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Abstract

In this thesis, we present an engineering process for developing software-based dependable sys-
tems based on patterns and re-usable components.

The process starts with expressing dependability requirements, such as confidentiality, in-
tegrity, availability, and reliability using patterns that refer to suitable descriptions of the envi-
ronment. This thesis considers random faults as well as certain attacks and therefore supports a
combined safety and security engineering. The patterns - attached to functional requirements -
are part of a pattern system that can be used to identify missing requirements. The consolidated
requirements can be used to develop the specification of the system to be built systematically.

For architectural design, knowledge from the requirements analysis can be used together with
architectural patterns and generic components. We describe step-by-step how the architecture
for a dependable system can be developed and analyzed.

For the system - implemented according to this architecture - the functional requirements
and the dependability requirements should be verified. We propose a new method for system
validation by means of testing, which is based on environment models expressed as UML state
machines.

Each aspect is illustrated on small examples of a cooperative adaptive cruise control (CACC)
system, and the whole approach is illustrated on a patient care system (PCS) as a comprehensive
example.

German Abstract

In dieser Arbeit presentieren wir einen Entwicklungsprozess für verlässliche softwarebasierte
Systeme, der auf Mustern und wiederverwendbaren Komponenten basiert.

Der Prozess beginnt mit dem Aufstellen von Verlässlichkeitsanforderungen, wie zum Beispiel
für Vertraulichkeit, Integrität, und Verfügbarkeit und Zuverlässigkeit. Die Anforderungen wer-
den mit Hilfe von Mustern beschrieben und beziehen sich auf geeignete Beschreibungen der
Umgebung. In dieser Arbeit werden zufällige Fehler aber auch gezielte Angriffe betrachtet. Da-
her wird ein ingenieurmäßige Entwicklung von sicheren Systemen im Sinne von Safety (Schutz
der Umgebung) und Security (Informationssicherheit) unterstützt. Die Muster - funktionalen
Anforderungen zugeordnet - sind Teil eines Mustersystems, das zur Identifikation von fehlen-
den Anforderungen genutzt werden kann. Die so konsolidierten Anforderungen können genutzt
werden, um die Spezifikation des Systems systematisch zu entwickeln.

Um die Architektur zu entwickeln, kann ebenfalls Wissen aus der Anforderungsanalyse, zusam-
men mit Architekturmustern und generischen Komponenten verwendet werden. In einer Schritt-
für-Schritt Anleitung beschreiben wir, wie die Architektur für verlässliche Systeme entwickelt
und analysiert werden kann.

An dem System - das entsprechend der Architektur implementiert wurde - müssen die funk-
tionalen Anforderungen und die Verlässlichkeitsanforderungen verifiziert werden. Wir schlagen
eine neue Testmethode zur Systemverifikation vor, die auf einem als UML Zustandsmachinenen
dargestellten Umgebungsmodell basiert.

Jeder Aspekt wird an einem kleinen Beispiel eines kooperativen Tempomaten gezeigt und
der gesamte Ansatz wird an einem Patienten-Behandlungs-System als vollständiges Beispiel
dargestellt.
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Chapter 1

Introduction

Dependable systems play an increasingly important role in daily life. More and more tasks are
supported or performed by computer systems with software. These systems are often required
to be safe, secure, available, reliable, and maintainable.

Safety is the inability of the system to have an undesirable effect on its environment, and
security is the inability of the environment to have an undesirable effect on the system (Røstad,
Tøndel, Line, & Nordland, 2006). To achieve safety, systematic and random faults must be
handled. For security, certain attackers must be considered. Availability is the readiness for
service (up-time vs. down-time) (Laprie, 1995). Reliability is a measure of continuous service
accomplishment (Laprie, 1995). Maintainability is not considered in this thesis.

This thesis focuses on embedded systems development. Especially, for embedded systems,
dependability must be considered, since many embedded systems are used in critical infrastruc-
tures. Embedded systems are computer-based systems being part of a product other than a
computer (Simon, 2004). They consist of hardware and software components, and are used in
the application domains automotive, aviation and space technology, medical technology, traffic
guidance technology, industrial automation, telecommunications, business, entertainment, and
household. According to Broy and Pree (2003), about 98 % of the CPUs produced worldwide
are used in embedded systems. Since embedded systems are usually produced in large numbers,
incorrectly functioning systems might cause large damages.

It is a widely accepted opinion in the software engineering community that reusing software
development knowledge helps to avoid errors and to speed up the development of a software
product. One promising attempt that enables software engineers to systematically construct
software using a body of accumulated knowledge are patterns.

Patterns have been introduced on the level of detailed object oriented design (Gamma, Helm,
Johnson, & Vlissides, 1995a). Today, patterns are defined for different software development
activities. Problem Frames (Jackson, 2001) are patterns that classify software development
problems. Architectural styles are “architectural patterns” that characterize software architec-
tures (Buschmann, Meunier, Rohnert, Sommerlad, & Stal, 1996). Design Patterns are used for
finer-grained software design, while frameworks (Fayad & Johnson, 1999) are considered as less
abstract, more specialized. Finally, idioms are low-level patterns related to specific programming
languages (Buschmann et al., 1996), and are sometimes called “code patterns”.

Dependability requirements must be described and analyzed. Problem frames (Jackson, 2001)
are a means to describe and analyze functional requirements, but they can be extended to
describe also dependability mechanisms, as shown in earlier papers (Hatebur, Heisel, & Schmidt,
2006, 2007a). Functional requirements expressed with problem frames refer to and constrain
parts of the environment. They describe the how the environment should behave when the
system to be built is operating. Especially for dependability requirements the environment is
of importance, i.e., a system may be safe and secure enough in one environment (in a private
home), but not in another environment with e.g, more potential attackers, high electro-magnetic
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influence, or persons around who are not able to avoid harm that maybe caused by the system.
Another promising attempt to reuse software development knowledge are reusable compo-

nents. The basic idea of component-based software development is to build software systems
from smaller (already developed and tested) parts. The component approach tries to apply
standard engineering methods to software development.

The developed system has to be implemented in such a way that the intended functionality
and also the dependability requirements are fulfilled. This implementation has to be verified and
validated. For the verification, we want to make use of the model of the environment in which
the system will be operating. This model can be used to test the system to be built against its
requirements, which refer to the environment.

Within this thesis, the following goals are pursued:

• We investigate how dependability can be systematically integrated into system develop-
ment.

• We create an approach that enables a seamless development from the requirements engi-
neering to implementation and testing. Seamless development has the potential to lead to
a high quality of the system. High system quality is a necessary condition for dependable
systems. Our basic approach is to use the same framework for requirements presentation
and architectural design.

• We investigate how to describe dependability requirements in order to be able

– to analyze them,

– to use them to derive the specification of the system, and

– to use them for the architectural design.

• We investigate how to systematically integrate mechanisms into the architecture that ad-
dress the dependability requirements.

• We collect approaches to achieve a dependable implementation.

• We investigate how the description of the environment, necessary to describe dependability
requirements, can be used for testing.

• We investigate to which extend our approaches support the certification of a developed
product.

The thesis is structured as follows: In Chapter 2 basic concepts necessary to understand the
thesis are presented. Chapter 3 introduces the ADIT software development process (Hatebur &
Heisel, 2009a). This process is extended for dependability engineering for embedded systems.
Chapter 4 describes a requirements engineering approach using patterns. In Chapter 5, we define
a set of patterns that can be used to describe and analyze dependability requirements. Chapter 6
describes how to integrate the use of the dependability patterns into a system development
process and analyze the requirements for possible interactions and completeness. In Chapter 7 we
present a systematic approach for developing specifications for dependable systems. In Chapter 8
we present a method to systematically derive software architectures from problem descriptions.
In Chapter 9 this method is extended to address dependability requirements systematically
in the architecture. Chapter 10 summarizes some generic rules for implementing dependable
systems. In Chapter 11 we propose a new method for system validation by means of testing,
which is based on environment models expressed as UML state machines. Chapter 12 relates
the presented work to commonly used standards like Common Criteria for security aspects as
well as IEC/ISO 61508 for safety aspects. Additional to the partial case studies in each chapter,
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Chapter 13 contains a case study including all steps of the development process. In each chapter,
the related work is addressed. The thesis closes with a summary and perspectives in Chapter 14.





Chapter 2

Basic Concepts

In this chapter, we briefly introduce basic concepts, notations, and terminology used in this
thesis. Section 2.1 introduces the key concepts and terminology in the field of dependabil-
ity engineering. Section 2.2 introduces the agenda concept, Section 2.3 context diagrams, and
Section 2.4 introduces terminology and problem frames developed by Jackson (2001). In Sec-
tion 2.5 the UML notations used in this thesis are introduced. Section 2.6 introduces basics
about UMLsec. Section 2.7 give a brief introduction to the Object Constraint Language. In
Section 2.8 gives an overview on the terminology in the field of architectures and architectural
styles.

2.1. Dependability Concepts and Terminology

An important quality attribute for systems is dependability. It comprises safety, security, relia-
bility, and maintainability.

Dependability

Safety MaintainabilitySecurity

Confidentiality Integrity Availability Reliability

Figure 2.1.: Dependability Terminology

For this thesis, we define the terms in Fig. 2.1 as follows:

• Security is the inability of the environment to have an undesirable effect on the sys-
tem, considering attackers (Røstad et al., 2006). For security certain attackers must be
considered.

• Safety is the inability of the system to have an undesirable effect on its environment,
considering systematic and random faults (Røstad et al., 2006).

• Maintainability is the ability to undergo modifications and repairs. (Avizienis, Laprie,
Randall, & Landwehr, 2004). Maintainability can be achieved by additional interfaces
for updates (of the whole software or components), by a maintainable structure of the
software itself (e.g., documentation, appropriate architectures, comments in the source
code), and by maintenance plans (e.g., restart the software once a week to reduce memory
fragmentation). Maintainability is not considered in this thesis.
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Security can be described by confidentiality, integrity and availability requirements. Confi-
dentiality is the absence of unauthorized disclosure of information. Integrity is the absence
of improper system, data, or a service alterations (Pfitzmann & Hansen, 2006). Availability
is the readiness for service (up-time vs. down-time) (Laprie, 1995). Availability, in contrast to
reliability, does not require correct service. Also for safety, integrity and availability must be
considered. For safety, integrity and availability mechanisms have to protect against random
(and some systematic) faults. Reliability is a measure of continuous service accomplishment
(Laprie, 1995). A safety-critical system has to perform its safety functions with a defined reli-
ability (or integrity). In this case, reliability describes the probability of correct functionality
under stipulated environmental conditions (Courtois, 1997). This terminology is used in the
whole thesis and especially in Chapter 5.

2.2. Agenda Concept

The agenda concept (Heisel, 1998) is used in this thesis to describe processes. An agenda
is a list of steps or phases to be performed when carrying out some tasks in the context of
systems and software engineering. Each step results in a document that is expressed in a certain
language, e.g., natural language, problem diagrams (cf. Section 2.4), UML (Unified Modeling
Language (UML Revision Task Force, 2010c)) diagrams, or even formal languages can be used.
Agendas contain informal descriptions of the steps, which may depend on each other. Therefore
they are a method to guide systems and software development activities. Additionally, agendas
support quality assurance, because the steps may have validation conditions associated with
them that help to detect errors as early as possible in the process. These validation conditions
state necessary semantic conditions that the developed artifact must fulfill in order to serve
its purpose properly. The agenda concept is used to describe our development process (see
Appendix A) and parts of our dependability extension described in Chapter 3.

2.3. Context Diagrams

The environment in which the machine (system to be built) will operate can be represented by
a context diagram (Jackson, 2001). It is used for structuring of problems by structuring the
description of the environment.

A context diagram consists of domains and interfaces. Domains are represented by rectangles.
Plain rectangles denote application domains (that already exist). A rectangle with a single
vertical stripe denotes a designed domain physically representing some information. A rectangle
with a double vertical stripe denotes the machine to be developed. The connecting lines represent
interfaces that consist of shared phenomena. A shared phenomenon of an interface is controlled
by one domain and it can be observed by other domains. However, a context diagram does not
show who is in control of the shared phenomena.

An example of a context diagram is shown in Fig. 2.2. This context diagram shows a patient
monitoring system. The Monitor machine is the machine domain in this context. The domain
Periods & Ranges is a designed domain. All other domains (e.g., Medical staff, Nurses’ station)
are application domains. The interfaces in this context diagram are denoted with a, b, c, d,
e, and f. Period, Range, PatientName, and Factor are shared phenomena associated with the
interface a.

The domain Analog devices is a connection domain. Connection domains connect two ore more
other domains. They represent a communication medium or device between these domains.
Connection domains have to be considered if connections are unreliable, introduce delays that
are an essential part of the problem, convert phenomena, or are explicitly mentioned in the



2.4. Problem Frames 7

staff

Medical

Nurses’
station

Factors
database

Periods &

Ranges

Monitor

Analog

devices patients

ICU

a: Period, Range, PatientName, Factor

EnterPatientName, EnterFactor
b: EnterPeriod, EnterRange,

c: Notify
d: Factors

f: FactorEvidence

a

b

c

d

e

f

e: RegisterValue

machine

Figure 2.2.: Context Diagram: Patient Monitoring System (cf. (Jackson, 2001))

requirements (Jackson, 2001). Other examples for connection domains are network connections,
display units, or keyboards that are used for user input.

In Chapter 4, this context diagram notation is extended and context diagrams are used in
Chapters 7, 8, and 9.

2.4. Problem Frames

Problem frames are a means to describe software development problems. They were proposed
by Michael Jackson (Jackson, 2001), who describes them as follows:

“A problem frame is a kind of pattern. It defines an intuitively identifiable problem
class in terms of its context and the characteristics of its domains, interfaces and
requirement.”

Problem frames classify simple problems. A real-world software development problem is usually
a complex problem. Hence, we must decompose a complex problem into subproblems such that
problem frames are applicable. Problem frames are described by frame diagrams, which basically
consist of rectangles, a dashed oval, and different links between them, see Fig. 2.3. The task is
to construct a machine that establishes the desired behavior of the environment (in which it is
integrated) in accordance with the requirements.

Jackson (Jackson, 2001, p. 83f) considers three main domain types:

• “A biddable domain usually consists of people. The most important characteristic of a
biddable domain is that it is physical but lacks positive predictable internal causality. That
is, in most situations it is impossible to compel a person to initiate an event: the most
that can be done is to issue instructions to be followed.”

RW!C1

AM!E3 Y4
rules

EnquiryEO!E5 E5
operator

B

C
Display

C

Real
world

Answer

C2

machine
Answering

Figure 2.3.: Commanded Information problem frame (cf. (Jackson, 2001))
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Commanded

Operator E4

C3

B

Controlled

Control

C

CM!C1
CD!C2

O!E4

Domain

Machine
Behaviour

Figure 2.4.: Commanded Behaviour problem frame
(cf. (Jackson, 2001))

Control
CD!C2
CM!C1

domain
Controlled

C

C3
machine behaviour

Required

Figure 2.5.: Required Behaviour problem frame (cf.
(Jackson, 2001))

IO
relation

Y4

Inputs

Outputs

machine
Transform

TM!Y2

X

X

Y3I!Y1

Figure 2.6.: Transformation problem frame (cf.
(Jackson, 2001))

User

B

X

Workpieces Y4

E3

effects

Command

E!E1
WP!Y2

Editor

U!E3

Figure 2.7.: Simple Workpieces problem frame (cf.
(Jackson, 2001))

Biddable domains are indicated by B (e.g., Enquiry operator in Fig. 2.3).

• “A causal domain is one whose properties include predictable causal relationships among
its causal phenomena.”

Often, causal domains are mechanical or electrical equipment. They are indicated with a
C in frame diagrams (e.g., Display in Fig. 2.3). Their actions and reactions are predictable.
Thus, they can be controlled by other domains.

• “A lexical domain is a physical representation of data – that is, of symbolic phenomena.
It combines causal and symbolic phenomena in a special way. The causal properties allow
the data to be written and read.”

Lexical domains are indicated by X.

For domains and interfaces, the same notations as for the context diagram can be used.
Requirements are denoted with a dashed oval. A dashed line represents a requirement reference,
and an arrow indicates that the requirement constrains a domain. If a domain is constrained by
the requirement, we must develop a machine, which controls this domain accordingly. In Fig. 2.3,
the Display domain is constrained, because the Answering machine changes it on behalf of Enquiry
operator commands to satisfy the required Answer rules. Shared phenomena are observable by
at least two domains, but controlled by only one domain. In the problem diagram and frame,
this is indicated by an exclamation mark. For example, in Fig. 2.3 the notation EO!E5 means
that the phenomena in the set E5 are controlled by the domain Enquiry operator and observed
by the domain Answering machine.

Jackson identified some basic problem frames: Fig. 2.4 shows the Commanded Behaviour
frame. That frame addresses the issue of controlling the behavior of the controlled domain
according to the commands of the operator. The Required Behaviour (Fig. 2.5) frame is similar
but without an operator; the control of the behavior has to be achieved in accordance with some
rules. Other basic problem frames are the Transformation frame in Fig. 2.6 that addresses the
production of required outputs from some inputs, and the Simple Workpieces frame in Fig. 2.7
that corresponds to tools for creating and editing of computer processable text, graphic objects
etc. Additional frames can be developed: For example, the Commanded Information frame
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RW!C1

Display

Display
C

C
C3

Y4

Real world

world
Real

IM!E2

machine
Information

Figure 2.8.: Information Display problem frame (cf. (Jackson, 2001))

shown in Fig. 2.3 on Page 7 is a variant of the Information Display frame (see Fig. 2.8) where
there is no operator, and information about the states and behavior of some parts of the physical
world is continuously needed.

It is possible and recommended to extend the list of problem frames. In (Côté, Hatebur,
Heisel, Schmidt, & Wentzlaff, 2008), we give an enumeration of possible problem frames, based
on domain characteristics, and comment on the usefulness of the obtained frames. In particular,
we investigate problem domains and their characteristics in detail. This leads to fine-grained
criteria for describing problem domains. As a result, we identify a new type of problem domain
(display domain, see Section 4.1.3) and come up with integrity conditions for developing useful
problem frames (see Section 4.1.4). Taking a complete enumeration of possible problem frames
(with at most three problem domains, of which only one is constrained) as a basis, we find 8 new
problem frames. The problem frame data-based control is used in this thesis. This frame refers
to a lexical domain and constrains a causal domain. It can be regarded as a required behaviour
frame, because lexical domains are special causal ones. However, a separate frame is appropriate
since different aspects (e.g., design of the data) have to be considered to solve such a problem.
An example is a calendar-based heating control system (no heating on holidays).

Requirements engineering with problem frames proceeds as follows: first, the environment
in which the machine will operate is represented by a context diagram. Then, the problem is
decomposed into subproblems. Whenever possible, the decomposition is done in such a way that
the subproblems fit to given problem frames.

A context diagram forms the basis for problem decomposition through projection. A complex
problem can be decomposed into subproblems by applying decomposition operators to the ac-
cording context diagram such that the resulting simple subproblems can be fitted to problem
frames.

To fit a subproblem to a problem frame, one must instantiate its frame diagram, i.e., provide
instances for its domains, phenomena, and interfaces. The instantiated frame diagram is called
a problem diagram. A problem diagram for the odometer according the following description is
given in Fig. 2.9 on the next page:

A microchip computer is required to control a digital electronic speedometer and
odometer in a car. One of the car’s rear wheels generates pulses as it rotates. The
computer can detect these pulses and must use them to set the current speed and
total number of miles traveled in the two visible counters on the car fascia. The
underlying registers of the counters are shared by the computer and the visible
display.

