
A Pattern-Based Method for Identifying and
Analyzing Laws

in the Field of Cloud Computing Compliance?

×Kristian Beckers, ×Stephan Faßbender,
∗Jan-Christoph Küster, and ×Holger Schmidt

×paluno - The Ruhr Institute for Software Technology – University of Duisburg-Essen
{firstname.lastname}@paluno.uni-due.de

∗Fraunhofer Institut for Software and Systems Engineering ISST
Jan-Christoph.Kuester@isst.fraunhofer.de

Abstract. Cloud computing offers highly flexible and scalable usage
of IT resources, from which companies can benefit. Clouds are socio-
technical systems with a high number of different kinds of stakeholders.
Moreover, they are often geographically distributed, process critical data,
and support sensitive IT processes. Therefore, aligning clouds to meet
compliance regulations is a challenging task. Presently, this unsolved
problem prevents companies from using clouds for critical tasks.
This paper presents a novel method for identifying and analyzing laws for
clouds. The method makes use of different kinds of patterns, which help to
systematically elicit relevant laws. We present law analysis patterns that
allow legal experts and software and system developers to understand
and elicit relevant laws for the given development problem. Our approach
also helps to detect dependent laws. Our law analysis patterns make use
of results generated by the application of a cloud system analysis pattern
and different kinds of stakeholder templates that serve to understand and
describe a given cloud development problem.
We illustrate our method using an online banking cloud scenario.

Keywords: law, compliance, cloud computing, requirements engineering

1 Introduction

Identifying relevant compliance regulations for a software system and aligning
it to be compliant is a challenging task. The notion of compliance summarizes a
large set of regulations such as national as well as international laws and domain-
specific regulations. Typically, compliance regulations lead to non-functional re-
quirements such as security requirements and also functional requirements. Sev-
eral requirements engineering approaches for, e.g. security requirements exist [1].
However, Otto and Antón [2] conclude in their survey about research on laws in
requirements engineering that there is a need for techniques to identify and ana-
lyze laws, and to derive requirements from laws. In addition, the construction of

? This research was partially supported by the EU project Network of Excellence on
Engineering Secure Future Internet Software Services and Systems (NESSoS, ICT-
2009.1.4 Trustworthy ICT, Grant No. 256980).



2 Authors Suppressed Due to Excessive Length

software systems that meet compliance regulations, such as laws, is considered
to be difficult, because it is a cross-disciplinary task in laws and software and
systems engineering [3, 4].

In this paper, we consider compliance in the field of cloud computing sys-
tems (or short clouds), because using clouds to store and manage critical data
and to support sensitive IT processes harbors several problems with respect to
compliance. A PriceWaterhouseCoopers study from 2010 reveals that identifying
compliance requirements is a significant challenge for compliance management
in clouds.1

We present a pattern-based method for identifying and analyzing laws for
clouds. We introduce law analysis patterns that allow legal experts and software
and system developers to understand and elicit laws that are relevant for a given
development problem. According to our example domain clouds, we make use
of a pattern for analyzing clouds, which is complemented by templates to elicit
knowledge about the different stakeholders contained in the pattern [5]. The
pattern and especially the stakeholder templates are the basis for functional
requirements engineering and the identification of activities, which serve as input
for our law identification and analysis method.

Our approach can be applied during requirements engineering when con-
structing clouds, when moving existing IT landscapes to clouds, and it is also
applicable to evaluate and assess existing clouds with respect to compliance.

We illustrate our approach using the example of a bank offering an online-
banking service for their customers. This bank plans to source out the affected
IT processes to reduce costs and scale up their system for a larger amount
of customers. Customer data such as account number, balance, and transaction
history are stored in the cloud, and transactions like credit transfer are processed
in the cloud. The bank authorizes the software department to design and build
the cloud-specific software according to the interface and platform specification
of the cloud provider.

The rest of the paper is organized as follows: Section 2 presents background
on clouds, a short survey on compliance, and our pattern-based analysis approach
for clouds. In Sect. 3, we outline how our approach can be used together with
typical requirements engineering techniques. Then, we present patterns to deal
with laws in requirements engineering in Sect. 4. We consider insights in Sect. 5
and related work in Sect. 6. In Sect. 7, we give a summary and directions for
future research.

2 Background

In Sect. 2.1, we describe the main characteristics of clouds. In Sect. 2.2, we
present a short survey about the main compliance problems. We focus on privacy
concerns of data storage and processing in the cloud. We present our pattern-

1 http://www.pwc.de/en/prozessoptimierung/trotz-einiger-bedenken-der-

virtuellen-datenverarbeitung-gehoert-die-zukunft.jhtml



Identifying and Analyzing Laws 3

based approach for analyzing cloud computing systems in Sect. 2.3.

