
Peer-to-Peer driven Software Engineering considering
Security, Reliability, and Performance

Kristian Beckers
paluno - The Ruhr Institute for Software Technology –

University of Duisburg-Essen, Germany
Email: {Kristian.Beckers}

@paluno.uni-due.de

Stephan Faßbender
paluno - The Ruhr Institute for Software Technology –

University of Duisburg-Essen, Germany
Email: {Stephan.Fassbender}

@paluno.uni-due.de

Abstract—Internet-scale applications require scalability that
peer-to-peer (P2P) architectures provide. Traditional software
engineering processes start with requirements and move on
to architectures, software design, implementation, and testing.
Choosing a P2P architecture, however, has significant con-
straints on the requirements of a given software engineering
process in terms of security, reliability and performance.
In addition, requirements for P2P architectures have to be
expressed in notions of network engineering, because these
architectures rank from the application layer to the IP network
layer. Thus, engineering P2P systems is a cross-disciplinary task
between software and network engineers.

We explain the ramifications P2P applications have on
requirements of a given software engineering problem. A struc-
tured method supports software engineers in understanding the
constraints of different kinds of P2P architectures and protocols
on requirements. In addition, we present patterns of how the
requirements have to be expressed, so that they contain all
required information for network engineers that implement
the P2P architectures.

Keywords-P2P, security, requirements engineering, software
architecture, performance, reliability, network engineering

I. INTRODUCTION

Aligning software systems to meet requirements is a
challenging task, which is even more difficult when a Peer-
to-Peer (P2P)-based software system shall be developed.
For example, the effects of churn, the random leaving or
joining of peers in the system, can cause data loss. If a
requirement is that no data loss shall occur in the system,
then churn presents a constraint on this requirements. A
software engineer can design a countermeasure, if she is
aware of the constraint. This, however, is difficult, because
numerous constraints are caused by attributes of the P2P
protocol or even the network layer.

We present a pattern-based method to identify existing
constraints in a P2P-based software system. An initial pat-
tern considers all layers of a P2P architecture and offers
more detailed patterns for, e.g., P2P protocols. The instan-
tiation of these patterns enables an analysis of the system’s
constraints and reveals the information in which layer each
constraint originates.

The following research questions shall be answered with
our approach: Has the decision to use a P2P architecture
constraints for previously elicited security requirements?
Has also the decision for a specific P2P protocol constraints
on security, performance, and reliability requirements? Is
it possible to extract a pattern for security, reliability, and
performance requirements for P2P architectures? Which
information does a P2P security, reliability, and performance
requirements must contain, in order to support the choice of
an protocol?

The rest of the paper is organized as follows: Sect. II
presents a P2P system pattern and Sect. III, Sect. IV,
and Sect. V present templates that specify elements of the
pattern. Sect. VI shows a method that specifies how to use
the pattern and the templates to analyze the ramifications
of P2P systems on quality requirements. An example of the
method is presented in Sec. VII. Sec. VIII presents related
work. Section IX concludes and gives directions for future
research.

II. A PATTERN-SYSTEM FOR ANALYZING THE
RAMIFICATIONS OF PEER-TO-PEER ARCHITECTURES ON

QUALITY REQUIREMENTS

Peer-to-Peer (P2P) architectures design distributed sys-
tems, in which identical software works on every peer. These
systems are distributed without any centralized control or
hierarchical organization that form a self organizing overlay
network on top of the Internet Protocol (IP) [1], [2]. An
Overlay is a network which is built on top of one or more
existing networks. This adds additional properties to the
underlying network, e.g., more efficient search of data or
adding locality information to peers. It provides a commu-
nication infrastructure for all peers in the P2P architecture
[3]. P2P systems can be clients and servers at the same time.
They provide access to their resources by other systems and
support resource sharing on an internet scale. This requires
fault tolerance, self-organization, and significant scalability
properties [2]. One of the obstacles a P2P system has to
overcome is Churn, the joining and leaving of peers in a
P2P architecture without prior notification. Two fundamen-

 Layer
Reliability and Fault ResilienceSecurity Management

Location Lookup Routing

Network

Application

Performance and Resource Management

Resource Discovery

Scalability Security PerformanceReliabilityRedundancy

Application Layer

Service Layer

Services

Meta Data Service MessagingService Management

Peer−to−Peer (P2P) Protocol

Network Layer

Quality RequirementsRequirements leading to P2P

Feature Management

...
...

Layer

Overlay Management

Figure 1. A P2P System Analysis Pattern

tally different types of P2P systems exist. Structured P2P
systems organize peers via an algorithm, which leads to an
overlay with specific properties. They are often based upon
a distributed hash table. Unstructured P2P systems organize
their peers in a random graph in a flat or hierarchical manner
(e.g. Supernodes exist that outrank normal nodes). They are
based upon techniques like flooding, random walks etc. [2].
Hence, P2P architectures are fundamentally different from
stand alone or client server architectures. We present a
method that supports the identification of constraints that
P2P protocols cause on requirements. The method shall
be used in a given software development process after the
requirements for a software have been elicited and one or
more requirement(s) lead to the design decision to rely on a
P2P protocol within the software-to-be. We propose a P2P-
pattern for identifying constraints on quality requirements
caused by P2P architectures.