The odometer problem diagram is an instance of the commanded information problem frame
in Fig. 2.8. The car on road represents the real world and the Fascia display is an instance of
the Display. Furthermore, relevant domain knowledge about the domains contained in the frame
diagram must be elicited, examined, and documented. Domain knowledge consists of facts and
assumptions. Facts describe fixed properties of the environment irrespective of how the machine
is built, e.g., that a network connection is physically secured. Assumptions describe conditions
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Counters
~
Travel

a
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d
b

mirochip
Odometer

road
Car on

a: CR!{WheelPulse}

d: FD!{SpeedCount, DistCount}

c: CR!{Speed, CumDist}

display

Fascia

b: OM!{IncSpeed, DecSpeed, IncDist}

Figure 2.9.: Odometer problem diagram (cf. (Jackson, 2001))

that are needed, so that the requirements are accomplishable, e.g., we assume that a password
selected by a user is not revealed by this user to other users.

Successfully fitting a problem to a given problem frame means that the concrete problem
indeed exhibits the properties that are characteristic for the problem class defined by the problem
frame. A problem can only be fitted to a problem frame if the involved problem domains belong
to the domain types specified in the frame diagram. For example, the “User” domain of Fig. 2.7
can only be instantiated by persons, but not for example by some physical equipment like an
elevator. Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine. A specification describes the
behavior of the machine at its external interfaces (see (Jackson & Zave, 1995) for details). The
specification describes the machine and is the starting point for its construction.

The problem frames are used for the functional requirements in Chapter 4 an is the basis for
the handling of dependability requirements described in Chapter 5.

2.5. UML Diagrams

To specify different aspects of a system, we use the following UML diagram types:

• class diagrams,

• sequence diagrams, and

• composite structure diagrams

Syntax and semantic of these diagrams are given in UML Revision Task Force (2010c). In Chap-
ter 4, class diagrams are used to express context diagrams, problem diagrams, problem frames,
domain knowledge diagrams and mapping diagrams. In Chapter 5, class diagrams are used to
express problem diagrams. We use sequence diagrams in Chapter 7 to express specifications.
Architectures in Chapters 8 and 9 are expressed using composite structure diagrams. Nearly all
UML elements of the class diagrams, sequence diagrams, and composite structure diagrams can
be used within the associated steps of the development process.

2.6. UMLsec

UMLsec (Jürjens, 2005) constitutes a UML profile used to develop and analyze security mod-
els. UMLsec offers new UML language elements and constraints to specify typical security
requirements such as secrecy (in this context, the same as confidentiality), integrity, authentic-
ity (truthfulness of origins), and attacker models. The language elements are introduced using
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a profile with stereotypes Examples for pre-defined UMLsec stereotypes are �critical� to label
security-critical parts of UML diagrams, �secure dependency� to ensure that dependent parts
of models preserve the security requirements relevant for the parts they depend on, �secure
links� to introduce attacker models, and �data security� to analyze behavior models with
respect to confidentiality and integrity requirements. The aforementioned stereotypes are used
in Chapter 7 for creating UMLsec specifications based on results from security requirements
engineering. A detailed explanation and a formal foundation of the tags and stereotypes defined
in UMLsec can be found in Jürjens (2005).

Based on UMLsec models and the semantics defined for the different UMLsec language ele-
ments, with UMLsec possible security vulnerabilities can be identified at a very early stage of
software development. One can thus verify that the desired security requirements, if fulfilled,
enforce a given security policy. This verification is supported by the UMLsec tool suite, which
is available online via http://www.umlsec.de/. UMLsec is used to express specifications of
secure systems in Chapter 7.

2.7. OCL – Object Constraint Language

The Object Constraint Language (OCL) (UML Revision Task Force, 2010a; Warmer & Kleppe,
2003) is part of UML (UML Revision Task Force, 2010c). It is a notation to describe con-
straints on object-oriented modeling artifacts such as class diagrams and sequence diagrams. A
constraint is a restriction on one or more elements of an object-oriented model.

We use association ends or role names to navigate from the context to other model elements.
Often associations are one-to-many or many-to-many, which means that constraints on a col-
lection of objects are necessary. OCL expressions either state a fact about all objects in the
collection using quantification or facts about the collection itself.

We make use of the following operators and keywords to construct constraints:

boolean expression1 implies boolean expression2 is a boolean expression used for logical implica-
tions.

boolean expression1 and boolean expression2 is a boolean expression representing the logical con-
junction operator.

boolean expression1 or boolean expression2 is a boolean expression representing the logical dis-
junction operator.

collection− > forAll(identifier : type | boolean expression) is the universal quantification oper-
ator; the result is true if boolean expression is true for all elements of collection.

collection− > exists(identifier : type | boolean expression) is the existential quantification op-
erator; the result is true if boolean expression is true for at least one element of collection.

collection− > select(identifier : type | boolean expression) returns all elements from collection
for which boolean expression is true.

collection− > reject(identifier : type | boolean expression) returns all elements from collection
for which boolean expression is false.

collection− > collect(identifier : type | expression with identifier) returns a new collection de-
rived from collection by evaluating expression with identifier .

collection1− > union(collection2) returns the union of collection1 and collection2.

collection− > size() returns the number of elements contained in collection

http://www.umlsec.de/
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collection− > includes(identifier : type) returns true, if identifier is contained in collection, and
false otherwise.

collection− > includesAll(identifier : collection(type)) returns true, if identifier is a subset of
collection, and false otherwise.

identifier .oclIsTypeOf (type) returns true, if identifier has the type type, and false otherwise.

identifier .oclAsType(type) returns the identifier as type, or if the conversion is not possible it
returns oclInvalid .

identifier1 = identifier2 equality operator: returns true if identifier1 is equal to identifier2, and
false otherwise.

identifier1 <> identifier2 inequality operator: returns true if identifier1 is not equal to identifier2,
and false otherwise.

OCL is used to express integrity conditions on models in Chapters 4, 5 and 8. It is also used
to describe pre- and postconditions of operations defining derived attributes in Chapter 5 and
model transformation operations in Chapter 7.

2.8. Architectures and Architectural Styles

According to Bass, Clements, and Kazman (Bass, Clements, & Kazman, 1998),

“the software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them.”

Architectures can be given for hardware and software. To express hardware architectures, it
is sufficient to describe components with interfaces between the components. This component-
based structuring can be provided by hardware description languages like VHDL (Ashenden,
2002) or Verilog (Hoppe, 2006) and also by UML composite structure diagrams. In contrast,
the architecture of software is multi-faceted (Kruchten, 1995): there exists a structural view, a
process-oriented view, a function-oriented view, an object-oriented view with classes and rela-
tions, and a data flow view on a given software architecture. In this thesis a structural view
with interfaces is used for the following reasons:

• The process-oriented view can be added by defining components as active or passive.

• The function-oriented view can be extracted from the interfaces and their descriptions.

• The possible data flow is given by the parameters and return values of methods in the
interface classes.

Architectural styles are patterns for software architectures. A style is characterized by Bass,
Clements, and Kazman (Bass et al., 1998) as

(i) a set of component types (e.g., data repository, process, procedure) that perform some
function at runtime,

(ii) a topological layout of these components indicating their runtime interrelationships,

(iii) a set of semantic constraints (for example, a data repository is not allowed to change the
values stored in it), and
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(iv) a set of connectors (e.g., subroutine call, remote procedure call, data streams, sockets)
that mediate communication, coordination, or cooperation among components.

When choosing an architecture for a machine, usually several architectural styles are possible,
which means that all of them could be used to implement the functional requirements. Which
architectural style is the most appropriate must then be decided using non-functional criteria
such as efficiency, scalability, or modifiability.

Some important architectural styles are layered architecture, repository architecture, and the
pipe and filter architecture.

Application

Hardware Abstraction Layer

Interface Abstraction Layer

Figure 2.10.: Layered Architecture

(Repository)
Storage

Data

Client

Client Client

Client

Figure 2.11.: Repository Architecture

Layered architecture A layered architecture allows a hierarchical organization of software.
“Lower” layers provide services for “higher” layers. A well-known example is the ISO/OSI
reference model for communication protocols (Zimmermann, 1980). A layered architec-
tural pattern with only 3 layers is shown in Fig. 2.10. It consists of an application layer
that processes the signals corresponding to those in the physical environment, an interface
Abstraction Layer (IAL) with adapter components that transform the signals of the appli-
cation into signals that can be understood by the Hardware Abstraction Layer (HAL). This
layer provides abstract interfaces to the hardware components. The layered architecture
divides the software into device-dependent and device-independent parts according to the
(extended) four variable model developed by David Parnas and extended by Bharadwaj
and Heitmeyer (1999). The four variables in the model are the monitored variables, the
controlled variables, the input data, and the output data. The monitored variables are
measured quantities (i.e., physical values, monitored by sensors). The controlled variables
are affected quantities (i.e., physical values, controlled by actuators). The input data are
resources from which the values of monitored variables must be determined. These are
submitted via a technical interface (electrical signals corresponding to digital values). The
output data are resources available to affect controlled variables. They are submitted via a
technical interface by the machine (electrical signals corresponding to digital values). The
basic idea of the extended four variable model is, that the application layer software should
have the same interfaces as the system, i.e., monitored and controlled variables. Thus, the
application layer becomes device-independent. IALs and HALs are used to transform the
input data into monitored variables, and to transform the controlled variables into output
data. The components in the layered architecture are either Communicating Processes
(active components) or used with a Call-and-Return mechanism (passive components).

Repository architecture The repository architecture consists of a central data storage and sev-
eral client components that use the central data storage to exchange data. The repository
architectural style is shown in Fig. 2.11.
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Pipe and filter architecture The pipe and filter architecture consists of several sequential com-
ponents. Each component performs one step of the complete task (also called filter) and
the results are transferred to the next component using a pipe (see Fig. 8.7 on Page 131).

The definitions of architectures and architectural styles are the basis of Chapters 8 and 9.
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Basic Development Process

Dependable systems and software should be developed using a structured development process.
Such a process must be extended to handle dependability requirements.

In this chapter, a pattern- and component-based development process for software and system
development is presented. The process covers analysis, design, implementation and testing and
is called ADIT. It emerged from projects dealing for example with

• smart card operating systems and applets for smart cards in the area of security-critical
systems,

• a protocol converter that connects a proprietary RS-485-based bus system with a CAN-bus
system, and

• motor control and automatic doors in the area of safety-critical systems.

The process consists of a sequence of steps to be performed. As a means of presentation, we use
the agenda concept introduced in Section 2.2. In each step, a natural-language description or a
model (mostly expressed using UML 2.0, (UML Revision Task Force, 2010c)) is developed. In
addition, each step has some validation conditions associated with it that help to detect errors as
early as possible in the process. A first version of this process was published in the paper (Heisel
& Hatebur, 2005) and improved versions can be found in (Hatebur, 2006; Heisel & Hatebur,
2008; Hatebur & Heisel, 2009a; Heisel et al., 2011; Choppy, Hatebur, & Heisel, 2011).

This process is based on problem frames (see Section 2.4) and makes used of architectural
patterns (see Section 2.8). It covers hardware and software components. The main focus is on
embedded software components and the modeling of problems, specifications, tests and archi-
tectures.

The chapter is structured as follows: In Section 3.1 we give an overview of a pattern- and
component-based development process to develop systems and software. Details about all steps
(input, output, validation and procedure) are described in Appendix A. This section also gives an
overview of our extension to develop dependable systems and software. Section 3.2 introduces the
case study that is used in the following chapters to illustrate the process with the dependability
extension. In Section 3.3 we discuss related work and conclude the chapter in Section 3.4.

3.1. Extended ADIT overview

In the following, we describe the development process called ADIT (Analysis, Design,
Implementation, Testing) that serves as a basis for our method to handle dependability require-
ments, described in the following chapters. ADIT is a model-driven, pattern-based development
process also making use of components. It is a joint development of the work group Software
Engineering at the University of Duisburg- Essen. ADIT consists of four phases, namely analy-
sis, design, implementation, and testing. Each phase is sub-divided into different steps. These
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steps detail what needs to be done in order to set up the needed development documents for the
respective step. We use the agenda concept (see Section 2.2) to arrange the different steps. The
structure for each step is as follows: first, we present its agenda. After presenting the agenda,
we mention necessary input followed by a procedure that describes how we can construct the
requested output from the provided input. Next, we describe the resulting output. In the
following, we briefly state the purpose of each step. Details are described in Appendix A.

3.1.1. Analysis Phases

Concerning the analysis, we consider the following steps:

A1 Problem Elicitation and Description: To begin with, we need requirements that state
our needs. Therefore, we need a description of the desired functionality of the software to be
built. Out of this description, we can derive the relevant requirements. The requirements
are initially expressed in natural language. In this step, we also state domain knowledge,
which consists of facts and assumptions. We must find an answer to the question: “Where
is the problem located?”. Therefore, the environment in which the software will operate
must be described. Thus, the output of this step is a model describing the environment of
the software to be built, the requirements and the domain knowledge. We use a context
diagram (see Section 2.3) for that purpose. In contrast to Jackson, we allow more than one
machine domain in the context diagram to , e.g., take distributed systems into account.

A tight integration of requirements analysis and later development steps helps to avoid
mistakes. For dependable systems development, mistakes in the development should be
avoided. Using the same notation and re-using elements of the analysis support a tight
integration. In Chapter 4, we introduce a UML profile that allows us to describe the
environment with the same notation as used in later development phases.

For systems considering random and systematic faults a preliminary hazard analysis has
to be performed. For systems considering an attacker a threat analysis has to be per-
formed. The analysis results act as an input for the next steps dealing with dependability
requirements. This step can be performed in parallel to Step A1 – Problem Elicitation
and Description (see Appendix A.1). The output of Step A1 is the input of the analysis
step, and the output of the analysis acts as additional input of Step A1. The agenda of
the analysis step is shown in the following table:

Input: requirements R optative statements

domain knowledge D ≡ F ∧ A
indicative state-
ments

context diagram of system to be built
extended UML no-
tation

Output: requirements addressing the hazards or threats natural language

necessary risk reduction to be achieved by these requirements
numbers or natural
language

Glossary: - -

Validation: All domains in the environment are considered. check manually
Faults in or attacks on all functions of the machine are considered. check manually

A procedure for creating a preliminary hazard analysis is described, e.g., by Mader et
al. (2011). A procedure for threat- and risk-analysis during early security requirements
engineering is described by Schmidt (2010b). Both are not part of this thesis.

A2 Problem Decomposition: We answer the question: “What is the problem?” in this
second step. To answer the question, it is necessary to decompose the overall problem
described in Step A1 (Problem Elicitation and Description) into small manageable sub-
problems. For decomposing the problem into subproblems, related sets of requirements are
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identified first. Second, the overall problem is decomposed by means of the decomposition
operators described in Section 4.1.5. These operators are applied to the context diagram.
Afterwards, we have constructed our set of subproblems represented as problem diagrams
(see Section 2.4) as output.

Subproblems can be described as suggested in Chapter 4.

When the problem is decomposed into smaller subproblems, the dependability require-
ments can be documented in the same way as the other requirements by using the problem
diagram notation we introduce in Chapter 5. In Chapter 5, we also introduce pattern that
can be used to express dependability requirements. The patterns allow one to represent
each dependability requirements as text, a predicate, and an extension of a problem dia-
gram. If a requirement fits to a certain pattern, a solution approach (generic mechanism)
associated to this pattern can be selected in order to identify inconsistencies and missing
requirements. We describe the detailed procedure in Chapter 6. The agenda described in
Appendix A.2 has to be extended as follows:

Input: all results of Step Problem Elicitation and Description

Output: set of subproblems (for functional requirements)
extended UML no-
tation

dependability requirements

predicates, natural
language, and ex-
tended UML nota-
tion

generic mechanisms that solve the dependability problem natural language

Glossary: machine domains of subproblems natural language
new phenomena and domains (if introduced) natural language
name of composed requirements natural language

Validation: see Appendix A.2

A3 Abstract Machine Specification: In the previous step, we were able to find out what
the problem is by means of problem diagrams. However, problem diagrams do not state
the order in which the actions, events, or operations occur. Furthermore, we are still
talking about requirements. Requirements refer to problem domains, but not to the ma-
chine, i.e., the system to be built. Therefore, it is necessary to transform requirements
into specifications. The procedure is illustrated in Section 7.1. We use UML sequence
diagrams (see Section 2.5) as models for our specifications. Sequence diagrams describe
the interaction of the machine with its environment. Messages from the environment to
the machine correspond to operations that must be implemented. These operations will
be specified in detail in Step A5 (Operations and Data Specification). The output of this
step is a set of specifications for each subproblem represented as sequence diagrams.

The specification can be derived from dependability requirements in the same way as for
functional requirements, described in Chapter 7.

For some dependability requirements with selected generic mechanisms, the specification
can be derived by using patterns. Section 7.3 describes how to systematically re-use
behavioral descriptions that are defined for some of the solution approaches that can be
selected in Step A2 – Problem Decomposition. The procedure for creating a specification
to fulfill dependability requirements has to be described by detailed rules and patterns.
Some rules and patterns are presented in Chapter 7.

A4 Technical Context Diagram: In this step, the technical infrastructure in which the
machine will be embedded is specified. For example, an adaptive cruise control system
may use the speed signal of the car that is provided by the controller processing the wheel
pulses. The notation for the model in this step is the same as in Step A1 (Problem
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Elicitation and Description), namely a context diagram. As it describes the technical
means used by the machine for communicating with its environment, we refer to it as
technical context diagram. The technical context diagram is introduced in Section 4.1.

For dependability requirements it is important to describe the technical environment since
the technical environment may have an influence on dependability. Nevertheless, there is
no difference in the procedure compared to functional requirements.

A5 Operations and Data Specification: The purpose of this step is to set up the necessary
internal data structures represented as analysis class diagrams (see Section 2.5). Further-
more, we specify the operations identified in Step A3 (Abstract Machine Specification) by
providing pre- and postconditions for each relevant operation. We use OCL (see Section
2.7) to express these operation specifications. The class diagrams as well as the operation
specifications constitute the two output elements of this step.

The specification of operations and data supports a structured development process, and
a structured development process is necessary for the development of dependable systems.

A6 Machine Life-Cycle: In this analysis step, the overall behavior of each machine is spec-
ified. We use life-cycle expressions proposed by Coleman et al. (1994) to describe this
behavior. This means that we explicitly express the relation between the sequence dia-
grams associated with the different subproblems. The software life-cycle is the output of
this step.

Expressing the life-cycle of the machine supports a structured development process, and a
structured development process is necessary for the development of dependable systems.

3.1.2. Design Phases

For the design phase, we propose the following steps:

D1 Machine Architecture: Setting up a software architecture is our first design step. We
divide it into three sub-steps.

a) The first sub-step, Initial Architecture, is used to provide a coarse-grained overview
by deriving an initial architecture from the given problem descriptions.

b) In the second sub-step, Implementable Architecture, the initial architecture is
enriched by further details resulting in an implementable architecture.

c) The third step, Re-structure Software Architecture, is optional. It is executed
whenever a specific architectural style is desired. The implementable architecture is
then re-structured in such a way that it adheres to the desired architectural style.