2.1 Cloud Computing Systems

According to the National Institute of Standards and Technology (NIST) cloud
computing systems can be defined by the following properties [6]: the cloud
customer can acquire resources of the cloud provider over broad network access
and on-demand and pays only for the used capabilities. Resources, i.e., storage,
processing, memory, network bandwidth, and virtual machines, are combined
into a so-called pool. Thus, the resources can be virtually and dynamically as-
signed and reassigned to adjust the customers’ variable load and to optimize
the resource utilization for the provider [7]. The virtualization causes a location
independence: the customers generally have no control or knowledge over the
exact location of the provided resources. The resources can be quickly scaled
up and scaled down for customers and appear to be unlimited, which is called
rapid elasticity. The pay-per-use model includes guarantees such as availability
or security for resources via customized Service Level Agreements (SLA) [7].

The architecture of a cloud computing system consists of different service lay-
ers and allows different business models: the Infrastructure as a Service (IaaS)
layer, which is closest to the physical resources, provides pure resources, for in-
stance virtual machines, where customers can deploy arbitrary software includ-
ing an operating system. Data storage interfaces provide the ability to access
distributed databases on remote locations in the cloud.

On the Platform as a Service (PaaS) layer, customers use an API to deploy
their own applications using programming languages and tools supported by the
provider. On the Software as a Service (SaaS) layer, customers use applications
offered by the cloud provider that are running on the cloud infrastructure.

2.2 Compliance

Compliance management is a “broad term covering all activities and methods
to ensure that a company follows all policies required by an external or inter-
nal regulation”[8]. Those regulations exist in form of laws, norms, standards,
and best practices to control and support companies managing their risks in a
responsible way.

Clouds raise a number of compliance issues. For reasons of space, we only list
a few. First, cloud providers often are not able to provide detailed information
on the location of their customers’ data [9]. This is relevant e.g. to obey privacy
laws. Second, an open question is how a cloud provider can prove that data
has been deleted [10]. Third, cloud providers and customers are often located
in different countries. In this case, the laws of the cloud provider’s country are
relevant. However, cloud providers and customers can agree on using the laws of
one country for their cloud business. Furthermore, contracts have to fill the gap
between the agreed law and the law of the other countries of the stakeholders
[11]. Fourth, contracts are also used to define the ramifications of violations of
the clouds’s SLAs. Fifth, the previous issues multiply in complexity, when the
cloud provider can use subcontractors, e.g., from another country. Moreover,
it is hardly possible for cloud customers to recognize that their data has been



4 Authors Suppressed Due to Excessive Length

processed by a third party [10]. Sixth, the use of distributed computing envi-
ronments, spread all over the globe, provides a challenge for auditing demands
[10].

In our running example we chose the German law as the binding law. How-
ever, we believe that our law identification and analysis method is also valid for
laws of other nations. In order to give an idea of the number of laws, regulations,
and standards, that would have to be considered, we present the following list,
which could be extended even further:

Law on Monitoring and Transparency in Businesses (KonTraG), Stock
Corporation Act (AktG), German banking act (KWG), Securities Trad-
ing Act (WpHG), Minimum Requirements for Risk Management (MaRisk),
Commercial Code (HGB), Tax Code (AO), State Data Protection Acts
(LDSG), Telemedia Act (TMG), Federal Data Protection Act (BDSG).

From this brief survey alone one can recognize, that even for our small running
example, a huge number of laws might become relevant. This fact emphasizes
the need for an engineering method for the identification of relevant laws and
their analysis, which is based on re-usability in terms of patterns.

For simplicitie’s sake, we focus in our running example on relevant compli-
ance regulations for privacy. A good working definition for privacy according to
Pfleeger et al. [12, p. 607] is that “privacy is the right to control who knows
certain aspects about you, your communication and your activities”. In 1995,
the European Union (EU) adopted the Directive 95/46/EC on the processing of
personal data [13] that represents the minimum privacy standards that have to
be included in every national law. Germany implements the European Privacy
Directive in the Federal Data Protection Act (BDSG). According to the appendix
of Section 9 Sentence 1 BDSG all organizations and companies that automati-
cally process, store, and use personal data have to comply with the BDSG. IT
systems have increased the feasibility of unwanted disclosure, because storage
capacity and speed of computers allow to store, search and correlate data. Sec-
tion 9 Sentence 1 BDSG states different requirements that have to be fulfilled
by technical and organizational measurements for protecting personal data, e.g.,
physical and virtual access control to data and the separation of storing and pro-
cessing data collected for different purposes. Furthermore, it must be verifiable
whether personal data has been deleted and by whom and that data has only
been processed with the permission of the customer.

Moreover, the EU law as well as Section 4b Sentence 2 BDSG forbid sharing
data with companies or governments in countries that have weaker privacy laws.
For exchange with companies in the United States (US), there exists the Safe
Harbour agreement. But under the US Patriot Act, officials could access infor-
mation about citizens of other countries, if that information is physically located
within the US or accessible electronically. The priority of the Patriot Act has
never been explicitly tested in court, but is a risk for bringing privacy-critical
data into the cloud where data centers can be technically distributed world-wide.
As cloud computing is considered as contracted data processing, the cloud cus-
tomer is responsible to adhere to the complete BDSG, according to Section 11
BDSG. The law further defines the contract between customer and outsourcing
provider. For example after ending the contract all data has to be deleted.