The pattern contains the layers of a P2P architecture,
shown in Fig. 1. The instantiation of the pattern begins
with one or more requirement(s) that lead to the decision to
use a P2P protocol. For example, scalability or redundancy
requirements can result in this decision. The pattern is based
upon the P2P architecture from Lua et al. [2], which is de-
rived of a survey of existing P2P systems. The requirements
and the layers of a P2P system are connected with arrows.
Arrows with a black arrowhead present the collection of

information through the P2P layers, getting more detailed
on every level. The white arrowheads present constraints
that are derived from all the information collected before.

The Application Layer concerns applications that are
implemented using the underlying P2P overlay. For example,
a Voice-over-IP (VoIP) application. The Service Layer adds
application specific functionality to the P2P infrastructure.
For example, for parallel and computing intensive tasks or
for content and file management. Meta-data describes what
the service offers. For instance, content storage using P2P
technology. Service messaging describe the way services
are communicating. The Feature Management Layer con-
tains elements that deal with security, reliability and fault
resiliency, as well as performance and resource management
of a P2P system. All these aspects are for maintaining
the robustness of a P2P system. We renamed the resource
management from the original architecture from Lua et al.
[2] into performance and resource management, because the
quality of the access and distribution of resources is the main
performance property of P2P architectures. The Overlay
Management Layer is concerned with peer and resource
discovery and routing algorithms. We aim to explain these in
terms of software engineering and not network engineering.
The Network Layer describes the ability of the peers to
connect in an ad hoc manner over the internet or small
wireless or sensor-based networks.

2

For reasons of space we focus on the Feature Man-
agement, Overlay Management and Network Management
Layer in this work. We present templates for these layers
in the following chapters, which specify these parts of the
pattern in more detail. Templates can also be instantiated.

III. FEATURE MANAGEMENT TEMPLATES

The feature management part of the pattern consists of
three templates for performance and resource management,
reliability and fault resilience, and security management. We
present pattern for these in the following subsections.

A. Performance and Resource Management

Performance measures in P2P systems are based upon
Quality of Service (QoS) constraints [5]. P2P systems are
designed to work on an internet scale. They consist of nu-
merous peers communicating via protocols using the internet
in particular IP, which is based upon the transmission of
small packets. Communication between peers is essential
in a P2P systems. This is the only link peers have to one
another. The P2P system is not functional anymore, when
the link breaks. The P2P overlay uses IP as an infrastructure
for this communication. The quality of the packet delivery
of IP over the internet is the so-called Quality of Service
(QoS). This transmission performance is measured in delay
(latency), jitter and packet loss rate [6]. Delay is the end-to-
end delay of a data transmission. IP packets are often routed
on different path throughout the internet. Jitter is difference
in transmission time from sender to receiver of different IP
packets. Packet loss rate is the number of lost packets of a
transmission within a specific timeframe.

Requirements for these different types of QoS arise from
different kinds of applications. Peterson and Davie [4] pub-
lished a taxonomy of applications and their relation to QoS
requirements, shown in Fig. 2. Applications that have QoS
requirements are so-called real time applications, otherwise
these are elastic applications. This means these applications
take no harm, when a packet arrives late or out of order,
e.g., file sharing applications. Real time applications can
be tolerant to packet loss, e.g., a Voice-over-IP (VoIP)
application is able to compensate for a missing or late
packet via interpolating its content from the surrounding
samples. Otherwise it is a so-called intolerant real time
application. Real time applications that are adaptable to QoS
restriction during run time are called adaptive. These are
either adaptive to delay or to the available rate (bandwidth)
with which packets are transferred. For example, a video
playback application can switch to a lower resolution of the
video, when the bandwidth decreases. The classification of
an application is important when eliciting requirements for a
p2p application. For example, a real time application has to
have a constraint on all QoS measures. In addition, adaptive
applications can vary in their constraints. Thus, the QoS have
to be given in intervals.

We accompany the pattern presented in Sect. II with
templates. The first template is the performance and resource
management template for the Feature Management Layer:
Name State the identifier for the performance element of

the Feature Management Layer.
Description Describe the characteristics of the service rel-

evant for QoS, e.g., if the service has real time QoS
constraints.

Relation to Services State the relation to the service(s) of
this element of the Feature Management Layer.

Relations to Overlay Management and Network Layer
Name the relation the application has to the Overlay
and subsequent to the Network Layer. For example. is
the Overlay used to transport data or simply used for
signaling of e.g. a VoIP application.

