
 1

A Pattern-Based Method to Develop
Secure Software

Holger Schmidt1, Denis Hatebur1,2, Maritta Heisel1

1University Duisburg-Essen, Faculty of Engineering, Department of Computer Science
and Applied Cognitive Science, Workgroup Software Engineering, Germany

2ITESYS Institut für technische Systeme GmbH, Dortmund, Germany

ABSTRACT

We present a security engineering process based on security problem frames and concretized
security problem frames. Both kinds of frames constitute patterns for analyzing security problems
and associated solution approaches. They are arranged in a pattern system that makes
dependencies between them explicit. We describe step-by-step how the pattern system can be
used to analyze a given security problem and how solution approaches can be found.

Afterwards, the security problems and the solution approaches are formally modeled in detail.
The formal models serve to prove that the solution approaches are correct solutions to the security
problems. Furthermore, the formal models of the solution approaches constitute a formal
specification of the software to be developed.

Then, the specification is implemented by generic security components and generic security
architectures, which constitute architectural patterns. Finally, the generic security components
and the generic security architecture that composes them are refined and the result is a secure
software product built from existing and/or tailor-made security components.

KEYWORDS

security requirements engineering, patterns, problem frames, security components, security
architecture, formal specification

1. INTRODUCTION

It is acknowledged that a thorough requirements engineering phase is essential to develop a
software product that matches the specified requirements. This is especially true for security
requirements.

We introduce a security engineering process that focuses on the early phases of software
development. The process covers engineering of security requirements, security specifications,
and security architectures. The basic idea is to make use of special patterns for security
requirements analysis and development of security architectures.

Security requirements analysis makes use of patterns defined for structuring, characterizing,
and analyzing problems that occur frequently in security engineering. Similar patterns for
functional requirements have been proposed by Jackson (2001). They are called problem frames.
Accordingly, our patterns are named security problem frames. Furthermore, for each of these
frames, we have defined a set of concretized security problem frames that take into account

 2

generic security mechanisms to prepare the ground for solving a given security problem. Both
kinds of patterns are arranged in a pattern system that makes dependencies between them explicit.
We describe how the pattern system can be used to analyze a given security problem, how
solution approaches can be found, and how dependent security requirements can be identified.

Security specifications are constructed using the formal specification language CSP
(Communicating Sequential Processes) by Hoare (1986). We present a procedural approach to
construct formal CSP models for instances of security problem frames and concretized security
problem frames. These models serve to formally express security requirements. Afterwards they
are used to formally prove a refinement between the CSP model of a security problem frame
instance and a corresponding CSP model of a concretized security problem frame instance. This
refinement must preserve the security requirements to ensure that the constructed specification
realizes the security requirements.

Once we have shown that the selected generic security mechanisms solve the security
problems, we develop a corresponding security architecture based on platform-independent
generic security components and generic security architectures. Each concretized security
problem frame is equipped with a set of generic security architectures that represent the internal
structure of the software to be built by means of a set of generic security components. After a
generic security architecture and generic security components are selected, the latter must be
refined to platform-specific security components. For example, existing component frameworks
can be used to construct a platform-specific security architecture that realizes the initial security
requirements.

The rest of the chapter is organized as follows: First, we introduce problem frames and present
a literature review. Second, we give an overview of our security engineering process. Then we
present the different development phases of the process in detail. Each phase of our process is
demonstrated using the example of a secure text editor application. Finally, we outline future
research directions and give a summary and a discussion of our work.

2. BACKGROUND

In the following, we first present problem frames and second, we discuss our work in the
context of other approaches to security engineering.

2.1 Problem Frames

Patterns are a means to reuse software development knowledge on different levels of
abstraction. They classify sets of software development problems or solutions that share the same
structure. Patterns are defined for different activities at different stages of the software life-cycle.
Problem frames by Jackson (2001) are a means to analyze and classify software development
problems. Architectural styles are patterns that characterize software architectures (for details see
(Bass & Clements & Kazman, 1998) and (Shaw & Garlan (1996)). Design patterns by Gamma,
Helm, Johnson, and Vlissides (1995) are used for finer-grained software design, while idioms by
Coplien (1992) are low-level patterns related to specific programming languages.

Using patterns, we can hope to construct software in a systematic way, making use of a body
of accumulated knowledge, instead of starting from scratch each time. The problem frames
defined by Jackson (2001) cover a large number of software development problems, because they
are quite general in nature. Their support is of great value in the area of software engineering for
years. Jackson (2001) describes them as follows: „A problem frame is a kind of pattern. It defines

 3

an intuitively identifiable problem class in terms of its context and the characteristics of its
domains, interfaces, and requirement.” (p. 76). Jackson introduces five basic problem frames
named required behaviour, commanded behaviour, information display, simple workpieces, and
transformation.

Problem frames are described by frame diagrams, which basically consist of rectangles and
links between these. As an example, Figure 1 shows the frame diagram of the problem frame
simple workpieces.

The task is to construct a machine that improves the behavior of the environment it is
integrated in.

Plain rectangles denote problem domains (that already exist), and a rectangle with a double
vertical stripe denotes the machine to be developed. Requirements are expressed as a dashed oval,
which contains an informal description of the requirements. The connecting lines represent
interfaces that consist of shared phenomena. Shared phenomena may be events, operation calls,
messages, and the like. They are observable by at least two domains, but controlled by only one
domain. For example, if a user types a password to log into an IT-system, this is a phenomenon
shared by the user and the IT-system. It is controlled by the user. A dashed line between the
dashed oval that contains the requirements description and a domain represents a requirements
reference. This means that the requirements description refers to the domain. An arrow at the end
of a requirements reference indicates that the requirements constrain the domain. Such a
constrained domain is the core of any problem description, because it has to be controlled
according to the requirements. Hence, a constrained domain triggers the need for developing a
new software (the machine), which provides the desired control.

Figure 1: Simple Workpieces Problem Frame

Furthermore, Jackson distinguishes causal domains that comply with some physical laws,

lexical domains that are data representations, and biddable domains that are usually people. Côté
& Hatebur & Heisel & Schmidt & Wentzlaff (2008) introduced display domains that represent
output devices, e.g., video screens.

In the frame diagram depicted in Figure 1, a marker „X“ indicates that the corresponding
domain is a lexical domain and „B“ indicates a biddable domain. A causal domain is indicated by
„C“ and a display domain is indicated by „D“. The notation „E!E1“ means that the phenomena of
interface „E1“ between the domains „Editor“ (abbreviated „E“) and „Workpieces“ are controlled
by the „Editor“ domain.

Software development with problem frames proceeds as follows: first, the environment in
which the machine will operate is represented by a context diagram. Like a frame diagram, a
context diagram consists of domains and interfaces. However, a context diagram contains no
requirements (see Figure 4 for an example). Then, the problem is decomposed into subproblems.
If ever possible, the decomposition is done in such a way that the subproblems fit to given
problem frames. To fit a subproblem to a problem frame, one must instantiate its frame diagram,

 4

i.e., provide instances for its domains, phenomena, and interfaces. The instantiated frame diagram
is called a problem diagram. Furthermore, relevant domain knowledge about the domains
contained in the frame diagram must be elicited, examined, and documented. Domain knowledge
consists of facts and assumptions. Facts describe fixed properties of the environment irrespective
of how the machine is built, e.g., that a network connection is physically secured. Assumptions
describe conditions that are needed, so that the requirements are accomplishable, e.g., we assume
that a password selected by a user is not revealed by this user to other users.

Successfully fitting a problem to a given problem frame means that the concrete problem
indeed exhibits the properties that are characteristic for the problem class defined by the problem
frame. A problem can only be fitted to a problem frame if the involved problem domains belong
to the domain types specified in the frame diagram. For example, the “User” domain of Figure 1
can only be instantiated by persons, but not for example by some physical equipment like an
elevator.

Since the requirements refer to the environment in which the machine must operate, the next
step consists in deriving a specification for the machine (see Jackson & Zave (1995) for details).
The specification describes the machine and is the starting point for its construction.

2.2 Related Work

In this section, we discuss our work in connection with a selection of other approaches to
engineering of security requirements, security specifications, and security architectures.

Security Requirements Engineering

To elicit security requirements, the threats to be considered must be analyzed. Lin & Nuseibeh
& Ince & Jackson (2004) use the ideas underlying problem frames to define so-called anti-
requirements and the corresponding abuse frames. The purpose of anti-requirements and abuse
frames is to analyze security threats and derive security requirements. Hence, abuse frames and
security problem frames complement each other.

Gürses & Jahnke & Obry & Onabajo & Santen & Price (2005) present the MSRA (formerly
known as CREE) method for multilateral security requirements analysis. Their method
concentrates on confidentiality requirements elicitation and employs use cases to represent
functional requirements. The MSRA method can be useful to be applied in a phase of the security
requirements engineering process that mainly precedes the application of security problem
frames.

SREF - Security Requirements Engineering Framework by Haley & Laney & Moffett &
Nuseibeh (2008) is a framework that defines the notion of security requirements, considers
security requirements in an application context, and helps answering the question whether the
system can satisfy the security requirements. Their definitions and ideas overlap our approach,
but they do not use patterns and they do not give concrete guidance to identify and elicit
dependent security requirements.

Moreover, there exist other promising approaches to security requirements engineering, such
as the agent-oriented Secure Tropos methodology by Mouratidis & Giorgini (2007) and the goal-
driven KAOS - Keep All Objectives Satisfied approach by van Lamsweerde (2004).

A comprehensive comparison of security requirements engineering approaches (including the
one presented in this chapter) can be found in (Fabian, B. & Gürses, S. & Heisel, M. & Santen, T.
& Schmidt, H., to appear).

 5

Formal Security Specifications

Li & Hall & Rapanotti (2006) use an extended CSP version by Lai & Lai & Sanders (1997) to
systematically derive a specification from requirements. Their work does not consider non-
functional requirements such as security requirements. Furthermore, biddable domains are not
formalized. Since biddable domains are used to model unpredictable parts of the environment
(such as honest and malicious users), we believe that this is a key feature to security requirements
engineering.

KAOS by van Lamsweerde (2004) addresses security requirements by means of anti-goals. A
linear real-time temporal logic is used to formalize these goals. The goals and further ingredients
such as domain properties as well as pre- and postconditions form patterns that can be instantiated
and negated to describe anti-goals. Furthermore, Mouratidis & Giorgini (2007) added this formal
approach to Secure Tropos.

Haley & Laney & Moffett & Nuseibeh (2008, 2004) consider the notion of a trust assumption:
“… the requirements engineer trusts that some domain will participate ‘competently and
honestly’ in the satisfaction of a security requirement in the context of the problem.” (pp. 4) in
their SREF approach. To decide whether a system can satisfy the security requirements, Haley &
Laney & Moffett & Nuseibeh (2005) make use of structured informal and formal argumentation.
A two-part argument structure for security requirement satisfaction arguments consisting of an
informal and a formal argument is proposed. In combination with trust assumptions, satisfaction
arguments facilitate showing that a system can meet its security requirements.

In a stepwise development process, it is essential that security requirements specified in a
certain step are preserved in later steps. This concept corresponds to the stepwise refinement
concept of formal methods. Moreover, information flow properties represent a class of security
properties that can be used to formally express informal security requirements. In contrast to
safety and liveness properties, information flow properties are generally not preserved under
refinement. Mantel (2003) gives an overview of using information flow properties for security
requirements specification and preserving information flow properties under refinement.

In contrast to our work, KAOS with anti-goals, Secure Tropos, and SREF with trust
assumptions do not allow to express security requirements in terms of information flow
properties. Thus, the refinement of security requirements to specifications is only considered
based on informal techniques.

Security Architectures

Architectural patterns named architectural styles are introduced by Bass & Clements &
Kazman (1998) and Shaw & Garlan (1996). These patterns do not consider security requirements,
and they are not integrated in a security engineering process.

Similarly, the AFrames by Rapanotti & Hall & Jackson & Nuseibeh (2004) do not consider
security requirements. These patterns correspond to the popular architectural styles Pipe-and-
Filter and Model-View-Controller (MVC), which the authors apply to Jackson’s problem frames
for transformation and control problems.

Hall & Jackson & Laney & Nuseibeh & Rapanotti (2002) extend machine domains of problem
diagrams by architectural considerations. They do not deal with security requirements and they do
not derive software architectures explicitly. Instead, their extension of the problem frames
approach allows one to gather architectural structures and services from the problem
environment.

 6

There exist several techniques to evaluate the security properties of architectures, e.g., formal
proving of security properties (Moriconi & Qian & Riemenschneider & Gong, 1997), analysis by
means of petri nets and temporal logics (Deng & Wang & Tsai & Beznosov, 2003), or evaluation
of used security patterns (Halkidis & Tsantalis & Chatzigeorgiou & Stephanides, 2008).