A procedure for creating the architecture for machines with functional requirements is
presented in Chapter 8.

We extend this procedure in Chapter 9. It describes the handling of machines consisting
of several hardware components (e.g., for hardware redundancy) and takes dependability
requirements explicitly into account. It shows how to make use of design patterns for solv-
ing dependability requirements and how to annotate quality stereotypes that serve as hints
for the person implementing the system. The solution approach selected in Step Problem
Elicitation and Description can also help to find appropriate dependability components to
be used for the architecture. In general, input, output, glossary, validation and procedure
described in the agenda in Appendix A.7, do not change. The output may be extended
by annotated quality stereotypes.
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D2 Inter-Component Interaction: We describe the interaction of the components con-
tained in the architecture. The signals specified in the interfaces of the architecture (see
Step D1 - Machine Architecture) are used to annotate the abstract sequence diagrams
from Step A3. The sequence diagrams developed in this phase are a concrete basis for the
test implementation for all components.

For dependability requirements it is important to describe the component specifications.
It may be possible that specific patterns can be applied also for this step. Nevertheless,
there is no difference in the procedure compared to functional requirements. Deriving the
component specifications is state of the art and not covered by this thesis.

D3 Intra-Component Interaction: Some of the components of the architecture may be
considered as complex, i.e., they are composed of several other components. Therefore,
we specify the structure and the behavior of these complex components in more detail.
We use UML composite diagrams or class diagrams to represent the structure, and we use
sequence diagrams to represent the behavioral descriptions.

For dependability requirements it is important to describe the detailed design. Neverthe-
less, there is no difference in the procedure compared to functional requirements. Deriving
the detailed design is state of the art and not covered by this thesis.

D4 Complete Component or Class Behavior: At the end of this last step of our design
phase, we have enough detail to directly transform the results of this step into an im-
plementation. We achieve this by providing a complete internal behavioral description of
relevant software components and classes. As a means of representation we use UML state
machines (see Section 2.5).

Expressing the internal behavioral supports a structured development process, and a struc-
tured development process is necessary for the development of dependable systems.

3.1.3. Implementation Phase

For the implementation phase, we propose the following step:

I1 Implementation and Unit Test: In this step, the components are implemented and
connected according to the specified architecture. The task is to transform the design into a
correct implementation (with respect to the specifications). This step is relatively straight-
forward, as most complex design decisions have already been made in the design steps.
Note that ADIT is not directed at a particular programming language. Instead, general
rules for implementation with object oriented (OO) programming languages are presented.
During implementation, unit test are created in order to perform repeatable tests of the
implemented methods. These tests are systematically derived from specifications given in
Steps D2 (Inter-Component Interaction) and D3 (Intra-Component Interaction).

In general, the implementation of software with dependability requirements can be per-
formed in the same way as for software with only functional requirements. To avoid
systematic faults, standards give dedicated rules for the implementation of safe and secure
software. Some rules for the implementation are presented in Chapter 10.

3.1.4. Test Phases

For the testing phase, we propose the following steps:

I1 Component Tests: In this step, the implemented components are tested according to the
specifications given in Step D2 (Inter-Component Interaction) and D3 (Intra-Component
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Interaction). The life-cycle from Step A6 (Machine Life-Cycle) helps to execute the tests
in an appropriate order.

I2 System Test: The system test verifies the machine as a black box. The integrated
components together are tested against the specifications of Step A3 (Abstract Machine
Specification) under consideration of the life-cycle from Step A6 (Machine Life-Cycle).

I3 Acceptance Test: The acceptance test verifies the machine in the intended usage envi-
ronment. The test descriptions with acceptance criteria are specified based on Step A2
(Problem Decomposition).

In general, the testing of software with dependability requirements can be performed in the
same way as for software with only functional requirements. An advantage of the presented
development process is that the environment models created in Step A1 (Problem Elicitation
and Description) can also be used for test case generation. If the behavior of the system mainly
depends on the states of machine and environment, and many test cases should be performed,
an approach as presented in Chapter 11 can be used. Even if additional penetration or fault-
injection tests have to be performed to verify dependability requirements, input, output, glossary,
validation and procedure described in the agenda in Appendix A.14, A.15, and A.16 do not
change.

3.2. Case Study

ADIT for dependability is illustrated by a case study of a cooperative adaptive cruise control
(CACC) system maintaining string stability (see Hatebur and Heisel (2009b)). Such a system
controls the speed of a car according to the desired speed given by the driver and the measured
distance to the car ahead. It also considers information about speed and acceleration of the car
ahead which is sent using a wireless network1. We selected this case study because for such a
system, we have safety requirements as well as security requirements. In the case study, we have
to reduce the risk of unintended braking and acceleration caused by internal faults and also the
risk of braking and acceleration initiated by an attacker.

3.3. Related work

Many processes for systems and software development were published, e.g., Rational unified Pro-
cess (Jacobson, Booch, & Rumbaugh, 1999), V-Model (Dröschel & Wiemers, 1999), Cleanroom
Software Engineering (Prowell, Trammell, Linger, & Poore, 1999), Scrum (Schwaber, 2004). All
these processes are on another level of detail. None of them describes detailed steps with input,
procedure, output and validation. Our idea is to provide more detailed guidance by giving this
information.

Standards like Common Criteria (International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC), 2009a) and ISO 26262 (International Orga-
nization for Standardization (ISO), 2011) define documents to be created for a certification.
In contrast to this thesis, they do not integrate safety and security and do not give a detailed
procedure how to create the necessary documents.

3.4. Conclusion

In this chapter, we have sketched the development process ADIT for functional requirements
and outlined how this development process can be extended for dependability requirements. The

1cf. United States Patent 20070083318
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development of systems with dependability requirements is mainly supported by the following
aspects:

• To express dependability requirements adequately, the environment must be described.
This is already done by standard ADIT.

• For dependable systems with safety and security requirements, a preliminary hazard anal-
ysis or a threat analysis has to be performed. Such analysis can be easily integrated into
ADIT.

• ADIT supports the requirements engineering for functional requirements with patterns
(problem frames). In this chapter, we mentioned that patterns can also be used for ex-
pressing dependability requirements. If a requirement fits to a certain pattern, a solution
approach associated to this pattern can be selected. The solution approach can help to
identify conflicting or missing requirements.

• For dependable systems, approved solutions should be re-used. For some solution ap-
proaches associated to problem patterns, specifications (behavioral descriptions) are given
and can be re-used.

• With the extended ADIT, re-use is not only possible on the level of specifications, but also
on the level of implementation. In this chapter, we mentioned that the selected solution
approach can also help to find appropriate dependability components.

• The technical infrastructure may have an influence on dependability. The description of
technical infrastructure is already done by standard ADIT.

• In this chapter, we mentioned that the implementation can be supported by dedicated
rules that avoid systematic faults.

• For dependable systems, the quality needs to be demonstrated. The environment models
can also be used for generating a huge number of test cases.

• A structured development process as proposed with ADIT helps to avoid mistakes. This
is a great importance for the development of dependable systems.

The process described here is a heavyweight process since many outputs have to be created
and these outputs are tightly integrated, i.e., even small changes in one output document lead
to many other outputs to be updated. Such a tight integration is necessary to ensure a high
degree of correctness and consistency. The problem with the impact of small changes can be
addressed by tool support that at least indicates all inconsistencies or by using a single model
and reducing redundant model elements.

An important task is to develop a method that also allows the developers to evolve existing
systems and not only develop new systems from scratch. It is also necessary to have a better
integration of preliminary hazard analysis and threat analysis into the development process.





Chapter 4

UML Profile for Requirements

Engineering

The development of dependable systems can be supported by a solid tool support and a tight
integration of the requirements to later development steps. Currently, Jackson’s requirements
engineering process is not equipped with solid tool support. This chapter aims at providing
tool support for this requirements engineering process. Instead of developing a new tool from
scratch, we decide to use UML (UML Revision Task Force, 2010c) and extend it in a way
that it can be used to express at least Jackson’s (Jackson, 2001) context diagrams, problem
diagrams, and problem frames. This is possible by adding profiles to the UML meta-model
by defining stereotypes and constraints. The UML profile allows us to express the different
diagrams occurring in the problem frame approach using UML notation. The diagrams are
mapped to parts of a global model and a graphical representation.

In addition, we augment the original problem frame notation (see Section 2.4) by concepts
known in UML, such as aggregation and multiplicities, to further enhance the requirements
engineering process at hand. According to Jackson’s approach, it is not possible to constrain
a biddable domain. We can only constrain a connection domain between the machine and the
biddable domain. This connection domain displays (this also includes acoustical “displaying”)
the output of the machine. We have to assume, but we cannot guarantee that the biddable
domain notices the displayed information. For domains with these properties, we introduced
the display domain as a special causal domain, see Côté et al. (2008). In contrast to Jackson,
we allow more than one machine domain in the context diagram to be able to model distributed
systems. In case of several machine domains, the subproblems have to be assigned to one of the
machines and for each machine an architecture have to be developed. In addition to Jackson’s
diagrams, we express technical knowledge (that we know or can acquire before we proceed to the
design phases) about the machine to be built and its environment in a technical context diagram
(Hatebur & Heisel, 2009a). To express mandatory behavior of domains in the environment
we have introduced domain knowledge diagrams. Details about these diagrams are given in
Section 4.1.

The Eclipse framework (Eclipse - An Open Development Platform, 2008) constitutes an in-
tegrated development environment that can easily be adapted to meet the different needs of
software engineers. The adaptation is usually achieved by adding plug-ins to the basic Eclipse
installation. One plug-in which is useful for modeling purposes is the Eclipse Modeling Frame-
work (EMF) (Eclipse Modeling Framework Project (EMF), 2008). The EMF enables engineers
to create structured data models compliant to UML. The data models are equipped with meta-
data, which can be queried and updated via a Java interface. EMF stores the model information
using the XML Meta-data Interchange (XMI) (UML Revision Task Force, 2007) format. An-
other interesting plug-in is the one for the Object Constraint Language (OCL) (UML Revision
Task Force, 2010a). With OCL it is possible to formally specify constraints over a given model.
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In order to automatically validate the integrity and coherence of the different diagrams in
the model, we provide integrity conditions, expressed as OCL constraints. Based on the model
information, our tool, which is called UML4PF, can automatically detect semantic errors in the
model by evaluating these constraints. UML4PF is based on the Eclipse development environ-
ment, extended by an EMF-based UML tool, in our case, Papyrus UML. We also show, how
consistency between patterns (problem frames) ans their instances (problem diagrams) can be
ensured.

The results of the requirements analysis with problem frames should be easily re-usable in
later phases of the development process. Since UML is a widely used notation to express analysis
and design artifacts in a software development process, a seamless integration of Jackson’s re-
quirements engineering process is desirable. By translating the original problem frame diagrams
to UML diagrams, we show how this integration can be achieved. We can also validate that the
artifacts of later development steps are consistent with the requirements engineering diagrams.

We illustrate our profile and validation conditions by the case study of a cooperative adaptive
cruise control (CACC) system. Parts of this work are published in (Hatebur & Heisel, 2010a).
Other parts are based on joint work with Côté, Hatebur, and Heisel (2008).

The chapter is structured as follows: In Section 4.1, our UML profile is presented. It shows
how the original diagrams can be translated to UML diagrams and how the integrity and co-
herence of the model can be checked. Section 4.2 describes the actual realization of our tool.
Section 4.3 illustrates our profile and validation conditions by the case study of a CACC. Section
4.4 discusses related work. Finally, Section 4.5 concludes this chapter with a summary, ongoing
work, and directions for future research.

4.1. UML extension for Jackson Diagrams

To support problem analysis according to Jackson (Jackson, 2001) and ADIT (Heisel et al.,
2011) with UML, we created a new UML profile. In this profile stereotypes are defined. A
stereotype extends a UML meta-class from the UML meta-model, such as Association or Class.
This is expressed by a filled arrow (see Fig. 4.1 on the facing page). In the following sections,
we show how the original elements of Jackson’s diagrams can be expressed with UML diagrams
using the stereotypes defined in our profile. In addition, we set up OCL constraints to check
integrity conditions for the different models.

4.1.1. Diagram Types

The different diagram types make use of the same basic notational elements. As a result,
it is necessary to explicitly state the diagram type by appropriate stereotypes. In our case,
these stereotypes are�ContextDiagram�,�ProblemDiagram�,�ProblemFrame�,�Domain-
KnowledgeDiagram� and �TechnicalContextDiagram�. They extend (some of them indirectly)
the meta-class Package in the UML meta-model, as depicted in Fig. 4.1 on the next page.

According to the UML superstructure specification (UML Revision Task Force, 2010c), it is
not possible that one UML element is part of several packages. Nevertheless, several UML tools
allow one to put the same UML element into several packages within graphical representations.
We want to make use of this information from graphical representations and add it to the model
(using stereotypes of the profile). Thus, we have to relate the elements inside a package explicitly
to the package. For that purpose, we introduce the stereotype �isPart� for dependencies. The
dependencies point from the package to all included elements (e.g., classes, interfaces, comments,
dependencies, associations).
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Figure 4.1.: Diagram Types

Figure 4.2.: Interface Class Generation – Drawn

4.1.2. Associations and Interface Classes

For phenomena between domains, we want to keep the notation introduced by Jackson. Our
experience is that this notation is easy to read and easy to maintain. In Jackson’s diagrams,
interfaces between domains show that there is at least one phenomenon shared by the connected
classes. In UML, associations describe that there is some relation between two classes. We
decided to use associations to describe the interfaces in Jackson’s diagrams. An example for such
an interface is depicted in Fig. 4.2. The association AD!{showLog} has the stereotype �conn-
ection� to indicate that there are shared phenomena between the associated domains. The
class AdminDisplay controls the phenomenon showLog. In general, the name of the association
contains the phenomena and the control direction. To specify the control direction, we use
the original notation, i.e., the abbreviation of the domain that controls the phenomena is used,
followed by an exclamation mark, and afterwards the set of phenomena is provided.

For large phenomena sets we suggest to use a name instead of the set in the diagram. We
then define this set of phenomena in a global comment with the stereotype �phenomena� (see
Fig. 4.19 on Page 44).

Jackson’s phenomena can be represented as operations in UML interface classes. The interface
classes support the transition from problem analysis to problem solution: Some of the interface
classes in problem diagrams become external interfaces of the architecture, and the operations in
interface classes must be consistent with the sequence diagram messages. A �connection� can
be transformed into an interface class controlled by a domain and observed by other domains.
To express this, the stereotypes�observes� and�controls� extend the meta-class Dependency
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Figure 4.3.: Interface Class Generation – Transformed

in the UML meta-model. The interface should contain all phenomena as operations. We use
the name of the association (or relevant parts of it) as name for the interface class. Figure 4.3
illustrates how the connection given in Fig. 4.2 on the preceding page can be transformed into
such an interface class.

It is possible to add parameters to the operations in the interface classes. The interfaces defined
in the analysis can be reused later in the architecture as provided or used interfaces. To support
a systematic architectural design, more specific connection types can be annotated. Examples of
such stereotypes which can be used instead of �connection� are, e.g., �network connection�
for network connections, �physical� or �electrical� for physical connections, and �ui� for
user interfaces. The current (extensible) set of connection types is depicted in Fig. 4.4.

Figure 4.4.: Connection Types

To describe given technical realizations, specialized connection types as depicted in Fig. 4.5 on
the facing page can be used. Furthermore, it is possible to use multiplicities to add more details
about the interfaces.
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Figure 4.5.: Technical Connection Types for Network Connections

4.1.3. Context Diagrams

The context diagram contains the machine domain(s), the relevant domains in the environ-
ment, and the interfaces in between. Domains are represented by classes with the stereotype
�Domain�, and the machine is marked by the stereotype �Machine�. For each domain, an
abbreviation has to be defined to indicate the control of phenomena. Information for the glossary
can be inserted into the attribute description of the model elements. Instead of �Domain�,
more specific stereotypes such as �BiddableDomain� and �CausalDomain� can be used (see
Fig. 4.6 on the next page). Each domain is either given, designed or a machine domain. Biddable
domains often represent persons, and therefore, they cannot be designed. The machines and
designed domains are always causal domains. Domains being neither given nor machine domains
should be annotated with the stereotype�DesignedDomain�. For given domains no additional
stereotype is used. Other specializations (but not disjoint specializations) of causal domains are
lexical domains (data types with storage, marked by �LexicalDomain�) and display domains
(used to describe the means used to forward information to a person, introduced in (Côté et
al., 2008), marked by �DisplayDomain�). For each domain, the abbreviation and a description
should be specified. Since some of the domain types are not disjoint, more than one stereotype
can be applied on one class. An overview of the hierarchy of domain types is given in Fig. 4.6 on
the following page.

However, not all combinations of stereotypes are permitted. For example, the stereotypes
�CausalDomain� (or subtypes) and�BiddableDomain� are not allowed to be applied together
on one class. Hence, we provide an OCL expression that checks whether this condition is fulfilled.
Listing 4.1 depicts the corresponding OCL constraint, which expresses the following: in line 1
and 2, we select the owned elements of the package with the stereotype �ContextDiagram�.
Line 3 selects the elements being classes. In line 4, all the classes of the model are selected
that satisfy the condition stated within the select-statement. In line 5, we gather the set of
stereotypes for each class cl . Only those classes should be selected that have the stereotype
�BiddableDomain� or a direct subtype of �BiddableDomain� and the stereotype �Causal-
Domain� or a subtype of �CausalDomain�. Unfortunately, it is not possible to iterate through
the different inheritance hierarchies of stereotypes with EMF. Therefore, we must explicitly move
to each level of inheritance (keyword general). As we currently have three hierarchy levels, we
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Figure 4.6.: Domain Types

limit our constraints to this number (lines 5-10). Note that if new domain types are to be
introduced, this limit may need to be adapted. In line 11, we finally check that no class with
both stereotypes exist, by comparing the size of the set to 0.

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name

2 ->includes(’ContextDiagram ’)).clientDependency.target

3 ->select(oclIsTypeOf(Class)).oclAsType(Class)

4 ->select(oe | (

5 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’BiddableDomain ’) or

6 oe.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’BiddableDomain ’)

7 ) and (

8 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’CausalDomain ’) or

9 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’CausalDomain ’)

or

10 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’CausalDomain ’)

11 ) ) ->size()=0

Listing 4.1: The stereotypes �biddable� and �causal� are not allowed to appear together

For a context diagram, the following constraints can be stated:

• We mentioned earlier that all diagram types rely on the same basic notational elements.
However, not all existing notational elements are allowed to be used in the different di-
agram types. In a context diagram, allowed elements are classes with the stereotype
domain or a subtype of domain, interfaces, dependencies with the stereotypes �isPart�,
�observes�, �controls� associations with the stereotype�connection� or a subtype of
�connection�, and comments. A corresponding OCL expression is given in Appendix C
in Listing C.11.

• In one project we only have one context diagram, as expressed in Appendix C in List-
ing C.10.

• If we do not have to build anything, the context need not be described. Therefore, the
context diagram has at least one machine domain, as expressed in Appendix C in List-
ing C.12.



4.1. UML extension for Jackson Diagrams 29

Figure 4.7.: Statement, Requirement, and Domain Knowledge

• Since connection domains (see Section 2.3) are used for domains forwarding information,
connection domains (in the context diagram) have at least one observed and one controlled
interface, as expressed in Appendix C in Listing C.15.

