
An integrated Method for Pattern-based Elicitation of Legal Requirements applied
to a Cloud Computing Example

Kristian Beckers, Stephan Faßbender, Holger Schmidt

Abstract—Considering legal aspects during software devel-
opment is a challenging problem, due to the cross-disciplinary
expertise required. The problem is even more complex for cloud
computing systems, because of the international distribution,
huge amounts of processed data, and a large number of
stakeholders that own or process the data. Approaches exist
to deal with parts of the problem, but they are isolated from
each other.

We present an integrated method for elicitation of legal
requirements. A cloud computing online banking scenario
illustrates the application of our methods. The running
example deals with the problem of storing personal information
in the cloud and based upon the BDSG. We describe the
structure of the online banking cloud system using an existing
pattern-based approach. The elicited information is further
refined and processed into functional requirements for software
development. Moreover, our method covers the analysis of
security-relevant concepts such as assets and attackers par-
ticularly with regard to laws. The requirements artifacts then
serve as inputs for existing patterns for the identification of
laws relevant for the online banking cloud system. Finally,
our method helps to systematically derive functional as well
as security requirements that realize the previously identified
laws.

Keywords-law, security, requirements engineering, software
architecture

I. INTRODUCTION

Eliciting legal requirements for a software system and
aligning it to be compliant is a difficult task. In order to
accomplish this task the identification and analysis of rele-
vant laws, is considered to be difficult, because it is a cross-
disciplinary task in laws and software and systems engineer-
ing ([1]). Pattern-based approaches capture the knowledge
of domain experts for re-use. Hence, we proposed a pattern-
based approach for identifying and analyzing laws in our
earlier work [2]. However, the identification and analysis of
a relevant law alone is not sufficient for software engineers.
They require a structured method that uses this approach
to derive software requirements and further implementable
software specifications.

We explain our method via considering compliance in
the field of cloud computing systems (or short clouds). A
PriceWaterhouseCoopers study from 2010 reveals that iden-
tifying compliance requirements is a significant challenge

for compliance management in clouds.1 As running example
we use a software system for an online-banking service. For
describing this example, we re-use an existing pattern for
analyzing clouds, which is complemented by templates to
elicit knowledge about the different stakeholders contained
in the pattern ([3]). The pattern and especially the stake-
holder templates are the basis for functional requirements
engineering and the identification of activities, which serve
as input for our law identification and analysis method.

II. BACKGROUND

A. Cloud Computing Systems

According to the National Institute of Standards and
Technology (NIST) cloud computing systems can be defined
by the following properties [4]: the cloud customer can
acquire resources of the cloud provider over broad net-
work access and on-demand and pays only for the used
capabilities. Resources, i.e., storage, processing, memory,
network bandwidth, and virtual machines, are combined
into a so-called pool. Thus, the resources can be virtually
and dynamically assigned and reassigned to adjust the cus-
tomers’ variable load and to optimize the resource utiliza-
tion for the provider. The virtualization causes a location
independence: the customers generally have no control or
knowledge over the exact location of the provided resources.
The resources can be quickly scaled up and scaled down
for customers and appear to be unlimited, which is called
rapid elasticity. The pay-per-use model includes guarantees
such as availability or security for resources via customized
Service Level Agreements (SLA). The architecture of a cloud
computing system consists of different service layers and
allows different business models: On the layer closest to the
physical resources, the Infrastructure as a Service (IaaS),
are provided pure resources, for instance virtual machines,
where customers can deploy arbitrary software including
an operating system. Data storage interfaces provide the
ability to access distributed databases on remote locations
in the cloud. On the Platform as a Service (PaaS) layer,
customers use an API to deploy their own applications using
programming languages and tools supported by the provider.
On the Software as a Service (SaaS) layer, customers use

1http://www.pwc.de/en/prozessoptimierung/
trotz-einiger-bedenken-der-virtuellen-datenverarbeitung-gehoert-die-zukunft.
jhtml

http://www.pwc.de/en/prozessoptimierung/trotz-einiger-bedenken-der-virtuellen-datenverarbeitung-gehoert-die-zukunft.jhtml
http://www.pwc.de/en/prozessoptimierung/trotz-einiger-bedenken-der-virtuellen-datenverarbeitung-gehoert-die-zukunft.jhtml
http://www.pwc.de/en/prozessoptimierung/trotz-einiger-bedenken-der-virtuellen-datenverarbeitung-gehoert-die-zukunft.jhtml


applications offered by the cloud provider that are running
on the cloud infrastructure.

B. Relevant Laws for Clouds

In our running example we chose the German law as the
binding law. For simplicitie’s sake, we focus in our running
example on relevant compliance regulations for privacy. We
only explain the laws and regulations in detail that we use
in the example. In 1995, the European Union (EU) adopted
the Directive 95/46/EC on the processing of personal data
that represents the minimum privacy standards that have to
be included in every national law. Germany implements the
European Privacy Directive in the Federal Data Protection
Act (BDSG). According to Section 1 BDSG all private and
public bodies that automatically process, store, and use
personal data have to comply with the BDSG. Moreover,
the EU law as well as Section 4b BDSG forbid sharing
data with companies or governments in countries that have
weaker privacy laws.

III. A REQUIREMENTS ELICITATION METHOD FOR
CLOUDS

We describe a requirements eliciations method specifically
designed to take clouds and laws into account in Fig. 1.
The arrows are annotated with inputs for the different steps.
The oval symbol denotes steps in the method that require
the presence of a legal expert, while the steps denoted in
rectangles only require software engineers.