Identifying and Analyzing Laws 5

1..*

*

1..*

*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

*1..*

*

1..*

1..* *

1..*
1..* *

*

*

*

*

*

*

1..*

1..*

1..*

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

Software
Banking
Online

Webserver, 

Server, etc.
Application

Virtual
Machine

Banking
Service

Online

Cloud
Programming

Interface

Germany,USA

Cloud

InputBy/OutputTo

Has

WorkFor

Provides

Owns

Bank Customer

Bank Institute

Internal Development Unit

Pool

Service

IsBasedOn

Data Center

IsComplementedBy

UsedBy

UsedBy

IsComplementedBy

IsComplementedBy

BuiltAndCustomizedBy

BuiltBy

Data
Transaction

Direct System Environment Has

*

IsMonitoredBy

Indirect System Environment

Legislator Germany Legislator EU Domain FinanceLegislator US

Virtualization
Network and

Software

Server

IsLocatedIn

Hulda

Fig. 1. Concrete Cloud Computing System for Online Banking Service

2.3 Pattern-Based Analysis of Clouds

We present a cloud system analysis pattern in [5] that provides a conceptual view
on cloud computing systems and serves to systematically analyze stakeholders
and requirements. We do not introduce the pattern in detail here; instead we
present an instance of our cloud system analysis pattern in Fig. 1 regarding the
online banking service example.

Basically, the online banking cloud service is embedded in an environment
consisting of two parts, namely the Direct System Environment and the Indirect Sys-

tem Environment. The Direct System Environment contains stakeholders and other
systems that directly interact with the cloud through associations, e.g. the Bank

Customer. Moreover, associations between stakeholders in the Direct and Indirect

System Environment exist, but not between stakeholders in the Indirect System En-

vironment and the cloud. For example, the Legislator Germany is part of the Indirect

System Environment. Typically, the Indirect System Environment is a significant source
for compliance and privacy requirements.

We supplement the cloud system analysis pattern by templates to system-
atically gather domain knowledge about the direct and indirect system envi-
ronments based upon the stakeholders’ relations to the cloud and other stake-
holders. When instantiating the cloud system analysis pattern, one also fills in
the corresponding templates. These templates contain for example the following
information: a description of a stakeholder, a stakeholder’s motivation for using
the cloud, relations to the cloud and to other stakeholders, and the assets of a
stakeholder. Detailed information about stakeholder templates are in [5].

3 A Requirement Elicitation Method for Clouds

We describe how the concepts presented in the previous section can be inte-
grated with typical requirements engineering techniques via a life cycle of our



6 Authors Suppressed Due to Excessive Length

requirement elicitation method for clouds. The starting point of our method is
an informal problem description and the cloud system analysis pattern including
the stakeholder templates as presented in Sect. 2.3.

Instantiate Cloud System Analysis Pattern and Stakeholder Templates The goal
of this first step is to collect and structure knowledge about the envisaged cloud,
especially about the involved stakeholders. We describe the instantiation pro-
cedure in [5] and we presented the results for our online banking example in
Sect. 2.3. The output of this step consists of an instance of the cloud system
analysis pattern and instances of stakeholder templates for each involved stake-
holder. For steps 2–4, we use existing approaches. The instances of the cloud
system analysis pattern and the stakeholder templates can be considered simi-
lar to, e.g. a context diagram in the problem-oriented requirements engineering
approach of Jackson [14]. These instances are the basis to derive functional re-
quirements in the second step of our method. Here, given approaches such as
the problem decomposition approach by Jackson or an approach based on use
cases can be applied. The third step covers the discovery of activities based on
functional requirements, e.g. using UML2 behaviour diagrams such as activity
or sequence diagrams. This represents best practice in many object-oriented de-
velopment methods such as the one by Cheesman and Daniels [15]. In the fourth
step, assets are identified based on functional requirements and corresponding
activities. Again, we reuse given approaches here, e.g. the one by Fernandez
et al. [16], which makes use of UML activity diagrams to identify assets and
threats, or the misuse case approach by Sindre and Opdahl [17]. Using the re-
sults of the artifacts generated in steps 2–4, we extend the direct stakeholder
template instances initially developed in the first step by new rows “Functional
requirements”, “Activities”, and “Assets”. We illustrate the last two steps of
our method in the next section as a part of our novel pattern-based law analysis
approach.

4 Pattern-Based Law Analysis

Commonly, laws are not adequately considered during requirements engineering.
Therefore, they are not covered in the subsequent system development phases.
One fundamental reason for this is that the involved engineers are typically not
cross-disciplinary experts in law and software and systems engineering.

4.1 Structure of Laws, Sections and Dictates of Justice

The German law is a statute law in the tradition of the Roman jurisdiction.
Statute laws are specified by the legislator and written down in legal documents.
Hence, every judgment of a court is based exclusively on the analysis of the legal
documents relevant for the judged case [18, p. 41]. We analyzed, how judges
and lawyers are supposed to analyze a law, based upon legal literature research.
These insights lead to a basic structure of laws and the contained sections, which

2 Unified Modelling Language: http://www.omg.org/spec/UML/2.3/

Superstructure/PDF/



Identifying and Analyzing Laws 7

Table 1. Structure of law rules

Addressee(s) has (have) to comply to the law.