Choppy & Hatebur & Heisel (2005, 2006) present architectural patterns for Jackson’s basic
problem frames. The patterns constitute layered architectures described by UML (Unified
Modeling Language) composite structure diagrams (UML Revision Task Force, Object
Management Group (OMG), 2007). The authors also describe how these patterns can be applied
in a pattern-based software development process. Hatebur & Heisel (2005) describe similar
patterns for security frames. These frames are comparable to security problem frames, which are
enhancements of the original security frames presented in (Hatebur & Heisel, 2005). Compared to
the architectural patterns presented in this chapter, the mentioned papers do not consider
behavioral interface descriptions and operation semantics. Furthermore, only a vague general
procedure to derive components for a specific frame diagram is given. Architectural patterns
especially for the problem class of confidential data storage using encryption are not described.
And as a last difference, a refinement to implementable architectures is not considered.
Nevertheless, the papers by Choppy & Hatebur & Heisel (2005, 2006) and Hatebur & Heisel
(2005) as well as the idea to systematically preserve quality requirements from early requirements
engineering to software design presented by Schmidt & Wentzlaff (2006) constitute the basis for
the enhancements presented in this chapter.

Patterns for Security Engineering
Patterns for security engineering are mainly used during the phase that follows the phases
presented in this chapter, i.e., they are applied in fine-grained design of secure software. Many
authors advanced the field of security design patterns for years, e.g., (Schumacher & Fernandez-
Buglioni & Hybertson & Buschmann & Sommerlad, 2005) and (Steel & Nagappan & Lai, 2005).
A comprehensive overview and a comparison of the different existing security design patterns is
given by Scandariato & Yskout & Heyman & Joosen (2008). Fernandez & Larrondo-Petrie &
Sorgente & Vanhilst (2007) propose a methodology to systematically use security design patterns
during software development. The authors use UML (UML Revision Task Force, 2007) activity
diagrams to identify threats to the system, and they use security design patterns during fine-
grained design to treat these threats. Mouratidis & Weiss & Giorgini (2006) present an approach
to make use of security design patterns that connects these patterns to the results generated by the
Secure Tropos methodology by Mouratidis & Giorgini (2007).
The relation between our concretized security problem frames, which still express problems, and
security design patterns is much the same as the relation between problem frames and design
patterns: the frames describe problems, whereas the design/security patterns describe solutions on
a fairly detailed level of abstraction. Furthermore, since security design patterns are more detailed
than our generic security components and architectures, they can be applied after a composed
generic security architecture is developed.
Furthermore, the security standard Common Criteria (International Organization for
Standardization (ISO) and International Electrotechnical Commission (IEC), 2009) and KAOS
make use of patterns for security engineering. The Common Criteria introduces security
functional requirements, which are textual patterns to express security mechanisms on an abstract
level. They are comparable to concretized security problem frames. KAOS provides formal

 7

patterns to describe security goals specified using a linear real-time temporal logic. These patterns
can be compared to the effects of security problem frames.

3. OVERVIEW OF A SECURITY ENGINEERING PROCESS USING
PATTERNS

We present in this chapter a security engineering process using patterns (SEPP). SEPP is an
iterative and incremental process that consists of three phases. It follows a top-down and
platform-independent approach until a generic security architecture is selected in phase three.
Then, it takes a bottom-up and platform-specific approach to search for given security
components that realize the generic security architecture.
Phase 1 – Security Requirements Analysis
This phase starts with an initial set of security requirements, which is analyzed in detail by
incrementally and iteratively processing six analysis steps. The result of this phase is a
consolidated set of security requirements including solution approaches.

Step 1 - Describe Environment The environment in which the software development
problem is located is described in detail, developing a context diagram and expressing
domain knowledge about the domains that occur in the context diagram. The domain
knowledge describes the environment of the machine. This concerns especially potential
attackers. The distinction of facts and assumptions is particularly important for security
requirements. A machine usually cannot satisfy security requirements unconditionally. It
can provide security mechanisms that contribute to system security, but cannot enforce
system security on its own.
Step 2 - Select and Instantiate Security Problem Frames The software development
problem is decomposed into smaller subproblems. The security-relevant subproblems are
analyzed and documented based on security problem frames (SPF).
Step 3 - Select and Instantiate Concretized Security Problem Frames Generic
solution approaches are selected for the previously documented security problems. The
generic solution mechanisms are documented based on concretized security problem
frames (CSPF).
Step 4 - Check for Related SPFs Based on a pattern system of SPFs and CSPFs, SPFs
that are commonly used in combination with an already used CSPF can be found.
Step 5 - Analyze Dependencies Based on the pattern system, dependent security
problems are identified, which can be either assumed to be already solved or they have to
be considered as new security requirements to be solved by generic security mechanisms.
Step 6 - Analyze Possible Conflicts: the pattern system shows possible conflicts
between security requirements and generic solution mechanisms. If a conflict is relevant,
it must be resolved.

Phase 2 - Security Specifications
A formal CSP model is developed for each instantiated (C)SPF. These models are used to
formally express the security requirements and to prove refinements that preserve the specified
security requirements. The result is a set of formal behavioral security specifications of the
machines and their environment. Moreover, the refinement proofs guarantee that the generic
solution approaches selected in phase one are sufficient to realize the security requirements.

Step 1 - Construct Formal CSP Models A formal CSP model is constructed for each
(C)SPF instance.

 8

Step 2 - Formally Express Security Requirements The informally described security
requirements are expressed formally based on the CSP models.
Step 3 - Show Security-Requirements Preserving Refinements For each SPF instance
and the corresponding CSPF instance, the previously constructed CSP models are used to
show that the CSPF CSP model refines the SPF CSP model. This refinement proof
comprises the functional refinement and the preservation of the formally specified
security requirement.

Phase 3 - Security Architectures
Generic security architectures are selected and realized using existing security components from
APIs or component frameworks. The result of this phase is a platform-specific and implementable
security architecture that realizes the machines of the instantiated CSPFs.

Step 1 - Select Generic Security Architectures A generic security architecture that
consists of a set of generic security components is selected for each CSPF instance, based
on domain knowledge and constraints of the application domain.
Step 2 – Combine Generic Security Architectures The selected generic security
architectures are combined to a single generic security architecture based on relations
between the CSPF instances.
Step 3 - Refine Generic Security Architecture The combined generic security
architecture is refined to a platform-specific security architecture based on, e.g., existing
security components.
Step 4 - Connect Security Components Glue code is written to connect the components
according to the chosen generic security architecture.

The process is described as an agenda (Heisel, 1998) that summarizes the input development
artifacts, the output development artifacts, and validation conditions for each step. Furthermore,
each step is complemented by a method describing how to develop the output artifacts from the
input artifacts.

4. USING PROBLEM FRAMES FOR SECURITY REQUIREMENTS
ENGINEERING

We present security problem frames, concretized security problem frames, the pattern system,
and the process steps for security requirements engineering. The described techniques are then
applied to the secure text editor case study.

4.1 Security Problem Frames

Jackson (2001) states that his five basic problem frames are “... far from a complete or
definitive set“ (p. 76). To meet the special demands of software development problems occurring
in the area of security engineering, we introduced security problem frames (Hatebur & Heisel &
Schmidt, 2006). SPFs are a special kind of problem frames, which consider security
requirements. Similarly to problem frames, SPFs are patterns. The SPFs we have developed
strictly refer to the problems concerning security. They do not anticipate a solution. For example,
we may require the confidential storage of data without being obliged to mention encryption,
which is a means to achieve confidentiality. The benefit of considering security requirements
without reference to potential solutions is the clear separation of problems from their solutions,

 9

which leads to a better understanding of the problems and enhances the re-usability of the
problem descriptions, since they are completely independent of solution technologies.

Each SPF consists of a name, an intent, a frame diagram with a set of predefined interfaces, an
informal description, a security requirement template, and an effect. The latter is a formal
representation of the security requirement template. Effects are expressed as formulas in Z
notation (Spivey, 1992) based on a metamodel for problem frames developed by Hatebur &
Heisel & Schmidt (2008). The metamodel formally specifies problem frames and problem frame
constituents such as domains and interfaces by means of a UML class diagram (UML Revision
Task Force, Object Management Group (OMG), 2007) and OCL (Object Constraint Language)
constraints (UML Revision Task Force, Object Management Group (OMG), 2006). We use the
instances of the classes of the metamodel as types for the formulas representing effects.

HSD!Y6

B C

Spy machine

HS!E1 E1

MS!E3

B

X

Malicious subject Stored data

Honest subject
Confidential

storage
machine

E7, Y4

D D
display

Malicious subject
display

Honest subject

MSD!Y5 SR

SM!E7
SD!Y4

SD!Y2

CSM!Y5

CSM!E1
CSM!E3

E3, E7, Y4, Y5

Y2, Y8

CSM!Y6
Y6

Y5

SM!Y4

MS!E7

Figure 2: (C)SPF Confidential Data Storage (Using Password-Based Encryption)

As an example, we present in detail the SPF confidential data storage, which describes the

problem class of confidentially storing data:
Name:

SPF confidential data storage
Intent: Conceal data (e.g., files, folders, metadata, etc.) stored on some storage device (e.g., hard
disks, memory cards, smartcard, etc.).
Frame diagram:

Figure 2 shows the frame diagram of the SPF confidential data storage.
Predefined interfaces:

The interfaces of the SPF confidential data storage are defined as follows:
E1 = {OperationsOnStoredData

HS
}

Y2 = {ContentOfStoredData}
E3 = {OperationsOnStoredData

MS
}

Y4 = {ObervationsSM}

 10

Y5 = {ObervationsCSM}
Y6 = {ContentOfStoredData, Observations}
E7 = {SpyOperations}
Y8 = {OperationsOnStoredData}

Informal Description:
The malicious environment is represented by the domains Malicious subject, Spy machine,

and Malicious subject display. The domain Stored data represents the data to be protected against
the malicious environment. The Malicious subject domain uses the interface MS!E7 (between
Malicious subject and Spy machine) to spy (SpyOperations) on the Stored data domain. The
interface SM!Y4 (between Malicious subject and Spy machine) is used by the Malicious subject
domain to receive some observations (ObervationsSM), e.g., meta-information about Stored data
such as its length or type, from the Spy machine domain. The Spy machine domain is connected
directly to the Stored data domain via interfaces SD!Y4 and SM!E7 to represent that the
Malicious subject domain is not restricted to only access the Stored data domain through the
machine domain Confidential storage machine. For example, access to the Stored data domain
can also be possible via the operating system.

The Malicious subject domain can execute some operations (OperationsOnStoredData
MS

) on

the Stored data domain using the machine domain via interface MS!E3 (between Malicious
subject and Confidential storage machine). Similarly, the honest environment represented by the
domains Honest subject and Honest subject display can execute some operations
(OperationsOnStoredData

HS
) on the Stored data domain using the machine domain via interface

HS!E1 (between Honest subject and Confidential storage machine).
According to the commands from the (malicious or honest) environment, the machine

accesses the domain Stored data via interfaces CSM!E1 and CSM!E3. The content of Stored data
(ContentOfStoredData) is received by the machine domain using the interface SD!Y2.
Afterwards, the content of Stored data and some observations (Obervations) is shown to the
domain Honest subject using the Honest subject display domain (via interface CSM!Y6 between
Confidential storage machine and Honest subject display and via interface HSD!Y6 between
Honest subject display and Honest subject).

The domain Malicious subject can possibly make some observations (ObervationsCSM), e.g.,
meta-information about Stored data such as its length or type, using the Malicious subject display
(via interface CSM!Y5 between Confidential storage machine and Malicious subject display and
via interface MSD!Y5 between Malicious subject display and Malicious subject).

Security requirement template:

The security requirement template (SR) is described as follows: Preserve confidentiality of
Stored data for honest environment (consisting of Honest subject and Honest subject display) and
prevent disclosure to malicious environment (consisting of Malicious subject, Spy machine, and
Malicious subject display).
Effect:

HonestEnvironment : ℙ(HonestSubject × HonestSubjectDisplay)
MaliciousEnvironment : ℙ(MaliciousSubject × SpyMachine × MaliciousSubjectDisplay)

∀ cosd: ContentOfStoredData; he: HonestEnvironment; me: MaliciousEnvironment ∙
 conf(cosd, he, me)

 11

∀ sd: StoredData; he: HonestEnvironment; me: MaliciousEnvironment ∙
 conf(sd, he, me)
An honest environment consists of an honest subject and an honest subject display, whereas a

malicious environment consists of a malicious subject, a spy machine, and a malicious subject
display. The set of all honest environments HonestEnvironment is a set of pairs consisting of
elements of the domains Honest subject and Honest subject display, as indicated by the powerset
operator ℙ. Similarly, the set of all malicious environments MaliciousEnvironment is a set of
triples consisting of elements of the domains Malicious subject, Spy machine, and Malicious
subject display.

Informally speaking, the effect expresses that the confidentiality of the phenomenon
ContentOfStoredData (see interfaces SD!Y2 between Confidential storage machine and Stored
data, HSD!Y6 between Honest subject display and Honest subject, and CSM!Y6 between
Confidential storage machine and Honest subject display) and of the domain StoredData is
preserved for the HonestEnvironment and that disclosure by the MaliciousEnvironment is
prevented.

To formally express this effect, we specify two versions of a relation conf. One version of conf
deals with the confidentiality of a phenomenon, another version deals with the confidentiality of a
lexical domain. We define conf as a set of triples of a phenomenon (or a lexical domain), an
honest environment, and a malicious environment. Each triple describes that the confidentiality of
the phenomenon (or of the lexical domain) is preserved for the honest environment and that
disclosure by the malicious environment is prevented.