In the next sections we will describe the following steps
in detail. The first step is to elicit a structured environment
description. Therefore we instantiate a cloud system analysis
pattern and the corresponding templates. The pattern and
templates will be explained in Sect. III-A. The instantiated
pattern and templates are the input for the identifying
and specifying functional requirements. Next, the method
advises to specify activities based upon the functional re-
quirements and it also advises to identify and refine as-
sets of stakeholders. The information collected until this
point is accumulated in direct stakeholder template instances
(Sect. III-B). In the fifth step we use the information in the
instantiated direct stakeholder templates to identify relevant
laws via using law analysis patterns (Sect. III-C). The
resulting set of relevant laws for the cloud computing system
and the instances of the direct stakeholder templates are
used to identify and specify relevant requirements for the
software (Sect. III-D). The result of the method is a set of
requirements derived from the legal analysis of the cloud-
system-to-be.

A. Step 1: Instantiate Cloud System Analysis Pattern and
Stakeholder Templates

The starting point of our method is an informal problem
description. The goal of this initial step is to collect and
structure knowledge about the envisaged cloud, especially

Figure 1. Requirements Analysis Method for Clouds

about the involved stakeholders. For this purpose, we in-
troduced a cloud system analysis pattern and stakeholder
templates in [3]. The pattern and the templates provide a
conceptual view on cloud computing systems, and they serve
to systematically analyze stakeholders and requirements.

This method is specific for cloud computing, because we
use a cloud system analysis pattern. However, this analysis
pattern can be replaced with a pattern for a different kind of
Information and Communication (ICT) system, e.g., a Ser-
vice Oriented Archichtecture (SOA). Hence, the method is
adaptable to numerous ICT systems, because the application
to a specific system is only determined by the input in the
initial step.

B. Steps 2–4: Process Functional Requirements, Activities,
and Assets

In this section, we consider classical functional require-
ments engineering tasks based on the instantiated cloud
system analysis pattern and the corresponding stakeholder

2



templates. More specifically, we accomplish the following
tasks for each stakeholder of the direct system environment.

First we identify the functional requirements of the system
to be developed. Based on these requirements we derive
the activities performed to fulfill the requirements. Last we
identify the assets bound to the requirements and activities.
For these steps we use existing approaches.

The instances of our cloud analysis patterns and templates
are the basis to derive functional requirements. Here, given
approaches such as the problem decomposition approach by
[5] or an approach based on use cases can be applied.

The third step covers the discovery of activities based on
functional requirements, e.g. using UML2 behavior diagrams
such as activity or sequence diagrams. This represents best
practice in many object-oriented development methods such
as the one by [6].

In the fourth step assets are identified based on functional
requirements and corresponding activities. Again, we reuse
given approaches here, e.g. the one by [7], which makes use
of UML activity diagrams to identify assets and threats, or
the misuse case approach by [8].

Important beside the functional requirements, activities,
and assets themselves, are the relations between them and
other already elicited information. Fig. 2 shows this rela-
tions. First of all, a Requirement can be related to other
Requirements and dictates a certain behavior of the machine.
A behavior can be a certain Activity or a whole Process. A
Process consists of different Activities. An Activity involves
an Active Stakeholder and in some cases an Asset. Addi-
tionally, an Activity influences a Passive Stakeholder in a
direct way or indirect through an Assets which is entitled to
the Passive Stakeholder. In addition Assets can be related to
each other, e.g. one Asset is part of an other Asset. All these
relations have also to be discovered and documented.

Using the results of the artifacts and relations generated in
the previous steps, we extend the direct stakeholder template
instances initially developed in the first step by new rows
“Functional requirements”, “Activities”, and “Assets”.

C. Step 5: Identify Relevant Laws / Sections

The goal of this step is to bring together legal experts
and software and system developers to identify relevant
laws and to detect dependent laws. We execute this step for
each activity of each instantiated direct stakeholder template.
The output of this step are laws that are relevant for the
given development problem. Note that each law identified
as relevant should be checked by a legal expert.

Commonly, laws are not adequately considered during
requirements engineering. Therefore, they are not covered
in the subsequent system development phases. One funda-
mental reason for this is that the involved engineers are

2Unified Modelling Language: http://www.omg.org/spec/UML/2.3/
Superstructure/PDF/

typically not cross-disciplinary experts in law and software
and systems engineering.

To bridge this gap we developed law patterns and a
general process for law identification which relies on these
patterns. We analyzed, how judges and lawyers are supposed
to analyze a law, based upon legal literature research. These
insights lead to a basic structure of laws and the contained
sections. We give a short description of the results of this
analysis in the following. The full discussion can be found
in [2].

A law document is structured into sections. Each section
defines a legal aspect of the law and contains several
statements. These statements are dictates of justice. The
basic elements of a dictate of justice are shown in Table I.
A dictate of justice is divided into the facts of the case, the
setting which is regulated, and the legal consequence, the
resulting implications of the setting [9, p. 7]. Furthermore, a
dictate of justice has also an addressee(s). The legal method
called subsumption contains a further refinement of the facts
of the case [10, p. 260-64]. This refinement results in the
basic elements activities, target subjects, and target persons
[9, p. 23-31].

Dictates cannot be analyzed in isolation. All of them have
relations to other dictates (or even laws). Thus, relations
between laws, sections and dictates of justice are of funda-
mental importance. They are arranged in a hierarchy, which
is not always free of conflicts [10, p. 255]. A special part of
these relations is the terminology used within a jurisdiction.
This terminology is organized as hierarchical tree where the
terms and notions of the more general dictates of justices
are refined by subsequent dictates of justice.

