 11) means that the load
balancer component can be connected with several server
components.

An alternative architecture would contain a Master com-
ponent with several CA_forward components. The port mul-
tiplicity at the master component means that this com-
ponent is connected with several CA_forward components.
The CA_forward components are annotated with stereotype
< responseTime > inside a single server, instead of a Load-
Balancer component with several servers, see Fig. 12.

6. RELATED WORK

Consideration of software quality during the software de-
velopment process, specifically in the requirement analysis
phase, is still a challenging research problem. There are ap-
proaches that deal with only one type of quality requirement,
e.g., security.

An approach to transform security requirements to de-
sign is provided by Mouratidis and Jiirjens [17]. It starts
with the goal-oriented security requirements engineering ap-
proach Secure Tropos [16], and connects it with a model-
based security engineering approach, namely UMLsec [15].

Yskout et al. [27] present a semi-automated approach to
support the transition from security requirements to archi-
tecture. They focus on delegation, authorization and au-
diting as security requirements. They presuppose an archi-
tecture that fulfills the functional requirements, and they
apply security solutions to the functional architecture by
transforming security requirements.

Schmidt and Wentzlaff [20] develop architectures from re-
quirements based on the problem frame approach, taking
into account usability and security. By way of an exam-
ple, they demonstrate how to balance security and usability
requirements.

Heyman et al. [13] present the security twin peaks model,
an elaboration of the twin peaks model proposed by Nu-
seibeh [18]. This model addresses the co-development of
secure software architectures and security requirements. In
our method, we proceed in a similar way, interleaving re-
quirements analysis and architectural design.

Attribute Driven Design (ADD) [24, 4] is a method to
design a conceptual architecture. It focuses on the high-
level design of an architecture, and hence does not sup-

port detailed design. ADD deals with achieving quality at-
tributes including security and performance through archi-
tecture mechanisms. Identifying the mechanisms partially
relies on the architect’s expertise.

Q-ImPrESS [5] is a project that focuses on the generation
and evaluation of architectures according to quality prop-
erties, in particular performance. The phases design and
implementation of the software development process are par-
ticularly in focus. In contrast to our contribution, it does
not use requirements descriptions as a starting point.

The notation and evaluation of performance attributes of
an architecture is the focus of the component model Palla-
dio [6], which is also included in the project Q-ImPrESS. In
Palladio, a set of notations, concepts and a tool are provided,
which allow its users to model and simulate architectures for
performance evaluation. The tool could be used for simulat-
ing and thus evaluating software architecture performance.
The concepts and the included tool, however, cannot be used
to evaluate an architecture’s security.

There exist some UML profiles that deal with quality re-
quirements. They focus on modeling and analysing quality
requirements. A well-known UML profile is MARTE [22]
that allows the annotation of embedded and real-time sys-
tems with performance attributes. The UML profile for
schedulability, performance and time [23] is another profile
that provides a means for analysis of performance-related
aspects for real-time systems. These profiles are strongly de-
signed to introduce performance attributes into UML mod-
els. But they do not support other types of attributes. In
contrast, using our UML profile is not limited to specific
kinds of systems, such as real-time systems.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a detailed, UML-based
and tool-supported method to derive software architectures
from requirements documents, thereby taking quality re-
quirements into account. Our method addresses all the prob-
lems we identified in the introduction:

‘We provide means to specify quality requirements
thoroughly. Problem diagrams are a means to describe
software development problems precisely by referring to and
constraining different domains that are interconnected with
one another and with the machine to be developed. Such di-
agrams can be annotated with precise quality requirements.
We have defined appropriate stereotypes with corresponding
attributes.

Seamless transition from requirements analysis to
architectural design. The two phases are not separated,
but intertwined. An architectural decision drives the re-
vision of problem descriptions, and concretized problem de-
scriptions lead directly to architectural components and con-
nections.

Explicit consideration of quality requirements. Our
method builds on established approaches to achieve quality
properties, such as encryption or load balancing. The appli-
cation of these mechanisms or patterns is directly visible in
the software architecture.

In the future, we will elaborate our method further. In
the past, we had no difficulties to express quality require-
ments as complements to functional requirements. How-
ever, it is often claimed that quality requirements are cross-
cutting and cannot be attached to a concrete functionality.
We intend to investigate this issue.

In the present work, we have not investigated possible con-
flicts between different quality requirements. We have just
noted that e.g., encryption takes time and that we therefore
should pay attention to performance requirements when in-
troducing encryption mechanisms. We strive for a more sys-
tematic treatment of conflicting quality requirements.

In this paper, we have concentrated on structural descrip-
tions of software architectures. In the future, we will extend
our method to also support deriving behavioral descriptions
for the developed architectures and automatically checking
their coherence with the structural descriptions.

Acknowl edgments.
We would like to thank Holger Schmidt for his detailed
comments to this paper.

8.
(1]
2]
8]
[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

REFERENCES

Eclipse - An Open Development Platform, Feb 2011.
http://www.eclipse.org/.