The universally quantified formulas that express the effect make use of the relation conf: the
first formula expresses that the confidentiality of each possible instance cosd of the phenomenon
ContentOfStoredData is preserved for each possible instance he of the HonestEnvironment and
that disclosure by each possible instance me of the MaliciousEnvironment is prevented. The
second formula expresses a similar condition for each possible instance sd of the lexical domain
StoredData.

Further SPFs exist, e.g., SPF distributing secrets that represents the problem to deliver secrets

such as a passwords and encryption keys to the correct recipients, SPF authentication that
represents the problem to authenticate users or systems, SPF integrity-preserving data
transmission that represents the problem to transmit data over an insecure channel in an integrity-
preserving way, and several others. Hatebur & Heisel & Schmidt (2008) present an overview of
the available SPFs.

4.2 Concretized Security Problem Frames

Solving a security problem is achieved by choosing generic security mechanisms (e.g.,
encryption to keep data confidential). The generic security mechanisms are represented by
concretized security problem frames (CSPF).

Each CSPF consists of a name, an intent, a frame diagram with a set of predefined interfaces,
an informal description, a concretized security requirement template, necessary conditions, and a
list of related SPFs. The necessary conditions must be met by the environment for the generic
security mechanism that the CSPF represents to be applicable. If the necessary conditions do not
hold, the effect described in the according SPF cannot be established. The necessary conditions
are expressed in Z notation. A concretized security requirements template refers to the effect

 12

described in the according SPF and the necessary conditions. More precisely, it is expressed as an
implication: if the necessary conditions hold, then the effect is established. The effects of the
SPFs and the necessary conditions of the CSPFs serve to represent dependencies between SPFs
and CSPFs explicitly. The list of related SPFs serves to exhibit security problems that often occur
when the security mechanism represented by the CSPF at hand is applied.

As an example, we present in detail the CSPF confidential data storage using password-based
encryption. This CSPF represents the generic security mechanism password-based encryption
according to the password-based cryptography standard PKCS #5 v2.0 (RSA Laboratories, 1999),
which can be used to solve problems that fit to the SPF confidential data storage problem class.
Another CSPF that solves such a security problem is the CSPF confidential data storage using
encryption key-based encryption.

Name:

CSPF confidential data storage using password-based encryption
Intent:

Conceal data (e.g., files, folders, metadata, etc.) stored on some storage device (e.g., hard
disks, memory cards, smartcard, etc.) using a password-based encryption mechanism.
Frame diagram:

The frame diagram of the CSPF confidential data storage using password-based encryption is
similar to the frame diagram of the SPF confidential data storage shown in Figure 2. For this
reason, we do not explicitly show it here. Instead, we briefly describe the differences between the
two frame diagrams: The domain Stored data is replaced by the domain Encrypted stored data.
Furthermore, the usage of a password-based encryption mechanism leads to modifications of the
interfaces (see informal description for details).
Predefined interfaces:

The interfaces of the CSPF confidential data storage using password-based encryption are
defined as follows:

E1 = {OperationsOnEncryptedStoredData
HS

, Password}

Y2 = {EncryptedContentOfStoredData}
E3 = {OperationsOnEncryptedStoredData

MS
, WrongPassword}

Y4 = {EncryptedContentOfStoredData, ObervationsSM}
Y5 = {ObervationsCSM}
Y6 = {ContentOfStoredData, Observations}
E7 = {SpyOperations}
Y8 = {OperationsOnEncryptedStoredData}

Informal Description:
Since the domain Stored data is replaced by the domain Encrypted stored data, the interface

SD!Y4 is replaced by the interface ESD!Y4. Compared to the SPF confidential data storage, the
phenomenon ContentOfStoredData of the interfaces SD!Y2 (between Confidential storage
machine and Encrypted stored data), ESD!Y4 (between Encrypted stored data and Spy machine),
and SM!Y4 (between Spy machine and Malicious subject) is replaced by the phenomenon
EncryptedContentOfStoredData. Accordingly, the phenomenon OperationsOnStoredData

HS
 of

the interfaces HS!E1 (between Honest subject and Confidential storage machine) and CSM!E1
(between Confidential storage machine and Honest subject) is replaced by the phenomenon
OperationsOnEncryptedStoredData

HS
. These interfaces additionally contain the phenomenon

 13

Password that represents a password used by the honest environment for encryption and
decryption. Furthermore, the phenomenon OperationsOnStoredData

MS
 of the interfaces MS!E3

(between Malicious subject domain and Confidential storage machine) and CSM!E3 (between
Confidential storage machine and Malicious subject) is replaced by the phenomenon
OperationsOnEncryptedStoredDataMS. These interfaces additionally contain the phenomenon

WrongPassword that represents a password used by the malicious environment for encryption
and decryption.

Finally, the phenomenon OperationsOnStoredData of the phenomena set Y8 (at the
requirement reference connected to Encrypted stored data) is replaced by the phenomenon
OperationsOnEncryptedStoredData.
Concretized security requirement template:

The concretized security requirement template (CSR) is described as follows: If Password is
unknown to malicious environment, then confidentiality of Stored data is preserved for honest
environment and disclosure to malicious environment is prevented.
Necessary conditions:

HonestEnvironment : ℙ(HonestSubject × HonestSubjectDisplay)
MaliciousEnvironment : ℙ(MaliciousSubject × SpyMachine × MaliciousSubjectDisplay)
RightPasswords : ℙ Password
WrongPasswords : ℙ Password

RightPasswords ∩ WrongPasswords = ∅
∀ pwd: Password; he: HonestEnvironment; me: MaliciousEnvironment ∙
 conf(pwd, he, me)
 ∀ pwd: Password; he: HonestEnvironment; me: MaliciousEnvironment ∙
 int(pwd, he, me)

Passwords used by the honest environment must be different from the ones used by the

malicious environment. Otherwise, a password-based encryption mechanism is not applicable. In
practice, this necessary condition has to be assumed. That is, we have to assume that the
malicious environment does not guess the right password. It cannot be fulfilled by a security
mechanism. This necessary condition is formally expressed based on a set RightPasswords that
represents the valid passwords chosen by the honest environment, and a set WrongPasswords that
represents the invalid passwords chosen by the malicious environment. Thus, we formally express
the necessary conditions by stating that these two sets are disjoint.

 Furthermore, passwords used by the honest environment must not be known by the malicious
environment. This necessary condition is formally described by the first universally quantified
formula which expresses that the confidentiality of each possible instance pwd of the
phenomenon Password is preserved for each possible instance he of the HonestEnvironment and
that disclosure by each possible instance me of the MaliciousEnvironment is prevented.

Moreover, passwords used by the honest environment must be transmitted to the machine
domain in an integrity-preserving way. To formally express this necessary condition, we specify a
relation int as a set of triples of a phenomenon (or a lexical domain), an honest environment, and
a malicious environment. Each triple describes that the integrity of the phenomenon (or of the
lexical domain) is preserved for the honest environment and that modification by the malicious
environment is prevented. Consequently, the second universally quantified formula expresses the

 14

mentioned necessary condition using the relation int: the integrity of each possible instance pwd
of the phenomenon Password is preserved for each possible instance he of the
HonestEnvironment and that modification by each possible instance me of the
MaliciousEnvironment is prevented.

Related SPFs:

• SPF integrity-preserving data storage

Further CSPFs exist, e.g., CSPF distributing secrets using negotiation that represents the

generic security mechanism to deliver secrets using a negotiation mechanism, CSPF
authentication using passwords that represents the generic security mechanism to authenticate
users by passwords, CSPF integrity-preserving data transmission using symmetric mechanism
that represents the generic security mechanism to transmit data over an insecure channel in an
integrity-preserving way using a symmetric mechanism, and serveral others. Hatebur & Heisel &
Schmidt (2008) present an overview of the available CSPFs.

4.3 Pattern System

We developed a catalog of SPFs and CSPFs. Both kinds of frames are arranged in a pattern
system (Hatebur & Heisel & Schmidt, 2007), which indicates dependent, conflicting, and related
frames. The pattern system is represented as a table and is partly shown in Table 1. The complete
pattern system can be found in (Hatebur & Heisel & Schmidt, 2008).
The pattern system is constructed by analyzing the necessary conditions of the different CSPFs
and the effects of the different SPFs. We check the necessary conditions of a CSPF and
syntactically match them with the effects of all SPFs. For example, the necessary conditions of
the CSPF confidential data storage using password-based encryption and the CSPF confidential
data storage using encryption key-based encryption require integrity-preserving and confidential
paths for the passwords and the encryption keys, respectively. The effect of the SPF integrity-
preserving data transmission provides an integrity-preserving path and the effect of the SPF
confidential data transmission provides a confidential path. For this reason, the mentioned CSPFs
depend on the SPF integrity-preserving data transmission and the SPF confidential data
transmission. Consequently, the rows that belong to these CSPFs in Table 1 are marked at the
positions of the columns that belong to the SPF integrity-preserving data transmission and the
SPF confidential data transmission with the letter “D”. Furthermore, the necessary conditions of
the CSPF confidential data storage using encryption key-based encryption require that encryption
keys must be distributed and that these encryption keys are confidentially stored. Thus, this CSPF
depends on the SPF confidential data storage and on the SPF distributing secrets. The row that
belongs to this CSPF in Table 1 is marked at the positions of the columns that belong to the SPF
confidential data storage and SPF distributing secrets with the letter “D”.
The fact that a CSPF concretizes an SPF is represented in Table 1 by the letter “C”. For example,
in the row of the CSPF confidential data storage using password-based encryption is a letter “C”
at the position of the column of the SPF confidential data storage.

 15

… SP
F

co
nf

id
en

tia
l d

at
a

st
or

ag
e

SP
F

co
nf

id
en

tia
l d

at
a

tra
ns

m
is

si
on

SP
F

in
te

gr
ity

-p
re

se
rv

in
g

da
ta

 st
or

ag
e

SP
F

in
te

gr
ity

-p
re

se
rv

in
g

da
ta

 tr
an

sm
is

si
on

SP
F

D
is

tri
bu

tin
g

Se
cr

et
s

…

…

CSPF confidential data storage
using password-based encryption

 C D R D

CSPF confidential data storage
using encryption key-based encryption

 C, D D R D D

…

Table 1: (C)SPF Pattern System

Furthermore, the “Related” sections of the CSPFs are represented in Table 1 by the letter “R”.
The rows of the CSPFs confidential data storage using password-based encryption and using
encryption-key based encryption are marked with the letter “R” at the positions of the column of
the SPF integrity-preserving data storage. The “Related” sections are helpful, since they indicate
at an early stage of software development possible security problems that commonly occur in
combination with the generic solution mechanism at hand and the security problem it solves.
Additionally, possible interactions between generic security mechanisms represented as CSPFs
and security requirements represented as SPFs are indicated by the pattern system. We do not
discuss this part of the pattern system here. Hatebur & Heisel & Schmidt (2008) describe this part
of the pattern system in detail based on a case study of a software to handle legal cases.

The (C)SPFs we developed form a self-contained pattern system: for any necessary condition
of a CSPF covered by the pattern system, there exists at least one SPF contained in the pattern
system that provides a matching effect. Therefore, the (C)SPFs contained in the pattern system
can be used to completely analyze a given security problem, whose initial security requirement is
covered by one of the frames.

The explicit knowledge of the dependencies between the security SPFs and their concretized
counterparts increases the value of our approach. The guidance provided by the dependency
relations of the pattern system helps to structure the security requirements engineering process, to
avoid confusion, and to analyze security problems and their solution approaches in depth. Hence,
the security requirements engineering process will result in a consolidated set of security
requirements and solution approaches, which is complete with respect to the initial set of security
requirements. Compared to the initial set of security requirements, the final set of security
requirements additionally contains dependent and related security requirements that may not have
been known initially.

 16

4.4 Security Requirements Analysis Method
Figure 3 shows an overview of SEPP's security requirements analysis lifecycle. The arrows

are annotated with inputs or with conditions (in square brackets). The latter must be true to
proceed with the step the arrow under consideration is pointing at. The arrow pointing at the
“End” state is annotated with SEPP's overall output of the first phase. Each of the steps is
described according to the following template:
• Input: artifacts necessary to accomplish the step
• Output: artifacts that are created or modified during the execution of the step
• Validation conditions: necessary semantic conditions that an output artifact must fulfill in

order to serve its purpose properly (Heisel, 1998)

Before we explain SEPP step-by-step, we note that some activities to be executed for a

comprehensive security requirements analysis are not explicitly mentioned in the descriptions of
SEPP's security requirements analysis steps. These activities concern the maintenance of the
following development artifacts:
• attacker model describes assumptions about potential attackers. For example, the Common

Evaluation Methodology (CEM) (International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC), 2006) defines the attack potential of a
potential attacker as a function of time, expertise, knowledge, and equipment. It also
identifies two numeric values for each of these factors. The first value is for identifying and
the second one is for exploiting a vulnerability. By assuming values for the input variables of
the function, we can calculate the attack potential.

• results from threat analysis represent potential threats. For example, attack trees by
Schneier (1999) can be applied.

• results from risk analysis represent the risk of an attack and the resulting loss. For example,
a risk analysis method such as CORAS by Braber & Hogganvik & Stølen & Vraalsen (2007)
can be applied.