Facts of the case

Activity(ies) describe(s) actions that an addressee has
to follow or avoid to be compliant.

Target subject(s)* describes impersonal subjects that are ob-
jectives of the activity(ies). Subjects can be
material, such as a product, or immaterial,
such as information.

Target person(s)* are directly influenced by the activity(ies)
of an addressee, or have a relation to the
target subject(s).

Legal consequence defines the consequence for an addressee, e.g. the punishment
when violating the section.

A * next to an element of the structure means the element is optional.

we used to create law patterns. We describe the results of this analysis in the
following.

First of all a law is a textual document. This law document is structured
into sections. Each section defines a legal aspect of the law and contains several
statements. These statements are dictates of justice, so-called legal rules [19, p.
240]. There are different types of dictates of justice. Complete and self-containing
dictates of justice are one type. This type is the fundamental building block of
every law [19, p. 241].

We derived the structure of complete and self-containing dictates of justice
and present the results in Tab. 1. A dictate of justice is divided into the facts of
the case, the setting which is regulated, and the legal consequence, the resulting
implications of the setting [20, p. 7]. Furthermore, a dictate of justice has also an
addressee(s). The reason is that every complete dictate of justice is an imperative,
or can be transformed into an imperative [19, p. 243-44], and an imperative has
to be directed towards an addressee(s) [18, p. 3-4].

The facts of the case need to be further refined to be useful for a pattern.
The legal method called subsumption contains a further refinement of the facts
of the case [19, p. 260-64]. This refinement results in the basic elements activities,
target subjects, and target persons [20, p. 23-31]. Lawyers use the subsumption to
analyze if a dictate of justice is applicable to a specific case. The case is described
in terms and notions. Lawyers map these to the notions and terms describing
the basic elements [18, p. 52-53]. If not all terms and notions of the case can be
mapped to basic elements, the dictate of justice is not relevant for the case.

However, a mapping between all terms and notions of the case and the basic
elements is not sufficient to prove the relevance of a dictate of justice for a case.
The reason is that the facts of the case of the dictate of justice can contain
an element that has no mapping to a term or notion of the specific case. The
subsumption solely considers a mapping from the term or notion of the specific
case to the dictate of justice. The other direction is not considered. Moreover,
such an element has the potential to prove that the law is not relevant for



8 Authors Suppressed Due to Excessive Length

the specific case. The subsumption provides this gap intentionally, because the
mapping of specific cases to laws is based upon human interpretation.

Besides the complete, self-containing dictates there are [19, p. 247-251]:

– definition dictates that describe and refine terms and other basic elements.
– restricting dictates, which add exceptions to a complete dictate
– directing dictates, which reference one or more other dictates. The referenced

dictates contain (parts of) the facts of the case or the legal consequences.
– fiction dictates, which equate different facts of the case. But this equation

can be proved wrong within a law case.

These dictates cannot be analyzed in isolation. All of them have relations to
other dictates (or even laws). The types of relation between these dictates are
refinement, addition, and constraint. This implies that all of resulting dictates
and laws, and the relations between them, have to be considered when analyzing
laws. A regulation is the set of rules applicable to a specific case [19, p. 254].

Thus, relations between laws, sections and dictates of justice are of funda-
mental importance. They are arranged in a hierarchy, which is not always free
of conflicts [19, p. 255]. A special part of these relations is the terminology used
within a jurisdiction. This terminology is organized as hierarchical tree where
the terms and notions of the more general dictates of justices are refined by
subsequent dictates of justice.

4.2 A Process for Identifying relevant Laws

Our general process for identifying relevant laws consists of five steps as depicted
in Fig. 2. The first step is to set up a database of all laws which might be
of relevance for a scenario. Therefore, laws have to be analyzed and stored in
the structure of the law pattern. Thus, they are stored as pattern instances.
Section 4.3 describes how to accomplish this step. This step is not needed if
such a database already exists. The second step, described in Sect. 4.4, uses
information from software requirements and their context to instantiate the core
structure and the context of the law identification pattern. Instances of the cloud
analysis pattern contain parts of the relevant information for this instantiation.
Third, the relation between laws and software requirements has to be established
(Sect. 4.5) to prepare the identification of relevant laws for the given software.
Hence, a mapping between the terms and notions of the software requirements
to legal terms and notions is derived. Fourth, the law pattern instances and law
identification pattern instances have to be matched. This results in a set of laws

Laws Law Pattern Requirements,
Assets, Actors,
Activities

Law 
Identification
Pattern

Set ofHierarchiesLaw Pattern
Instances Pattern

Instances
Pattern (Core)
Identification
Law Law 

Identification

Instances

relevant laws

Law Pattern

Instantiation of Full Instantiation
of Law Identification

Pattern

Pattern Matching Legal Revision

Instantiation of
Law Identification

Pattern (Core)p
ro

c
e

s
s

e
x
te

rn
a

l
in

p
u

t
o

u
tp

u
t

in
p

u
t 

/

Fig. 2. Law Identification Process



Identifying and Analyzing Laws 9

which might be of relevance for the software. The resulting laws are only possibly
relevant, because we use the subsumption method, as discussed in Sect. 4.1. The
matching is described in Sect. 4.6. Fifth, the found laws are the basis for further
investigations. For this process law experts and software engineers have to work
together for the necessary knowledge transfer. Step one can be done alone by
legal experts and for step two only software engineers are needed. But in step
three and four both groups are needed to bridge the gap between legal and
technical world. The last step can be accomplished alone by legal experts.