• If a machine should change something in its environment (and otherwise it would not be
built), a machine has to control at least one interface, as expressed in Appendix C in
Listing C.26.

4.1.4. Problem Diagrams

In a problem diagram, the knowledge for a sub-problem described by a set of requirements is
represented. A problem diagram consists of sub-machines of the machines given in the context
diagram, the relevant domains, the connections between these domains and a requirement (possi-
bly composed of several related requirements), as well as of the relation between the requirement
and the involved domains.

A requirement refers to some domains and constrains at least one domain. This is expressed
using the stereotypes �refersTo� and �constrains�. They extend the UML meta-class De-
pendency. As shown in Fig. 4.7, domain knowledge and requirements are special statements.
Furthermore, any domain knowledge is either a fact (e.g., physical law) or an assumption (usually
about a user’s behavior).

In a problem diagram, allowed elements are classes, interfaces, associations, dependencies,
and comments. In the following, we show an OCL constraint expressing that for some of these
elements, only a defined set of stereotypes is allowed. Not allowed in a problem diagram are, e.g.
packages, components, or classes without any stereotype. This constraint is shown in Listing 4.2:
First, we select all packages that are annotated with the stereotype �ProblemDiagram� or
�ProblemFrame� (lines 1-3). Second, we select all the elements being part of the package (line
4) that satisfy the conditions for allowed elements using the iterator variable named el , i.e., it
is a class, an interface, an association, a dependency, or a comment (lines 6, 16, 27, and 37).

• Classes (line 6) being part of the problem diagram package must have a stereotype
�Domain� or a specialized domain stereotype. In lines 7-10 we check that the name
of the stereotype is ’Domain’ or a subtype of ’Domain’. Classes may also have the stereo-
type �Statement� or a subtype such as �Requirement� (lines 11-15).

• For interface classes (line 16) the usable stereotypes are not restricted.

• Any association (line 17) being part of the problem diagram package represents an inter-
face. Therefore, it must have the stereotype �connection� or a subtype, e.g., �ui� for
a user interface (lines 18-26).
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• The included dependencies (line 27) must be stereotypes
�observes�, �controls�, �refersTo�, �constrains�, or �isPart�.

• For technical reasons (PapyrusUML compatibility), Call Events and Profile Application
are allowed (lines 35-36).

• For comments (line 37) the usable stereotypes are not restricted.

1 Package.allInstances () ->select(p |

2 let n: Bag(String) = p.oclAsType(Package).getAppliedStereotypes ().name

3 in n->includes(’ProblemDiagram ’) or n->includes(’ProblemFrame ’))

4 .ownedElement

5 ->forAll(el | (el.oclIsTypeOf(Class) and

6 (el.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Domain ’) or

7 el.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’Domain ’)

or

8 el.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

9 el.oclAsType(Class).getAppliedStereotypes ().general.general

10 .general.name ->includes(’Domain ’) or

11 el.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Statement ’) or

12 el.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’Statement ’) or

13 el.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Statement ’) or

14 el.oclAsType(Class).getAppliedStereotypes ().general.general

15 .general.name ->includes(’Statement ’))) or

16 el.oclIsTypeOf(Interface) or (el.oclIsTypeOf(Association) and

17 (el.oclAsType(Association).getAppliedStereotypes ().name

->includes(’connection ’) or

18 el.oclAsType(Association).getAppliedStereotypes ().general.name

->includes(’connection ’) or

19 el.oclAsType(Association).getAppliedStereotypes ().general.general

20 .name ->includes(’connection ’) or

21 el.oclAsType(Association).getAppliedStereotypes ().general.general

22 .general.name ->includes(’connection ’) or

23 el.oclAsType(Association).endType ->forAll(

24 getAppliedStereotypes ().name ->includes(’Statement ’) or

25 getAppliedStereotypes ().general.name ->includes(’Statement ’)))

26 ) or

27 (el.oclIsTypeOf(Dependency) and

28 (el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’refersTo ’)

or

29 el.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’constrains ’) or

30 el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’controls ’)

or

31 el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’observes ’)

or

32 el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’isPart ’) or

33 el.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’complements ’))

34 )or

35 el.oclIsTypeOf(CallEvent) or

36 el.oclIsTypeOf(ProfileApplication) or

37 el.oclIsTypeOf(Comment)

38 )

Listing 4.2: Allowed elements considering the problem diagram/frame

We also want to ensure, that packages with the stereotypes �ProblemDiagram� or
�ProblemFrame� contain exactly one machine, represented as a class with stereotype
�Machine�. This is expressed in Listing 4.3 using the OCL operator size():

1 Package.allInstances () ->select(p |

2 p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’ProblemDiagram ’) or

3 p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’ProblemFrame ’)

4 ) -> forAll (p |
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5 p.clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

6 .target ->select(pdf_elem |

7 pdf_elem .oclIsTypeOf(Class) and pdf_elem

.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Machine ’)

8 ) ->size()=1

9 )

Listing 4.3: A problem diagram/frame has exactly one machine domain

Since problem diagrams and the corresponding patterns are used to describe requirements,
packages with the stereotype �ProblemDiagram� and �ProblemFrame� must contain at least
one requirement, as stated in the OCL expression in Listing 4.4.

1 Package.allInstances ()

2 ->select(p | p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’ProblemDiagram ’) or

3 p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’ProblemFrame ’) )

4 ->forAll( clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’)).target ->select(oe |

oe.oclIsTypeOf(Class) and

oe.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Requirement ’))

5 ->size() >=1 )

Listing 4.4: A problem diagram/frame contains at least one requirement

Additionally, for problem diagrams and problem frames the following constraints can be
stated:

• A requirement does not constrain a machine domain (see Listing C.21 in Appendix C).
Requirements should be stated in terms of the environment, and therefore they should not
constrain the machine itself.

• Since a machine cannot force a user to do something, a requirement does not constrain a
biddable domain (see Listing C.22 in Appendix C).

• As for the context diagram, connection domains in a problem diagram or problem frame
have at least one observed and one controlled interface (see Listing C.25 in Appendix C).

• Each machine controls at least one interface (see Listing C.16 in Appendix C).

• The syntactical aspect that dependencies with the stereotypes �constrains� and
�refersTo� point from statements to domains is stated in Listing C.24 in Appendix C.

4.1.5. Checking the Consistency between Problem Diagrams and Context Diagram

With each problem diagram certain aspects about the system (machine in its environment) are
described. The problem diagrams show in which way the requirements refer to domains in the
environment and constrain aspects in the environment. The context diagram and the problem
diagrams must be consistent. The relation between context diagram and problem diagrams must
be made explicitly to support understanding these relations and to allow automatic consistency
checking.

Decomposition operators can be used to derive subproblem diagrams from the context dia-
gram. For each operator, we provide means for describing the mapping to express the relation
between a subproblem diagram and the context diagram. UML4PF (see Section 4.2) also needs
this relation to check the consistency automatically. Therefore, we need mapping diagrams
to make following operations traceable:1

1Within these mappings, we use avoid the term ’refine’ and use the term ’concretize’ because we use none of the
well-known refinement relations.
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• introduce connection domain (mapping using dependencies with stereotype�concretizes�)

• remove connection domain (mapping using dependencies with stereotype �concretizes�)

• combine domain (mapping using aggregations)

• split domain (mapping using aggregations)

• concretize interface (mapping using dependencies with stereotype �concretizes�)

• abstract interface (mapping using dependencies with stereotype �concretizes�)

• combine interface (mapping using dependencies with stereotype �concretizes� or aggre-
gations)

• split interface (mapping using dependencies with stereotype �concretizes� or aggrega-
tions)

• leave out domain (no mapping nessecary)

The consistency between context diagram and problem diagrams is checked according to the
following rules:

1. Each problem diagram machine is part of the context diagram machine, because a sub-
problem (described by a problem diagram) describes a part of the overall problem to be
solved by the machine in the context diagram.

2. All subproblem diagrams are derived from the context diagram by means of decomposition
operators. This is checked by the following rules:

a) Each domain in each of the problem diagrams corresponds to a domain in the context
diagram. This is necessary because we are not allowed to invent a new domain if we
want to describe subproblems of the overall problem to be solved by the machine
in the context diagram. However, it is allowed to introduce connection domains,
combine context diagram domains, or split a context diagram domain.

b) Each connection in each of the problem diagrams corresponds to a connection in
the context diagram. Introducing new connections in the problem diagram is not
allowed. Otherwise the problem diagram allows more interaction between domains
than the context diagram. This condition can be validated on the level of interfaces
since connections are translated into interfaces as described in Section 4.1.2.

c) Each observed interface in each of the problem diagrams corresponds to an observed
interface in the context diagram. This condition refines Condition 2b.

d) Each controlled interface in each of the problem diagrams corresponds to a controlled
interface in the context diagram. This condition also refines Condition 2b.

e) Each controlled or observed interface of the machine in the context diagram corre-
sponds to at least one interface in one of the problem diagrams because it is not
allowed to leave out machine interfaces. We allow to leave out context diagram
connection domains, combine context diagram domains, or split context diagram do-
mains. Additionally, interfaces can be abstracted, refined, combined or split.

Hence, it is allowed to leave out domains in one problem diagram, but each context diagram
domain that has a direct interface with the machine must be considered in at least one
problem diagram.

In the following paragraph we present the realization of Condition 1.
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1 let m: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

3 .clientDependency.target

4 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

5 getAppliedStereotypes ().general.name ->includes(’Machine ’))

6 .oclAsType(Class) ->asSet()

7 in

8 m.oclAsType(Class).member

9 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

10 ->select(cm |

11 cm->select(oclIsTypeOf(Class)) .oclAsType(Class).member

12 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

13 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

getAppliedStereotypes ().general.name ->includes(’Machine ’))->size()=0

14 )

15 ->union(

16 m.oclAsType(Class).member

17 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

18 ->select(oclIsTypeOf(Class)) .oclAsType(Class).member

19 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

20 )

21 ->select(oclIsTypeOf(Class)).oclAsType(Class)

22 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

getAppliedStereotypes ().general.name ->includes(’Machine ’)) ->asSet()

23 =

24 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

25 .clientDependency.target

26 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

getAppliedStereotypes ().general.name ->includes(’Machine ’))

27 .oclAsType(Class) ->asSet()

Listing 4.5: The submachines of the problem diagrams must be part of the machine(s) of the context
diagram

Listing 4.5 expresses that each machines in the problem diagrams is a part of a machine in the
context diagram to realize Condition 1. The set of machines m (line 1) is defined by selecting the
package with the stereotype �ContextDiagram�. Since only one context diagram is allowed in
the model, we can access this diagram by converting the selected bag of packages into a sequence
and taking the first element (line 2). For this package, we collect the targets of all dependencies
(with clientDependency and target in line 3). These dependencies include all dependencies with
the stereotype �isPart� as described in Section 4.2. To get the machines being part of the
package, we select all classes with the stereotype �Machine� (line 4) and all classes with a
specialized stereotype �Machine� 2. The superclass can be accessed by the EMF keyword
general (line 5). The selected elements with these stereotypes are classes and we can convert the
bag of elements into a set of classes (line 6). For all machines m, we collect all members (e.g.,
contained classes, connections, ports, operations, properties) (line 8). We select the properties
and collect the type of the properties (elements connected with an aggregation or composition
or attribute types) in line 9. From this set of machines only consider the machines that are
not aggregated or composed of other machines (using member and size()=0, lines 10-13). To
these elements we add the elements aggregated or composed indirectly (using union, lines 15-
20). We select the elements being classes with the stereotype �Machine� or a sub-type and
remove double classes (with asSet, lines 21 and 22). Lines 23-27 verify that the set of machines
determined above is the same (using ’=’ in line 23) as the set of machines in the problem
diagram. They are retrieved by selecting all packages with the stereotype �ProblemDiagram�
(line 24) and by using the dependencies (with the stereotype �isPart�) pointing to the classes
with the stereotype �Machine� or a sub-type (lines 25-27).

2We allow a subtype of the stereotype �Machine� to allow , e.g., an extensions of the profile that distinguishes
between that are only software and machines that are hardware and software.
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All the conditions omitted in this chapter can be found in Appendix C, Listings C.34 (Con-
dition 2a), C.35 (Condition 2b), C.36 (Condition 2c), C.37 (Condition 2d), and C.38 (Condi-
tion 2e).

4.1.6. Problem Frames

Problem frames have the same kind of elements as problem diagrams. The package has the
stereotype �ProblemFrame� instead of �ProblemDiagram�. To instantiate a problem frame,
the domains and the requirements have to be replaced by concrete ones. Figure 4.8 shows the
problem frame given in Fig. 2.7 on Page 8 in UML notation, using our profile.3

Figure 4.8.: Simple Workpieces in UML notation

For problem frames, we have the the same integrity conditions as for problem diagrams (see
Section 4.1.4)

4.1.7. Checking the Correct Instantiation of Problem Frames

In this subsection, we present a number of OCL constraints that can be used to check if a
given problem diagram is a correct instantiation of a given problem frame. Such checks are
very important, because a software development problem only belongs to the problem class
characterized by the problem frame if it really exhibits all characteristics required by the frame.
Only then can the solution approaches associated with the problem frame be successfully applied.

For each problem diagram, we explicitly state which problem frame it instantiates by using
a dependency with the stereotype �instanceOf�. The OCL expression in Listing 4.6 checks
if the stereotype �instanceOf� is used correctly. To this end, all dependencies in the model
(Line 1) with the stereotype �instanceOf� (accessed by the EMF keyword getAppliedStereo-
types) (Line 2) are selected. For these dependencies, the source and the target must be a
package (checked by the EMF expression oclIsTypeOf(Package) (Lines 3 and 4), the source pack-
age has the stereotype �ProblemDiagram� (Line 5), and the target package has the stereotype
�ProblemFrame� (Line 6).

3We use capital letters to indicate the abbreviation, e.g., the abbreviation ”US“ is used for ”USer“.
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1 Dependency.allInstances () ->select(a |

2 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’instanceOf ’) )

->forAll(d |

3 d.oclAsType(Dependency).source ->forAll(oclIsTypeOf(Package)) and

4 d.oclAsType(Dependency).source.getAppliedStereotypes ().name

->includes(’ProblemDiagram ’) and

5 d.oclAsType(Dependency).target ->forAll(oclIsTypeOf(Package)) and

6 d.oclAsType(Dependency).target.getAppliedStereotypes ().name

->includes(’ProblemFrame ’)

7 )

Listing 4.6: ’instanceOf’-Dependencies are only from ProblemDiagram to ProblemFrame

If a problem diagram correctly instantiates a problem frame, possible solutions defined for the
problem frame can be reused for the concrete problem. For example, corresponding architectural
patterns (Choppy, Hatebur, & Heisel, 2005) can be applied.

For security-related problems (see, e.g., (Hatebur et al., 2007a)), we are not allowed to add
additional interfaces, whereas for other software development problems, additional domains and
interfaces are allowed to be added to the problem diagram. Therefore, we distinguish between
two kinds of instances, namely strict instances for security-related problems and weak instances
for other subproblems.

We now present a set of conditions that should evaluate to true if a given problem diagram is a
valid instantiation of a given problem frame. These OCL constraints are one of the contributions
of this chapter. Some of them we have derived from the informal explanations given by Jackson
(Jackson, 2001), for example Conditions 1 and 7 given below. With these conditions (together
with the rules given in (Hatebur, Heisel, & Schmidt, 2008b)), we provide the problem frame
approach with a formal semantic underpinning. Other conditions express general rules about
correctly instantiating patterns, e.g., Conditions 2, 3, and 6. All conditions are decidable,
because they check semantic properties of problem descriptions that are expressed as syntactic
properties of the corresponding UML model.

Our UML profile is not an exact match of the problem frame approach, but provides several
enhancements (e.g., technical context diagram, domain knowledge diagrams, multiplicities). An
additional enhancement is the distinction between weak and strict instantiations. Condition 5
states how a weak instance is distinguished from a strict one.

For a given problem diagram to be a valid instance of a given problem frame, the following
conditions should evaluate to true:

1. The domain types of the constrained domains in the problem frame are the same as in the
problem diagram.

2. Each domain referred to by the requirement in the problem frame corresponds to a domain
in the problem diagram, i.e., they have the same domain types.

3. Each connection in the problem frame corresponds to a connection in the problem diagram,
i.e., they connect the same domain types.

4. For strict instances, each connection in the problem diagram corresponds to a connection
in the problem frame, i.e., they connect the same domain types.

5. The domain types in problem diagrams and problem frames are consistent: the number
of domains of each type in the problem frame is equal to the number of this type in the
problem diagram. In case of a weak instance, the number of domains of each type in
the problem frame is smaller than or equal to the number of this type in the problem
diagram.
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6. For strict instances, the directions of the interfaces (observed vs. controlled) are the same
in the problem diagram and the problem frame, i.e., we allow that interfaces are left out.

7. Interfaces cannot be left out if they are controlled by the machine.

In the following, we present the OCL expressions checking a selection of these conditions.

Condition 1. In the OCL expression of Listing 4.7, all dependencies in the model (line 1)
with the stereotype �instanceOf� (line 2) are selected. For these dependencies (line 3) the
parts of the target (the problem frame) being requirements (lines 4 and 5) are selected. For
these requirements, the dependencies with the stereotype �constrains� are selected (line 6).
dependencies are the constrained classes, and the bag of their stereotype names (line 7) must be
the same (line 9) as the bag of stereotype names of constrained domains in the problem diagram
(lines 10-4). The domain types �ConnectionDomain� and �DesignedDomain� are ignored for
this check (lines 8 and 15). We do not allow that a domain subtype is used in the problem
diagram, because some known problem frames use a domain subtype of other problem frame.
For example, the lexical domain in the Simple Workpieces problem frame can be seen a causal
domain like given in a Commanded Behaviour problem frame.

1 Dependency.allInstances () -> select(getAppliedStereotypes ().name

->includes(’instanceOf ’) )

2 ->forAll(

3 target.oclAsType(Package)

4 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

5 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

6 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’constrains ’)).

7 target.getAppliedStereotypes ().name

8 =

9 source.oclAsType(Package)

10 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

11 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

12 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’constrains ’)).

13 target.getAppliedStereotypes ().name

14 )

Listing 4.7: Constrained domain in the problem frame corresponds to a domain in the problem diagram

Condition 2 can be checked in a similar way. The OCL condition is given in Expression C.41
in Appendix C.

Condition 5. Line 1 in the OCL expression in Listing 4.8 selects all dependencies with the
stereotype �instanceOf�. For these dependencies (line 2), we define the boolean variable weak
as the value of the attribute weak of this dependency (lines 3-5). We define the bag pf domain
as all domains of the problem frame the dependency points to (lines 6-10). And we define the
bag pd domains as all domains of the problem diagram (lines 11-15). In the following lines
we compare the number of domains of each type: For strict instances, the number of domains
with the same domain type are equal in the problem diagram and the problem frame (lines 18
and 19). For weak instances (line 20), the number of domains with the same domain type in the
problem frame are lower than or equal to the number of domains with the same domain type in
the problem diagram (lines 21 and 22).