Resources State the resources that this service manages.
Determine QoS Type Conclude from the information col-

lected in the previous parts of the template the QoS
type.

Constraints List the constraints resulting from the chosen
P2P protocol and network protocols. Use the infor-
mation in the instantiated overlay management and
network layers.

After determining the QoS type using the pattern Tab. I
supports the identification of the relation type between the
QoS type and QoS relevant specification elements. These
elements need to be specified for a specific QoS type. A
“+” in Tab. I marks the QoS elements that have to be
specified for the QoS application type. However, the free
cells of the table do not imply that a QoS element is not
relevant for a QoS application type.

B. Reliability and Fault Resilience

Reliability of P2P systems is measured in terms of
availability [7]. This means the percentage of uptime of
the system. P2P systems rely on the ability that peers can
communicate to each other. Messages have to be relayed
throughout the network, peers have to be found and data
has to be retrieved. If one of these is not possible, the
reliability of the system is not there. Based upon the type
of applications further functionalities apply. For example,
in a real time application the ability to create and maintain
communication sessions is necessary. In the case of VoIP
applications the number of completed calls is a metric for
reliability [7].

Increasing reliability of a P2P can be increased by adding
redundancy and diversity. This measure can be integrated
into all levels of the P2P architecture. For example, Fessi
et al. [8] presented a VoIP communication infrastructure
that relied on a structured P2P system and has a fallback
server for the VoIP signaling. This central server provides
redundancy in case the P2P VoIP signaling fails, in this
case the peers can contact the fallback server. In addition,
this is also diversity, because the P2P system is essentially

3

Applications

Elastic

Real time

Tolerant

Intolerant

Adaptive

Nonadaptive

Delay adaptive

Rate adaptive

Figure 2. Taxonomy of QoS types taken from Peterson and Davie [4]

Table I
RELATIONS BETWEEN QOS APPLICATION TYPES AND REQUIRED SPECIFICATION ELEMENTS

QoS Type Bandwith Packet Loss Rate Delay Jitter Compensation Rate Adaptation Rate

Application +
Elastic +

Real Time + + +
Tolerant + + + +
Adaptive + + + + +

transformed into a client server system, when the fallback
server is used [8].

One strength of P2P systems is their ability to recover
from the failure of several peers. For example, every peer has
several links to other peers. Should one peer fail, data can
easily be routed through the remaining peers. In addition,
data can be replicated as part of a peer-to-peer protocol.
Thus, numerous replica sets exist on different peers of data.
This can significantly decrease the effects of churn [8].

We accompany the pattern presented in Sect. II also with
a template for reliability and fault resilience:

Name State the identifier for the performance element of
the feature management layer

Description Describe the characteristics of the service rel-
evant for availability, e.g., if the availability depends
upon established communication sessions or concluded
communication sessions

QoS Type State the QoS Type from the Performance and
Resource Management template.

Relation to Services State the relation to the service(s) of
this element of the feature management layer

Relations to Overlay Management and Network Layer
Name the relation the application has to the Overlay
and subsequent to the Network Layer considering
reliability. Answer the question, which relations are
essential to the operation of this element. For example.
when the overlay used to transport VoIP signaling data
the relation states that signal messages. are delivered
to recipients.

Availability types Conclude from the information collected
in the previous parts what are the essential elements
that can specify availability criteria for the availability
of this element.

Redundancy and Diversity State the redundancy and di-
versity options offered by this component. This infor-
mation is important for choosing a P2P protocol in
the Overlay Management Layer. The reason is that
properties of the protocol support these features. For
example, redundancy can be integrated into a P2P
system by making data replication to neighboring peers
part of the protocol. Moreover, diversity can be realized
via Superpeers in an unstructured P2P system.

4

Table II
RELATIONS BETWEEN QOS TYPES AND AVAILABILITY SPECIFICATION ELEMENTS

QoS Type Peer Connections Data Transfers Communication Sessions Compensations QoS Adaptations

Application +
Elastic +

Real Time +
Tolerant + +
Adaptive + +

Constraints List the constraints resulting from the chosen
P2P protocol and network protocols. Use the infor-
mation in the instantiated overlay management and
network layers.

Tab.. II supports the identification of an availability type.
A “+” in Tab. II marks the availability element that have
to be specified for a QoS type. For example, the QoS type
However, the free cells of the table do not imply that a
availability type is not relevant for a QoS application type.

C. Security Management

Dynamics in P2P systems cause several difficulties for
security. For example, churn in P2P systems makes guar-
antees that a specific file reaches its target difficult. Central
entities alone in the routing path can increase the effects
of churn. However, these become single points of failure
and decrease the scalability of the system. Moreover, P2P
systems aim to operate at an internet scale. Numerous nodes
in these systems must be regarded as not trustworthy [9].