4.3 Law Pattern

Based on the previously discussed structure of laws, we define a law pattern
shown on the left-hand side of Fig. 3. The pattern consists of three parts: the dark
grey part represents the Law Structure, the light gray part depicts the Classification

to consider the specialization of the elements contained in the Law Structure in
related laws or sections, and the white part considers the Context.

We organize the mentioned hierarchies by Person Classifier, Activity Classifier,
and Subject Classifier using hierarchies. Figure 4 shows example instances for all
three hierarchies according to BDSG. The Context part of the law pattern con-
tains the Legislator(s) defining the jurisdiction, and the Domain(s) clarifying for
which domain the law was established.

As it is necessary to know in which context and relation a law is used, we
introduce Regulation(s), which are Related To the section at hand. Regulation(s),
Legislator(s), and Domain(s) can be ordered in hierarchies, similar to classifiers.
For instance, Germany is part of the EU and consists of several states.

We now describe the instantiation process for our law pattern using Sec-
tion 4b BDSG as an example. We explained the importance of this particular
section in Sect. 2.2. The resulting instance is shown on the right-hand side of
Fig. 3. Our process starts based on the first sections of the law to be analyzed.
These sections are self-contained, i.e. they define all necessary elements of our
Law Structure. Additionally, the Legislator(s) and Domain(s) can be instantiated
according to the considered law (e.g. Germany and General Public in the Context

part). Given a section of a law not yet captured by our law pattern, we identify
and document the related laws and sections referred to by the given section (e.g.
BDSG Sec. 1 in the Context part). Then, we search for the Law Structure directly
defined in this section. In Section 4b BDSG, we find Abroad Transfer, and we use

Legislator(s)

Domain(s)

Target Person(s)Addressee(s)
Influence

Law

Target Subject(s)

Section

Law Structure

Subject Classifier

Person Classifier

Regulation(s)

Avoid /
Activity(ies) Influence

Accomplish

Law / Section

Law / Section Law / Section

Entitled To

Related To

Activity Classifier
Mentioned Or Defined InMentioned Or Defined In

Mentioned Or Defined In

ClassificationContext

Germany

Influence

Accomplish

Avoid /

Influence

Entitled To

BDSG

Abroad
Transfer Personal Data

Data

Individual

Natural

Sec. 4b

BDSG Sec. 1

Authority

General Public

PersonMentioned In

BDSG Sec. 3

Transfer

Law Structure

Private Bodies

Related To

Defined In

BDSG Sec. 1

ClassificationContext

Fig. 3. Law Pattern (left) and Instance (right)



10 Authors Suppressed Due to Excessive Length

Automated Processing

Storage
Defined in

BDSG Sec.3

Transfer
Introduced In
BDSG Sec. 3

Introduced In

Abroad Transfer

BDSG Sec. 4b

Private Body
BDSG Sec. 1Introduced In

Legal Entity
Introduced In BDSG Sec. 2

Natural Person
Introduced In BDSG Sec. 2

Individual
Introduced In BDSG Sec. 2

Data

Personal Data
Introduced In
BDSG Sec. 3

Fig. 4. Example Instances for Person (left), Subject (middle), and Activity (right)
Hierarchies

it to instantiate Activity(ies). Addressee(s), Target Subject(s), and Target Person(s) are
not defined in Section 4b BDSG. Therefore, related sections defining these terms
have to be discovered. In our example, we find Private Bodies for the Addressee(s),
Personal Data for the Target Subject(s), and Individual for the Target Person(s) in Sec-
tion 1 BDSG (according to BDSG Sec. 1 in the Context part). We arrange these
specializations in the appropriate parts of the hierarchies in Fig. 4. The classifier
is instantiated with the parent node of the corresponding hierarchy, which is for
instance Transfer, defined in Section 3 BDSG, for Abroad Transfer.

4.4 Law Identification Pattern

Identifying relevant laws based on functional requirements is difficult, because
functional requirements are usually too imprecise, they contain important infor-
mation only implicitly and use a different wording than in laws. For example,
a functional requirement like “The customer wants to withdraw money.” might
lead to different laws when searching for “customer” only, and most of them
might not be relevant in this case (e.g. laws dealing with retail markets). Ad-
ditionally, laws dealing with banks or Internet communication are not taken in
consideration since the functional requirement does not contain adequate key-
words. Moreover, it is difficult to discover that the amount of withdrawn money
implicitly contains individual-related data, which has to be protected for privacy
reasons. Formulating the requirement in a more comprehensive way, e.g. “The
bank customer wants to withdraw money from his account using a web interface,
which is offered via Internet by the bank using a cloud provider.”, does not solve
these problems.