Identifying relevant laws based on functional requirements
is difficult, because functional requirements are usually too
imprecise, they contain important information only implic-
itly and use a different wording than in laws. To bridge the
gap of the wording and to facilitate the discussion between
requirements engineers and legal experts, we defined a law
identification pattern (discussed in detail in [2]) to support
identifying relevant laws based on the early steps of our
method presented as already described. We especially use
the laws captured with the law pattern presented and the
knowledge collected using the stakeholder templates.

The procedure for identifying relevant laws consists of
five steps as depicted in Fig. 3. The first step is to set
up a database of all laws which might be of relevance
for a scenario. Therefore, laws have to be analyzed and
stored in the structure of the law pattern. Thus, they are
stored as pattern instances. This step is not needed if such
a database already exists. The second step uses information
from software requirements and their context to instantiate
the core structure and the context of the law identification
pattern. Instances of the cloud analysis pattern contain parts
of the relevant information for this instantiation. Third, the
relation between laws and software requirements has to be

3

http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/


Requirement(s)

Influence

Accomplish

Avoid /
Activity

Influence

Asset(s)

Passive Stakeholder(s)

Entitled To

Active Stakeholder(s)

dictates

dictates
part of

related to

part of

Process(es)

Figure 2. Relations between the elicited elements

Table I
STRUCTURE OF LAW RULES TAKEN FROM [2]

Addressee(s) has (have) to comply to the law.

Facts of the case

Activity(ies) describe(s) actions that an ad-
dressee has to follow or avoid to
be compliant.

Target subject(s)* describes impersonal subjects that
are objectives of the activity(ies).
Subjects can be material, such as
a product, or immaterial, such as
information.

Target person(s)* are directly influenced by the activ-
ity(ies) of an addressee, or have a
relation to the target subject(s).

Legal consequence defines the consequence for an addressee, e.g. the punishment
when violating the section.

A * next to an element of the structure means the element is optional.

Laws Law Pattern
Assets, Actors,
Activities,

Requirements
Identification
Pattern

Law 

Instances
Law Pattern Hierarchies

Instances
Pattern (Core)
Identification
Law 

Identification
Law 

Instances
Pattern

Set of

relevant laws
possibly

Law Pattern

Instantiation of Full Instantiation
of Law Identification

Pattern

Pattern Matching Legal Revision

Instantiation of
Law Identification

Pattern (Core)p
ro

c
e
s
s

e
x
te

rn
a
l

in
p
u
t

in
p
u
t 
/

o
u
tp

u
t

Figure 3. Law Identification Process

established to prepare the identification of relevant laws for
the given software. Hence, a mapping between the terms
and notions of the software requirements to legal terms and
notions is derived. Fourth, the law pattern instances and law
identification pattern instances have to be matched. This
results in a set of laws which might be of relevance for
the software. The resulting laws are only possibly relevant,
because we use the subsumption method. Fifth, the found
laws are the basis for further investigations.

For this process law experts and software engineers have
to work together for the necessary knowledge transfer. Step
one can be done alone by legal experts and for step two
only software engineers are needed. But in step three and
four both groups are needed to bridge the gap between legal
and technical world. The last step can be accomplished alone
by legal experts.

D. Step 6: Identify / Specify Relevant Requirements

The last step in the method is to integrate the instructions
from the laws into a given software engineering process. We
distinct between functional requirements and non-functional
requirements. Functional requirements describe “what the
system does” [11, p. 119] and non-functional requirements
describe global requirements, e.g., reliability and maintain-
ability on the system-to-be [11]. In our view security require-
ments are non-functional requirements. Software engineers
refine these requirements into software specifications. These
are implementable requirements.

The content of laws can be translated into functional and
non-functional requirements or a restriction to a functional
requirement or even be part of the software specification.
For instance, the appendix to BDSG Section 9 demands
specific methods, e.g., access control. These have to be part
of the software specifications. While other laws shall be

4



transformed into non-functional requirements, e.g., Section
17 TKG demands confidentiality of information. This would
have to be transformed into a security requirement. Further
laws simply demand a specific functionality that shall be
transformed into a functional requirement. For example, the
appendix to BDSG Section 9 also demands that the passing
on of personal information has to be controlled. This leads to
a functional requirement that states that all transmissions of
personal information have to be documented. In addition, a
law might provide different options to deal with a situation.
These would have to be considered as well.

However, the restrictions that a law imposes on a system
changes the envisioned software. The software engineer or
his/her employer has to decide if the changed system ,or at
least a functionality of it, is still useful. This might lead to
the decision to not implement the system or functionality.

We have to distinguish between the different kinds of
requirements or specification that instructions from laws in
order to achieve a seamless integration of the instructions
from laws into a given software engineering process. Hence,
we propose a method that can help decide how to translate
the instructions from laws into requirements, when they
are captured in law patterns. We assume that a significant
number of demands from laws have to be translated into
security requirements. That is the reason why we focus on
these in our method.

According to [12], a security requirement is typically a
confidentiality, integrity or availability requirement. It refers
to a particular piece of information, the asset, that should
be protected, and it indicates the counter-stakeholder against
whom the requirement is directed. A stakeholder is an indi-
vidual, a group, or an organization that has an interest in the
system under construction. Furthermore, the circumstances
of a security requirement describe application conditions
of functionality, temporal, spatial aspects, or the social
relationships between stakeholders. Hence, circumstances
have relations to functional requirements, stakeholders, etc.,
which shall be considered in the system-to-be.