Gheorghe et al. [10] identified a number of attacks,
classified by targets in the P2P systems. The attacks are
each classified against a P2P-specific security goal:

Node Autonomy Each node should be able to perform its
functions as a peer and its autonomous functionalities.
In collusion attacks a malicious node comprises other
nodes to carry out a correlated attack. The difficulty
in preventing this attack is to identify the node that is
causing the attack. Neighbor selection attacks enable
attackers to control the selection of peers of several
nodes. This can affect the overlay communications and
control traffic. Membership and Eclipse Attacks effect
the way nodes are admitted into the overlay. An eclipse
attack is a specific kind of membership attack, where an
attacker gains control over a part of the P2P systems.
Hence, the attacker is able to drop or reroute every
message in this part of the P2P system.

Confidentiality and Integrity Forgery Attacks break the
confidentiality and integrity of data in the P2P system.
These attacks focus on tampering with data that is
transmitted in the P2P system. In pollution attacks
attackers mix junk pieces of data into the P2P system.
This can have significant effects on the QoS of a P2P

system. These attacks also scale with the size of the
P2P network.

Node Authentication These attacks focus on the reputation
systems of a P2P network. These networks often keep
a list of how peers perform their expected functionality,
e.g., forward data to other peers. The reputation of a
peer rises if it performs its functionality as expected.
Otherwise the reputation decreases. In Sybil Attacks
an attacker has found a way to temper with peers
reputations.

Dependability and Availability Denial of Service (DoS)
Attacks consist of numerous malicious nodes, which
send excessive amounts of requests or duplicate packets
to peers. This exhausts the resources of the P2P system.
Omission Attacks are the opposite of DoS attacks.
These cause that packets or data is not sent further
through the P2P system or that peers do not function
according to the P2P protocol anymore.

Security in P2P systems also depend upon the QoS applica-
tion taxonomy introduced in Sect. III-A. Security of systems
have been studied for elastic P2P applications, mostly file
sharing applications [9]. Elastic applications have to be
protected against the attacks above. In these systems the
functionality of the P2P systems has to be kept intact. Real
time applications have significant QoS constraints. Attack-
ers of these systems can already succeed with delaying a
message instead of deleting it. For example, video streaming
applications demand low delay and high constant bandwidth
[9]. Thus, real time applications are more susceptible to
attacks on availability. In addition, unsolicited communica-
tion, e.g., Spam over Internet Telephony (SPIT) in real time
communications is a bigger threat, because these cause a
ringing tone or play an offending video. SPIT is difficult
to counteract, due to decisions that have to be done in real
time. Dynamic membership and frequently changing routing
path in P2P systems cause that countermeasures are difficult
to apply. Moreover, spammers can harvest target locations
by simply trying lookup requests in the P2P system [9].

Privacy concerns are also an issue in P2P systems. For
example, a malicious node can log the routing path of VoIP
messages in a P2P system. Thus, the attacker can establish a
list of who called whom and further more. This is considered
personal information and is hidden to users in common

5

telephone systems [9]. In addition, when peers can figure
out the routing paths, they might also figure out the overlay
node IDs. Hence, an attacker might also learn the IP address
of the peer. Moreover, the IP can then be linked to a person
and this can cause a significant privacy breach.

Thus, when designing a P2P system the usage of these
patterns and their protection has to be a key focus of the P2P
engineering efforts. In real time systems these patterns have
to able to fulfill the QoS requirements. The specification of
a P2P system should evolve around how well a P2P system
has to perform. The template for security is shown in the
following:
Name State the identifier for the security element of the

feature management layer
Description Describe the characteristics of the service rel-

evant for security.
QoS Type Specify the QoS type according to the Perfor-

mance and Resource Management template. According
to the QoS type countermeasures to specific attacks will
become relevant. For example, unsolicited communica-
tion has to be prevented in real time applications, e.g.,
in the form of SPIT for VoIP.

Relation to Services Describe the security requirements
for the service(s).

Relations to Performance and Reliability The security
of a P2P system is related to the performance and
reliability of the P2P system. Hence, the information
in these templates has to be considered (see Sect. III-A
and Sect. III-B. These are relevant because availability
goals, which security and reliability share, are
expressed in QoS terms. Hence, specify dependability
and availability goals derived from the other templates
of the features management layer.

Relations to Overlay Management and Network Layer
Describe the relation to the underlay, e.g., which
information is transported between Overlay and
Feature Management Layers.

Security goals Specify the security goals availability, in-
tegrity and confidentiality. In addition, the P2P specific
security goals node authentication and node autonomy.

Constraints List the constraints resulting from the chosen
P2P protocol and network protocols. Use the infor-
mation in the instantiated Overlay Management and
Network layer.

IV. OVERLAY MANAGEMENT TEMPLATE

We describe important P2P protocol attributes derived
from [2], [11], [3]:
Churn The leaving of peers of the P2P system can cause a

loss of data, which is routed through this peer or stored
in it. The joining of peers in large numbers at a given
point in time can affect the QoS of the system, e.g.,
because routing path for data increases or existing data
has to be distributed to more peers.