To bridge the gap of the wording and to facilitate the discussion between
requirements engineers and legal experts, we define a law identification pattern
to support identifying relevant laws based on the early steps of our method
presented in Sect. 3. We especially use the laws captured with the law pattern
presented in the previous section, and the knowledge collected using the stake-
holder templates as mentioned in Sect. 2.3.

Figure 5 shows on the left-hand side our law identification pattern. The
structure is similar to the law pattern on the left side of Fig. 3 to allow a
matching of instances of both patterns. In contrast to the legal vocabulary used
in the Law Structure of our law pattern, the wording for the elements in the
dark gray colored Core Structure of our law identification pattern is based on
terms known from requirements engineering. For example, the element Asset(s)



Identifying and Analyzing Laws 11

Legislator(s)

Process(es)
Related

Domain(s)

Core Structure

Influence

Accomplish

Avoid /
Activity

Influence

Classified As

Requirement Activity

Asset(s)

Active Stakeholder(s) Passive Stakeholder(s)

Subject Classifier

Person Classifier

Law / Section
Defined Or Mentioned In

Activity Classifier

Entitled To

Classified As

Classified As

Defined Or Mentioned In

Defined Or Mentioned In
Classified As

Law / Section

Law / Section

Related To

Requirement(s)

ClassificationContext

Legislator
Germany

Legislator
EU

Legal Entity
Mentioned In
BDSG Sec. 2

Individual
Mentioned In
BDSG Sec. 2

Core Structure

Accomplish

Avoid /

Classified As

Classified As Classified As Classified As

Classified As

Related To

Data Storing
Offering

Personal Data
Defined in

Abroad Transfer

BDSG Sec. 3

Storage
Defined in

BDSG Sec. 3 BDSG Sec. 4b
Defined in

’Cloud API’

’Store Distributed’

Legislator
US

Hulda

Domain
Finance

ClassificationContext

’Scalable Data Storing’

Influence Entitled To
Customer Data

Bank Customer

Distributed
Store

Fig. 5. Law Identification Pattern (left) and Instance (right)

in our law identification pattern represents the element Target Subject(s) in our
law pattern.

Our law identification pattern takes into account that requirements are often
interdependent (Requirement(s) in the Context part). Given a law relevant to a
requirement, the same law might be relevant to the dependent requirements,
too. Furthermore, the pattern helps to document similar dependencies for a
given Activity using the Related Process(es) in the Context part.

For identifying laws relevant for the online banking service example, we con-
sider the activities documented in the direct stakeholder template instances of
the instantiated cloud system analysis pattern as described in Sect. 3. As our ex-
ample on the right-hand side of Fig. 5 shows, we select the template instance of
the direct stakeholder Hulda, then we choose the functional requirement Scalable

Data Storing (row ”Functional Requirements“ in the Hulda stakeholder template
instance). One of the activities associated with this requirement is the activity
Store Distributed (row ”Activities“ in the Hulda stakeholder template instance),
which refers to the asset Customer Data (row ”Assets“ in the Hulda stakeholder
template instance) of the Bank Customer. Moreover, we instantiate the elements
Legislator(s) and Domain(s) according to the instantiated cloud system analysis
pattern. In our example on the right side of Fig. 5, we include the legislators
Germany, US, EU, and the domain Finance. In addition, we discover the related
requirement Cloud API and the process Offering Data Storing, and document them
in the instance of our law identification pattern. So far, the instantiation process
can be performed by a software engineer.

4.5 Establishing the Relation between Laws and Requirements

To instantiate the Classification part, legal expertise is necessary. According to the
Core Structure of the instance of our law identification pattern and the hierarchies
built when instantiating our law pattern, legal experts classify the elements of
the Core Structure. For example, the activity Store Distributed is classified as Abroad

Transfer based on a discussion between the legal experts and software engineers.

4.6 Deriving relevant Laws

The identification of relevant laws is based on matching the classification part of
the law identification pattern instance (light gray part) with the law structure
and classification part of the law pattern instance (light and dark gray parts),
and thereby considering the previously documented hierarchies. If all elements



12 Authors Suppressed Due to Excessive Length

match, the law is identified as relevant. For example, we find direct matches in
the law pattern instance depicted on right side of Fig. 3 for the elements Abroad

Transfer, Personal Data, and Individual contained in the law identification pattern
instance shown on the right side of Fig. 5. Hulda is classified as Legal Entity and the
only element that does not directly match with Private Bodies in the law structure
of Section 4b BDSG. In this case, the hierarchy in Fig. 4 helps to identify that
Legal Entity is a specialization of Private Bodies, and thus, we identify Section 4b
BDSG as relevant.

Finally, we check for all laws identified to be relevant if Legislator(s) and Do-

main(s) are mutually exclusive. In our example, the legislator Germany contained
in Context of the law pattern instance depicted on right side of Fig. 3 can be
found in Context of the law identification pattern instance shown on the right
side of Fig. 5. The domain General Public in the law pattern instance can be con-
sidered as a generalization of the domain Finance in the law identification pattern
instance.