• glossary contains all used names, type information (if applicable), and references to artifacts
that contain the names.

These artifacts are initially constructed in SEPP's first step. After every refinement step, i.e.,

the steps from requirements analysis and specification to architectural and fine-grained design
and finally implementation, new threats can arise. For example, the decision for a particular
security mechanism, the definition of a certain length for cryptographic keys, and the usage of a
specific security component of a component framework enlarge the attack surface of the system
to be developed. Hence, the attacker model as well as the results from threat and risk analysis
must be kept up-to-date in all phases of the software development life-cycle. Note that SEPP
covers the early phases of software development, i.e., requirements analysis, specification, and
design. Consequently, it does not cover the analysis of security problems arisen during fine-
grained design and implementation. Nevertheless, the threats identified in the late phases of
software development can result in new security requirements to which SEPP can be applied.

Moreover, in each step results from functional requirements analysis may be used to support
the construction of the security-relevant artifacts. For example, a context diagram that emerged
from functional requirements analysis can be used as a starting point for the construction of a
context diagram that contains security-relevant entities and relations.

 17

SEPP starts given a textually described software development problem with an initial set of
security requirements SR. For example, the initial security requirements can be obtained by using
the methods proposed by Gürses & Jahnke & Obry & Onabajo & Santen & Price (2005) and by
Fernandez & la Red M. & Forneron & Uribe & Rodriguez G. (2007).

Figure 3: SEPP's Security Requirements Analysis Lifecycle

Step 1 - Describe Environment

All security-relevant entities contained in the environment and relations between them are
modeled. Given a context diagram that emerged from functional requirements analysis, it is
extended by security-relevant entities and relations. The result is a context diagram CDsec. An
example is shown in Figure 4. The hatched area named “Malicious environment” represents the
extension by security-relevant entities and relations.

Domain knowledge, i.e., facts and assumptions, about the environment in which the software
development problem is located is collected and documented. Especially, domain knowledge
about the malicious environment is considered. An example for domain knowledge about a
malicious environment is the assumed strength of a potential attacker. The result is a set of
security-relevant domain knowledge Dsec that consists of a set of security-relevant facts Fsec and a
set of security-relevant assumptions Asec. Collecting the domain knowledge Dsec involves the
construction of an attacker model, a threat model, and the application of a risk analysis method.

 18

Input:

• textual description of software development problem
• set of initial security requirements SR

Output:
• context diagram CDsec including security-relevant domains and phenomena
• security-relevant domain knowledge Dsec ≡ Fsec ∧ Asec
• attacker model
• results from threat analysis
• results from risk analysis

Validation Conditions:
• domains and phenomena of context diagram CDsec must be consistent with SR

and Dsec
• context diagram CDsec must contain malicious environment

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

AD!Y4

B C

A!E1

STE!E1
TF!Y2

B

X

D D
display

Malicious user
display

STE!Y3

Secure
text

editor

Malicious user Text file

STE!Y4

TF!Y3

OS!E5

MU!E1

Malicious environment

MUD!Y3

Operating system

Author

Author

MU!E5

OS!Y3

Figure 4: Context Diagram "Secure Text Editor"

Step 2 - Select and Instantiate SPF

This step must be executed for each security requirement sr ∈ SR. To determine an SPF that is
appropriate for the given environment and the security requirement sr ∈ SR, the latter is
compared with the informal descriptions of the security requirement templates of the SPFs
contained in our pattern system. The result is a set of SPFs candidates from which the SPF to be
instantiated is selected by considering the security-relevant environment represented by CDsec and
the security-relevant domain knowledge Dsec.

More precisely, the context diagram CDsec represents the environment of a complex problem,
which is decomposed into subproblems that fit to SPFs using decomposition operators such as
“leave out domain” or “combine several domains into one domain”. Thus, an SPF candidate that
fits to the decomposed environment of the corresponding subproblem is selected.

 19

Afterwards, the SPF is instantiated by assigning concrete values to the domains, phenomena,
interfaces, effect, and the security requirement template. The instantiation of an SPF may result in
additional security-relevant domain knowledge, which is added to the set of security-relevant
domain knowledge Dsec. For example, if in the course of the problem decomposition a domain is
split into several domains, domain knowledge about these new domains is collected and
documented.

After this step is executed for each security requirement sr ∈ SR, the result of this step is a set
of security problems SPFinst represented as instantiated SPFs. Furthermore, the set of security-
relevant domain knowledge Dsec may be updated.

Input:

• all results of step 1
Output:

• set of SPF instance SPFinst

• security-relevant domain knowledge added to Dsec
Validation Conditions:

• each security requirement sr ∈ SR is covered by some SPF instance spfinst ∈ SPFinst

• each SPF instance spfinst ∈ SPFinst can be derived from the context diagram CDsec by
means of certain decomposition operators

Step 3 - Select and Instantiate CSPF

This step must be executed for each SPF instance spfinst ∈ SPFinst. To solve a security problem
characterized by an instance of an SPF, a generic security mechanism based on the CSPFs linked
to the applied SPF is chosen. The pattern system indicates the CSPFs linked to an SPF by
positions marked with “C” in the SPF’s column. From the different generic security mechanisms
that are represented by CSPFs, an appropriate CSPF is selected. To decide if a CSPF is
appropriate, the security-relevant environment represented by CDsec and the security-relevant
domain knowledge Dsec is considered. For example, if users should select secrets for an
encryption mechanism, a password-based encryption mechanism should take precedence over an
encryption-key based mechanism. Furthermore, the selection can be accomplished according to
other quality requirements such as usability or performance requirements or according to the
presumed development costs of the realizations of the generic security mechanisms represented
by the different CSPFs.

After a CSPF is selected, it is instantiated by assigning concrete values to the domains,
phenomena, interfaces, necessary conditions, and the concretized security requirement template.
Normally, domains and phenomena contained in the SPF instance are re-used for the instantiation
of the corresponding CSPF. The instantiation of a CSPF may result in additional security-relevant
domain knowledge, which must be added to the set of security-relevant domain knowledge Dsec,
e.g., domain knowledge about passwords or encryption keys.

After this step is executed for each SPF instance spfinst ∈ SPFinst, the result is a set of CSPF
instances CSPFinst and a corresponding set of concretized security requirements CSR.
Furthermore, the security-relevant domain knowledge Dsec may be updated.

Input:

• all results of step 2
Output:

 20

• set of CSPF instances CSPFinst

• set of concretized security requirements CSR
• security-relevant domain knowledge added to Dsec

Validation Conditions:
• for each security requirement sr ∈ SR there exist a concretized security

requirement csr ∈ CSR, and vice versa
• each concretized security requirement csr ∈ CSR is covered by some CSPF

instance cspfinst ∈ CSPFinst
• domains and phenomena of each CSPF instance cspfinst ∈ CSPFinst are re-used from

the corresponding SPF instance

Step 4 - Check for Related SPFs

This step must be executed for each CSPF instance cspfinst ∈ CSPFinst. SPFs that are
commonly used in combination with the described CSPF are indicated in the pattern system by
positions marked with “R” in the CSPF’s row. This information helps to find missing security
requirements right at the beginning of the security requirements engineering process.

After this step is executed for each CSPF instance cspfinst ∈ CSPFinst, the result of this step is a
set of related security requirements and a corresponding set of SPFs. The related security
requirements are added to the set of security requirements SR and the SPFs are instantiated by
returning to step 2.

Input:

• all results of step 3
Output:

• related security requirements added to the set of security requirements SR
• set of SPFs that correspond to the related security requirements

Validation Conditions:
• the new security requirements are relevant for the given software development

problem

Step 5 - Analyze Dependencies

This step must be executed for each CSPF instance cspfinst ∈ CSPFinst. The necessary
conditions of a CSPF instance are inspected to discover dependent security problems. Two
alternatives are possible to guarantee that these necessary conditions hold: either, they can be
assumed to hold, or they have to be established by instantiating a further SPF, whose effect
matches the necessary conditions to be established. Such an SPF can easily be determined using
the pattern system: the corresponding positions in the row of the instantiated CSPF are marked
with “D”.

Only in the case that the necessary conditions cannot be assumed to hold, one must instantiate
further appropriate SPFs. Then, steps 2 - 4 must be applied to the dependent SPFs.

The security-relevant domain knowledge Dsec helps to decide whether the necessary conditions
can be assumed to hold or not. For example, assumptions on the strength of passwords chosen by
honest users lead to the assumption that malicious users cannot guess the honest user passwords.
In contrast, if encryption keys must be delivered to the correct recipients over an insecure

 21

network, additional security mechanisms to authenticate the recipients and to transmit the
encryption keys in a confidential and integrity-preserving way must be taken into consideration.

This step is executed for each CSPF instance cspfinst ∈ CSPFinst until all necessary conditions
of all CSPF instances can be proved or assumed to hold. The result of this step is a set of
dependent security requirements and a corresponding set of SPFs.

Input:

• all results of step 4
Output:

• dependent security requirements added to the set of security requirements SR
• set of SPFs that correspond to the dependent security requirements

Validation Conditions:
• each necessary condition of each cspfinst ∈ CSPFinst is either assumed to hold or

treated by some SPF
• if a necessary condition is assumed, a justification is stated

Step 6 - Analyze Possible Conflicts

This step must be executed for each CSPF instance cspfinst ∈ CSPFinst. The pattern system
indicates possible conflicts between the SPF instances and the CSPF instances by rows marked
with “I” (for “interaction”). If a possible conflict is discovered, it must be decided if the conflict
is relevant for the application domain using Dsec. In the case that it is relevant, the conflict must
be resolved by modifying or prioritizing the requirements. An example of relaxing security
requirements for the benefit of usability requirements can be found in Schmidt & Wentzlaff
(2006). This step can result in modified sets of security requirements and concretized security
requirements. In such a case, all previous steps must be re-applied to the modified security
requirements.

This step is executed for each CSPF instance cspfinst ∈ CSPFinst until all possible conflicts are
analyzed and all relevant conflicts are resolved. Finally, we obtain a set of CSPF instances
CSPFinst that can solve the security problems represented by the SPF instances as well as
modified sets of security requirements SR and concretized security requirements CSR with all
conflicts resolved.

Input:

• all results of step 5
Output:

• consolidated set of security requirements SR
• consolidated set of concretized security requirements CSR
• security-relevant domain knowledge added to Dsec

Validation Conditions:

• the set of security requirements SR contains no more conflicts and is complete with
respect to the initial set of security requirements

• the set of concretized security requirements CSR contains no more conflicts and is
complete with respect to the initial set of security requirements

 22

All in all, the security requirements analysis method results in a consolidated set of security
problems and solution approaches that additionally cover all dependent and related security
problems and corresponding solution approaches, some of which may not have been known
initially.

4.5 Case Study: Secure Text Editor
We now apply the techniques introduced in the previous sections to the following software

development problem:
A graphical secure text editor should be developed. The text editor should enable a user
to create, edit, open, and save text files. The text files should be stored confidentially.

The informal security requirement (SR) can be described as follows:

Preserve confidentiality of Text file except for its file length for honest environment and
prevent disclosure to malicious environment.

Note: We decide to focus on confidentially storing text files. The given software development
problem can also be interpreted such that the security requirement also covers confidential editing
operations, e.g., confidential clipboard copies. For reasons of simplification, this is not covered in
the security requirements analysis. For the same reason, the create and edit functionality of the
secure text editor is not covered in our case study. Practically, it is very difficult to develop 100%
confidential systems. Hence, as an example, we discuss a SR that allows the secure text editor to
leak the file length.

AD!Y4

B C

A!E1

STE!E1
TF!Y2

E1

Y4

MU!E1

TF!Y3

B

X

D D
display

Malicious user
display

STE!Y3

MUD!Y3
Secure

text
editor

SR

Malicious user

E5, Y3

Y6

STE!Y4

OS!E5

E1, Y3

Y3Author

Author

Text fileOperating systemOS!Y3
MU!E5

Figure 5: Instantiated SPF Confidential Data Storage "Secure Text Editor"

According to the first step of our security requirements analysis method, the context diagram

of this software development problem shown in Figure 4 is developed. Note: we do not show the
interfaces of the context diagram explicitly, since they are similar to the interfaces of the

 23

instantiated SPF confidential data storage shown in Figure 5. Furthermore, the attacker model and
the results of the threat and risk analysis are not shown explicitly. For example, the attacker
model comprises assumptions on the strength and the abilities of potential attackers and an
analyzed threat covers the usage of the domain Operating system to access the domain Text file.

In the second step, we instantiate the SPF confidential data storage as shown in Figure 5 to
capture the SR. The interfaces of the SPF confidential data storage are instantiated as follows:

E1 = {Save, Open}
Y2 = {TextFile}
Y3 = {LengthOfTextFile}
Y4 = {TextFile, LengthOfTextFile}
E5 = {Spy}
Y6 = {Saving, Opening}

According to the commands from the (malicious and honest) environment, the machine

accesses the domain Text file, and opens a file or saves one. An opened file is shown to the
domain Author using the Author display domain. We assume that the domain Malicious user can
at most observe the length of the opened file via the domains Malicious user display and
Operating system.