In oder to determine if the instruction from the law can be
transformed, we propose to try to instantiate the instruction
as a security requirement. We define preconditions for each
of the steps of the instantiation and give advise of how to
check if these preconditions are fulfilled. The method is
iterative and if one precondition fails, the method terminates
and the following preconditions are not checked anymore.
If one of the preconditions fail, the instruction cannot be
a security requirement. Afterwards we present a method
for determining if the instruction is a further functional
requirement or a technical measure that has to be integrated
into the software specification.

For each instantiated requirement activity pattern match-
ing at least one instance of a law paragraph pattern do:

Instantiate stakeholder
Precondition: The stakeholder has to be an stake-

holder in the sense of security requirements.
Determination: Check if the stakeholder has an
interest in the system under construction.
Describe the stakeholder and his/her interest to the
system. Use the descriptions from the law patterns,
cloud system analysis pattern and the templates.
Consider the information in the instantiated law
paragraph and requirement activity patterns the di-
rect and indirect stakeholders can be distinguished.
The addressee is a direct or an indirect stakeholder,
and the target person is a direct stakeholder. The
legislator and the domain are indirect stakeholders.

Instantiate asset
Precondition: The asset has to be an asset in the
sense of security requirements and it has to be
owned by the stakeholder.
Determination: Check if the asset is some piece
of information or hardware or software of the
stakeholder and if it should be protected with
respect to confidentiality, integrity, or availability.
Describe the asset of the stakeholder and the
protection requirements in terms of confidentiality,
integrity, or availability.

Instantiate counter-stakeholder
Precondition: A counter-stakeholder has to exist.
Determination: Check if a counter-stakeholder
exists, who threatens the confidentiality, integrity,
or availability of the asset.
Describe the counter-stakeholder and the threat
he/she presents to the asset in terms of confi-
dentiality, integrity, or availability. In contrast to
stakeholders, laws and therefore the instantiated
law paragraph and requirement activity patterns do
not define counter-stakeholders. These have to be
derived using a method for thread analysis, e.g.,
misuse cases by [8].

Instantiate circumstance
Precondition: The circumstances of the security
requirement have to be related to functionalities,
stakeholders, or aspects of the system.
Determination: Check if stakeholder, asset,
counter-stakeholder are related to the system-to-be.
Describe the relations the stakeholder, asset,
counter-stakeholder have to existing functional
requirements or to other stakeholders, assets,
counter-stakeholders etc.. Typically, security re-
quirements are considered in the context of func-
tional requirements. Therefore, the functional re-
quirement that is the source of the activity the
instantiated requirement activity pattern refers to is
the basis for specifying the security requirement.

When all the preconditions are true, the instruction from
the law we were looking at can be translated into a security

5



requirement. if this is not the case, we have to determine
if the instruction in the law has to be translated into a
functional requirement or has to be integrated into the
specification of the software. We propose a method of
exclusion. Hence, we have to decide if the law prescribes
a mechanism or a requirement for the system-to-be. The
difference is that a requirement just states a problem that
the system shall address, e.g., the system has to store some
information. In this case the software engineer has to find a
mechanism that implements the requirement. On the other
hand, if a law demands access control to certain types of
data it is already a mechanism that solves the problem, e.g.,
that the data has to be kept confidential.

IV. EXAMPLE: CLOUD ONLINE BANKING

We describe the application of our method using an online
banking cloud example in this section.

A. Instantiation of the Cloud System Analysis Pattern and
Stakeholder Templates

We describe our method via an example of a cloud
customer, a financial institute (bank) that wants to offer
services like online banking for its customers. We instantiate
the cloud analysis pattern presented in [3] according to this
running example. The pattern describes the cloud in a Direct
System Environment and the Indirect System Environment.
The Direct System Environment contains stakeholders and
other systems that directly interact with the cloud through
associations, e.g. the Bank Customer. Moreover, associations
between stakeholders in the Direct and Indirect System
Environment exist, but not between stakeholders in the
Indirect System Environment and the cloud. For example,
the Legislator Germany is part of the Indirect System Envi-
ronment. We instantiate the direct system environment first.

The cloud provider is a company called Hulda. The
main goal of the cloud provider is to maximize profit by
maximizing the workload of the cloud. Therefore hers/his
subgoals are to increase the number of customers and their
usage of the cloud, i.e. the amount of data as well as the
number and frequency of calculation activities they source
out into the cloud. Fulfilling security requirements is only
an indirect goal to acquire customers and convince them
to increase the subset of processes they source out. The
pool of the cloud is instantiated with Hulda’s data centers
that consist of servers, network, and virtualization software.
The data center’s are located in the Germany and the U.S..
The cloud customer is instantiated with the bank institute
that plans to source out the affected IT processes to the
cloud to reduce costs and scale up their system for a
broader amount of customers. Customer data such as account
number, amount, and transaction log history are stored in the
cloud, and transactions like credit transfer are processed in
the cloud. We instantiate the cloud developer with an internal
software development unit of the bank. This unit develops

software for online banking in the cloud. In order to do this
the internal development unit installs and configures web-
and application servers in virtual machines. The resulting
cloud programming interface is the foundation for the online
banking software. The bank customer uses the cloud to
conduct his/her financial business.

We derive the indirect stakeholders required for this
scenario based upon the instant ion of the Direct System
Environment. The cloud is located in Germany and the USA.
This is the reason for the instantiation of the indirect stake-
holders legislator Germany and US. Germany is a member
of the European Union and the legislator EU describes a
set these regulations. The financial institute is subject to
regulations of the financial regulations. Hence, we instantiate
the domain finance as another indirect stakeholder.