1 Dependency.allInstances () ->

select(getAppliedStereotypes ().name ->includes(’instanceOf ’) )

2 ->forAll( inst_of_dep |

3 let weak: Boolean =

4 inst_of_dep.getValue(inst_of_dep.oclAsType(Dependency) .getAppliedStereotypes ()

->select(name ->includes(’instanceOf ’)) ->asSequence()

->first(),’weak’).oclAsType(Boolean)

5 in



4.1. UML extension for Jackson Diagrams 37

Figure 4.9.: Domain Abbreviations

6 let pf_domains: Bag(Class) =

7 inst_of_dep.target.oclAsType(Package)

8 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

9 .target -> select(oclIsTypeOf(Class)) ->reject(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

10 in

11 let pd_domains: Bag(Class) =

12 inst_of_dep.source.oclAsType(Package)

13 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

14 .target -> select(oclIsTypeOf(Class)) ->reject(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

15 in

16 pf_domains ->forAll(domains |

17 domains.getAppliedStereotypes ().name ->forAll(stn |

18 (pf_domains ->select(getAppliedStereotypes ().name ->includes(stn))->size() =

19 pd_domains ->select(getAppliedStereotypes ().name ->includes(stn))->size())

20 or (weak and

21 (pf_domains ->select(getAppliedStereotypes ().name ->includes(stn))->size()

<=

22 pd_domains ->select(getAppliedStereotypes ().name ->includes(stn))->size())

23 )

24 )

25 )

Listing 4.8: The domain types in problem diagrams and problem frames are consistent

The OCL expressions for Conditions 2, 3, 4, and 7 are given in Appendix C, Listings C.41,
C.43, C.44, and C.45.

4.1.8. General OCL Constraints

In this section, we present more OCL constraints that should hold for different artifacts of a
model:

1. Names of domains, interfaces and statements must be unique. Otherwise, referencing these
model elements is quite difficult and it is hard to distinguish if the repeated model elements
are the same or different.

2. The abbreviation of the stereotype �Domain� must be set and identical for all domain
stereotypes applied to one class. This is necessary for defining which domain controls a
phenomenon annotated at a connector. Figure 4.9 shows a class with two domain stereo-
types applied (�CausalDomain� and �ConnectionDomain�). Both have (as required)
the same abbreviation (WW).

3. The abbreviation of the domains must be unique. This is also necessary for defining which
domain controls a phenomenon annotated at a connector.
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4. Dependencies with�isPart� are only allowed with a package or the model as source. For
the composition of classes, the UML composition should be used. For packages and the
model, dependencies with �isPart� should be used to express the composition.

5. A controlled interface must be observed by at least one domain. If an interface is controlled
and not observed, it is useless within a model.

6. An observed interface must be controlled by exactly one domain. If several domains control
the same interface, priorities need to be defined. Priorities can only be defined by a domain
which takes the role of a voter, not by an interface itself. An interface not controlled by a
domain is useless within a model.

For the general constrains, the corresponding OCL expressions can be found in Appendix C.1.

We do not claim that the integrity conditions we have defined so far are complete. On the
contrary, it is easily possible to identify new conditions and incorporate them into UML4PF. In
any case, it is hardly possible to come up with a complete set of semantic integrity conditions
that is sufficient for the correctness of the defined models. However, the conditions constitute
necessary conditions for the correctness of the defined models. Therefore, a violation of one of
the conditions really indicates an error in the development.

4.2. UML4PF - Tool Realization

To work with the profile and the constraints described in Section 4.1, we created the tool
UML4PF. Figure 4.10 provides an overview of the context of UML4PF. Gray boxes denote
re-used components, whereas white boxes describe those components that we created. Basis is
the Eclipse platform together with its plug-ins EMF and OCL. Our UML profile is conceived
as an eclipse plug-in, extending the EMF meta-model. Eclipse stores profiles in XMI-format.
We store all our OCL constraints also in one file in XML-format. This file is generated from
the same Latex file that is also the source of Appendix C. With these constraints, we check the
validity and consistency of the current model.

The functionality of our tool UML4PF comprises the following:

• It checks if the model is valid and consistent by using our OCL constraints

• It returns the location of invalid parts of the model.

• It automatically generates model elements, e.g., it generates observed and controlled in-
terfaces from association names as well as dependencies with stereotype �isPart� for
all domains and statements being inside a package in the graphical representation of the
model.

The graphical representation of the different diagram types can be manipulated by using any
EMF-based editor. We selected Papyrus (Papyrus UML Modelling Tool 1.12 , 2010) as it is
available as an Eclipse plug-in, open-source, and EMF-based.

UML4PF can be installed using an Eclipse Update Site located at http://www.uml4pf.org/
plugin/testing for the development versions and http://www.uml4pf.org/plugin/uml4pf

for the production releases. The window shown in Fig. 4.11 can be reached with the menu
command Help - Install New Software ....

http://www.uml4pf.org/plugin/testing
http://www.uml4pf.org/plugin/testing
http://www.uml4pf.org/plugin/uml4pf
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UML Profile

Editor e.g.
Papyrus

Eclipse incl. EMF & OCL

UML4PF OCL expressions

Figure 4.10.: Tool Realization Overview

Figure 4.11.: UML4PF - Update Site

When UML4PF is installed, the following new entries appear in the context menu of .uml-files
as shown in Fig. 4.12:

• Import UML Package

• Validate Now

• Model Generator

The function to import UML packages can be used to import a problem frame from another
UML file, instead of drawing it again for checking if a problem diagram is an instantiation of a
problem frame.

When Model Generator is selected in the context menu (Fig. 4.12 on the following page), the
different functionalities of the generator can be activated or not. The functionalities are shown
in Fig. 4.13.
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Figure 4.12.: UML4PF - Context Menu

Figure 4.13.: UML4PF - Generator Selection

The AbbreviationGenerator automatically generates abbreviations for classes assigned with
the stereotype domain or any of its sub-types. The DomainInterfaceGenerator/controls-observes-
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DependencyGenerator generates observed and controlled interfaces from association names. If
we have only one machine in the context diagram, the MachineMappingGenerator can automat-
ically create the relations between this machine and those sub-machines found in the problem
diagrams. The IsPartGenerator creates dependencies with stereotype �isPart� for all domains
and statements being inside a package in the graphical representation of the model. The Glos-
saryGenerator generates a glossary containing all relevant model elements.

The performed actions are shown in a separate window as depicted in Fig. 4.14.

Figure 4.14.: UML4PF - Generator Output

When Validate Now is selected in the context menu (Fig. 4.12 on the preceding page), in a
selection dialogue (Fig. 4.15), checks for the different ADIT phases and additional checks can be
activated or not. With the checkbox A1 in Fig. 4.15 the checks for the ADIT Step A1 – Problem
Elicitation and Description (see Appendix A.1) can be activated. With the checkbox cA2 the
consistency between problem frames and problem diagrams checks for the ADIT Step A2 –
Problem Decomposition can be activated. And with the checkbox cA2A3 the consistency between
ADIT Step A2 – Problem Decomposition and Step A3 – Abstract Machine Specification can be
activated.

Figure 4.15.: UML4PF - Validator Selection

When OK is pressed, the validator checks the OCL expressions associated to the selected
phases and outputs the results in the window (shown in Fig. 4.16).

If an expressions evaluates to falseis, additional expressions are evaluated. These expressions
return information about the wrong model elements. In Fig. 4.17, the result of an expression
that returns all requirements constraining biddable domains is printed.

When the developer selects a line in this output, details are shown in a separate window as
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Figure 4.16.: UML4PF - Validator Output

Figure 4.17.: UML4PF - Validator Error

depicted in Fig. 4.18. This window contains the ADIT phase, the name of the rule, the detailed
description, the OCL expression, and the result of this expression.
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Figure 4.18.: UML4PF - Validator Error Details

4.3. CACC Case Study

In this section, we apply the requirements engineering method and the notations presented in
this chapter on the case study introduced in Section 3.2.

The context diagram for the CACC is shown in Fig. 4.19. It also contains the type of con-
nection as stereotypes at the associations between domains (e.g. �wireless� for wireless con-
nections).

It contains the CACC as the machine to be built. The CACC is part of the Car. The car
is connected with a controller area network (CAN) connection (depicted with the stereotype
�network connection�) in order to send messages to the CACC and to receive messages from
the CACC. The CACC receives CAN messages from the Car and sends CAN messages from the
Car. Note that these messages are not identical. The EngineActuator Brake is also a relevant
part of the car. It combines the brake to decelerate (brake) the car and an actuator for the
engine to accelerate the car. Corresponding CAN messages can be sent by the CACC. In the
environment, we can find the Driver performing the actions defined in the comment with the
stereotype �phenomena�. A driver can

• push the brake pedal (brake pedal),

• push the accelerate pedal (accelerate pedal),

• press the button to set the current speed as a desired speed (set speed),

• press the button to increase the desired speed by 5 km/h (increase speed),

• press the button to decrease the desired speed by 5 km/h (decrease speed),

• press the button to deacticate the CACC (deactivate), or

• press the button to resume to the last desired speed before deactivation (resume).
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Figure 4.19.: CACC Context Diagram

The car displays the desired speed (desired speed), can warn the driver (warn driver), and dis-
plays the state of the CACC (CACC state). The state of the CACC and the desired speed are
stored in the domain ACCSpeed, which is the internal representation of the driver intention.
Storing the state and reading the state is represented by the phenomena named state. Mes-
sages corresponding to information at the drivers user interface (�ui�) are sent or received by
the CACC via CAN. The CACC also measures the distance to the car ahead using a radar.
This is modeled as a physical connection with the phenomenon controlled by the car ahead
(OC!distance). Other cars that are also equipped with a CACC (OtherCarWithCACC) send their
position and speed (OCWC!{position, speed}) using the wireless (�wireless�) WIFI or WAVE
connection. Additionally, an attacker and the connection domain Wifi WAVE are introduced
here, because this connection may be used by an attacker to control the speed of the car.
Details can be found in Section 5.3.

The requirements for the CACC are:

R1 The CACC should accelerate the car if the desired speed is higher than the current speed,
the CACC is activated and the measured distance and the calculated distance (calculated
from the positions of the car itself and the car ahead) to the car(s) ahead is safe.
The CACC should not accelerate if this condition is not given.

R2 The CACC should brake the car if the desired speed is much (30 km/h) lower than the
current speed, the CACC is activated and the measured or calculated distance to the car(s)
ahead is decreasing towards the safe limit.
The CACC should not brake if this condition is not given.
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R3 When brake pedal or deactivate CACC is pressed, the CACC is deactivated and last speed
is set to desired speed.

R4 When resume is pressed (and resume speed exists), the CACC is activated and desired speed
is set to last speed.

R5 When increase speed is pressed and CACC is activated, the desired speed is increased by
5 km/h (max.: 200 km/h).

R6 When decrease speed is pressed and CACC is activated, desired speed is decreased by
5 km/h (min: 30 km/h).

R7 When set speed is pressed, desired speed is set to current speed.

R8 At that point of time when the CACC is deactivated the driver should be warned, the
desired speed and the CACC state (CACC is activated or not) should be displayed when
the CACC is powered.

R9 CACC should send its own position and speed via Wifi Wave to OtherCarsWithCACC. 4

These requirements can be expressed by the problem diagrams depicted in Figures 4.20 (4.21,
corrected version), 4.22, and 4.23.

The problem diagram in Fig. 4.20 describes the interfaces between the machine and the
environment necessary to implement requirements R1 and R2, e.g., it describes that the machine
(a submachine of the CACC in the context diagram) can accelerate the car (CA!{accelerate}),
and it describes the relation of the requirements R1 and R2 to the domains in the environment.
The requirements constrain the current speed of the car and therefore indirectly its position.
The requirements refer to the information in the domains necessary for the described decision,
e.g., it refers to the desired speed in the domain ACCSpeed, and it refers to the distance to the
car ahead with and without CACC (OtherCar, OtherCarsWithCacc).

Figure 4.20.: Erroneous CACC Problem Diagram

4Compared to (Hatebur & Heisel, 2009b), requirements are detailed.
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As described in Section 4.1.2, we generated the interface classes as well as the required de-
pendencies using the stereotype �isPart� (described in Section 4.1.1). After that, we check
the OCL constraints given in Section 4.1 on our CACC model. The expressions given in List-
ings 4.1 on Page 28, C.22 on Page 242 and 4.2 on Page 30 fail. The reasons for that are:

• Listing 4.1 states that the stereotypes �CausalDomain� (and subtypes) and �Biddable-
Domain� are not allowed together in one class. Additionally, it is not allowed that a
requirement constrains a biddable domain (see Listing C.22 on Page 242 in Appendix C).
Hence, we remove the wrong additional stereotype �BiddableDomain� from the domain
ACCState in the problem diagram.

• The expression in Listing 4.2 defines the allowed elements in problem diagrams. To find
out what is wrong in the model, we created debug expressions. For example, we use the
expression in Listing 4.2 and replace the forAll with reject. The OCL operation reject
removes all elements from a set that fulfill the given condition. Hence, the new debug
expression returns all wrong elements in problem diagrams. By inspecting the constraint
in Listing 4.2 and the list of wrong elements from the debug expression, we can deduce that
the stereotype �specification� is not allowed for an association (here: C!{current speed,
positions}, CB!{accelerate, brake} ) and for the association ACCS!{desired speed, activated}
a stereotype is missing.

A corrected problem diagram is depicted in Fig. 4.21.

Figure 4.21.: CACC Problem Diagram 1

To show the consistency of the problem diagram in Fig. 4.21 to the context diagram, mapping
diagrams needed to be provided. Without these mappings, some validation conditions described
in Section 4.1.5 fail. The complete graphical representation of the mapping is given in Fig B.1 on
Page 232 in Appendix B. The following aspects are relevant for the problem diagram in Fig. 4.21.

• The machine ControlAccelerateBrake is part of the CACC software. Otherwise, Condition 1
of Section 4.1.5 would be violated.

• All domains (Car, ACCSpeed, OtherCars, and OtherCarsWithCACC) are directly taken from
the context diagram. Therefore, no mapping is necessary to fulfill Condition 2a of Sec-
tion 4.1.5
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• CB!{accelerate, brake} concretizes CACC!{CAN message} and ACCS!{desired speed, acti-
vated} concretizes ACCS!{state}. Otherwise, Conditions 2b, 2c, and 2d of Section 4.1.5
would be violated.

The subproblem describing the driver controls (R3 – R7, see Fig. 4.22) constrains the internal
representation of the driver intention (ACCSpeed) and refers to the Driver. It also refers to the
Car forwarding the driver commands and providing the current speed.

Figure 4.22.: CACC Problem Diagram 2

To show the consistency of the problem diagram in Fig. 4.22 to the context diagram, mapping
diagrams needed to be provided.

• DriverControl is part of the CACC software. Otherwise, Condition 1 of Section 4.1.5 would
be violated.

• All domains (Car, ACCSpeed, and Driver) are directly taken from the context diagram.
Therefore, no mapping is necessary to fulfill Condition 2a of Section 4.1.5

• DC!{set activation, set resume speed, set desired speed} concretizes CACC!{state},
ACCS!{desired speed, last speed} concretizes ACCS!{state}, CActions concretizes
C!{CAN message}, and C!{current speed} concretizes C!{CAN message}. Otherwise, Con-
ditions 2b, 2c, and 2d of Section 4.1.5 would be violated.

The subproblem describing the warning and monitoring problem (R8, see Fig. 4.23) refers to
the internal representation of the CACC state (ACCSpeed) and constrains the Car. The car has
to display the CACC state for the driver.
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Figure 4.23.: CACC Problem Diagram 3

To show the consistency of the problem diagram in Fig. 4.23 to the context diagram, mapping
diagrams needed to be provided.

• MonitorState is part of the CACC software. Otherwise, Condition 1 of Section 4.1.5 would
be violated.

• All domains (Car, ACCSpeed, and Driver) are directly taken from the context diagram.
Therefore, no mapping is necessary to fulfill Condition 2a of Section 4.1.5

• MS!{desired speed, activated} concretizes CACCS!{state} and MS!{CAN message} con-
cretizes CACC!{CAN message}. Otherwise, Conditions 2b, 2c, and 2d of Section 4.1.5
would be violated.

The subproblem describing the sending speed and position problem (R9, see Fig. 4.24) refers
to the current speed and position of the car and constrains the information sent via Wifi Wave.

Figure 4.24.: CACC Problem Diagram 4

To show the consistency of the problem diagram in Fig. 4.24 to the context diagram, mapping
diagrams needed to be provided.

• SendSpeedPos is part of the CACC software. Otherwise, Condition 1 of Section 4.1.5 would
be violated.
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• All domains (Car and Wifi Wave) are directly taken from the context diagram. Therefore,
no mapping is necessary to fulfill Condition 2a of Section 4.1.5

• SSP!{ownSpeed, ownPos} concretizes CACC!{ownSpeed, ownPos}. Otherwise, Conditions 2b,
2c, and 2d of Section 4.1.5 would be violated.

With all mapping diagrams together (see Fig B.1 on Page 232 in Appendix B), we can show
that the context diagram is consistent to the problem diagrams given in Figures 4.21, 4.22, 4.23,
and 4.24:

• Each controlled or observed interface of the machine in the context diagram corresponds
to at least one interface in one of the problem diagrams (see Condition 2e)

The problem diagram depicted in Fig. 4.21 on Page 46 is a variant of a Required Behaviour
problem frame. To fit this problem diagram directly into that frame, we need to merge all prob-
lem domains (Car, ACCState, OtherCar, and OtherCarsWithCACC). If ACCState is not merged, it
is an instance of the Data-Based Control problem frame, introduced in Section 2.4 on Page 7. If
the connection domain Car is removed, the problem diagram depicted in Fig. 4.22 is an instance
of the Simple Workpieces problem frame. The problem diagram depicted in Fig. 4.23 on the
preceding page is an instance of the Model Display problem frame.

More than 40 OCL constraints were checked using our tool. As a final result, the CACC
problem analysis model has been successfully validated.

4.4. Related Work

Lencastre et al. (Lencastre, Botelho, Clericuzzi, & Araújo, 2005) define a meta-model for prob-
lem frames using UML. Their meta-model considers Jackson’s whole software development ap-
proach based on context diagrams, problem frames, and problem decomposition. In contrast to
our meta-model, it only consists of a UML class model. Hence, the OCL integrity conditions of
our meta-model are not considered in their meta-model. Their approach does not qualify for a
meta-model in terms of Model Driven Architecture (MDA) (Warmer & Kleppe, 2003) because,
e.g., the class Domain has subclasses Biddable and Given, but an object cannot belong to two
classes at the same time (c.f. Figs. 5 and 11 in (Lencastre et al., 2005)).

Hall et al. (Hall, Rapanotti, & Jackson, 2005) provide a formal semantics for the problem
frame approach. They introduce a formal specification language to describe problem frames and
problem diagrams. As compared to our meta-model, their approach does not consider integrity
conditions.

Seater et al. (Seater, Jackson, & Gheyi, 2007) present a meta-model for problem frame
instances. In addition to the diagram elements formalized in our meta-model, they formalize
requirements and specifications. Consequently, their integrity conditions (“wellformedness pred-
icate”) focus on correctly deriving specifications from requirements. In contrast, our meta-model
concentrates on the structure of problem frames and the different domain and phenomena types.

We agree with Haley (Haley, 2003) on adding cardinality to standard problem frames to
enhance the detailing of shared phenomena at the interfaces. In contrast to Haley though, we
do not extend the problem frames notation by introducing a new notational element. We adopt
the means provided by UML to annotate problem frames in our meta-model instead.