AD!Y6

B C

E1

Y6

MU!E3

B

X

D D
display

Malicious user
display

STE!Y5

MUD!Y5
Secure

text
editor

CSR

Malicious user

E8, Y5

OS!E8

TF!Y2
STE!E3

STE!E1

Y5

E3, E7, Y4, Y5

Y2, Y9
Encrypted
text file

TF!Y4

STE!Y6

A!E1
Author

Author

Operating system
MU!E7

OS!Y5

Figure 6: Instantiated CSPF Confidential Data Storage Using Password-Based Encryption
"Secure Text Editor"

In the third step, we decide to use a password-based encryption mechanism to conceal text
files. For such an encryption mechanism, passwords are necessary. The passwords should be
generated and memorized by the users. Since the users must memorize the passwords, a
symmetric encryption mechanism is to be preferred over an asymmetric one. This is a trade-off
between the usability and the security of the password-based encryption mechanism: asymmetric
encryption keys must be much larger compared to symmetric keys to achieve a similar level of

 24

encryption strength. Because of the encryption key lengths, it is more difficult for users to
memorize asymmetric keys than symmetric ones.

Using passwords for encryption leads to the assumptions that the users do not reveal their
passwords and that they choose passwords that guarantee a certain level of security.

Note that the latter assumption can be transformed into a requirement: the users should not be
able choose trivial passwords. Such a requirement can be realized by password checking
mechanisms to prevent users from choosing trivial passwords, e.g., words from dictionaries,
proper names, and so on.

According to the pattern system, we decide to select the CSPF confidential data storage using
password-based encryption. The structure of the CSPF instance shown in Figure 6 is similar to
the instantiated SPF confidential data storage shown in Figure 5 with the difference that the
domain Text file is replaced by the domain Encrypted text file. The differences between the SPF
instance and the CSPF instance are located in the interfaces. The interfaces of the CSPF instance
are instantiated as follows:

E1 = {Save, Open, Password}
Y2 = {EncryptedContentOfTextFile}
E3 = {Save, Open, WrongPassword}
Y4 = {EncryptedContentOfTextFile, LengthOfTextFile}
Y5 = {WrongContentOfTextFile, LengthOfTextFile}
Y6 = {TextFile, LengthOfTextFile}
E7 = {Spy, WrongPassword}
E8 = {Spy}
Y9 = {Saving, Opening}

Since the text files are encrypted by the encryption mechanism, the interfaces TF!Y2 (between

Confidential storage machine and Text file) and TF!Y4 (between Text file and Operating system)
contain the phenomenon EncryptedContentOfTextFile. The authors can enter passwords for
encrypting and decrypting text files. Therefore, the interfaces A!E1 (between Author and
Confidential storage machine) and STE!E1 (between Confidential storage machine and Text file)
contain the phenomenon Password. The malicious users can also enter passwords under the
assumption that they cannot guess passwords of authors. Therefore, the interfaces MU!E3
(between Malicious user and Confidential storage machine), STE!E3 (between Confidential
storage machine and the Text file), and MU!E7 (between Malicious user and Operating system)
contain the phenomenon WrongPassword. The concretized security requirement (CSR) derived
from the SR is phrased as follows:

If Password is unknown to malicious environment, then confidentiality of Text file except for
its file length for honest environment is preserved and disclosure to malicious environment is
prevented.

In step four, the pattern system is inspected to check for related security problems. According

to the pattern system, the SPF integrity-preserving data storage is related to the CSPF confidential
data storage using password-based encryption. This SPF is indeed relevant in the given
application context: the integrity of text files stored by authors should be preserved and
modification by malicious environment should be prevented. However, for reasons of
simplification, this related SPF is not considered here.

 25

In step five, the instantiated necessary conditions (not shown, since they are similar to the
necessary conditions of the CSPF except for the types) of the instantiated CSPF are inspected.
The first necessary condition is assumed to hold, because we assume that a malicious user cannot
guess passwords of an author. The second necessary condition is assumed to hold, because we
assume that an author does not reveal passwords to a malicious user. The third necessary
condition is assumed to hold, because we assume that there is no malicious user able to intercept
and modify passwords of an author.

In step six, our security requirements engineering method proceeds with an analysis of
potential conflicts between security requirements. Since only one SPF (and one CSPF) is
instantiated, it is not necessary to analyze any potential conflicts between security requirements.

No further SPFs must be instantiated, because each necessary condition is covered by an

assumption.

5. DEVELOPMENT OF A SECURITY SPECIFICATION

According to Jackson (2001), a specification is “an optative description: it describes the
machine's behaviour at its interfaces with the problem domains” (p. 55). In contrast to the
requirements, a machine specification gives an answer to the question: “How should the machine
act, so that the system, i.e. the machine together with the environment, fulfills the requirements?”
Specifications are descriptions that are sufficient for building the machine. They are
implementable requirements.

SEPP supports two methods of constructing a security specification:

• Construction of a semi-formal security specification based on generic security protocols
(Hatebur & Heisel & Schmidt, 2006), which are expressed using UML sequence diagrams
(UML Revision Task Force, Object Management Group (OMG), 2007).

• Construction of a formal security specification according to Schmidt (2009) expressed in CSP
(Communicating Sequential Processes) (Hoare, 1986).

In the following, we discuss the second method of constructing a security specification in

detail. The software development principle of stepwise refinement is popular in software
engineering, and is also well supported by formal methods. When performing stepwise
refinement, software is developed by creating intermediate levels of abstraction. Starting with the
requirements, an abstract specification is constructed, which is refined by a more concrete
implementation. Then, the implementation must be verified against the specification, and further
refinement steps are accomplished until the desired level of abstraction is reached.

We consider the step from the instantiation of an SPF to the instantiation of a corresponding
CSPF a refinement step that not only preserves functional correctness but also the security
requirement. To prove this refinement, we apply formal techniques to the (C)SPF approach.
Refinement is traditionally either data-refinement or behavior-refinement. Since the (C)SPFs deal
with interfaces and communicating domains rather than with states, we decided to describe them
using CSP.

CSP is a process algebra that can be used to describe parallel processes that communicate
synchronously via message passing. Furthermore, with the model-checker FDR2 (Failure-
Divergence Refinement) from Formal Systems (Europe) Limited, sophisticated tool support is
available for CSP.

 26

Applying CSP and stepwise refinement to the (C)SPF approach has several benefits:

• CSP models of the (C)SPF instances enable a developer to formally express security
requirements captured by (C)SPF instances.

• The CSP models provide a point of contact to the formal probabilistic (and possibilistic)
security requirement descriptions by Santen (2008).

• Since problem frames and (C)SPFs as such only provide a static view of a system, we obtain
an understanding of the dynamic aspects of (C)SPF instances.

• The CSP models allow a developer to verify that the functional and the security requirements
of an SPF are correctly implemented by an associated CSPF, i.e., that the functionality and
the security requirement are preserved.

• Verification is tool-supported by the model-checker FDR2.

5.1 Introduction to CSPM

We make use of the CSP ASCII notation named CSPM since this is a prerequisite for formal
verification using the model-checker FDR2. Using CSPM notation, we define processes that
interact only by communicating. Communication takes the form of visible events or actions. A
sequence of events produced by a process is called a trace. The set of all traces that can be
produced by a process P are denoted traces(P). Let a be an action and P be a process; then a -> P
is the process that performs a and behaves like P afterwards. This is called prefixing. A process
can have a name, e.g., Q = a -> P. Recursion makes it possible to repeat processes and to
construct processes that go on indefinitely, e.g., Q = a -> Q.

We can make use of input and output data: the expression in?x binds the identifier x to
whatever value is chosen by the environment, where x ranges over the type of the channel in.
The expression out!y binds an output value to the identifier y, where y ranges over the type of
channel out. The variables x and y can then be used in the process following the prefix. By
convention, ? denotes input data and ! denotes output data.

A process acts in a nondeterministic way when its behavior is unpredictable because it is
allowed to make internal decisions that affect its behavior as observed from outside. The
replicated internal choice operator |~| models these internal decisions: let P be a process and X a
finite and non-empty data type, then |~| a : X ∙ P(a) behaves according to the selected a. This
operator gives the environment no control over which data item is chosen. In contrast, the
replicated external choice operator [] models external decisions: [] a : X ∙ P(a) behaves
according to the a selected by the environment.

5.2 Security Specification Method

The security specification method consists of three steps, which are discussed in detail in the
following.
Step 1 - Construct Formal CSP Models

This step must be executed for each SPF and CSPF instance. To formalize a given (C)SPF
instance, we describe each of its domains as a recursive CSP process. The interfaces and the
control direction of the shared phenomena (control flow) of a domain are translated into CSP
channels as well as input and output events. For lexical shared phenomena, we define data types
and declare the corresponding channels to be of one of these data types.

 27

Note that when using a model-checker such as FDR2 to analyze real-world problems, we have
to address the state explosion problem. A common approach to keep the model-checking effort
manageable is to simplify the system to be analyzed. For that reason, we usually must define
simplified data types.

We describe a (C)SPF instance as a CSP process consisting of the CSP processes of all of its
domains. The processes are combined using synchronized parallel communication denoted by
[| |]. The synchronization is accomplished over the channels modeling the interfaces that connect
the domains.

Finally, the CSP models are checked using the model-checker FDR2 to prove that they are
deadlock-free and livelock-free. The model-checker can also be used to debug CSP models.

After this step executed for each SPF and CSPF instance, the result is a set of CSP models that
formally specify the (C)SPF instances.

Input:
• all results of phase one

Output:
• set of CSP models of SPF instances CSPspf
• set of CSP models of CSPF instances CSPcspf

Validation Conditions:
• each domain is described by at least one CSP process
• each interface is described by exactly one channel
• each phenomenon is described by an event or an element of a data type
• for each (C)SPF instance, one CSP process expresses a (C)SPF instance by

combining all corresponding domains using synchronized parallel communication
over those channels that represent the interfaces of the (C)SPF

• all CSP processes are deadlock-free and livelock-free (to be checked using FDR2)

Step 2 - Formally Express Security Requirements

SEPP’s security requirements analysis phase currently covers integrity and confidentiality
requirements. Integrity requirements can be formally expressed as correctness properties, since
they require to preserve the correctness of data.

Confidentiality requirements can be expressed as information flow properties of two flavors:

• possibilistic: based on the fact that an ICT system has a system behavior, which produces
observations visible to the environment, there must exist at least one alternative possible
system behavior that produces the same observation.

• probabilistic: stochastic system behavior is taken into account.

This step must be executed for each SPF instance CSP model cspspf ∈ CSPspf. In the following,

we focus on confidentiality requirements in terms of possibilistic information flow properties. In
general, we call the formal description of a confidentiality requirement a confidentiality property.
To formally specify a confidentiality requirement, we apply the framework for the specification
of confidentiality requirements by Santen (2008). There does not exist the confidentiality
property that allows us to express every (informal) confidentiality requirement. Instead, an
adequate confidentiality property depends on the confidentiality requirement that it formalizes.
Mantel (2003) gives a comprehensive overview of possibilistic information flow properties.

 28

Furthermore, the framework by Santen (2008) discusses different confidentiality properties that
formalize different confidentiality requirements.

We apply the techniques presented by Santen (2008) to a CSP model that formally specifies an
SPF instance. First, a confidentiality property that fits the informal security requirements
description is chosen. Second, the confidentiality property is expressed based on the CSP model
of the SPF instance, and it is proven that the CSP models fulfills the confidentiality property.

Note: since confidentiality properties are predicates on sets of traces of a CSP model, they
cannot be modeled directly in CSP, and thus cannot be verified using FDR2. Nevertheless, we
can mathematically specify a confidentiality property and prove that a given machine and
environment (i.e., an SPF instance) satisfy the property.

After this step executed for each informal security requirement description, the result is a set
of formal security requirement descriptions.

Input:

• informal security requirement description sr
• CSP models of SPF instances cspspf ∈ CSPspf

Output:
• formal descriptions of security requirements SR

Validation Conditions:
• each formal description of a security requirement sr ∈ SR refers to traces that are

produced by the CSP model of the corresponding SPF instance

Step 3 – Show Security-Requirements Preserving Refinements

Refinement is the transformation of an abstract specification into a concrete specification
(implementation). CSP supports three types of process refinements:

• Trace refinement A process Q trace-refines a process P, if all the possible sequences

of communications, which Q can perform, are also possible in P: traces(Q) ⊆
traces(P)

• Failure refinement Trace refinement extended by consideration of deadlocks.
• Failure-divergence refinement Failure refinement extended by consideration of

livelocks.

This step must be executed for each formal security requirement description. First, it is proven

on a functional level that the CSPF instance failure-divergence refines the SPF instance. Since all
structural elements of the SPF are preserved in an associated CSPF, we can show a failure-
divergence refinement after we reduce the structural additions of the CSPF instance to the SPF
instance structure:

• We hide events that can only be communicated in the CSPF instance model using the
hiding operator \ of CSP

• We map those events that have a more concrete structure in the CSPF instance model
to events that are compatible with events of the SPF instance model. This mapping
constitutes a data refinement. The mapping is accomplished using the relational
renaming operator [[<-]] of CSP.

This refinement proof is tool-supported by the model-checker FDR2.

 29

Second, it is proven that the confidentiality requirement is preserved in the CSPF instance.
This proof depends not only on the CSP models of (C)SPF instances but also on the
confidentiality property. For this proof, tool support is not available. For example, to prove that
the confidentiality property concealed behavior (Santen, 2008) is satisfied by a given CSPF
instance, a set inclusion of sets of traces must be proven.