We supplement the cloud system analysis pattern by
templates to systematically gather domain knowledge about
the direct and indirect system environments based upon the
stakeholders’ relations to the cloud and other stakeholders.
When instantiating the cloud system analysis pattern, one
also fills in the corresponding templates. These templates
contain for example the following information: a description
of a stakeholder, a stakeholder’s motivation for using the
cloud, relations to the cloud and to other stakeholders,
and the assets of a stakeholder. Detailed information about
stakeholder templates are in [3].

B. Processing of Functional Requirements

Right after describing the setting by instantiating pattern
and templates for the cloud, we have to elicit the functional
requirements, activities, and assets for this setting. For exam-
ple, we can use the problem based approach of [5]. We de-
rive the first requirements from the environment description,
which is in our case build up by the cloud analysis pattern
and its templates. Now we can establish the context diagram.
By refining the context diagram to the problem diagrams we
enrich existing functional requirements and discover related
and previously unknown functional requirements. Possible
examples for requirements are Scalable Data Storing and
Provide Cloud API. The phenomena within the context and
the problem diagrams can be transformed to activities, which
we can arrange in processes using a activity diagram. An
example for a phenomenon could be Store Distributed. This
phenomenon can be directly transformed into the activity
Store Distributed. There are more phenomena bound to the
requirement Scalable Data Storing, which we arrange in the
process Offering Data Storing. After defining the activities
we discover the related assets. In our case the Customer
Data is processed within the activity Store Distributed.

When all artifacts are known and the relations inbetween
them are discovered, we have to document them. We do so
by adding the sections Functional Requirements, Activities,
and Assets to the existing direct stakeholder templates. For
example we add the following information to the template

6



1..*

*

1..*

*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

*1..*

*

1..*

1..* *

1..*
1..* *

*

*

*

*

*

*

1..*

1..*

1..*

�������
�������
�������

�������
�������
�������

������
������
������

������
������
������

Software
Banking
Online

Webserver, 

Server, etc.
Application

Virtual
Machine

Banking
Service

Online

Cloud
Programming

Interface

Germany,USA

Cloud

InputBy/OutputTo

Has

WorkFor

Provides

Owns

Bank Customer

Bank Institute

Internal Development Unit

Pool

Service

IsBasedOn

Data Center

IsComplementedBy

UsedBy

UsedBy

IsComplementedBy

IsComplementedBy

BuiltAndCustomizedBy

BuiltBy

Data
Transaction

Direct System Environment Has

*

IsMonitoredBy

Indirect System Environment

Legislator Germany Legislator EU Domain FinanceLegislator US

Virtualization
Network and

Software

Server

IsLocatedIn

Hulda

Figure 4. Concrete Cloud Computing System for Online Banking Service

of Hulda in Tab. II (we only show artifacts we discussed in
this section)

C. Identifcation of Relevant Laws / Sections
After the elicitation of functional requirements, activi-

ties, and assets the desired behavior of the system to be
implemented is clear. Now we have to ensure that this
behavior is compliant. Therefore we have to identify relevant
laws and sections. The overall procedure is described in
Section III III-C.

Law Pattern Instantiation Based on the previously
discussed structure of laws, we defined a law pattern. The
law pattern itself is discussed in detail in [2]. For our running
example we instantiate BDSG Sec. 1 and BDSG Sec. 4b. The
resulting law pattern instances are shown in Fig. 5 and 7. The
light grey words near to a element of in an instance refer to
the type of the element in the original pattern. For example
in Fig. 5, the light grey words Activity Classifier near to
Datahandling indicate that the Datahandling element is an
instantiation of Activity Classifier element in the original
pattern.

We now describe the instantiation procedure for our law
pattern. Our process starts based on the first sections of the
law to be analyzed. These sections are self-contained, i.e.
they define all necessary elements of our Law Structure.
Note that the analysis and instantiation of a law and its
sections has to be done only the first time a law is related
to a software project. For the next projects the instantiation
of a law is reusable.

In our case the first section to be analyzed is BDSG Sec. 1.
We start with the Context Part (depicted as white area in
Fig. 5). The Legislator(s) and Domain(s) can be instantiated
according to the considered law (e.g. Germany and General
Public in the Context part.). Legislator(s) and Domain(s) are
always defined for a whole law. Thus they are same in all
law pattern instances of a law. Given a section of a law not
yet captured by our law pattern, we additionally identify
and document the related laws and sections referred to by
the given section (e.g. GG Sec. 2 in the Context part. GG
Sec. 2 is a fundamental dictate of justice, which defines the
right of informational self-determination.). Then, we search
for the Law Structure (depicted as dark grey area in Fig. 5)
directly defined in the section at hand. For Sec. 1 BDSG, we
find Collect, Process and Use, and we use it to instantiate
Activity(ies). We also find Public and Private Bodies for the
Addressee(s), Personal Data for the Target Subject(s), and
Individual for the Target Person(s).