Van Lamsweerde (Lamsweerde, 2009) considers the relationships between problem worlds and
machine solutions. He makes a distinction between different statement subtypes. In our profile
we cover a subset of these statement subtypes. Namely requirements, domain knowledge, and
specification. Furthermore, he introduces Satisfaction Arguments. This satisfaction arguments
is similar to the procedure we present in Chapter 7.
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Charfi et al. (Charfi, Gamatié, Honoré, Dekeyser, & Abid, 2008) use a modeling frame-
work called Gaspard2 to design high-performance embedded systems-on-chip. They use model
transformations to move from one level of abstraction to the next. To validate that their trans-
formations have been correctly performed, they use the OCL language to specify the properties
that must be checked in order to be considered as correct with respect to Gaspard2. We have
been inspired by this approach. However, we do not focus on high-performance embedded
systems-on-chip. Instead, we target dependable systems development challenges.

Colombo et al. (Colombo, Bianco, & Lavazza, 2008) model problem frames and problem dia-
grams with SysML. They state that “UML is too oriented to software design; it does not support
a seamless representation of characteristics of the real world like time, phenomena sharing [...]”.
We do not agree with this statement. So far, we have been able to model all necessary means
of the requirements engineering process using UML.

SysML (UML Revision Task Force, 2010b) also provides the stereotype �Requirement� for
classes. It can be used to express dependabilites between requirements and the relation to
realization and tests (e.g., with the stereotypes�refine�,�trace�,�satisfy�). We relate the
requirements to domains of the environment to make their pupose explicit and provide support
for requirements interaction analysis.

We are not aware of other tools supporting the work with problem frames on the semantic
level, as does UML4PF.

4.5. Conclusions and Future Work

In this chapter, we have presented a support tool for requirements engineering using problem
frames. This is supported by the UML profile for problem frames we have presented in this
chapter. In this profile, we have introduced stereotypes corresponding to the basic notational
elements used in problem frame. To automatically check the integrity between the different
diagrams we have provided OCL constraints.

In summary, the advantages of our approach are:

• The requirements engineering approach of Jackson is enhanced by making use of UML
concepts, such as multiplicities and aggregations, as well as adding diagram types.

• Integrity conditions using OCL are provided, e.g. to check if a problem diagram is consis-
tent with a given problem frame.

• Several artifacts generated in an earlier development step can be re-used in later steps,
e.g.

– interfaces in the context diagram become external interfaces in the architecture

– machine domains from the subproblems may become components in the architecture

• Existing tools are adapted, which reduces the effort of learning because UML4PF does not
have an unknown “look-and-feel”.

Problem frames are currently scarcely applied in industry. One reason is the number of fig-
ures to be created for a real project. Another reason is the missing support by tools suitable for
industrial applications. Nevertheless, practitioners knowing problem frames apply them with-
out showing the diagrams since even applying problem frames in the background substantially
increases the quality of the requirements.

In the future, the profile should be used in industrial case studies. Additional integrity con-
ditions may be defined and the existing integrity conditions may be refined. A challenging task
is to improve performance and stability of the underlying tool (PapyrusUML). Alternatively, it
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is possible to apply the approach on another EMF-based UML tool. Another interesting topic
is to investigate how to merge the separated requirements later in the development process.





Chapter 5

Expressing Dependability

Requirements

For dependable systems, it is of utmost importance to thoroughly analyze, understand, and
consolidate the requirements.

Dependability requirements should be described and analyzed. Problem frames can be ex-
tended to describe also dependability requirements and domain knowledge, as also shown in
(Hatebur et al., 2007a).

This chapter is based on Hatebur and Heisel (2009b), where we have presented a foundation for
requirements analysis of dependable systems, based on problem frames (Jackson, 2001). It is also
based on Hatebur and Heisel (2010b). In this paper we show how the approach of (Hatebur &
Heisel, 2009b) can be tool supported. To this end, we have defined a Unified Modeling Language
(UML) profile (UML Revision Task Force, 2010c) that allows us to represent problem frames
in UML. This UML profile is then augmented with stereotypes that allows one to expres of
dependability requirements. The stereotypes are complemented by constraints expressed in the
Object Constraint Language (OCL) (UML Revision Task Force, 2010a) that can be checked by
existing UML tools. These constraints express important integrity conditions, for example, that
security requirements must explicitly address a potential attacker. By checking the different OCL
constraints, we can substantially aid system and software engineers in analyzing dependability
requirements.

Within this chapter, the profile and the OCL constraints, defined in Chapter 4 are extended
to express dependability requirements. We define a set of patterns that can be used to describe
and analyze dependability requirements. These patterns are represented by three parts:

• A text where problem-specific aspects have to be selected or references to domains have to
be inserted. This text can be used to discuss the model with persons without a technical
background.

• UML elements and stereotypes that can be used to extend a problem diagram with non-
functional requirements. With these elements, a seamless integration into the requirements
engineering with problem diagrams is possible. The meta-model defining the stereotypes
describes the important aspects for defining dependability requirements.

• A predicate that can be used to express dependencies between dependability requirements
as described in the next chapter.

In earlier work (Hatebur et al., 2008b), we also defined a meta-model for problem frames. This
meta-model is also defined using UML classes, but is not a UML profile, i.e., it does not extend
UML meta-classes in order to define stereotypes. It focuses on problem frames and does not
consider problem diagrams, dependability and later phases. In contrast, the profile described in
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this chapter defines stereotypes extends and is the basis for a tool support for the whole problem
frames approach.

Section 5.1 contains our profile extension to describe dependability, and it also describes the
OCL constraints for applying the elements introduced to describe dependability. In Section 5.4,
we demonstrate how to to express already published security problem frames using our profile
extension. Section 5.2 describes the process to work with our UML profile for requirements
engineering for dependable systems. The case study in Section 5.3 applies the patterns and
stereotypes of the profile extension to the cooperative adaptive cruise control system. Section 5.5
discusses related work, and the chapter closes with a summary and perspectives in Section 5.6.

5.1. Profile Extension to Describe Dependability

We developed a set of patterns for expressing and analyzing dependability features (requirements
and domain knowledge). Our patterns consist of UML classes with stereotypes and a set of
rules describing possible relations to other model elements. The stereotypes contain specific
properties of the dependability feature (e.g., probabilities), a unique identifier, and a textual
description that can be derived from the properties and the relations to other model elements.
The patterns can be directly translated into logical predicates. These predicates are helpful to
analyze conflicting requirements and the interaction of different dependability requirements, as
well as to find missing dependability requirements (see Chapter 6).

An important advantage of our patterns is that they allow dependability requirements to be
expressed without anticipating solutions. For example, we may require data to be kept confi-
dential during transmission without being obliged to mention encryption, which is a means to
achieve confidentiality. The benefit of considering dependability requirements without reference
to potential solutions is the clear separation of problems from their solutions, which leads to a
better understanding of the problems and enhances the re-usability of the problem descriptions,
since they are completely independent of solution technologies.

Dependability features and functional features can be described independently. This approach
limits the number of patterns, and allows one to apply these patterns to a wide range of problems.
For example, the functional requirements for data transmission or automated control can be
expressed using a problem diagram. Dependability requirements for confidentiality, integrity,
availability and reliability can be added to that description of the functional requirement. The
independence of these dependability requirements from functional requirements also allows one
to express cross-cutting requirement with these pattern. To support this aspect, the references
to the functional requirements, the constrained domains, and other attributes are modeled as
sets.

1 Class.allInstances ()->select(

2 (getAppliedStereotypes ().name ->includes(’Dependability ’) or

3 getAppliedStereotypes ().general.name ->includes(’Dependability ’) or

4 getAppliedStereotypes ().general.general.name ->includes(’Dependability ’) )

5 and getAppliedStereotypes ().name ->includes(’Requirement ’))

6 ->forAll(clientDependency ->select(d |

7 d.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’complements ’))

8 .oclAsType(Dependency).target.getAppliedStereotypes ().name ->

includes(’Requirement ’)->count(true) >=1 )

Listing 5.1: Each Dependability Requirement Complements another Requirement

A dependability requirement always complements (stereotype �complements�) at least one
functional requirement. This can be validated with the OCL expression in Listing 5.1. In
this OCL expression, all classes with a stereotype indicating a dependability statement or a
subtype (e.g., �Confidentiality� or �Availability rnd�) and additionally the stereotype �Re-
quirement� are selected in Lines 1-5. In all of these requirement classes, it is checked that their
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dependencies (Line 6) with the stereotype �complements� (Line 7) point to at least one class
with the stereotype �Requirement� (Line 8).

Our patterns help to structure and classify dependability requirements. For example, require-
ments considering integrity can be easily distinguished from the availability requirements. It is
also possible to trace all dependability requirements that refer to a given domain.

The patterns for integrity, reliability, and availability considering random faults are expressed
using probabilities, while for the security requirements no probabilities are defined. We are
aware of the fact that no security mechanism provides a 100 % protection and that an attacker
can break the mechanism to gain data with a certain probability (Santen, 2006). But in contrast
to the random faults considered for the other requirements, no probability distribution can be
assumed, because, e.g., new technologies may dramatically increase the probability that an
attacker is successful. For this reason we suggest to describe a possible attacker and ensure that
this attacker is not able to be successful in a reasonable amount of time.

In the following, we present our dependability profile extension and dependability analysis
patterns.

5.1.1. Confidentiality

Confidentiality is the absence of unauthorized disclosure of information (Pfitzmann & Hansen,
2006). A typical confidentiality statement is to

Preserve confidentiality of domain constrained in the functional statement representing
the asset for stakeholders and prevent disclosure by attackers.

Figure 5.1.: UML Dependability Problem Frames Profile - Confidentiality

A statement about confidentiality is modeled as a class with the stereotype
�Confidentiality� in our profile. This stereotype is a specialization of the stereotype�Dependability�,
as shown in Fig. 5.1.

Three aspects have to be specified for a confidentiality requirement:

1. The constrained domain is a causal domain representing a stored, shown or transmit-
ted asset. This domains has to be constrained using a dependency with the stereotype
�constrains�. Even if assets usually a lexical domains, we may model the asset as a
CausalDomain, because in some cases the storage device, the display or the connection and
not the asset itself is modeled.

The same domain as in the complemented functional requirement is constrained because
additional functionalities to achieve confidentiality are about the same domain. For ex-
ample, if a display is constrained by the functional requirement, confidentiality is achieved
by not showing the asset; if a storage or a connection are constrained by the functional
requirement, confidentiality is achieved by not storing or sending the asset in readable
form (e.g., by encryption). This condition can be expressed and checked with the OCL
condition in Listing 5.2.

The attribute constrained is modeled as a derived attribute and it is derived from the
dependencies with the stereotype �constrains�. It can be set with an operation, defined
by the following precondition and postcondition (Listings 5.2 and 5.3).
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In the precondition, all classes in the model with the stereotypes �Confidentiality� and
also �Statement� or �Requirement� are selected, and for all confidentiality statements
the following condition is checked (lines 1-3). The dependencies starting at this class
(clientDependency) with the stereotype �constrains� (line 4) are considered. The targets
of the ’constrains’-dependencies are checked to have the stereotype �CausalDomain� or
a subtype, and the boolean results are collected (lines 5-8). It is checked by counting the
positive results if there is at least one causal domain (or a subtype) constrained (line 9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Confidentiality ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(

4 clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

5 .oclAsType(Dependency).target.getAppliedStereotypes () -> collect(

6 name ->includes(’CausalDomain ’) or

7 general.name ->includes(’CausalDomain ’) or

8 general.general.name ->includes(’CausalDomain ’)

9 )->count(true) >=1)

Listing 5.2: Precondition for operation setting the derived attribute ’constrained’

After the operation has been performed, the postcondition in Listing 5.3 has to hold. For
all classes in the model with the stereotypes�Confidentiality� and also�Statement� or
�Requirement� (lines 1-3), the attribute asset (lines 4-6) has the same elements (line 7) as
the target of the dependencies starting at this class (clientDependency) with the stereotype
�constrains� (line 8-9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Confidentiality ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () ->

select(s |

5 s.oclAsType(Stereotype).name -> includes(’Confidentiality ’) )

6 ->asSequence()->first(),’constrained ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing 5.3: Postcondition for operation setting the derived attribute ’constrained’

2. For confidentiality, we need to consider an attacker. This attacker must be described in
detail. We suggest to describe at least the objective of the attackers, their skills, equip-
ment, knowledge, and the time the attackers have to prepare and to perform the attack
(see Fig. 5.2). A similar kind of description is suggested in the Common Methodology for
Information Technology Security Evaluation (CEM) (International Organization for Stan-
dardization (ISO) and International Electrotechnical Commission (IEC), 2009b). As shown
in Fig. 5.2, the stereotype�Attacker� is a specialized�BiddableDomain�. The reference
to an Attacker is necessary, because we can only ensure confidentiality with respect to an
Attacker with given properties. The reference from the stereotype �Confidentiality� to
the attacker is given by an attribute of the stereotype. The multiplicity of [1..*] ensures
that at least one attacker is referenced. An OCL expression checking this aspect is given
in Appendix C, Listing C.59.
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Figure 5.2.: Attacker in UML Dependability Problem Frames Profile

3. For confidentiality, we also need to consider the data’s stakeholder (see Appendix C, List-
ing C.60). The stakeholder is referred to, because we want to allow the access only to
stakeholders with legitimate interest (Gürses et al., 2005). The instances of stakeholder
and attacker must be disjoint.

It is possible to generate the text of the confidentiality statement from other model informa-
tion: In the typical confidentiality statement the constrained domain (e.g., containing the stored
asset) can be obtained from the names of the domains constrained by this statement, the Attacker
can be instantiated with the value of the attribute attacker in the stereotype�Confidentiality�,
and the Stakeholder can be instantiated with the value of the attribute stakeholder in the stereo-
type �Confidentiality�. Additionally, the names of complemented functional requirements can
be added to the statement text if they exist. They only exist if the statement is a requirement.

The security requirement pattern can be expressed by the following confidentiality predicate:

confatt : PClassWithCausalDomainStereotype × PClassWithDomainStereotype×
PClassWithAttackerStereotype → Bool

The suffix “att” indicates that this predicate describes a requirement considering a certain
attacker. The symbol ’P’ denotes a powerset. The type ClassWithCausalDomainStereotype
represents a class with the stereotype CausalDomain or a stereotype derived from CausalDomain
(e.g., LexicalDomain) applied. The other types (e.g., ClassWithDomainStereotype) are defined in
the same way. The predicate contatt(cd , s, att) means that the asset of the constrained domains
in the set cd have to be kept confidential for the stakeholders in the set s against the attackers
in the set att .

For example, a constrained domain may be the PIN of a bank account, a special stakeholder
may be the bank account owner, and a special attacker may be the class of all persons with no
permission, who want to withdraw money and have access to all external interfaces of the machine.
The following pattern can be used to define confidentiality requirements:

∀ constrained : ClassWithCausalDomainStereotype;
stakeholder : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

confatt({constrained}, {stakeholder}, {attacker})

If two or more assets are constrained, the following pattern can be used. The purpose of this
rule is to allow to minimize the number of predicates to describe dependability. When a set
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of a predicate parameter contains several elements, this is equivalent to several AND-linked
predicates of this type with subsets in the corresponding parameter:

∀ constrained1 : ClassWithCausalDomainStereotype;
constrained2 : AnotherClassWithCausalDomainStereotype;
stakeholder : ClassWithBiddableDomainStereotype;
attacker : ClassWithAttackerStereotype •

confatt({constrained1, constrained2}, {stakeholder}, {attacker})
⇔ confatt({constrained1}, {stakeholder}, {attacker})
∧ confatt({constrained2}, {stakeholder}, {attacker})

On the other hand, this rule allows to use the pattern system in the next chapter with
predicates where the set in the parameter has more than one element.

A confidentiality requirement is often used together with functional requirements for data
transmission and data storage. As an example, in Fig. 5.3, the confidentiality requirement is
applied to the simple workpieces problem frame.

Figure 5.3.: Simple Workpieces Problem Frame with Confidentiality Requirement

This confidentiality requirement can be described with the predicate as follows:

∀ asset : Workpieces, stakeholder : USer , attacker : Attacker •
confatt({asset}, {stakeholder}, {attacker})

5.1.2. Integrity

Integrity is the absence of improper system, data, or a service alterations (Pfitzmann & Hansen,
2006). Typical integrity statements considering random faults are:

With a probability of Pi , one of the following things should happen: service (as
described in the functional statement) with influence on / of the domain constrained
in the functional statement must be either correct, or domain influenced in case of a
violation (influencedIfViolation) shall perform a specific action.

Typical security integrity statements are:
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For stakeholder, the influence (as described in the functional statement) on / content
of the domain constrained in the functional statement must be either correct, or in
case of any modifications by Attackers the domain influenced in case of a violation
(influencedIfViolation) shall perform a specific action.

In contrast to the integrity statement considering random faults, the security integrity require-
ment can refer to the content of a domain, because security engineering usually focuses on data.
For security, the domain constrained in the functional requirement is usually a display or some
plain data. The specific action for both security and safety could be, e.g.:

• Write a log entry.

• Switch off an actuator.

• Do not influence the domain constrained in the functional statement (e.g., deny modifica-
tion).

• perform the same action as defined in the functional statement on domain constrained in
the functional statement. In this case integrity coincidence with reliability.

• inform stakeholder. In this case the stakeholder is a biddable domain and cannot be directly
constrained. Therefore, the stakeholder must be informed by some technical means that
can be constrained, e.g. a display. The assumption that the stakeholder sees the display
(being necessary to derive a specification from the requirements) must be checked later for
validity.

Integrity statements are modeled as classes with the stereotype
�Integrity att� or�Integrity rnd�. In our profile, this stereotype is an indirect specialization
of the stereotype �Dependability�, as shown in Fig. 5.4.

Figure 5.4.: UML Dependability Problem Frames Profile - Integrity

The stereotype �Integrity� should not be used directly in a model. Instead the derived
stereotypes �Integrity att� or �Integrity rnd� should be used. The OCL expression in Ap-
pendix C, Listing C.62 checks that no class with the stereotype �Integrity� exists.

The domains mentioned in the specific action must be constrained by the integrity statement.
The attribute actionIfViolation of the stereotype�Integrity� contains the textual descriptions of
the specific actions as a set of strings. From the dependencies with the stereotype�constrains�
the attributes influencedIfViolation and actionIfViolation are derived. The precondition of the
operation is given in in Appendix C, Listing C.65. The postcondition is given in in Appendix C,
Listing C.66.

In contrast to the other dependability requirements, an integrity requirement needs to refer
to the domain constrained by the complemented functional requirement: it does not neces-
sarily constrain this requirement. This can be validated with the constraint in Appendix C,
Listing C.61.
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The attribute constrainedByFunctional of the stereotype �Integrity� is modeled as a derived
attribute. It is derived from the dependencies with the stereotype �constrains� of the com-
plemented functional requirement. It can be set with an operation, defined by the precondition
given in Appendix C, Listing C.63 and the postcondition is given in in Appendix C, Listing C.64.

For requirements considering random faults, the stereotype�Integrity rnd� can be used. For
each integrity requirement considering random faults, exactly one probability must be specified
(see Appendix C, Listing C.67). The probability is a constant, determined by risk analysis.
The standard ISO/IEC 61508 (International Organization for Standardization (ISO) and In-
ternational Electrotechnical Commission (IEC), 2000) provides a range of failure rates for each
defined safety integrity level (SIL). The probability Pi could be, e.g., for SIL 3 systems operat-
ing on demand 1− 10−3 to 1− 10−4. For continuous (or high-demand) systems no (dangerous)
integrity fault with a probability of 1− 10−7 to 1− 10−8 per year is necessary.