After this step is executed for each formal security requirement description, the result is a set
of functional and confidentiality-preserving refinement proofs.

Input:

• all results of steps 1 and 2
Output:

• refinement proofs of functional requirements (e.g., using FDR2)
• refinement proofs of confidentiality-preserving refinement

Validation Conditions:
• for each pair consisting of the CSP model of an SPF instance cspspf ∈ CSPspf and

the CSP model of the corresponding CSPF instance cspcspf ∈ CSPcspf, cspcspf ⊑FD
cspspf must hold (the concrete CSPF instance model failure-divergence refines the
abstract SPF instance model)

5.3 Case Study: Secure Text Editor

According to step one of the previously described method to construct security specifications,
we develop CSP models for the instantiated SPF confidential data storage and the instantiated
CSPF confidential data storage using password-based encryption of the secure text editor case
study. In the following, the suffix _S (for specification) of a process or channel name denotes that
it is part of the CSP model of the abstract SPF instance, whereas the suffix _I (for
implementation) denotes that it is part of the CSP model of the concrete CSPF instance.

Construction of the CSP Model of the Instantiated SPF Confidential Data Storage

The basic ingredients of a CSP model are type and function definitions as well as channel
declarations. We define a simple data type named Plaintext with four values p1, p2, p3, p4:

datatype Plaintext = p1 | p2 | p3 | p4

Then, we declare the channel TextFile_Y2_S that corresponds to the interface TF!Y2 in Figure

5 to be of this data type, i.e., all events communicated over this channel are p1, p2, p3, or p4.
Furthermore, we model a spy command by a data type SpyCommand with only one action spy
that represents an operating system command to open a text file:

datatype SpyCommand = spy

We declare the channels MaliciousUser_E5_S and OperatingSystem_E5_S to be of this type.

We model the user command open to securely open text files:

datatype UserCommand = open

 30

We declare the channels Author_E1_S, MaliciousUser_E1_S, and SecureTextEditor_E1_S to
be of this type.

We represent the interfaces MUD!Y3, OS!Y3, STE!Y3, and TF!Y3 (see Figure 5) by channels

of the datatype Length:

datatype Length = short | long

The data items leaked over this channel are defined by a leakage function f:

f(p) = if p==p1 or p==p2

 then short
 else long

As an example, the leaked data items are short and long, and they correspond to the lengths of

the plaintexts sent over the channel TextFile_Y2_S.
The interfaces AD!Y4 and STE!Y4 are represented by channels of the datatype

Plaintext.Length, i.e. the plaintext and its length concatenated to it.
We describe each domain as a recursive CSP process, e.g., the process HonestUser_S that

represents the Author domain:

Author_S = (|~| ucmd : UserCommand @ Author_E1_S!ucmd -> Author_S)
 [] (AuthorDisplay_Y4_S?pt -> Author_S)

This process arbitrarily chooses a user command ucmd and sends this command over the

channel Author_E1_S or it receives a plaintext pt over the channel AuthorDisplay_Y4_S.
Afterwards, the recursive call of Author_S ensures that the process is repeated.

We specify the instantiated SPF in Figure 5 as a process SecureTextEditor_
SPF_CONFIDENTIAL_DATA_STORAGE(pt) that combines all formalized domains of the
instantiated SPF confidential data storage. It has a parameter pt that is initialized by an arbitrary
chosen element of Plaintext. For example, the process

(Author_S [| {|AuthorDisplay_Y4_S|} |] AuthorDisplay_S)

combines the processes Author_S and AuthorDisplay_S. They synchronize over the channel
AuthorDisplay_Y4_S, or, informally speaking, the domain Author reads data from the domain
Author display.

Construction of the CSP Model of the Instantiated CSPF Confidential Data Storage Using
Password-Based Encryption

Instead of describing the instantiated CSP model of the CSPF confidential data storage using
password-based encryption completely, we present those parts that are responsible for the usage
of the password-based encryption mechanism.

We introduce data types Password and Ciphertext, and the functions encr and decr:

datatype Ciphertext = c1 | c2 | c3 | c4

 31

datatype Password = pwd1 | pwd2 | pwd3 | pwd4

encr(p1,pwd1) = c1 … decr(c1,pwd1) = p1 …
encr(p1,pwd2) = c2 … decr(c1,pwd2) = p2 …
encr(p1,pwd3) = c1 … decr(c1,pwd3) = p1 …
encr(p1,pwd4) = c2 … decr(c1,pwd4) = p2 …

Note: the definitions of the encr and decr functions are not complete. The functions encr and

decr model a length-preserving cryptographic mechanism.
The implementation of the previously presented process Author_S makes use of the declared

passwords:

Author_I(password) = (|~| ucmd : UserCommand @
 Author_E1_I!ucmd.password -> Author_I(password))
 [] (AuthorDisplay_Y6_I?pt -> Author_I(password))

The process Author_I(password) is parameterized by the password selected by the author.

This password is passed together with the user command ucmd over the channel Author_E1_I to
the SecureTextEditor_I process. The type of the channel Author_E1_I is
UserCommand.Password.

The process OperatingSystem_I makes use of the declared ciphertexts and decryption

function:

OperatingSystem_I = (MaliciousUser_E7_I?scmd.pwd -> OperatingSystem_E8_S!scmd
 -> OperatingSystem_I_mempwd(pwd))

OperatingSystem_I_mempwd(password) = OperatingSystem_I
 [] (TextFile_Y4_I?ct
 -> OperatingSystem_Y5_I!decr(ct,password).
 f(decr(ct,password))
 -> OperatingSystem_I)

The process OperatingSystem_I receives a spy command scmd and a password pwd over the

channel MaliciousUser_E7_I. The spy command scmd is passed over to the process TextFile_I
representing the Text file domain via the channel OperatingSystem_E8_S. Then, the process
OperatingSystem_I behaves as defined by the process OperatingSystem_I_mempwd(password).

This process either behaves as defined by the process OperatingSystem_I or it behaves as
follows: it receives a ciphertext ct over the channel TextFile_Y4_I. The operating system applies
the decryption function to the ciphertext using decr(ct,password) to obtain the (wrong) plaintext.
Furthermore, it calculates the length of this plaintext using f(decr(ct,password)). The plaintext
and the result of the length calculation are concatenated and sent over the channel
OperatingSystem_Y5_I to the MaliciousSubject_I process, which represents the Malicious subject
domain.

 32

The role of the channel between the malicious user and the operating system has changed: the
channel OperatingSystem_Y5_I not only leaks the lengths of the transferred data items to the
environment, but also the (wrong) plaintext obtained by applying the decr function to the
ciphertext ct using the password pwd. Under the assumption that the password pwd selected by
the malicious user is unequal to the password selected previously by the author to encrypt the
plaintext yielding the ciphertext ct, the malicious user will only be able to decrypt the ciphertext
ct to a wrong plaintext.

In summary, we constructed CSP models of the instances of the SPF confidential data storage
and the corresponding CSPF confidential data storage using password-based encryption. Using
FDR2, we successfully verified that the presented CSP models are deadlock-free and livelock-
free.

Formally Expressing the Confidentiality Requirement

Following step two of phase two, we formally express the confidentiality requirement
according to Schmidt (2009). The concept of indistinguishable traces presented by Santen (2008)
is the foundation for defining confidentiality properties. Given a set of channels W, two traces s, t
∈ traces(P) of a process P are indistinguishable by W (denoted s ≡W t) if their projections to W
are equal: s ≡W t ⇔ s ↾ W = t ↾ W, where s ↾ W is the projection of the trace s to the sequence of
events on W. The indistinguishability class)(, oJ kP

W contains the traces of P with a length of at
most k that produce the observation o on W.

Applied to the previously presented CSP models, this means that any distinction (e.g., data
item length is short or long) the malicious subject can make about the internal communication of
the system (e.g., appearance of different plaintexts and ciphertexts) based on the observations on,
e.g., OperatingSystem_Y3_S and OperatingSystem _Y4_I is information revealed by the system.
Conversely, any communication that cannot be distinguished by observing, e.g. OperatingSystem
_Y3_S and OperatingSystem _Y4_I is concealed by the system. We can determine two
indistinguishability classes: one that contains those traces that produce the observation short on
the monitoring channel, and another one that contains those traces that produce the observation
long on the monitoring channel.

An adversary model according to Santen (2008) is a system model that consists of the
machine to be developed, the honest environment, the malicious environment, and their
interfaces. The previously presented CSP models constitute valid adversary models.

A mask м for an adversary model is a set of subsets of the traces over the alphabets (i.e., the
events supported by a process) of the processes modeling the machine to be developed, the honest
user environment, and the malicious environment such that the members of each set are
indistinguishable by observing the monitoring channels (i.e., the channels that leak the wrong
plaintexts and the lengths) of the adversary environment W: ∀ M : м ∙ ∀ t1, t2 : M ∙ t1 ≡W t2

All traces of the form

t0(pt) =

< TextFile_Y3_S.f(pt), OperatingSystem_Y3_S.short> if pt ∈ {p1, p2},
< TextFile_Y3_S.f(pt), OperatingSystem_Y3_S.long> else,

where pt ∈ Plaintext, produce the observation short or long on OperatingSystem _Y3_S for

Malicious user. According to the informal confidentiality requirement as it has been stated in

 33

SEPP’s phase one, this observation should not allow Malicious user to infer the transferred
plaintext.
A mask м0 supporting the confidentiality requirement needs to require that for a given length l all
variations of plaintexts pt in the parameter list of the trace t0 are possible causes of the observation
OperatingSystem _Y3_S.l.

Therefore, the sets M0 = {t0(p1), t0(p2)} and M1 = {t0(p3), t0(p4)} should be members of м0.
If the traces in a set M ∈ м are indistinguishable by observing the monitoring channels, then the
differences between these traces are kept confidential. This confidentiality property is named
concealed behavior (Santen, 2008). It is formalized based on a set inclusion M ⊆)(, oJ kQE

W ,
where the process QE is a variant, i.e., a purely deterministic process, of the adversary model. It
is required that members of м are either completely contained in an indistinguishability class, or
not at all. One says that the set of indistinguishability classes І covers м.

In general, a given adversary model satisfies a confidentiality property, which is defined based
on a basic confidentiality property (Santen, 2008), if there exists a probabilistic deterministic
realization of a machine that satisfies the basic confidentiality property in all admissible
environments. In the case of concealed behavior, the question is if there is an adversary model
that covers a given mask.

To show that the adversary model represented by the CSP model of the SPF instance conceals
the mask м0, a deterministic machine realization must be found such that its composition with all
realizations of the environment covers м0.

We choose the implementation of the CSP model of the SPF instance that resolves all
nondeterministic choices by probabilistic choices with equal probabilities for all alternatives.

The admissible environments consist of realizations that deterministically produce traces
according to the pattern t0(pt), where pt ∈ Plaintext. The members M0 and M1 of м0 are covered
by the indistinguishability classes of all resulting variants of the CSP model of the SPF instance,
because the chosen machine realization does not exclude any of the traces t0(pt), where pt ∈
Plaintext.

In summary, we presented a formal description of the informal confidentiality requirement
description of the instance of the SPF confidential data storage.

Proving Confidentiality-Preserving Refinement

The next and last step of phase two comprises the verification of a confidentiality-preserving
refinement based on the CSP model of the (C)SPF instances and the formally specified
confidentiality requirement.

To prove the functional refinement, we prove that the CSP model of the CSPF instance
failure-divergence refines the CSP model of the SPF instance using the model-checker FDR2.

Based on the CSP model of the CSPF instance, we create a re-abstracted CSP model by hiding
events that can only be communicated in the CSPF model, e.g., Password and WrongPassword,
and we map those events that have a more concrete structure in the CSPF model to events that are
compatible with the events of the SPF model, e.g., Ciphertext events are substituted by Plaintext
events. The data refinement is characterized by the fact that a plaintext is refined by a pair
consisting of a ciphertext and a password. The resulting CSP process failure-divergence refines
the CSP process that models the SPF instance, which can be verified using FDR2.

 34

To prove the confidentiality-preserving refinement, we calculate the indistinguishability
classes of the CSP model of the CSPF instance. As an example, we present the
indistinguishability class).1._5_(2,

4 lpIYystemOperatingSJ QE
IYystemOperatingS :

=).1._5_(2,

4 lpIYystemOperatingSJ QE
IYystemOperatingS

}.2._5_ 4,._4_
,.1._5_ 3,._4_
,.2._5_ 2,._4_
,.1._5_ ,1._4_{

><
><
><
><

longpIYystemOperatingScIYTextFile
longpIYystemOperatingScIYTextFile
shortpIYystemOperatingScIYTextFile
shortpIYystemOperatingScIYTextFile

Since the confidentiality property concealed behavior refers to both, the monitoring channel
OperatingSystem_Y5_I and the data, we must relate the concrete monitoring channel and the data
back to the abstract ones originally referred to by the confidentiality property. Applied to
concealed behavior, this general concept provides a basis for defining refined concealed
behavior. After the re-abstraction, we must check if the re-abstracted traces are members of M0
and M1, respectively.