At last we instantiate the Classification part (light grey
area in Fig. 5). When classifying Addressee, Activity, Target
Subject, and Target Person, we parallel build up hierarchies
for Person Classifier, Activity Classifier, and Subject Clas-
sifier. An example for parts of those hierarchies is shown in
Fig. 6. In the case of Sec. 1 BDSG, these hierarchies are
empty. So we add Datahandling, Data, Authority and Nat-
ural Person to the corresponding hierarchies. As elements
of the Law Structure part can be classifier for subsequent
sections, we also add these elements to the hierarchies,

7



Table II
ACTIVE STAKEHOLDER TEMPLATE HULDA

Name Hulda
Functional Requirements

Requirement Related Requirement(s)
Scalable Data Storing Provide Cloud API

Activities
Activity Related

Processes
Related As-
set(s)

Related
Requirement(s)

Related Stake-
holders

Store Dis-
tributed

Offering
Data
Storing

Customer
Data

Scalable Data
Storing

Hulda

Assets
Assets Related Asset(s) Related Stakeholder(s)
Customer Data Part of Financial Data Bank Customer

Germany

Entitled To

BDSG

Personal Data

Data

IndividualPrivate Bodies

Related To

Collect

Process

Use

Influence

GG Sec. 2

Sec. 1

Accomplish
Avoid /

Public Bodies

Datahandling

General Public

Legislator

Domain

Regulation

Law Section

Person Classifier

Activity Classifier Subject Classifier

Law Structure

Addressee

Activity
Influence

Target Subject

Target Person

Authority Natural
PersonMentioned In

BDSG Sec. 1

ClassificationContext

Figure 5. Law Pattern Instance BDSG Sec. 1

e.g. Private Bodies. Note that adding a new element for
a hierarchy can result in reorganizing the corresponding
hierarchy. For example, when adding Natural Person it
is a specialization of Authority. Hence we add a direct
inheritance relation from Natural Person to Authority. But
when adding Private Bodies, Natural Person is moved down
in the hierarchy by removing its direct inheritance relation to
Authority and adding a direct inheritance relation to Private
Bodies. The classifiers in the Classification part of a law
pattern instance are always the parent elements of the Law
Structure elements in the hierarchies.

The next sections BDSG Sec. 2 and BDSG Sec. 3 are
definition sections, which we use to update our hierarchies
(partly shown in Fig. 6). For example, BDSG Sec. 3 adds
Transfer and Storage as specialization for Process to the
activity hierarchy as shown in Fig. 6.

Next we instantiate BDSG Sec. 4b as an example for
an incomplete dictate of justice. Given this section not yet
captured by our law pattern, we identify and document the
related laws and sections referred to by the given section
(e.g. BDSG Sec. 1 in the Context part (white area in Fig. 7).
Then, we search for the Law Structure (dark grey part in

Fig. 7) directly defined in this section. In Sec. 4b BDSG,
we find Abroad Transfer, and we use it to instantiate Activity.
Addressee, Target Subject, and Target Person are not defined
in Sec. 4b BDSG. Therefore, related sections defining these
terms have to be discovered. In our example, we find Public
and Private Bodies for the Addressee, Personal Data for
the Target Subject, and Individual for the Target Person in
Sec. 1 BDSG (according to BDSG Sec. 1 in the Context
part). At last we classify the elements of Law Structure.
We arrange the elements, which occur for the first time, in
the appropriate parts of the hierarchies in Fig. 6. Than a
classifier of the Classification part (light grey are in Fig. 7
is instantiated with the parent node of the corresponding
hierarchy, which is for instance Transfer, defined in Sec. 3
BDSG, for Abroad Transfer.

Instantiation of Law Identification Pattern (Core) For
identifying laws relevant for the online banking service
example, we consider the requirements, activities and assets,
documented in the direct stakeholder template instances of
the instantiated cloud system analysis pattern as described
in Sect. IV-B. As our example Fig. 8 shows, we select the
template instance of the direct stakeholder Hulda, then we

8



Natural Person
Introduced In BDSG Sec. 2

Individual
Introduced In BDSG Sec. 2

Legal Entity
Introduced In BDSG Sec. 2

BDSG Sec. 1Mentioned In
Authority

Private Body
BDSG Sec. 1Introduced In

Introduced In

Abroad Transfer

BDSG Sec. 4b

Storage
Defined in

BDSG Sec.3

Transfer
Introduced In
BDSG Sec. 3

Process
Introduced In
BDSG Sec.1

Data

Personal Data
Introduced In
BDSG Sec. 3

Figure 6. Hierarchies for Person (bottom), Subject (upper right), and Activity (upper left)

Germany

Influence

Accomplish

Avoid / Entitled To

BDSG

Abroad
Transfer Personal Data

Data

Individual

Sec. 4b

BDSG Sec. 1

General Public

BDSG Sec. 3

Transfer

Related To

Defined In

Private Bodies
Public Bodies

Law Structure

Addressee

Activity Target Subject

Influence Target Person

Subject ClassifierActivity Classifier

Mentioned In
BDSG Sec. 1

Authority Natural
Person

Person Classifier

Legislator

Domain

Regulation

Law Section

ClassificationContext

Figure 7. Law Pattern Instance BDSG Sec. 4b

choose the functional requirement Scalable Data Storing
(row ”Functional Requirements“ in the Hulda stakeholder
template instance). One of the activities associated with this
requirement is the activity Store Distributed (row ”Activ-
ities“ in the Hulda stakeholder template instance), which
refers to the asset Customer Data (row ”Assets“ in the
Hulda stakeholder template instance) of the Bank Customer.
Moreover, we instantiate the elements Legislator(s) and Do-
main(s) according to the instantiated cloud system analysis
pattern. In our example Fig. 8, we include the legislators
Germany, US, EU, and the domain Finance. In addition, we
discover the related requirement Cloud API and the process
Offering Data Storing, and document them in the instance
of our law identification pattern. So far, the instantiation
process can be performed by a software engineer.