Overlay-Underlay Relation In a P2P network there is no
direct relation between the network layer and the peers.
This can cause performance issues, e.g., on routing of
data in the P2P system. Two peers might be located
next to each other in the network, but in the P2P
network data might be routed through several other
peers that are further away. This also effects security,
because the more peers route the data, the more gather
knowledge about it. Reliability is affected because of
the increased network load that can cause an instability
of the network. Moreover, the more peers the data is
routed through, the greater is the chance that it is lost
due to churn.

Structured P2P Architecture Structured P2P architectures
arrange all the peers in a graph. Maintaining this graph
or distributed hash table is difficult, because of churn.
These architectures have to use a considerable amount
of resources to keep the graph intact. For instance,
chord uses an algorithm that just checks if the ring
and the routing tables on each node are intact. The
benefit is the level of control in the architecture is
higher than in an unstructured P2P architecture. There
is a structured way to interact with a specific node.
For instance, the hash function in a distributed hash
table provides information how to find a specific peer.
The performance of a structured p2p architecture for
distributing content is assumed to be slower than the
performance of a unstructured p2p network, because
the path for finding specific data and routing it is
predetermined in a structured p2p architecture. Thus,
if many user request the same data, the performance of
the peers in that route take a performance hit. On the
other hand finding specific and rare data is more likely
to succeed in a structured P2P architecture.

Unstructured P2P Architecture Unstructured P2P archi-
tectures work via random walks, e.g., flooding tech-
niques. These cause a performance load upon the
network, because every peer in this architecture always
sends messages to many known peers. On the other
hand this allows to use numerous peers for a task,
e.g., the sharing of data. Thus, also the workload gets
distributed. Unstructured P2P network have to deal with
the problem of clustering. Each peers learns the location
of a few other peers in unstructured P2P architectures
and the peers learns from these peers the location of
further peers. When all peers do not learn the location
of others peers they form a cluster that cannot contact
the remaining peers in the architecture.

Flat P2P Architecture P2P architectures have either the
constraints of structured or of unstructured P2P archi-
tectures.

Hierarchical P2P Architecture In these architectures
peers with different properties are introduces to change
the constraints of structured or unstructured P2P

6

architectures. For instance, a Superpeer in a structured
P2P architecture can be a server that never leaves the
P2P architecture. Thus, eliminating the effects of churn
on, e.g., some specific data. In an unstructured P2P
architecture a Superpeer could eliminate the clustering
problem by realizing which clusters exist and provide
a connection between these.

We also present a template for P2P protocols:
Name State the name of the P2P protocol
Description Types Describe the type of P2P protocol: is it

a structured or unstructured P2P protocol and the used
hierarchy: is it flat or hierarchical.

Description Mechanisms Describe how the resource dis-
covery, location lookup and routing works (see Sect. II).

Churn State the QoS Type from the Performance and Re-
source Management template in relation to the effects
of Churn in the protocol.

Relations to the Network Layer Name the Overlay-
Underlay-Relation the P2P protocol has towards the
Network Layer. For example. the overlay uses the TCP
protocol on the network layer to transport network
packets.

Extensions of the P2P protocol Was the P2P protocol ex-
tended, e.g., in order to improve a specific functionality,
for example, increase routing performance via a modi-
fication of the algorithm in an structured P2P protocol.

V. NETWORK TEMPLATE

The Network Layer enables peers to send messages to each
other over the internet. The packet-based IP network is used
via UDP [12] or TCP [13] protocols. TCP contains several
quality functionalities, e.g., checks that a packet arrived at
its destination, while UDP lacks these. However, due to
UDPs simplicity the data transfer is considerably faster. This
is often required for real time applications, e.g., VoIP. We
present a template for the p2p network layer:
Name State the name of the network layer
Protocol State the used network protocol: UDP or TCP.
Description Describe the characteristics of the network

layer. Are the functionalities of the used protocol en-
hanced, e.g., with a software providing functionality on
top of the protocol.

VI. A METHOD FOR ELICITING THE CONSTRAINTS A
P2P ARCHITECTURE CAUSES ON QUALITY

REQUIREMENTS

The method for using the pattern depict in Fig. 1 starts
with requirements leading to the decision to use a p2p
protocol. The method follows first the arrows with the black
arrowheads to the Network Layer. Hence, identifying and
collecting constraints on the requirements. Afterwards the
method follows the white arrowheads from the Network
Layer back to the requirements. In this part of the method
possible conflicts with requirements are identified.

Specify the application The first step requires a set of
requirements as an input and a functional description
of the software-to-be. The result is a description of the
application.

Specify each Service The application is refined into ser-
vices. These have each meta data that describes their
functionality, a management element that provides the
functionality and a messaging component to exchange
data with, e.g., distributed parts of the service. For
example, a remote data storage. The service level can
also add further requirements.