The resulting set of laws relevant for the given development problem serves
as an input for step 6 of our requirements elicitation method for clouds presented
in Sect. 3. This last step covers the identification and specification of require-
ments based on laws identified to be relevant by our approach, e.g. using existing
approaches such as the one from Breaux et al. [21, 22].

5 Insights

We recognized a common structure that covers German laws, presented in Sect. 4.
Biagioli et al. investigated Italian law and derived also a structure of dictates
of justice, which is very similar to the structure presented in this work. “We
have tried to respect the distinction between legal actions[. . . ], the active par-
ties of the action[. . . ], and the passive parties or objects of the action” [3, p.
247]. Thus, our law pattern is applicable for the Italian law as well. It is likely
that the pattern is also applicable to further laws in the tradition of the Roman
jurisdiction.

Our method requires adaptation for fundamentally different legal systems
from the Roman legal system, e.g. the case law system in the US or Great Britain.
The case law demands from legal experts exhaustive knowledge about numerous
court rulings, which augment statute laws. Judges are able to dismiss a law if
it is not a perfect match for a case. They can rule based upon previous rulings
from judges on similar cases. Judges decide what cases to consider. However,
Fikentscher states that also in countries with case law the basis for jurisdiction
are the statute laws. He concludes, further, that statute law is part of the case
law [23, p. 111 - 113]. Hence, our method covers this part of the case law.

We presented that several basic elements from laws have a relation to basic
elements from our cloud analysis pattern. Hence, the information gathered in
our instantiated cloud analysis pattern can be re-used for the instantiation of
our law pattern (Sect. 4.4).

We derived a pattern-based approach from the subsumption method, while
other approaches use formal logic to formalize and analyze laws. The subsump-



Identifying and Analyzing Laws 13

tion method is a common approach for analyzing laws among lawyers (Sect. 4.1).
Logic-based approaches seem to be more precise. However, legislators formulate
laws imprecise by design [19, 18, 20, p. 298-99, p. 36-39, p. 32-33]. This impreci-
sion allows lawyers and judges to interpret laws. This design is not sustainable
when using formal logic. Hence, we decided to capture the modus operandi from
lawyers in a pattern-based method.

6 Related Work

Breaux et al. [21, 22] present a framework that covers analyzing the structure
of laws using a natural language pattern. This pattern helps to translate laws
into a more structured restricted natural language and then into a first order
logic. The idea of using first order logic in the context of regulations is not a
new one. For example Bench-Capon et al. [24] made use of first order logic to
model regulations and related matters. In contrast to our work, the authors of
those approaches assume that the relevant laws are already known and thus do
not support identifying legal texts. Their approach does not allow one to find
dependent law sections. The approach also has the drawbacks of formal logic
analysis of laws as discussed in Sect. 5.

Siena et al. describe in one publication [25] the differences between legal
concepts and requirements. They model the regulations using an ontology, which
is quite similar to the natural language patterns described in the approaches
mentioned before. The ontology is based in the Hohfeld taxonomy [26], which
describes the means and relations between the different means of legal texts in
a very generic way. Thus Hohfeld does not structure a certain law at all but
aims at the different meanings of laws. So the resulting process in [25] to align
legal concepts to requirements and the given concepts are quite high level and
cannot directly applied to a scenario. In a second work Siena et al. [27] try to
bridge the gap between the requirements engineering process and compliance
using a goal-oriented approach. In contrast to our approach they do not identify
relevant laws and do not intertwine compliance regulations with already elicited
requirements.

Álvarez et al. [28] describe reusable legal requirements in natural language,
and based on the Spanish adaption of the EU directive 95/46/CE concerning
personal data protection. We believe that the work by Álvarez et al. complements
our work, i.e., applying our law identification method can preceed using their
security requirements templates.

7 Conclusions and Future Work

We presented a pattern-based method for identifying and analyzing laws for
clouds, which can be embedded in common system and software development
processes. The novelty about our approach is that we analyzed common meth-
ods lawyers use to identify and analyze laws. We captured this knowledge in
patterns. Our method comprises the following main benefits:

– Systematic pattern-based identification and analysis of laws



14 Authors Suppressed Due to Excessive Length

– Detection of dependent laws
– Considering legal requirements in systems and software engineering
– Bringing together legal experts and software and system developers
– Re-using cloud-specific context and stakeholder analysis based on patterns

The diverse structure of legal systems and laws in different countries around the
world present a challenge for our approach. We are confident that the approach
is feasible for common use. The case law system, in the US or Great Britain, is
another important legal system. We plan to adapt our method for the case law
system, via case patterns that extend law patterns.

We also aim to work on tool support for our approach, e.g. to store, load,
and search for laws once they have been fitted to our law patterns.

Acknowledgements

We thank Maritta Heisel and Christoph Sorge for their extensive and valuable
feedback on our work.