Full Instantiation of Law Identification Pattern To in-
stantiate the Classification part, legal expertise is necessary.
According to the Core Structure of the instance of our
law identification pattern and the hierarchies built when
instantiating our law pattern, legal experts classify the el-
ements of the Core Structure. For example, the activity

Store Distributed is classified as Abroad Transfer based on a
discussion between the legal experts and software engineers.

Pattern Matching The identification of relevant laws
is based on matching the classification part of the law
identification pattern instance (light gray part) with the law
structure and classification part of the law pattern instance
(light and dark gray parts), and thereby considering the
previously documented hierarchies. If all elements match,
the law is identified as relevant. For example, we find direct
matches in the law pattern instance depicted in Fig. 7 for
the elements Abroad Transfer, Personal Data, and Individual
contained in the law identification pattern instance shown
in Fig. 8. Hulda is classified as Legal Entity and the only
element that does not directly match with Public or Private
Bodies in the law structure of Section 4b BDSG. In this
case, the hierarchy in Fig. 6 helps to identify that Legal
Entity is a specialization of Private Bodies, and thus, we
identify Section 4b BDSG as relevant.

Finally, we check for all laws identified to be relevant
if Legislator(s) and Domain(s) are mutually exclusive. In
our example, the legislator Germany contained in Context

9



Accomplish

Avoid /

Classified As

Classified As Classified As Classified As

Classified As

Related To

Data Storing
Offering

Personal Data
Defined in

Abroad Transfer

BDSG Sec. 3

Storage
Defined in

BDSG Sec. 3 BDSG Sec. 4b
Defined in

’Cloud API’

’Store Distributed’

Hulda

Core Structure

Aktive Stakeholder Passive Stakeholder

AssetActivity

Legal Entity
Mentioned In
BDSG Sec. 2

Individual
Mentioned In
BDSG Sec. 2

Activity Classifier Subject Classifier

Person Classifier

Requirement

Process

Requirement Activity

Germany

US

EU
Legislator

Legislator

Legislator

ClassificationContext

’Scalable Data Storing’

Influence Entitled To
Customer Data

Bank Customer

Distributed
Store

Finance
Domain

Figure 8. Law Identification Pattern Instance

of the law pattern instance depicted in Fig. 7 can be found
in Context of the law identification pattern instance shown
in Fig. 8. The domain General Public in the law pattern
instance can be considered as a generalization of the domain
Finance in the law identification pattern instance.

The resulting set of laws relevant for the given develop-
ment problem serves as an input for step 6 of our require-
ments elicitation method for clouds presented in Sect. III.

D. Identifcation / Specification of Relevant Requirements

In Sect. IV-D we describe the method of how to bridge
the gap between identifying relevant laws for a cloud
computing software system and the software development
process. We execute the process in the following for the
Law Identification Pattern Instance presented in Fig.8 and
the previous section. We analyze if the law can be also
translated into a security requirement from the point of few
from the stakeholder Hulda.

Instantiate stakeholder
Hulda is a stakeholder of the cloud online banking
system, because he/she accomplishes distributed
storage in the cloud computing system.

Instantiate asset
The customer data is not an asset in the sense of
a security requirement to Hulda, because he/she
stores data for a fee in the cloud and the integrity,
confidentiality and availability of the data is not
of primary concern to the stakeholder. The reason
is that he/she is not the owner of the data. These
demands could be part of an contractual obligation
of the stakeholder. However, we do not consider
these here. The restricted activity in question is the
abroad transfer of the the distributed storage. The
method terminates at this step, because the asset is
not an asset in the sense of a security requirement.

The law identification pattern instance cannot be trans-
lated into a security requirement. The next part of the
method is to decide if the abroad transfer can be translated
into a functional requirement or has to be integrated into
the software specification. Abroad transfer is not a specific
mechanism. It is rather a restriction on a functional re-
quirement that the cloud software system should store data
distributed. The requirement has to be modified into: The
cloud software system should store data distributed, but the
distribution has to be restricted to European Union. At this
point the software engineer or his/her employer has to decide
if the system-to-be is still useful with this restriction.

We also investigate a further part of the law identification
pattern instance in Fig. 8. We analyze via our method if the
abroad transfer for the bank customer is translated into a
security requirement, because we can list one example for
each of the required instantiations.

Instantiate stakeholder
The bank customer is a stakeholder of the cloud
online banking system, because the bank customer
uses the online banking software in the cloud.

Instantiate asset
The cloud costumer transfers data to the cloud and
the cloud stores the data distributed. This data is
an asset to the bank customer and he/she want the
data to be confidential from, e.g., other users of the
online bank. The bank customer also wants the data
to be available and he/she also wants its integrity
preserved.

Instantiate counter-stakeholder
A possible counter-stakeholder are the other cus-
tomers of the cloud banking system. He/she could
get access to the data of the cloud customer,
because they both have access to the cloud data
storage. Hence, the confidentiality of the data can

10



be violated.
Instantiate circumstance

The store distributed functional requirement is re-
lated to the bank customer’s data stored in the
cloud.

For simplicity’s sake we do not illustration the entire secu-
rity requirement including all counter-stakeholders and cir-
cumstances. These security requirements are not the primary
intend of the law. However, eliciting these requirements at
this point of the software development is useful for creating
a trustworthy cloud system.

V. RELATED WORK

Breaux et al. [13] present a framework that covers ana-
lyzing the structure of laws using a natural language pattern.
This pattern helps to translate laws into a more structured
restricted natural language and then into a first order logic.
In contrast to our work, the authors of those approaches
assume that the relevant laws are already known and thus
do not support identifying legal texts. Their approach does
not allow one to find dependent law sections. The approach
also has the drawbacks of formal logic analysis of laws,
which will be discussed in Sect. VI.