Describe the Feature Management for each Service
Specify the features of a service containing security,
reliability and fault resiliency, and performance and
also resources. We represent these each as specific
templates that are instantiated using the requirements
from the previous steps.

Choose a P2P Protocol Choose a suitable P2P protocol
and instantiate the P2P protocol template. The template
requires a description of the resource discovery, peer
location lookup and routing functionalities, as well as
the protocol types.

Specify the Network Layer Instantiate the template for
the network layer. List the type of protocol used on top
of IP ,e.g., UDP or TCP and a possible enhancement
of the features of these protocol in a messaging layer
on top of these protocols.

Consider the Network-Overlay-Relation Describe the ef-
fect the chosen type of network protocol has on the
P2P protocol. For example, using UDP increases the
transmission speed, but the protocol has no mechanisms
to ensure a packet is delivered. These effects have to be
noted and resulting issued documented and especially
the layer on which these occurred. These information
has to be added to the p2p protocol template.

Identify constraints for the Feature Management List
the constraints coming from the overlay and the
network on the features for security, performance and
reliability in the templates.

Analyze the Effects on the Services State the relation
that the identified issues on the feature layer have on
the services.

Analyze the Effects on the Application State the rela-
tion that the identified issues on the services have on
the application.

Describe the Constraints om Requirements Describe the
resulting constraints the application now has on the
quality requirements, e.g., security, performance and
reliability. If it is not possible to fulfill the requirements
considering the constraints the software has to be
changed. Furthermore, mechanisms could be consid-
ered in the Feature Management Layer, e.g., to change
the P2P protocol or to implement further mechanisms in
the Network Layer or even to exchange the protocol.

7

Identify were the issue occurred and re-iterate these
parts of the pattern.

VII. EXAMPLE

We use a distributed early warning system on an internet-
scale that is able to prevent, e.g., cyber warfare, for example
in the form of DDOS attacks as an example for this work.
An intrusion detection system (IDS) consists of at least
the following components sensor, analyzer, and manager
according to RFC 4765 [14] the intrusion detection mes-
sage exchange format. The RFC was written by the IETF
Intrusion Detection Working Group (idwg).

A sensor collects data from a data source. For example,
a probe in a network that collects packets from a specific
network protocol. The sensor looks for specific events or
patterns and when these occur it sends collected data to the
analyzer. This component analyzes the collected data for
signs of unauthorized or undesired activity or for events that
might be of interest. The manager component controls all
components of an IDS, configures sensors and analyzers, and
also the event notification management, data consolidation,
and reporting.

Figure 3 presents an instantiation of the P2P systems pat-
tern. The requirement leading to the decision of using a P2P
protocol is the scalability demand of the IDS application. In
addition, the system has several quality requirements. The
system has the security requirement to be available at all
times and to resist a distributed denial of service (DDoS)
attack. The system has also reliability as a quality require-
ment. The performance requirement of the system is that the
system shall be initialized fast. The application consists of
three basic types of services. These are the sensor, analyzer,
and manager service according to the IDS description. These
services rely upon the security management component for
DDoS detection. This means detection DDoS in progress on
the network and against the IDS. In addition, a reliability
component provides the functionality that a certain stability
in the network is ensured. The instantiated performance and
resource management component provides the functionality
for a high speed alert notification. We choose the Gnutella
[15] P2P protocol, an unstructured P2P system with a flat
hierarchy.

The Gnutella network is based upon some loose rules
that manifest in a number of communication protocols. Join
the network: Peers send PING messages to announce their
presence. These PING messages are forwarded throughout
the network. Peers reply with PONG messages that state
their IP address and additional information. Locate data:
In order to locate a data item peers flood the network with
QUERY messages. Peers that have the data respond with a
QUERY RESPONSE message that contains the information,
where to download the data. Transfer files: GET and PUSH
messages initiate file transfers between peers.

We choose to use the UDP protocol in the network layer.
A messaging layer between the UDP layer and the overlay
management is not added in this system.

We present instantiations of the Feature Management tem-
plates for performance, reliability, and security. For reasons
of space we present only the templates for the sensor service.
In addition, we left out redundant or empty fields in the
template.
We present the instantiated performance template:
Name Alert Notification
Description Real time constraints
Relation to Services The sensor service sends alert notifi-

cations and the analyzer receives these.
Relations to Overlay Management and Network Layer

The Overlay Management has to transport the messages
using the Network Layer.

Resources None.
Determine QoS Type Real Time Application
Constraints UDP protocol gives no guarantees that a pack-

age is delivered, performance is improved using UDP
then using TCP, Gnutella cannot guarantee that an alert
message is delivered in time,

We present the instantiated reliability template:
Name Reliability
Description Availability depends upon the ability to transfer

alert messages
Relations to Overlay Management and Network Layer

The Overlay and Network Layers are used to transport
the alert messages.

Availability types The availability depends upon the re-
liability of the P2P network. In this case it is an
unstructured P2P system, hence the delivery of an alert
message cannot be guaranteed.