For requirements considering an attacker, the attribute attacker needs to be defined. The at-
tacker must be described in the same way as for confidentiality in Section 5.1.1 (see Appendix C,
Listing C.68).

It is possible to generate the text of the integrity statement from other model information.
The domain constrained by the functional statement can be obtained from the causal domain
referred to in the integrity statement. The specific action can be obtained from the value of the
stereotype attribute actionIfViolation and the name of the domain constrained by the statement.
The probability Pi can be obtained from the value of the stereotype attribute probability. The
attacker can be obtained from the domain in the integrity stereotype attribute attacker. It s a
class with the stereotype �attacker� or a subtype of �attacker�.

The statement considering random faults can be expressed by the following integrity predicate:

intrnd : PClassWithCausalDomainStereotype × PString×
PClassWithCausalDomainStereotype × Probability → Bool .

The suffix “rnd” indicates that this predicate describes a requirement considering random faults.
The predicate intrnd (cd , aiv , iiv ,Pi) means that with a probability of Pi , one of the following
things should happen: service (as described in the functional statement) of (or with influence
on) the constrained domains in the set cd or the domains influenced in case of a violation in the
set iiv shall perform the specific actions in the set aiv .

The security statement can be expressed by the following integrity predicate:

intatt : PClassWithCausalDomainStereotype × PString × PClassWithCausalDomainStereotype×
PClassWithDomainStereotype × PClassWithAttackerStereotype → Bool

The predicate intatt(cd , aiv , iiv , s, a) means that for the stakeholders in the set s influence (as
described in the functional statement) on or the content of the constrained domains in the set
cd must be either correct or in case of any modifications by an attacker in the set a the domains
influenced in case of a violation in the set iiv shall perform the specific actions in the set aiv .

The following pattern can be used to define the integrity statements for a given probability
Pi and a given actionIfViolation:

∀ constrainedByFunctional : ClassWithCausalDomainStereotype;
influencedIfViolation : ClassWithCausalDomainStereotype •

intrnd ({constrainedByFunctional}, {actionIfViolation}, {influencedIfViolation},Pi)
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The following pattern can be used to define integrity requirements considering an attacker for
a given actionIfViolation:

∀ constrainedByFunctional : ClassWithCausalDomainStereotype;
influencedIfViolation : ClassWithCausalDomainStereotype;
stakeholder : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

intatt({constrainedByFunctional}, {actionIfViolation}, {influencedIfViolation},
{stakeholder}, {attacker})

For integrity considering an attacker with the specific action to deny any modification, the
predicate intatt d can be used.

∀ constrainedByFunctional : ClassWithCausalDomainStereotype;
stakeholder : ClassWithDomainStereotype •
attacker : ClassWithAttackerStereotype •

intatt d ({constrainedByFunctional}, {stakeholder}, {attacker})
⇔ intatt({constrainedByFunctional}, {’deny modification’}, {constrainedByFunctional},
{stakeholder}, {attacker})

As an example for integrity requirement considering random faults, in Fig. 5.5, the integrity
requirement is applied to the commanded behaviour problem frame.

Figure 5.5.: Commanded Behaviour Problem Frame with Integrity Requirement

This integrity requirement can be described with the predicate as follows:

∀ constrainedByFunctional : ControlledDomain;
influencedIfViolation : Display •

intrnd ({constrainedByFunctional}, {’inform user’}, {influencedIfViolation},Pi)

An integrity requirement considering an attacker is often used together with functional re-
quirements for data transmission and data storage. As an example, in Fig. 5.6, the integrity
requirement is applied to the simple workpieces problem frame.
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Figure 5.6.: Simple Workpieces Problem Frame with Integrity Requirement

This integrity requirement can be described with the predicate as follows:

∀ constrainedByFunctional : ControlledDomain;
influencedIfViolation : Display ; stakeholder : USer ;
attacker : Attacker •

intrnd ({constrainedByFunctional}, {’inform user’}, {influencedIfViolation},
{stakeholder}, {attacker})

5.1.3. Availability

Laprie (1995) defines that Availability is the readiness for service (up-time vs. down-time).
The BS 4778 (British Standards Institution (BSI), 1998) defines availability as “the ability of
an item (under combined aspects of its reliability, maintainability and maintenance support)
to perform its required function at a stated instant of time or over a stated period of time”.
Since we want to have requirements that do not cover too many aspects and we do not consider
maintenance, we use the definition of Laprie (1995). In this case, typical availability statements
considering random faults are:

The service (described in the functional statement) with influence on / of the domain
constrained in the functional statement must be available (for users) with a probability
of Pa .

When we talk about availability in the context of security, it is not possible to provide the
service to everyone due to limited resources. Availability statements considering an attacker can
be expressed as follows:

The service (described in the functional statement) with influence on / of the domain
constrained in the functional statement (constrained) must be available for users even
in case of an attack by Attackers.
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Figure 5.7.: UML Dependability Problem Frames Profile - Availability

Availability statements are modeled as classes with the stereotypes
�Availability att� or �Availability rnd�. In our profile, this stereotype is an indirect special-
ization of the stereotype �Dependability�, shown in Fig. 5.7. The stereotype �Availability�
should not be used directly in a model. Instead the derived stereotypes �Availability att� or
�Availability rnd� should be used. The OCL expression in Appendix C, Listing C.69 checks
that no class with the stereotype �Availability� exists.

Availability requirements also constrain the domains constrained by the complemented func-
tional requirement. We only require this condition for requirements; for domain knowledge we
do not want to force the developers to describe any functional aspect within the model. To
validate that availability requirements constrains the domain constrained in the functional state-
ment, we check for all classes with the stereotypes �Availability rnd� or �Availability add�
and �Requirement� that the set of its constrained classes includes the set of all constrained
classes of the complemented functional requirements (see Appendix C, Listing C.70).

The attribute constrained of the stereotype �Availability� is modeled as a derived attribute.
It is derived from the dependencies with the stereotype �constrains�. It can be set with an
operation, defined by the precondition given in Appendix C, Listing C.71 and the postcondition
is given in in Appendix C, Listing C.72.

For availability requirements considering random faults, we use the stereotype �Availability-
rnd�. In that case also the probability must be specified. This can be checked in the same way

as for integrity, described in Section 5.1.2 (see Appendix C, Listing C.74). Pa is the probability
that the service (i.e., the influence on the constrained domain) is accessible for defined users. A
probaility Pa of 1− 10−5 means that the service may be unavailable on average for 315 seconds
in one year.

For availability requirements considering an attacker the stereotype attributes forGroup and
attacker must be specified, as required by the OCL expression in Appendix C, Listing C.73.

It is possible to generate the text of the dependability statement from other model information.
The domain constrained by the functional statement can be obtained from the stereotype attribute
constrained. The user can be obtained from the stereotype attribute forGroup. It is not necessary,
that we restrict the availability requirement considering random faults to a limited set of users.
Therefore, the set forGroup can be empty in this case. If the set in forGroup is empty, the
restriction for certain users can be omitted. The probability Pi can be obtained from the value
of the stereotype attribute probability. The attacker can be obtained from the domain in the
integrity stereotype attribute attacker. It is a class with the stereotype�attacker� or a subtype
of �attacker�. Additionally, the names of complemented functional requirement can be added.

The availability statement considering random faults can be expressed by the following avail-
ability predicate:

availrnd : PClassWithCausalDomainStereotype×
PClassWithDomainStereotype × Probability → Bool
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The predicate availrnd (cd , fg ,Pa) means that the service (described in the functional statement)
of (or with influence on) the constrained domains in the set cd must be available for the users
in the set fg with a probability of Pa .

The availability statement considering an attacker can be expressed by the following avail-
ability predicate:

availatt : PClassWithCausalDomainStereotype × PClassWithDomainStereotype×
PClassWithAttackerStereotype → Bool

The predicate availatt(cd , fg , a) means that the service (described in the functional statement)
of (or with influence on) the constrained domains in the set cd must be available for the users
in the set fg even in case of an attack by the attackers in the set a.

The following patterns can be used to define the availability requirements for a given proba-
bility Pa :

∀ constrained : ClassWithCausalDomainStereotype;
forGroup : ClassWithDomainStereotype •

availrnd ({constrained}, {forGroup},Pa)
∀ constrained : ClassWithCausalDomainStereotype •

availrnd (constrained , ∅,Pa)
∀ constrained : ClassWithCausalDomainStereotype;

forGroup : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

availatt({constrained}, {forGroup}, {attacker})

Availability requirements are often used with functional requirements with a constrained
causal domain. .

As an example, in Fig. 5.8, an availability requirements considering random faults and an
availability requirements considering an attacker are applied to the commanded information
problem frame.

Figure 5.8.: Commanded Information Problem Frame with Availability Requirements

These availability requirements can be described with the predicates as follows:

∀ constrained : Display ; forGroup : User ; attacker : Attacker •
availrnd (constrained , ∅, 1− 10−5) ∧
availatt(constrained , forGroup, attacker)
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5.1.4. Reliability

Reliability is a measure of continuous service accomplishment (Laprie, 1995). The ISO 8402
(International Organization for Standardization (ISO), 1994) defines reliability as “the ability of
an item to perform a required function, under given environmental and operational conditions for
a stated period of time.” Reliability is defined in a similar way as availability (see Section 5.1.3).
The same failure rates as for integrity (see Section 5.1.2) can be used. A typical reliability
requirement considering random faults is that

The service (described in the functional requirement) with influence on / of the domain
constrained by the functional statement must be reliable (for users) with a probability
of Pr .

Figure 5.9.: UML Dependability Problem Frames Profile - Reliability

Reliability statements are modeled as classes with the stereotypes �Reliability att� and
�Reliability rnd� being specializations of the �Reliability� that should not be used (see Ap-
pendix C, Listing C.75). The constraints are similar to the constraints for availability (see
Appendix C, Listings C.76, C.77, C.78, and C.79). The probability is a constant determined
by risk analysis. The same failure rates as for integrity (see Section 5.1.2) can be used (see
Appendix C, Listing C.80).

Reliability considering random fault can be expressed with the following predicate:

relrnd : PClassWithCausalDomainStereotype×
PClassWithDomainStereotype × Probability → Bool

The predicate relrnd (cd , fg ,Pr ) means that the service (described in the functional statement)
of (or with influence on) the constrained domains in the set cd must be reliable for the users in
the set fg with a probability of Pr .

Reliability considering certain attackers can be expressed with the following predicate:

relatt : PClassWithCausalDomainStereotype×
PClassWithDomainStereotype × PClassWithAttackerStereotype → Bool

The predicate relatt(cd , fg , a) means that the service (described in the functional statement) of
(or with influence on) the constrained domains in the set cd must be reliable for the users in
the set fg even in case of an attack by the attackers in the set a.
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It is possible to generate the statement text in the same way as for availability.

Reliability consists of two parts, the availability of the functionality and the integrity of the
functionality. The availability only defines the probability that the service is available, and the
integrity defines the probability that the service is correct or a fault is correctly handled. To
have a reliable system, the service must be correct and available. Hence, with a probability of
Pr :

∀ d : PClassWithCausalDomainStereotype •
relrnd ({d}, ∅,Pr )⇔
(availrnd ({d}, ∅,Pr ) ∧ intrnd ({d}, {”do not influence”}, {d},Pr )

intrnd (d , ”do not influence”, d ,Pr ) requires that the service with influence on ConstrainedDomain
must be either correct or it must be switched off (with a probability of Pr ). But availrnd (d , ∅,Pr )
also requires that it should not be switched of or completely fail with the probability Pr .

It is also possible, that the integrity requirement states that

• with a probability of Pi , one of the following things should happen: the ConstrainedDomain
must work correctly, or ConstrainedDomain must perform the same action as defined in the
complemented statement.

In this case, the integrity requirement is equivalent to the reliability requirement:

∀ d : ClassWithCausalDomainStereotype •
relrnd ({d}, ∅,Pr )⇔
intrnd ({d}, {”perform same action as defined in the complemented statement”}, {d},Pr )

The following pattern can be used to define the reliability requirements:

∀ constrained : ClassWithCausalDomainStereotype;
forGroup : ClassWithDomainStereotype •
relrnd ({constrained}, {forGroup},Pa)
∀ constrained : ClassWithCausalDomainStereotype •

relrnd ({constrained}, ∅,Pa)
∀ constrained : ClassWithCausalDomainStereotype;

forGroup : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •
relrnd ({constrained}, {forGroup}, {attacker})

Reliability requirements are often used with functional requirements with a constrained causal
domain. It can be annotated in the same way as availability requirements (see Fig. 5.8 for a com-
manded information problem frame with availability requirements). The reliability requirements
can be described with the predicates as follows:

∀ constrained : Display ; forGroup : USer ; attacker : Attacker •
relrnd ({constrained}, ∅, 1− 10−5) ∧
relatt({constrained}, {forGroup}, {attacker})
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5.1.5. Authenticity

Authenticity describes a property that ensures that a communication partner is the partner it
claims to be (IT-Grundschutz-Katalog , 2011). A typical authenticity statement is to

Check authenticity of known domains to distinguish from unknown domains and
modify influenced domain accordingly. Permit access for known domains and deny
access for unknown domains on influenced domain.

Figure 5.10.: UML Dependability Problem Frames Profile - Authenticity

Authenticity is only relevant for security. A statement about authenticity is modeled as a
class with the stereotype �Authenticity� in our profile. This stereotype is a specialization of
the stereotype �Dependability�, as shown in Fig. 5.10. Three aspects have to be specified for
an authenticity requirement:

1. The influenced domain is the domain that is modified according to an authentication pro-
cess. It can be a display showing the authentication status, an internal representation of
the authentication status that used, e.g., for access control, or a lexical domain that must
not be changed by unknown users. The stereotype attribute influenced is modeled as a de-
rived attribute. It is derived from the dependencies with the stereotype�constrains� (see
Appendix C, Listing C.82 for the postcondition of the operation to derive the stereotype
attribute influenced). Dependencies with the stereotype �constrains� shall only point to
causal domains (see Appendix C, Listing C.81 for the precondition of the operation to
derive the stereotype attribute influenced).

2. Known domains describe users or technical systems that are known by the machine and
that prove their authenticity. The stereotype attribute known is modeled as a derived
attribute. It is derived from the dependencies with the stereotype �refersTo� with the
name known (see Appendix C, Listing C.83 for the postcondition of the operation to derive
the stereotype attribute known). The dependencies with the stereotype �refersTo� shall
only point to domains (see Appendix C, Listing C.24 for the precondition of the operation
to derive the stereotype attribute known). At least one domain must be known as stated
in the multiplicity (see also Appendix C, Listing C.84).

3. Unknown domains describe users or technical systems that are not known by the machine
or cannot prove their authenticity. The stereotype attribute known is derived from the
dependencies with the stereotype �refersTo� with the name unknown (see Appendix C,
Listing C.85, postcondition of the operation to derive the stereotype attribute unknown).
The dependencies with the stereotype �refersTo� shall only point to domains (see Ap-
pendix C, Listing C.24, precondition of the operation to derive the stereotype attribute
unknown).

It is possible to generate the statement text from the stereotype attributes known, unknown,
and influenced (constrained causal domains).
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The authenticity requirement pattern can be expressed by the following dependability predi-
cate:

authatt : PClassWithCausalDomainStereotype×
PClassWithDomainStereotype × PClassWithDomainStereotype → Bool

The predicate authatt(id , k , u) means that the authenticity of the known domains in the set k
has to be distinguished from the unknown domains in the set u and the influenced domains in
the set id

The following pattern can be used to define the authentication requirement:

∀ influenced : ClassWithCausalDomainStereotype;
known : ClassWithDomainStereotype;
unknown : ClassWithDomainStereotype •

authatt({influenced}, {known}, {unknown})

An authenticity requirement is often used together with functional requirements with lexical
domains. As an example, in Fig. 5.11, the authenticity requirement is applied to the simple
workpieces problem frame.

Figure 5.11.: Simple Workpieces Problem Frame with Authenticity Requirement

This authenticity requirement can be described with the predicate as follows:

∀ influenced : WorkPieces; known : USer ; unknown : Others •
authatt({influenced}, {known}, {unknown})

5.1.6. Security Management

Security management has several objectives (International Organization for Standardization
(ISO) and International Electrotechnical Commission (IEC), 2009a):

• management of security attributes (e.g., the Access Control Lists, and Capability Lists),
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• management of security functions (e.g., selection of functions, and rules or conditions
influencing the behavior of the security functions),

• management of data for security functions (e.g., security attribute expiration, revocation),

• definition of security roles,

A typical security management statement is that

Valid clients should be able to manage, i.e. change security data (used for other
security functions), but not attackers.

Figure 5.12.: UML Dependability Problem Frames Profile - Security Management / Secret Distribution

A statement about security management is modeled as a class with the stereotype
�SecurityManagement� in our profile. This stereotype is a specialization of the stereotype
�Dependability�. The stereotype with the attributes securityData, validClient, and attacker is
shown in in Fig. 5.12. Three aspects have to be specified for a security management requirement:

1. The security data are data used for the implementation of a security functionality, e.g., the
access rules for access control. The stereotype attribute securityData is modeled as a derived
attribute. It is derived from the dependencies with the stereotype �constrains� (see
Appendix C, Listing C.86 for the postcondition of the operation to derive the stereotype
attribute securityData). Dependencies with the stereotype �constrains� shall only point
to lexical domains. The corresponding OCL expression is similar to the expression for
authentication (see Appendix C, Listing C.87 for the precondition of the operation to
derive the stereotype attribute securityData).

2. The valid clients should be able to manage, i.e. change the security data. It is modeled with
the stereotype attribute validClient. It must be assumed that the valid clients only performs
correct changes on security data. This attribute need to be specified. This is required by
the multiplicity of [1..*] (and can be validated by the OCL expression in Appendix C,
Listing C.88.

3. The attackers should not be able to manage, i.e. change the security data. It is modeled
with the stereotype attribute attacker. This is required by the multiplicity of [1..*] (and
can also be validated by the OCL expression in Appendix C, Listing C.88.

The authenticity requirement is often a dependency from other security requirements. In
this case it complements same same requirement as the requirement with an authentication
dependency. Authenticity requirement are not necessary for protection against random faults.

It is possible to generate the statement text from the stereotype attributes validClient, attacker,
and securityData (constrained lexical domains).
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The security requirement pattern can be expressed by the following dependability predicate:

manatt : PClassWithLexicalDomainStereotype × PClassWithDomainStereotype×
PClassWithAttackerStereotype → Bool

The predicate manatt(sd , vc, a) means that valid clients in the set vc should be able to manage,
i.e. change security data (used for other security functions) in the set sd , but not the attackers
in the set a.

The following pattern can be used to define the authentication requirement:

∀ securityData : ClassWithLexicalDomainStereotype;
validClient : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

manatt({securityData}, {validClient}, {attacker})

For all data used to enforce security functions, the integrity must be ensured. Additionally, the
ValidClient must be authenticated before. Therefore, we can state (considering that StoredData
is a special InfluencedDomain):

∀ securityData : ClassWithLexicalDomainStereotype;
validClient : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

manatt({securityData}, {validClient}, {attacker})
⇒ (intatt({securityData}, {”inform”}, {validClient}, {attacker})
∧ authatt({securityData}, {validClient}, {attacker}))

Since the security management includes a functional aspect, it can be used without extending a
functional requirement. Nevertheless, it should complement the related functional requirement.
Figure 5.13 shows a frame diagram for security management.