References

1. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of
security requirements engineering methods. Requirements Engineering – Special
Issue on Security Requirements Engineering 15(1) (2010) 7–40

2. Otto, P.N., Antón, A.I.: Addressing legal requirements in requirements engineer-
ing. In: Proceedings of the International Conference on Requirements Engineering
(RE), IEEE Computer Society (2007) 5–14

3. Biagioli, C., Mariani, P., Tiscornia, D.: Esplex: A rule and conceptual model
for representing statutes. In: Proceedings of the 1st international conference on
Artificial intelligence and law. ICAIL ’87, ACM (1987) 240–251

4. Bobkowska, A., Kowalska, M.: On efficient collaboration between lawyers and
software engineers when transforming legal regulations to law-related requirements.
In: Information Technology (ICIT), 2010 2nd International Conference on. (june
2010) 105 –109

5. Beckers, K., Küster, J.C., Faßbender, S., Schmidt, H.: Pattern-based support for
context establishment and asset identification of the ISO 27000 in the field of
cloud computing. In: Proceedings of the International Conference on Availability,
Reliability and Security (ARES), IEEE Computer Society (2011) 327–333

6. Mell, P., Grance, T.: The NIST definition of cloud computing. Working Paper of
the National Institute of Standards and Technology (NIST) (2009)

7. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Computer Communication Review 39(1)
(2009) 50–55

8. Marwane, E.K., Stein, S.: Policy-based semantic compliance checking for business
process management. In: Proceedings of the Workshops co-located with the Con-
ference on Modellierung betrieblicher Informationssysteme (MobIS). Volume 420
of CEUR Workshop Proceedings., CEUR-WS.org (2008) 178–192

9. Jansen, W.A.: Cloud hooks: Security and privacy issues in cloud computing. In:
Proceedings of the 2011 44th Hawaii International Conference on System Sciences.
HICSS ’11, IEEE Computer Society (2011) 1–10



Identifying and Analyzing Laws 15

10. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling data in the cloud: outsourcing computation without outsourcing
control. In: Proceedings of the 2009 ACM workshop on Cloud computing security.
CCSW ’09, ACM (2009) 85–90

11. Duisberg, A.: Gelöste und ungelöste rechtsfragen im it-outsourcing und cloud
computing. In Picot, A., Götz, T., Hertz, U., eds.: Trust in IT. Springer Berlin
Heidelberg (2011) 49–70

12. Pfleeger, C.P., Pfleeger, S.L.: Security In Computing. 4th edn. Prentice Hall PTR
(2007)

13. Hansen, M., Schwartz, A., Cooper, A.: Privacy and identity management. IEEE
Security and Privacy 6(2) (2008) 38–45

14. Jackson, M.: Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley (2001)

15. Cheesman, J., Daniels, J.: UML Components – A Simple Process for Specifying
Component-Based Software. Addison-Wesley (2001)

16. Fernandez, E.B., la Red M., D.L., Forneron, J., Uribe, V.E., Rodriguez G., G.:
A secure analysis pattern for handling legal cases. In: Latin America Con-
ference on Pattern Languages of Programming (SugarLoafPLoP). (2007) http:

//sugarloafplop.dsc.upe.br/wwD.zip.
17. Sindre, G., Opdahl, A.L.: Capturing security requirements through misuse cases.

In: Proceedings of the Norwegian Informatics Conference (NIK). (2001)
18. Schwacke, P.: Juristische Methodik mit Technik der Fallbearbeitung. 4. edn.

Kohlhammer Deutscher Gemeindeverlag (2003)
19. Larenz, K.: Methodenlehre der Rechtswissenschaft. 5. edn. Springer (1983)
20. Beaucamp, G., Treder, L.: Methoden und Techniken der Rechtsanwendung. 2. edn.

C.F.Müller (2011)
21. Breaux, T.D., Vail, M.W., Antón, A.I.: Towards regulatory compliance: Extracting

rights and obligations to align requirements with regulations. In: Proceedings of
the International Conference on Requirements Engineering (RE), IEEE Computer
Society (2006) 46–55

22. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security
requirements. IEEE Transactions on Software Engineering 34(1) (2008) 5–20

23. Fikentscher, W.: Methoden des Rechts in vergleichender Darstellung. Band 2:
Anglo-amerikanischer Rechtskreis. 1. edn. Volume 2. Mohr Siebeck (1975)

24. Bench-Capon, T., Robinson, G., Routen, T., Sergot, M.: Logic programming for
large scale applications in law: A formalization of supplementary benefit legislation.
In: Proceedings of the International Conference on Artificial Intelligence and Law
(ICAIL), ACM (1987) 190–198

25. Siena, A., Perini, A., Susi, A.: From laws to requirements. In: Proceedings of the
International Workshop on Requirements Engineering and Law (RELAW), IEEE
Computer Society (2008) 6–10

26. Hohfeld, W.N.: Fundamental legal conceptions as applied in judicial reasoning.
The Yale Law Journal 26(8) (1917) 710–770

27. Siena, A., Perini, A., Susi, A., Mylopoulos, J.: A meta-model for modelling law-
compliant requirements. In: Proceedings of the International Workshop on Require-
ments Engineering and Law (RELAW), IEEE Computer Society (2009) 45–51

28. Álvarez, J.A.T., Olmos, A., Piattini, M.: Legal requirements reuse: A critical suc-
cess factor for requirements quality and personal data protection. In: Proceedings
of the International Conference on Requirements Engineering (RE), IEEE Com-
puter Society (2002) 95–103