Redundancy and Diversity The Gnutella protocol does
not offer redundancy or diversity. These features would
have to be implemented in the Feature Management
Layer.

Constraints The protocol does not offer redundancy or reli-
ability features in its original form. In addition, neither
the Gnutella nor the UDP protocol can guarantee the
delivery of an alert messages.

We present the instantiated security template:
Name Distributed Denial of Service Detection
Description The availability security goal has to be fulfilled

at all times.
QoS Type Real Time application.
Relation to Services The sensor service sends alert notifi-

cations, the analyzer receives these.
Relations to Performance and Reliability The availabil-

ity condition is expressed within the performance con-
ditions.

Relations to Overlay Management and Network Layer
Neither the Overlay Management nor the Network

8

Initialize Fast

UDP

IDS

Scalability

Manager Service

Analyzer Service

Sensor Service

Join the network Transfer Data

Reliability Alert notification

Application Layer

Service Layer

Network Layer

Quality RequirementsRequirements leading to P2P

Feature Management

Layer

Overlay Management

 Layer

Gnutella Protocol

Locate Data

DDoS Detection

Availability Reliability

Figure 3. A P2P System Analysis Pattern Instantiation

Layer can guarantee the availability of the system.
Security goals The availability security goal has to be

fulfilled at all times.
Constraints The availability of the system cannot be guar-

anteed due to the attributes of the P2P protocol and the
network protocol.

The instantiation of the pattern and the feature management
template for one service already shows that the availability
requirements of the software cannot be fulfilled within the
system architecture. A re-design of the architecture has to
happen on the Feature Management Layer or even on the
layers below in order to solve the problem.

VIII. RELATED WORK

Tsalgatidou et al. [16] present a UML profile for P2P
architectures. The profile builds upon the QoS UML profile
and offers specific support for dependability properties, e.g.,
security, availability, and reliability. However, the work does
not offer a structured approach for identifying the constraints
a P2P-system can cause on requirements. On the other hand,
the UML profile can complement our work.

Nakajima et al. [17] investigated the trustworthiness of
P2P overlay networks. The authors investigate how faulty
peers can be identified in a network and how likely it is to
remove unwanted content from a P2P system. Their work
can complement our own.

Grolimund and Müller [18] present a pattern language for
overlay networks in P2P systems. The authors describe the
usage of existing design patterns in P2P systems and what
further design patterns are required in order to describe a
P2P system. Verma [3] describes the general architecture of
P2P systems in contrast with traditional client server archi-
tectures. The author describes basic components of every
P2P system and compares the strengths and weaknesses of
the two approaches. These works can also complement the
work presented in this paper.

Sanders et al. [19] proposes organizational patterns for
P2P applications and frameworks that address the problem
that global knowledge and naming conventions do not exist
in these applications. We are considering only software
requirements without the business domain.

Angelaccio et al. [20] introduce a model-driven QoS man-
agement framework using UML. The authors also address
adaptive QoS management in P2P systems. We are looking
only into the augmentation of the software development
processes with a method to investigate the constraints P2P
systems have on requirements.

IX. CONCLUSIONS AND FUTURE WORK

We showed a method that allows software engineers to
identify constraints on requirements when designing a P2P-
based software. Thereby the constraints on software require-
ments are made explicit and the software engineer gains

9

information on which layer in the P2P system the problem
originates. This information can be used to extend the system
with a component that lifts the constraint in the best case.
At the very least software engineers can state that a specific
requirement cannot be fulfilled when using a P2P-system.

Our approach offers the following main benefits:

• A structured, pattern-based method that can be instan-
tiated for a given P2P-based-software system

• Systematic identification of constraints on requirements
caused by P2P architectures

• Improving the outcome of distributed system imple-
mentation by supporting the identification of constraints
on requirements, which are caused by P2P systems

• The approach can be used with a given software devel-
opment process in order to elicit the ramifications of
using a P2P-protocol

The work presented here will be extended to support
further types of distributed systems. Moreover, we will look
into refining the presented patterns into further technical
patterns that are closer to specific implementations.

REFERENCES

[1] IETF, “Internet protocol,” Internet Engineering Task Force
(IETF), IETF RFC 791, 1981. [Online]. Available: http:
//tools.ietf.org/rfc/rfc791.txt

[2] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim,
“A survey and comparison of peer-to-peer overlay network
schemes,” IEEE Communications Surveys and Tutorials,
vol. 7, pp. 72–93, 2005.

[3] D. Verma, Legitimate Applications of Peer-to-Peer Networks.
Wiley-Interscience, 2004.

[4] L. L. Peterson and B. S. Davie, Computer Networks - A
Systems Approach, 4th ed. Morgan Kaufmann, 2007.