Siena et al. describe in one publication [14] the differences
between legal concepts and requirements. They model the
regulations using an ontology, which is quite similar to
the natural language patterns described in the approaches
mentioned before. So the resulting process to align legal
concepts to requirements and the given concepts are quite
high level and cannot directly applied to a scenario.

VI. CONCLUSIONS AND FUTURE WORK

We presented a an integrated method for pattern-based
elicitation of legal requirements, which is applied to a cloud
computing online banking example.

The novelty about our method is that several pattern based
approaches are re-used to support the structured elicitation
of knowledge of a software system and its environment, to
use the aquired knowledge to indentify and analyze relevant
laws, and finally to refine these into a set of software
engineering requirements. So far approache only cover a part
of the path from the software description to the requirements.

Our method comprises the main benefits:
• Re-using a systematic pattern-based identification and

analysis of laws and the detection of dependent laws
• Operationalize the gathered knowledge into software

requirements
• Re-using cloud-specific context and stakeholder analy-

sis based on patterns
• Ease the burden of interdisziplinary work between legal

experts and software engineers
In the future we will approach the validation of our

approach in different ways. We are seeking contact to expers
in the area of law and computer science in order in all

ways. The first research question we want to address is if
the approach arrives at the same conclusion as a court of law
for a given cloud-computing-based case. We will instantiate
patterns for the information given in this case and check if
we arrive at the same conclusion the court did.

The second resarch question we want to address is if
the method is valid for numerous given requirements en-
gineering approaches. We aim to use different requirements
engineering approaches within the method for a given cloud
computing system and compare the compatibility with our
patterns and derive needed interface or improvements for
our patterns to fit the approach for numerous requirements
engineering approaches.

We are also planning to address a third research question,
that inqures if the pattern matching in our approach is
sufficient to find dependent laws. In order to address this
question we would need to instanciate at least two complete
laws that have multiple dependencies.

We also aim to work on tool support for our approach,
e.g. to store, load, and search for laws once they have been
fitted to our law patterns.

REFERENCES

[1] C. Biagioli, P. Mariani, and D. Tiscornia, “Esplex: A rule and
conceptual model for representing statutes,” in ICAIL. ACM,
1987, pp. 240–251.

[2] K. Beckers, S. Faßbender, J.-C. Küster, and H. Schmidt, “A
pattern-based method for identifying and analysing laws,” in
REFSQ. Springer, 2012, to be published in 2012.

[3] K. Beckers, J.-C. Küster, S. Faßbender, and H. Schmidt,
“Pattern-based support for context establishment and asset
identification of the ISO 27000 in the field of cloud comput-
ing,” in ARES. IEEE Computer Society, 2011, pp. 327–333.

[4] P. Mell and T. Grance, “The NIST definition of cloud com-
puting,” Working Paper of the National Institute of Standards
and Technology (NIST), 2009.

[5] M. Jackson, Problem Frames. Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[6] J. Cheesman and J. Daniels, UML Components – A Simple
Process for Specifying Component-Based Software. Addison-
Wesley, 2001.

[7] E. B. Fernandez, D. L. la Red M., J. Forneron, V. E.
Uribe, and G. Rodriguez G., “A secure analysis pattern
for handling legal cases,” in Latin America Conference on
Pattern Languages of Programming (SugarLoafPLoP), 2007,
http://sugarloafplop.dsc.upe.br/wwD.zip.

[8] G. Sindre and A. L. Opdahl, “Capturing security requirements
through misuse cases,” in Proceedings of the Norwegian
Informatics Conference (NIK), 2001.

[9] G. Beaucamp and L. Treder, Methoden und Techniken der
Rechtsanwendung, 2nd ed. C.F.Müller, 2011.

11

http://sugarloafplop.dsc.upe.br/wwD.zip


[10] K. Larenz, Methodenlehre der Rechtswissenschaft, 5th ed.
Springer, 1983.

[11] I. Summerville, Software Engineering, 8th ed. Addison-
Wesley, 2007.

[12] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt,
“A comparison of security requirements engineering meth-
ods,” Requirements Engineering – Special Issue on Security
Requirements Engineering, vol. 15, no. 1, pp. 7–40, 2010.

[13] T. D. Breaux and A. I. Antón, “Analyzing regulatory rules
for privacy and security requirements,” IEEE Transactions on
Software Engineering, vol. 34, no. 1, pp. 5–20, 2008.

[14] A. Siena, A. Perini, and A. Susi, “From laws to requirements,”
in RELAW. IEEE Computer Society, 2008, pp. 6–10.

12


	I Introduction
	II Background
	II-A Cloud Computing Systems
	II-B Relevant Laws for Clouds

	III A Requirements Elicitation Method for Clouds
	III-A Step 1: Instantiate Cloud System Analysis Pattern and Stakeholder Templates
	III-B Steps 2–4: Process Functional Requirements, Activities, and Assets
	III-C Step 5: Identify Relevant Laws / Sections
	III-D Step 6: Identify / Specify Relevant Requirements

	IV Example: Cloud Online Banking
	IV-A Instantiation of the Cloud System Analysis Pattern and Stakeholder Templates
	IV-B Processing of Functional Requirements
	IV-C Identifcation of Relevant Laws / Sections
	IV-D Identifcation / Specification of Relevant Requirements

	V Related Work
	VI Conclusions and Future Work
	References