We find out that the re-abstracted traces are the same traces as the abstract ones. For this
reason, they are contained in the sets M0 and M1. Hence, the CSP model of the CSPF instance
conceals the mask м0, and the confidentiality property concealed behavior is preserved in the
CSP model of the CSPF instance. Therefore, the CSP model of the CSPF instance comprises a
valid specification for the machine to be developed.

6. DEVELOPMENT OF A SECURITY ARCHITECTURE

In the following, we move on to the design phase of software development, i.e., the
construction of a software architecture using:
• architectural patterns to construct a platform-independent secure software architecture that

realizes the specified security requirements and
• a method to construct a platform-specific secure software architecture based on a previously

developed platform-independent secure software architecture and a component framework or
an application programming interface (API).

6.1 Generic Security Components and Architectures

Software components are reusable software parts. We represent software components by
means of UML composite structure diagrams (UML Revision Task Force, Object Management
Group (OMG), 2007) and interface specifications. The latter consist of several parts: structural
and syntactic descriptions are expressed as UML class diagrams (interface classes). Semantic
descriptions of the operations provided and used by the components' interfaces are expressed as
OCL pre- and postconditions. Behavioral descriptions are expressed as UML sequence diagrams.

The generic security components discussed in this section constitute special software

components that realize concretized security requirement templates. We call them “generic”,
because they are a kind of conceptual pattern for software components. They are platform-
independent. An example for a generic security component is an encryption component defined
neither referring to a specific encryption mechanism such as AES or DES nor specific encryption
keys, such as encryption keys with a certain length.

 35

We use generic security components to structure the machine domain of a CSPF. They
describe the machine's interfaces to its environment and the machine-internal interfaces of its
components. Each CSPF is linked to a set of generic security components.

A machine domain of a CSPF can be structured by means of generic security components
according to the following principles:
• Each interface of the machine with the environment must coincide with an interface of some

component.
• Components of the same purpose can be combined, e.g., several storage management

components can be combined to one such component.
• For each interface between the machine and a biddable or display domain a user interface

component must be introduced. Interfaces to another display or machine domain can result in
an additional user interface component (especially if such an interface is security-critical,
e.g., an interface to enter a password).

• For each interface from the machine to a lexical domain, a storage management component
must be introduced. Symbolic phenomena correspond to return values of operations or to
getter/setter operations.

• For each interface of the machine domain with a causal domain, a driver component must be
introduced. Causal phenomena correspond to operations provided by driver components.

• For password or encryption key handling, key management components or key negotiation
components must be introduced.

• For encryption key generation, random number generator and encryption key generator
components must be introduced.

• For symmetric / asymmetric encryption / decryption, corresponding encryptor / decryptor
components must be introduced.

• For integrity mechanisms, hash and MAC calculation components must be introduced.

Following the described principles, we developed a catalog of generic security components for
each available CSPF. These components can be combined to obtain a set of generic security
architectures that realize the concretized security requirement template of a CSPF.

The generic security components constructed for a CSPF can be combined to obtain generic

security architectures according to the following principles:
• An adequate basic software architecture to connect the generic security components has to be

selected, e.g., a layered architecture.
• If components can be connected directly, one connects these components.
• If components cannot be connected directly (e.g., because a component provides

incompatible input for another component), additional components to interconnect them must
be introduced.

• Interfaces between the machine and its environment must be introduced in the generic
security architecture according to the generic security components that provide or use these
interfaces.

As examples, we present generic security components and architectures for the CSPF confidential
data storage using password-based encryption.

 36

6.2 Generic Security Components for CSPF Confidential Data Storage
Using Password-Based Encryption

Figure 7 shows on the left-hand side a generic security component for handling passwords
expressed as a UML composite structure diagram and a class diagram.

The component PasswordReader provides an interface PwdRIf. It consists of the operations
readPassword() and destroyPassword().

The behavior of the PasswordReader component is described using the UML sequence
diagram in Figure 8. After the operation readPassword() is called via the interface PwdRIf, the
component calls the operation showPasswordDialog() via the used interface EnvIf that shows a
dialog to the user and requests a password from her/him. Then, the user can submit a password
pwd to the component, which returns this password to the caller of the operation readPassword().
Afterwards, this password must be wiped out from memory using the operation
destroyPassword().

PwdRIf
PasswordReader

EnvIf

<<interface>>
PwdRIf

readPassword() : Password
destroyPassword()

EncDecIf
Encryptor/Decryptor

<<interface>>
EndDecIf

encrypt(pt : Plaintext; pwd : Password) :
 Ciphertext
decrypt(ct : Ciphertext; pwd : Password) :
 Plaintext

Figure 7: Generic Security Components "PasswordReader" and "SecretManagement" with
Interfaces Classes

OCL pre- and postconditions can be used to enrich the generic security component

PasswordReader with security-relevant operation semantics. For example, constraints on the
quality of the password captured by the operation readPassword(): e.g., a minimal password
length, occurrence of special characters, etc. can be expressed.

 37

Figure 8: Behavior of the Generic Security Component "PasswordReader"

The generic security component Encryptor/Decryptor described on the right-hand side of

Figure 7 provides an operation encrypt(pt : Plaintext; pwd : Password) that encrypts a plaintext
pt using a password pwd to a ciphertext ct. Additionally, it provides an inverse operation
decrypt(ct : Ciphertext; pwd : Password) that calculates the plaintext pt given the ciphertext ct
and the password pwd.

The generic security components described previously must be combined to obtain generic
security architectures. Since generic security components are platform-independent, so are
generic security architectures. Each CSPF is linked to a set of generic security architectures that
realize the concretized security requirement template.

As an example, we present a generic security architecture for the CSPF confidential data

storage using password-based encryption in Figure 9.
According to the previously presented general procedure to set up a generic security

architecture of a CSPF's machine domain, we introduce UserInterface and StorageManager
components to let a user interact with the software and to access a storage device, respectively.
To realize the concretized security requirement template of the CSPF, we introduce the generic
security components PasswordReader and Decryptor/Encryptor. These components are arranged
in a layered architecture using an Application layer component.

 38

csd CSPF Confidential Data Storage Using Encryption

UserInterface

StorageManager

PasswordReader

Application

UIIf

StorageIf

UIUserIf

EnvIf
EncDecIf

PwdRIf

SMIf
Encryptor/Decryptor

Figure 9: Generic Security Architecture "CSPF Confidential Data Storage Using Password-

Based Encryption"

6.3 Security Architecture Method

The security architecture method consists of four steps, which are discussed in detail in the
following.

Step 1 - Select Generic Security Architectures
A generic security architecture that consists of a set of generic security components is selected for
each CSPF instance, based on domain knowledge and constraints of the application domain.

Input:
• all results of phase one

Output:
• set of generic security architectures including sets of generic security components

Validation Conditions:
• the set of generic security architectures is suitable to realize the concretized

security requirements CSR

Step 2 - Compose Generic Security Architectures

Generic security architectures can also be applied to software development problems of higher
complexity, i.e., problems that are divided into several subproblems, by composing the according
sub-architectures. Note that we refer to generic security architectures as generic security sub-
architectures if a software development problem described by more than one CSPF is considered.
Choppy & Hatebur & Heisel (2006) developed for a set of subproblems a corresponding set of
sub-architectures that solve these subproblems. Moreover, the sub-architectures are composed
based on dependencies between the subproblems. The authors identified three different kinds of
dependencies:

• parallel subproblems
• sequential subproblems
• alternative subproblems

For subproblems that are instances of CSPFs, sequential dependencies can be identified based on
the effects and necessary conditions of the subproblems. If a necessary condition of an
instantiated CSPFA is considered as an additional security requirement, then a CSPFB that solves

 39

this security requirement depends on CSPFA . More precisely, the effect of CSPFB that solves the
new security requirement must be established before the mechanism represented by CSPFA can
work correctly.
According to Choppy & Hatebur & Heisel (2006), we must “decide if two components contained
in different subproblem architectures should occur only once in the global architecture, i.e., they
should be merged”. We adopt the principles to merge components presented by Choppy et al. to
our approach. We consider the dependencies of functional subproblems (e.g., problem frame
instances) and security subproblems (CSPF instances). The principles to merge components
contained in generic security sub-architectures are as follows (Choppy & Hatebur & Heisel,
2006):

• Two components that belong to sequential or alternative subproblems should be merged
into one component.

• Two components that belong to parallel subproblems and that share some output
phenomena should be merged into one component, because the output must be generated
in a way satisfying both subproblems.

• If two components that belong to parallel subproblems and that share some input
phenomena do not share any output phenomena, one can merge the components or keep
them separate. In the latter case the common input must be duplicated.

• Two components that belong to parallel subproblems and that do not share any
phenomena should be kept separate.

The result of the composition procedure is a platform-independent global generic secure software
architecture. To show that the components in a global generic security architecture work together
in such a way that they fulfill the security requirements corresponding to the different
subproblems, one can model the global generic security architecture with UMLsec by Jürjens
(2003). It can then be analyzed using the tool suite provided for UMLsec (see (Jürjens, 2003, pp.
133) for details) to check if the security requirements are fulfilled in the global generic security
architecture.

Especially, confidentiality requirements must be treated carefully, since composition of
incompatible components can lead to non-fulfillment of confidentiality requirements (see (Santen
& Heisel & Pfitzmann, 2002) for details).

Input:
• all results of step one

Output:
• a generic security architecture that combines all generic security architectures

selected in step one
Validation Conditions:

• the combined generic security architecture is suitable to realize the concretized
security requirements CSR

Step 3 - Refine Generic Security Architecture

In the following, we consider the refinement of the platform-independent generic security
architecture to a platform-specific and implementable security architecture. It consists of several
substeps:

1. Select an adequate component framework or API, e.g., the security APIs
BouncyCastle or Sun's javax.crypto.*.

 40

2. Select given components from the chosen component framework or API:
a. Compare the interfaces, the operation semantics, and the behavioral

description of the generic security components with the documentation of the
component framework or API to find adequate existing components.

b. Normally, several existing components must be used to realize one generic
security component; in this case glue code must be written to connect the
existing components in such a way that the specification of the generic
security component is fulfilled.

c. In the rare case that the specification of an existing component matches the
specification of a generic security component, the existing component can be
used without customization.

d. Those generic security components that cannot be treated by the selected
component framework or API must be implemented from scratch, based on
the specification of the generic security component.

Input:

• combined generic security architecture from step two
Output:

• a refined security architecture including a set of refined security components

Validation Conditions:
• each generic security component is either realized using an existing security

component or it is developed from scratch

Step 4 - Connect Security Components
Glue code is written to connect the components according to the refined generic security
architecture.

Input:
• all results of step three

Output:
• a security architecture that realizes the concretized security requirements CSR

Validation Conditions:
• the refined security component are connected according to the refined security

architecture

6.5 Case Study: Secure Text Editor

In step one of phase three, we select a generic security architecture for each applied CSPF. For
the secure text editor case study, the generic security architecture shown in Figure 9 is adequate,
since it comprises a component for password-based encryption/decryption and a component to
obtain a password from a user.

It is not necessary to apply step two, because we selected only one generic security
architecture.

We refine this generic architecture in step three using the Java Standard Edition 6 API
provided by Sun. As examples, we present the refined PasswordReader component in Figure 10

 41

and the refined Encryptor/Decryptor component in Figure 11. The refined PasswordReader
component consists of a Wrapper component that represents the glue code necessary to combine
the components pwdField, pbeKeySpec, secretKeyFactory, and secretKey provided by Sun's Java
Standard Edition 6 API. The pwdField component provides a graphical text field to retrieve a
password from a user. It makes the user input unreadable, while the password is entered into text
field.

javax.crypto.*
Sun Java SE 6

javax.crypto.spec.*
Sun Java SE 6

Sun Java SE 6
javax.swing.*

PbeKSIf

pwdField :
JPasswordField

JPwdFIf

pbeKeySpec :
PBEKeySpec

secretKeyFactory :
SecretKeyFactory

secretKey :
SecretKey

SKIf

SKFIf

W
ra

pp
er

PwdRIf

EnvIf

csd PasswordReader

WEIf

WPIf

Figure 10: Refined "PasswordReader" Component

The other components are used to construct a symmetric encryption key compliant to a
specific password-based cryptography specification (e.g., PKCS #5) from the user password.

The refined Encryptor/Decryptor component is constructed similarly. It also consists of a

Wrapper component that connects the components cipher and pbeParamSpec from Sun's Java
Standard Edition 6 API. The cipher component provides the functionality of a cryptographic
cipher for encryption and decryption. The pbeParamSpec component is necessary to construct a
parameter set for password-based encryption as defined in the PKCS #5 standard.

Due to space limitations, we do not describe the component-internal interfaces in detail and

we do not show the other refined security components. The result of SEPP's last phase applied to
the secure text editor case study is a security architecture that makes use of given components
provided by Sun's Java Standard Edition 6 API. The next last step of phase three is programming
the Wrapper components and the glue code to connect the refined generic security components.
Finally, testing and deployment have to be performed.

Sun Java SE 6
javax.crypto.*

pbeParamSpec :
PBEParameterSpec

cipher : Cipher

PbePSIf

CipherIf

W
ra

pp
er

EncDecIf

csd Encryptor/Decryptor

WIf

Figure 11: Refined Encryptor/Decryptor Component

 42

We implemented two versions of the case study, one based on the BouncyCastle API and
another one based on Sun's javax.crypto.* API. Both versions re-use existing modules of the APIs
according to the refined security components shown in Figure 10 and Figure 11.