[5] S. Agarwal, J. Singh, A. Mavlankar, P. Baccichet, and
B. Girod, “Performance and quality-of-service analysis of a
live p2p video multicast session on the internet,” in Quality
of Service, 2008. IWQoS 2008. 16th International Workshop
on, june 2008, pp. 11 –19.

[6] ITU-T, “Series E: Overall Network Operation, Telephone
Service, Service Operation and Human Factors, Quality
of telecommunication services: concepts, models, objectives
and dependability planning – Terms and definitions related
to the quality of telecommunication services,” International
Telecommunication Union - Telecommunication Standardiza-
tion Sector (ITU-T), ITU-T E.800, 2008.

[7] S. A. Baset and H. Schulzrinne, “Reliability and relay selec-
tion in peer-to-peer communication systems,” in Principles,
Systems and Applications of IP Telecommunications, ser.
IPTComm ’10. New York, NY, USA: ACM, 2010, pp. 111–
121.

[8] A. Fessi, H. Niedermayer, H. Kinkelin, and G. Carle, “A
cooperative sip infrastructure for highly reliable telecommu-
nication services,” in Proceedings of the 1st international
conference on Principles, systems and applications of IP
telecommunications, ser. IPTComm ’07. New York, NY,
USA: ACM, 2007, pp. 29–38.

[9] J. Seedorf, “Security Issues for P2P-Based Voice- and Video-
Streaming Applications,” in iNetSec 2009: Open Research
Problems in Network Security, ser. IFIP Advances in Informa-
tion and Communication Technology. Springer, 2009, vol.
309, ch. 10, pp. 95–110.

[10] G. Gheorghe, R. Lo Cigno, and A. Montresor, “Security and
Privacy Issues in P2P Streaming Systems: A Survey,” Peer-
to-Peer Networking and Applications, pp. 1–17, 2010.

[11] A. Tsalgatidou, G. Athanasopoulos, and P. Liaskovitis, “A
uml profile for software architectures and peer to peer depend-
able applications,” in CAiSE Short Paper Proceedings’05,
2005, pp. 9–14.

[12] IETF, “User datagram protocol,” Internet Engineering Task
Force (IETF), IETF RFC 768, 1980. [Online]. Available:
http://tools.ietf.org/rfc/rfc768.txt

[13] ——, “Transmission control protocol,” Internet Engineering
Task Force (IETF), IETF RFC 793, 1981. [Online]. Available:
http://tools.ietf.org/rfc/rfc793.txt

[14] ——, “The intrusion detection message exchange format
(idmef),” Internet Engineering Task Force (IETF), IETF
RFC 4765, 2007. [Online]. Available: http://www.ietf.org/
rfc/rfc4765.txt

[15] Gnutella, “The gnutella protocol specification,” http://rfc-
gnutella.sourceforge.net/developer/stable/index.html.

[16] A. Tsalgatidou, G. Athanasopoulos, and P. Liaskovitis, “A
uml profile for software architectures and peer to peer depend-
able applications.” in CAiSE Short Paper Proceedings’05,
2005, pp. 9–15.

[17] Y. Nakajima, A. G. Nemati, T. Enokido, and M. Takizawa,
“Trustworthiness and confidence of peers in peer-to-peer
(p2p) network,” in Proceedings of the 22nd International
Conference on Advanced Information Networking and Ap-
plications - Workshops, ser. AINAW ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 313–318.

[18] D. Grolimund and P. Müller, “A Pattern Language
for Overlay Networks,” ETH Zürich, Tech. Rep., Dec.
2005. [Online]. Available: http://www.inf.ethz.ch/research/
disstechreps/theses/show?lang=en&serial=503

[19] R. T. Sanders and R. Braek, “Modeling peer-to-peer service
goals in uml,” in Proceedings of the Software Engineering
and Formal Methods, Second International Conference, ser.
SEFM ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 144–153.

[20] M. Angelaccio and A. D’Ambrogio, “A model-driven frame-
work for managing the qos of collaborative p2p service-
based applications,” in Proceedings of the 15th IEEE Inter-
national Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 95–102.

10

http://tools.ietf.org/rfc/rfc791.txt
http://tools.ietf.org/rfc/rfc791.txt
http://tools.ietf.org/rfc/rfc768.txt
http://tools.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc4765.txt
http://www.ietf.org/rfc/rfc4765.txt
http://www.inf.ethz.ch/research/disstechreps/theses/show?lang=en&serial=503
http://www.inf.ethz.ch/research/disstechreps/theses/show?lang=en&serial=503

	I Introduction
	II A Pattern-System for Analyzing the Ramifications of Peer-to-Peer Architectures on Quality Requirements
	III Feature Management Templates
	III-A Performance and Resource Management
	III-B Reliability and Fault Resilience
	III-C Security Management

	IV Overlay Management Template
	V Network Template
	VI A Method for Eliciting the Constraints a P2P Architecture causes on Quality Requirements
	VII Example
	VIII Related Work
	IX Conclusions and Future Work
	References