Eclipse Modeling Framework Project (EMF), Feb
2011. http://www.eclipse.org/modeling/emf/.
Papyrus UML Modelling Tool, Feb 2011.
http://www.papyrusuml.org/.

L. Bass, P. Clemens, and R. Kazman. Software
architecture in practice. Addison-Wesley, 2003.

S. Becker, S. Desi¢, J. Doppelhamer, D. Huljenié,

H. Koziolek, E. Kruse, M. Masetti, W. Safonov,

I. Skuliber, J. Stammel, M. Trifu, J. Tysiak, and

R. Weiss. Q-ImPrESS Project Deliverable D1.1 —
Requirements document. final version, Q-ImPrESS
Consortium, 2009.

S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82:3 —
22, 2009.
http://dx.doi.org/10.1016/j.jss.2008.03.066.

C. Choppy, D. Hatebur, and M. Heisel. Systematic
architectural design based on problem patterns. In
P. Avgeriou, J. Grundy, J. Hall, P. Lago, and

I. Mistrik, editors, Relating Software Requirements and
Architectures, chapter 7. Springer, 2011. To appear.
1. Coté, D. Hatebur, M. Heisel, H. Schmidt, and

I. Wentzlaff. A Systematic Account of Problem
Frames. In Proc. of the European Conf. on Pattern
Languages of Programs (EuroPLoP), pages 749-767.
Universitétsverlag Konstanz, 2008.

C. Ford, I. Gileadi, S. Purba, and M. Moerman.
Patterns for Performance and Operability. Auerbach
Publications, 2008.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns — Elements of Reusable
Object-Oriented Software. Wiley & Sons, Boston,
USA, 1995.

D. Hatebur and M. Heisel. A foundation for
requirements analysis of dependable software. In

B. Buth, G. Rabe, and T. Seyfarth, editors, Proc. of
the Int. Conf. on Computer Safety, Reliability and
Security (SAFECOMP), LNCS 5775, pages 311-325.
Springer, 2009.

D. Hatebur and M. Heisel. Making Pattern- and
Model-Based Software Development More Rigorous.
In J. S. Dong and H. Zhu, editors, Proc. of 12th Int.

10

(13]

(23]

24]

[26]

27]

Conf. on Formal Engineering Methods (ICFEM),
LNCS 6447, pages 253-269. Springer, 2010.

T. Heyman, K. Yskout, R. Scandariato, H. Schmidt,
and Y. Yu. The security twin peaks. In Proc. of the
Int. Symposium on Engineering Secure Software and
Systems (ESSoS), LNCS 6542, pages 167-180.
Springer, 2011.

M. Jackson. Problem Frames. Analyzing and
structuring software development problems.
Addison-Wesley, 2001.

J. Jiirjens. Secure Systems Development with UML.
Springer, 2004.

H. Mouratidis. A Security Oriented Approach in the
Development of Multiagent Systems: Applied to the
Management of the Health and Social Care Needs of
Older People in England. PhD thesis, University of
Sheffield, U.K., 2004.

H. Mouratidis and J. Jiirjens. From goal-driven
security requirements engineering to secure design.
Int. J. Intell. Syst., 25:813-840, 2010.

B. Nuseibeh. Weaving Together Requirements and
Architectures. Computer, 34:115-117, 2001.

D. G. Rosado, E. Fernandez-Medina, M. Piattini, and
C. Gutierrez. A study of security architectural
patterns. In Proc. of the 1st Int. Conf. on Availability,
Reliability and Security, pages 358-365, Washington,
DC, USA, 2006. IEEE Computer Society.

H. Schmidt and I. Wentzlaff. Preserving Software
Quality Characteristics from Requirements Analysis to
Architectural Design. In Proc. of the European
Workshop on Software Architectures (EWSA), volume
4344, pages 189-203. Springer, 2006.

"UML Revision Task Force”. OMG Unified Modeling
Language (UML), Superstructure.

http://www.omg.org/spec/UML/2.3/Superstructure/PDF.

"UML Revision Task Force”. UML Profile for
MARTE: Modeling and Analysis of Real-Time
Embedded Systems.
http://www.omg.org/spec/MARTE/1.0/PDF.

"UML Revision Task Force”. UML Profile for
Schedulability, Performance, and Time Specification.
http://www.omg.org/spec/SPTP/1.0/PDF.

R. Wojcik, F. Bachmann, L. Bass, P. Clements,

P. Merson, R. Nord, and B. Wood. Attribute-Driven
Design (ADD). Version 2.0, Software Engineering
Institute, 2006.

J. Yoder and J. Barcalow. Architectural Patterns for
Enabling Application Security. In Proc. of the 4th
Conf. on Pattern Languages of Programming (Plop),
1998.

K. Yskout, T. Heyman, R. Scandariato, and

W. Joosen. A system of security patterns. CW
Reports CW469, K.U.Leuven, 2006.

K. Yskout, R. Scandariato, B. D. Win, and

W. Joosen. Transforming security requirements into
architecture. In Proc. of the 3rd Int. Conf. on
Awailability, Reliability and Security, pages 1421-1428,
Washington, DC, USA, 2008. IEEE Computer Society.