The amount of glue code to implement the wrapper components ranges between 20 to 50 lines
of code per component.

7. FUTURE RESEARCH DIRECTIONS

In the future, we intend to find new patterns to extend the catalogue of SPFs and CSPFs.
We would like to consider probabilistic confidentiality properties and the compositionality of

confidentiality-preserving refinement. Moreover, we plan to elaborate more on composition
principles to combine generic security architectures to a combined generic security architecture
that preserves the security requirements of the different generic security subarchitectures.

Furthermore, we intend to describe the generic security components and the generic security
architectures using CSP models. We would like to formally show refinements between the CSPFs
and the generic security components/architectures.

8. CONCLUSION

We presented SEPP, a security engineering process that makes use of different kinds of
patterns. It covers security requirements engineering, formal security specifications, and the
construction of security architectures.

SEPP starts with an extensive security requirements engineering phase, which is based on
SPFs and CSPFs. These special kinds of problem frames are arranged in a pattern system. They
serve to structure, characterize, analyze, and finally solve software development problems in the
area of software and system security. SEPP supports to obtain a complete set of security
requirements by analyzing the necessary conditions of the used CSPFs and deciding if they can
be assumed or must be established by applying more frames.

Afterwards, formal security specifications in CSP are developed based on instantiated
(C)SPFs. These models can be used to formally express security requirements. Given an SPF
CSP model and a corresponding CSPF CSP model, we can formally prove a refinement that
preserves the security requirement.

SEPP’s final phase covers the development of security architectures, which are constructed
based on generic security architectures and generic security components. The generic security
architectures are refined using existing or tailor-made security components. The results are
platform-specific and implementable software architectures that realize the specified security
requirements.

9. REFERENCES
Bass, L. & Clements, P. & Kazman, R. (1998). Software Architecture in Practice. Addison-
Wesley, 1st edition.

BouncyCastle API. Retrieved June 24th, 2009, from http://www.bouncycastle.org/.

Braber, I. F. & Hogganvik, M. S. L. & Stølen, K. & Vraalsen, F. (2007). Model-based security
analysis in seven steps - a guided tour to the CORAS method, (pp.101-117). In BT Technology
Journal, 25(1).

 43

Choppy, C. & Hatebur, D. & Heisel, M. (2005). Architectural patterns for problem frames. IEEE
Proceedings - Software, Special Issue on Relating Software Requirements and Architecture, (pp.
198-208). IEEE Computer Society.

Choppy, C. & Hatebur, D. & Heisel, M. (2006). Component composition through architectural
patterns for problem frames. In Proceedings of the Asia Pacific Software Engineering Conference
(APSEC) (pp. 27-34). IEEE Computer Society.

Coplien, J. O. (1992). Advanced C++ programming styles and idioms. Addison-Wesley.

Côté, I. & Hatebur, D. & Heisel, M. & Schmidt, H. & Wentzlaff, I. (2008). A systematic account
of problem frames. In Proceedings of the European Conference on Pattern Languages of
Programs (EuroPLoP) (pp. 749-767). Universitätsverlag Konstanz.

Deng, Y. & Wang, J. & Tsai, J. J. P. & Beznosov, K. (2003). An approach for modeling and
analysis of security system architectures, (pp. 1099 - 1119). IEEE Transactions on Knowledge
and Data Engineering, 15(5). IEEE Computer Society.

Fabian, B. & Gürses, S. & Heisel, M. & Santen, T. & Schmidt, H. (to appear). A comparison of
security requirements engineering methods. Requirements Engineering.

Failure-Divergence Refinement (FDR) 2 by Formal Systems (Europe) Limited. Retrieved June
24th, 2009, from http://www.fsel.com/index.html.

Fernandez, E. B. & Larrondo-Petrie, M. M. & Sorgente, T. & Vanhilst, M. (2007). Integrating
security and software engineering: Advances and future visions. In H. Mouratidis & P. Giorgini
(Eds.), (pp. 107-126).

Fernandez, E. B. & la Red M., D. L. & Forneron, J. & Uribe, V. E. & Rodriguez G., G. (2007). A
secure analysis pattern for handling legal cases. In Latin America Conference on Pattern
Languages of Programming (SugarLoafPLoP) (2007). Retrieved June 24th, 2009, from
http://sugarloafplop.dsc.upe.br/wwD.zip.

Gamma, E., Helm, R., Johnson, R. E., & Vlissides, J. (1995). Design patterns - elements of
reusable object-oriented software. Addison Wesley.

Gürses, S. & Jahnke, J. H. & Obry, C. & Onabajo, A. & Santen, T. & Price, M. (2005). Eliciting
confidentiality requirements in practice. In Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON), (pp. 101-116). IBM Press.

Haley, C. B. & Laney, R. & Moffett, J. & Nuseibeh, B. (2008). Security requirements
engineering: A framework for representation and analysis, (pp. 133-153). IEEE Transactions on
Software Engineering, 34(1). IEEE Computer Society.

Haley, C. B. & Laney, R. & Moffett, J. & Nuseibeh, B. (2005). Arguing security: Validating
security requirements using structured argumentation. In Proceedings of the Symposium on
Requirements Engineering for Information Security (SREIS).

Haley, C. B. & Laney, R. & Moffett, J. & Nuseibeh, B. (2004). Picking battles: The impact of
trust assumptions on the elaboration of security requirements. In C. D. Jensen & S. Poslad & T.

 44

Dimitrakos (Ed.), Proceedings of the International Conference on Trust Management (iTrust),
(pp. 347-354).LNCS 2995. Springer Berlin / Heidelberg / New York.

Halkidis, S. T. & Tsantalis, N. & Chatzigeorgiou, A. & Stephanides, G. (2008). Architectural risk
analysis of software systems based on security patterns, (pp. 129 - 142). IEEE Transactions on
Dependable and Secure Computing, 5(3). IEEE Computer Society.

Hall, J. G. & Jackson, M. & Laney, R. C. & Nuseibeh, B. & Rapanotti, L. (2002). Relating
Software Requirements and Architectures using Problem Frames. In Proceedings of IEEE
International Requirements Engineering Conference (RE), (pp. 137-144). IEEE Computer
Society.

Hatebur, D. & Heisel, M. & Schmidt, H. (2008). A formal metamodel for problem frames. In
Proceedings of the International Conference on Model Driven Engineering Languages and
Systems (MODELS) (pp. 68–82). LNCS 5301. Springer Berlin / Heidelberg / New York.

Hatebur, D. & Heisel, M. & Schmidt, H. (2007). A pattern system for security requirements
engineering. In Proceedings of the International Conference on Availability, Reliability and
Security (AReS) (pp. 356-365). IEEE Computer Society.

Hatebur, D. & Heisel, M. & Schmidt, H. (2006). Security engineering using problem frames. In
G. Müller (Ed.), Proceedings of the International Conference on Emerging Trends in Information
and Communication Security (ETRICS) (pp. 238-253). LNCS 3995. Springer Berlin / Heidelberg
/ New York.

Hatebur, D. & Heisel, M. (2005). Problem frames and architectures for security problems. In B.
A. Gran & R. Winter & G. Dahll (Ed.), Proceedings of the International Conference on
Computer Safety, Reliability and Security (SAFECOMP) (pp. 390-404). LNCS 3688. Springer
Berlin / Heidelberg / New York.

Heisel, M. (1998). Agendas - a concept to guide software development activities. In Proceedings
of the IFIP TC2 WG2.4 working Conference on Systems Implementation: Languages, Methods
and Tools (pp. 19-32). Chapman & Hall London.

Hoare, C. A. R. (1986). Communicating Sequential Processes. Prentice Hall. Retrieved June 24th,
2009, from http://www.usingcsp.com.

International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) (2006). Common evaluation methodology 3.1, ISO/IEC 18405. Retrieved
June 24th, 2009, from http://www.commoncriteriaportal.org.

Jackson, M. (2001). Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley.

Jackson, M. & Zave, P. (1995). Deriving Specifications from Requirements: an Example. In
Proceedings of the Internation Conference on Software Engineering (SE) (pp. 15-24). ACM Press
New York / USA.

Jürjens, J. (2003). Secure systems development with UML. Springer Berlin / Heidelberg / New
York.

 45

Lai, L. & Lai, L. & Sanders, J. W. (1997). A refinement calculus for communicating processes
with state. In Proceedings of the Irish Workshop on Formal Methods: Electronic Workshops in
Computing. Springer Berlin / Heidelberg / New York.

van Lamsweerde, A. (2004). Elaborating security requirements by construction of intentional
anti-models. In Proceedings of the International Conference on Software Engineering (ICSE),
(pp. 148-157). IEEE Computer Society.

Li, Z. & Hall, J. G. & Rapanotti, L. (2008). From requirements to specifications: a formal
approach. In Proceedings of the International Workshop on Advances and Applications of
Problem Frames (IWAAPF) (pp. 65-70). ACM Press.

Lin, L. & Nuseibeh, B. & Ince, D. & Jackson, M. (2004). Using abuse frames to bound the scope
of security problems. In Proceedings of IEEE International Requirements Engineering
Conference (RE) (pp. 354-355). IEEE Computer Society.

Mantel, H. (2003). A Uniform Framework for the Formal Specification and Verification of
Information Flow Security. Unpublished doctoral dissertation, Universität des Saarlandes,
Saarbrücken, Germany.

Moriconi, M. & Qian, X. & Riemenschneider, R. A. & Gong, L. (1997). Secure software
architectures. In Proceedings of the IEEE Symposium on Security and Privacy (pp. 84 – 93).
IEEE Computer Society.

Mouratidis, H. & Giorgini, P. (2007). Secure Tropos: A security-oriented extension of the Tropos
methodology, (285-309). International Journal of Software Engineering and Knowledge
Engineering, 17(2).

Mouratidis, H. & Weiss, M. & Giorgini, P. (2006). Modelling secure systems using an agent
oriented approach and security patterns. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE), (471-498). 16 (3).

Rapanotti, L. & Hall, J. G. & Jackson, M. & Nuseibeh, B. (2004). Architecture Driven Problem
Decomposition. In Proceedings of IEEE International Requirements Engineering Conference
(RE), (73-82). IEEE Computer Society.

RSA Laboratories. (1999). Password-Based Cryptography Standard PKCS #5 v2.0. Retrieved
June 24th, 2009, from ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-5v2/pkcs5v2-0.pdf

Santen, T. (2008). Preservation of probabilistic information flow under refinement, (pp. 213-249).
Information and Computation, 206(2-4).

Santen, T. & Heisel, M. & Pfitzmann, A. (2002). Confidentiality-preserving refinement is
compositional - sometimes. In Proceedings of the European Symposium on Research in
Computer Security (ESORICS), (pp. 194-211). LNCS 2502. Springer Berlin / Heidelberg / New
York.

Scandariato, R. & Yskout, K. & Heyman, T. & Joosen, W. (2008). Architecting software with
security patterns (Report No. CW515). Katholieke Universiteit Leuven - Department of
Computer Science.

 46

Schmidt, H. (2009). Pattern-based confidentiality-preserving refinement. In Engineering Secure
Software and Systems - First International Symposium (ESSoS), (pp. 43-59). LNCS 5429.
Springer Berlin / Heidelberg / New York.

Schmidt, H. & Wentzlaff, I. (2006). Preserving software quality characteristics from requirements
analysis to architectural design. In Proceedings of the European Workshop on Software
Architectures (EWSA), (pp. 189-203). LNCS 4344/2006. Springer Berlin / Heidelberg / New
York.

Schneier, B. (1999). Attack trees. Dr. Dobb’s Journal. Retrieved June 24th, 2009, from
http://www.schneier.com/paper-attacktrees-ddj-ft.html.

Schumacher, M. & Fernandez-Buglioni, E. & Hybertson, D. & Buschmann, F. & Sommerlad, P.
(2005). Security Patterns: Integrating Security and Systems Engineering. Wiley & Sons.

Shaw, M. & Garlan, D. (1996). Software Architecture - Perspectives on an Emerging Discipline.
Prentice-Hall.

Spivey, M. (1992). The Z Notation - A Reference Manual. Prentice Hall. Retrieved June 24th,
2009, from http://spivey.oriel.ox.ac.uk/mike/zrm.

Steel, C. & Nagappan, R., & Lai, R. (2005). Core security patterns: Best practices and strategies
for J2EE, web services, and identity management.

SUN Java Standard Edition 6 API. Retrieved June 24th, 2009, from
http://java.sun.com/javase/6/docs/api/overview-summary.html.

SUN javax.crypto.* API. Retrieved June 24th, 2009, from
http://java.sun.com/javase/6/docs/api/javax/crypto/package-summary.html.

UML Revision Task Force, Object Management Group (OMG) (2007). OMG Unified Modeling
Language: Superstructure. Retrieved June 24th, 2009, from
http://www.omg.org/spec/UML/2.1.2/.

UML Revision Task Force, Object Management Group (OMG) (2006). Object Constraint
Language Specification. Retrieved June 24th, 2009, from http://www.omg.org/docs/formal/06-
05-01.pdf.