Figure 5.13.: Security Management Requirement

This security management requirement can be described with the predicate as follows:

∀ securityData : SecurityData; validClient : ValidClient ; attacker : Attacker •
manatt({securityData}, {validClient}, {attacker})
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5.1.7. Secret Distribution

Secret distribution is a special security management activity. It additionally requires, that the
secret, a special stored or transmitted data is kept confidential (e.g. for cryptographic key
management in International Organization for Standardization (ISO) and International Elec-
trotechnical Commission (IEC) (2009a), confidentiality is necessary). A typical security secret
distribution requirement is that

Valid clients should be able to access secret (used for other security functions), but
not attackers.

The statement about secret distribution is modeled in the same way as the security manage-
ment stereotype with similar attributes (see Fig. 5.12). The OCK constraints are described in
Appendix C, Listing C.89, C.90, and C.91.

It is possible to generate the statement text from the stereotype attributes validClient, attacker,
and secret (constrained lexical domains).

The security requirement pattern can be expressed by the following dependability predicate:

distatt : PClassWithLexicalDomainStereotype × PClassWithDomainStereotype
×PClassWithAttackerStereotype → Bool

The predicate distatt(s, vc, a) means that valid clients in the set vc should be able to access
secrets (used for other security functions) in the set s, but not the attackers in the set a.

The following pattern can be used to define the distribution requirement:

∀ secret : ClassWithLexicalDomainStereotype;
validClient : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

distatt({secret}, {validClient}, {attacker})

Secret distribution can be traced back to security management and confidentiality:

∀ secret : ClassWithLexicalDomainStereotype;
validClient : ClassWithDomainStereotype;
attacker : ClassWithAttackerStereotype •

distatt({secret}, {validClient}, {attacker})⇒
(manatt({secret}, {validClient}, {attacker}) ∧
confatt({secret}, {validClient}, {attacker}))

It is possible to generate the statement text from the attributes validClient and attacker and
the constrained causal domains.

The stereotype �SecretDistribution� can be used in the same way as the stereotype
�SecurityManagement� (see Fig. 5.13). The corresponding secret distribution requirement
can be described with the predicate as follows:

∀ secret : SecurityData; validClient : ValidClient ; attacker : Attacker •
distatt({secret}, {validClient}, {attacker})
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5.2. Procedure to Use the Dependability Extension

This section describes how to work with the UML profile for problem frames for dependable
systems.

To use our profile and apply the dependability patterns, we assume that hazards and threats
are identified, and a risk analysis has been performed. We also assume, that the functional
requirements and the environment are described because dependability requirements can only be
guaranteed for some specific intended environment. For example, a device may be dependable
for personal use, but not for military use with more powerful attackers or a non-reliable power
supply.

From hazards and threats an initial set of dependability requirements can be identi-
fied. These requirements supplement the previously described functional requirements.

For each dependability requirement, a pattern from Section 5.1 should be selected. After an
appropriate pattern is determined, is must be connected with the concrete domains from the
environment description. To prepare the analysis of depending and interacting requirements, the
corresponding predicates should be instantiated. This instantiation is performed by replacing
the stereotype names by classes with this stereotype or a derived stereotype.

The connected domains must be described using facts and assumptions. For an attacker, at
least the attributes of the stereotype must be defined (objective, equipment, skill, time to attack,
time to prepare). Via these assumptions, threat models are integrated into the development
process using dependability patterns.1. The values for probabilities can be usually extracted
from the risk analysis.

5.3. CACC Case Study

The approach is illustrated on the case study introduced in Section 4.3.

5.3.1. Identify Hazards and Threats, Perform Risk Analysis

The hazard to be avoided is an unintended acceleration or deceleration (that may lead to a
rear-end collision). The considered threat is an attacker who sends wrong messages to the car
in order to influence its speed.2

5.3.2. Describe Environment

Examples for domain knowledge of the CACC in the described environment are physical
properties about acceleration, braking, and measurement of the distance (relevant for safety).
Other examples are the assumed intention, knowledge and equipment of an attacker. The
objective of the attacker could be to change the speed of the car, in order to produce a rear-end
collision. We assume here that the attacker can only access the connection domain WiFi WAVE
interface. The context diagram for the CACC is shown in Section 4.3, Fig. 4.19.

5.3.3. Describe Dependability Requirements

The next step is to identify an initial set of dependability requirements. For the func-
tional requirements R1 and R2, the following security requirement can be stated using the textual
pattern from Section 5.1.2:

1To analyze and identify the threats, e.g., attack trees (Schneier, 1999) can be used
2The risk analysis is left out here, see Section 5.2.



5.3. CACC Case Study 73

For Driver, the influence (as described in R1 and R2) on the Car (brake, acceler-
ate) must be either correct or in case of a modification by CACCAttacker the Car
(EngineActator Brake) shall not brake/accelerate and the Car shall inform driver.

A problem diagram including this integrity requirement is depicted in Fig. 5.14. It complements
the requirements R1 R2. It refers to an attacker (the CACCAttacker) within the stereotype
attribute attacker and also refers to the domain constrained by R1 R2 (the Car). The Car
is constrained because the EngineActuator Brake as part of the car should not be influenced.
Additionally, the Car is constrained because it acts as a display to warn the driver.

Figure 5.14.: CACC Problem Diagram for Integrity Checks considering an Attacker

All OCL constraints defined for the profile were checked. With checking these constraints, we
detected several minor mistakes (e.g., wrong names), and we detected that the original version
of our problem diagram did not refer to the domain constrained in the requirement.

These requirements can be expressed using the integrity predicates

∀ c : Car , a : CACCAttacker , d : Driver •
intatt({c}, {’not brake/accelerate’, ’inform the driver’}, {c, c}, {d}, {a}) (5.1)

The first occurrence of the variable mab in Equation 5.1 refers to the influenced domain as
described in the functional requirement, and the second occurrence of mab expresses that this
domain is not influenced in case of an attack.

A safety requirement is to keep a safe distance to the car ahead while being activated (see
R1 and R2). For each safety requirement the integrity or the reliability must be defined. For
the CACC only integrity is required, because it is safe to switch off the functionality and inform
the driver in case of a failure. The risk analysis performed in the first step showed that a
probability of at most 10−7 untreated random errors per hour (that may lead to an accident)
can be accepted. Hence, for R1 and R2 can be stated that

With a probability of 1− 10−7 per hour, one of the following things should happen:
service (as described in R1 and R2) with influence on the EngineActuator Brake must
be correct, or the Car (EngineActator Brake) shall not brake/accelerate and the Car
shall inform driver.
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A problem diagram including this dependability requirement is depicted in Fig. 5.15. This
integrity requirement also complements the requirements R1 and R2. It defines a probability
and also refers to the domain constrained by R1 and R2 (the Car). Additionally, the Car is
constrained because it acts as a display to inform the driver, and it is constrained because the
EngineActuator Brake as part of the car should not be influenced (no brake, no accelerate).

Figure 5.15.: CACC Problem Diagram for Integrity Check Random

The corresponding predicate is:

∀ c : Car •
intrnd ({c}, {’not brake/accelerate’, ’inform the driver’}, {c, c}, 1− 10−7) (5.2)

Additionally, to satisfy the drivers buying the CACC:

The service (described in R1 and R2) with influence on the Car (EngineActuator Brake)
must be available with a probability of 1− 10−7.

The corresponding problem diagram is depicted in Fig. 5.16. Because the reliability require-
ment has the same properties, it is also included in this diagram.
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Figure 5.16.: CACC Problem Diagram for Availability and Reliability

This requirement can be expressed with the predicate

∀ c : Car • availrnd ({c}, ∅, 1− 10−6) (5.3)

For availability, we only consider random faults, because for the corresponding security require-
ment we have to limit the group of users (the service is provided for) as described in Section 5.1.3,
and this is not possible in the described environment. Since both integrity and availability for
keeping the distance are required, the following reliability requirement can be stated:

∀ c : Car • relirnd ({c}, ∅, 1− 10−6) (5.4)

5.4. Relation to Security Problem Frames

In this section, we demonstrate, how to use the profile to express already published security
problem frames. In contrast to the security problem frames (SPF), the patterns presented in
this thesis separates functional requirements from dependability requirements.

The following frames have been already published:

• SPF confidential data transmission / Secure Data Transmission Frames (Schmidt, Hatebur,
& Heisel, 2011; Schmidt, 2010a; Hatebur et al., 2007a; Hatebur & Heisel, 2005a)

• SPF confidential data storage (Schmidt et al., 2011; Schmidt, 2010a, Section 4.2.2)

• SPF integrity-preserving data transmission (Schmidt, 2010a, Section 4.2.3)

• SPF integrity-preserving data storage (Schmidt, 2010a, Section 4.2.4)

• SPF authentication / Accept Authentication Frame / Submit Authentication Frame (Schmidt,
2010a; Hatebur et al., 2007a, 2006; Hatebur & Heisel, 2005a)

• SPF distributing secrets / Distribute Security Information Frame (Schmidt, 2010a; Hate-
bur et al., 2007a; Hatebur & Heisel, 2005a)
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• SPF anonymity (Hatebur, Heisel, & Schmidt, 2007b)

• SPF accountability (Hatebur, Heisel, & Schmidt, 2008a)

All of these frames can be expressed using our Problem Frames Profile for UML. As an
example, the SPF confidential data transmission (depicted in Fig. 5.17) is expressed using the
profile of Section 5.1 as shown in Fig. 5.18.

Name SPF confidential data transmission

Intent Conceal data (e.g., files, raw data, E-Mails, etc.) transmitted from a sender to a
recipient over some communication medium (e.g., LAN, Wifi, Internet, etc.).

Frame Diagram Figure 5.17 shows the frame diagram of the SPF confidential data transmis-
sion.
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Figure 5.17.: Security Problem Frame “Confidential Data Transmission”

Predefined Interfaces The interfaces of the SPF confidential data transmission are defined as
follows:

Y1 = {ContentOfSentData}
E2 = {TransmitContentOfSentData}
Y3 = {TransmittedContentOfSentData}
Y4 = {ContentOfReceivedData}
Y5 = {ObservationsMS}

Informal Description The domain Sent data denotes the data that is sent by a sender, rep-
resented by the machine domain Sender machine. The data (ContentOfSentData) is transferred
from the domain Sent data to the machine via the interface SD!Y1 (between Sender machine
and Sent data). Analogously, the domain Received data denotes the data that is received by the
domain Receiver machine. The data (ContentOfReceivedData) is transferred from the domain Re-
ceiver machine to the domain Received data via the interface RM!Y4 (between Receiver machine
and Received data).

The data is sent (TransmitContentOfSentData) over some network, which is represented by the
domain Communication medium using the interface SM!E2 (between machine and Communication
medium). Then, the domain Communication medium forwards the data (TransmittedContentOf-
SentData) to the domain Receiver machine using the interface CM!Y3 (between Communication
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medium and Receiver machine). Informally speaking, the sender machine generates the data to
be transmitted from the sent data, and the receiver machine generates the received data from
the data sent over the communication medium.

The malicious environment is represented by the domain Malicious subject. It is graphically
emphasized by the hatched area in Fig. 5.17. The domain Sent data represents the data to be
protected against the malicious environment. The Malicious subject domain uses the interface
CM!Y5 (between Malicious subject and Communication medium) to eavesdrop on the Communi-
cation medium domain. Some observations (ObservationsMS), e.g., meta-information about Sent
data such as its length or type, can be received from the Communication medium domain using
the interface CM!Y5.

Security Requirement Template The security requirement template (SR) is described as fol-
lows:

Preserve confidentiality of sent data for sender machine and prevent disclosure via
communication medium to malicious environment.

SPF expressed using the Problem Frames profile for UML This frame corresponds to Jack-
son’s transformation frame with the connection domains Communication medium and Receiver
machine complemented with a confidentiality requirement. The problem frame diagram is de-
picted in Fig. 5.18. This diagram additionally contains the supplemented functional requirement
R (required by the constraint described in Listing 5.1) and the stakeholder DataOwner (required
by the constraint described in Appendix, Listing C.60).

Figure 5.18.: Security Problem Frame “Confidential Data Transmission” with UML4PF

Concretized Security Problem Frames (CSPFs) (see (Schmidt et al., 2011)) are not explicitly
created by the procedure presented in this thesis since too many frames are necessary to cover



78 Chapter 5. Expressing Dependability Requirements

the problems of real projects. Therefore, we replace the frames by rule that describe the changes
on the model when a generic mechanism is selected. Details are discussed in Chapter 6.

5.5. Related Work

Fabian, Gürses, Heisel, Santen, and Schmidt (2010) give an overview on other methods for
security requirements engineering. It compares MSRA/CREE, SQUARE, Misuse cases, Se-
cureUML, UMLsec, KAOS, Secure Tropos, Secure i*, GBRAM, Abuse frames, SEPP, SREF,
CORAS, Model-based ISSRM, CC, and SREP. Our approach presented in this chapter inher-
its the properties from SEPP. The notions of assumptions and facts (domain knowledge) and
specification have the same meaning as the notions in the conceptual framework described in
Fabian et al. (2010). Vulnerabilities are not considered since they cannot be an element of the
requirements engineering. Security goal are seen as more general requirements. Threat and risk
analysis are also not covered by the requirements engineering steps described here, but they are
seen as a necessary input. Additionally, to the requirements in SEPP (Hatebur et al., 2008a),
the stakeholder are referenced in the requirements, the functional requirements and the security
requirements are separated.

Haley, Laney, Moffett, and Nuseibeh (2008) present an approach for security requirements
elicitation and analysis that is similar to our approach. This approach is limited to security
requirements and within the paper no security requirement patterns are presented.

MARTE (UML Revision Task Force, 2011) is a well-known UML profile that allows the an-
notation of embedded and real-time systems with performance attributes. Bernardi, Merseguer,
Cortellessa, and Berardinelli (2009) also present a UML profile to express the non-functional
properties reliability, availability and performance. Their stereotype can be used to annotate use
case diagrams, deployment diagrams, and sequence diagrams. It is an extension of the MARTE
profile for performance, but does not cover security aspects. The stereotype attributes are simi-
lar to the stereotype attributes in our profile. The profile is not designed to extend the problem
frames approach and does not systematically support the engineer in describing the necessary
properties.

Rodŕıguez, Merseguer, and Bernardi (2010) present an extension for security. The profile
focuses on security faults, vulnerabilities and attacks. These aspects can be used to analyze
given systems, but are are not appropriate to describe security requirements.

Jürjens (2005) describes a profile for UML 1.4 to extend UML specifications with security
aspects. This profile cannot be used for requirements engineering. Therefore, Mouratidis and
Jürjens (2010a) use Secure Tropos (Mouratidis, 2004a) to transform security requirements to
design.

The Common Criteria (International Organization for Standardization (ISO) and Interna-
tional Electrotechnical Commission (IEC), 2009a), Part 2 define a large set of so-called Security
Functional Requirements (SFRs) as patterns for requirements. But some of these SFRs directly
anticipate a solution, e.g. the SFR in the class functional requirements for cryptographic support
with the name cryptographic operation (FCS COP) specifies the cryptographic algorithm, key
sizes, and the assigned standard to be used. Together with this SFR, the cryptographic key
management (FCS CKM) has to be specified. To require confidentiality, alternatively, an
access control policy (FDP ACC, in class functional requirements for data protection)) and
an acess control function (FDP ACF) can be be specified. The SFRs in the Common Criteria
are limited to security issues. Table 5.1 shows a fragment of our mapping from dependability
patterns to SFRs.
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confatt Cryptographic operation (FCS COP) and
Cryptographic key management (FCS CKM)
Access control policy (FDP ACC) and
Access control functions (FDP ACF)
Inter-TSF user data confidentiality transfer protection (FDP UCT)
. . .

intatt Cryptographic operation (FCS COP) and
Cryptographic key management (FCS CKM) and
Inter-TSF user data integrity transfer protection (FDP UIT)
Cryptographic operation (FCS COP) and
Cryptographic key management (FCS CKM) and
Stored data integrity (FDP SDI)
Access control policy (FDP ACC) and
Access control functions (FDP ACF)
Information flow control policy (FDP IFC) and
Information flow control functions (FDP IFF)
. . .

availatt Inter-TSF availability (FPT ITA)

authatt Authentication failures (FIA AFL)
User attribute definition (FIA ATD)
User identification and authentication (FIA UAU, FIA UID)
. . .

manatt Management of functions in TSF (FMT MOF)
distatt Management of security attributes (FMT MSA)

Management of TSF data (FMT MTD)

Table 5.1.: Mapping: Dependability Patterns vs. SFRs

5.6. Conclusions and Future Work

In this chapter, we have presented patterns that can be used to describe security requirements.
The approach extends problem frames from Chapter 4 to describe dependability.

We have defined a set of patterns that can be used to describe and analyze dependability
requirements. These patterns are represented by

• a textual pattern with references to relevant domains,

• stereotypes that can be used to extend a problem diagram, and

• a corresponding predicate.

To provide tool support, we have defined a Unified Modeling Language (UML) profile (UML
Revision Task Force, 2010c) that allows us to represent problem frames in UML. This UML
profile is then augmented with stereotypes that support the expression of dependability require-
ments. The stereotypes are complemented by constraints expressed in the Object Constraint
Language (OCL). They can be checked, as described in Section 4.2

These constraints express important integrity conditions, for example, that security require-
ments must explicitly address a potential attacker. By checking the different OCL constraints,
we can substantially aid system and software engineers in analyzing dependability requirements.

We have set up 35 OCL constraints for requirements engineering concerning dependability.
These constraints show how functional requirements can be complemented by dependability
requirements.
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This chapter also describes the process to work with our UML profile for problem frames for
dependable systems and shows the to SEPP with security problem frames.

The patterns for dependability requirements may not be complete. Of curse, patterns for
maintainability requirements are missing and we have not specified any patterns for privacy
requirements and accountability requirements.

The advantages of our general approach are preserved when dependability requirements are
added as suggested in this chapter:

• Artifacts from the analysis development phase that are part of a model created with our
profile can be re-used in later phases in the software development process.

• The notation is based on UML. UML is commonly used in software engineering, and many
developers are able to read our models.

• The concept is not tool-specific. It can be easily adapted to other UML2 tools that allow
to specify new stereotypes.

In summary, the advantages of our patterns for dependability requirements are:

• The dependability statements are re-usable for different projects.

• A manageable number of statement types can be used for a wide range of problems, because
they are separated from the functional requirements.

• Statements expressed using our profile refer to the environment description and are inde-
pendent from solutions. Hence, they can be easily re-used for new product versions.

• A generic textual description of the requirement or the domain knowledge can be generated
from other model elements.

• Statements expressed using our profile help to structure and classify the dependability
requirements. For example, integrity statements can be easily distinguished from avail-
ability statements. It is also possible to trace all dependability statements that refer to
one domain.

In the future, we plan to consider also privacy and accountability requirements. We also
plan to check the requirement patterns for completeness by associating more design patterns to
dependability requirements.



Chapter 6

Analysis of Dependability

Requirements

Dependability requirements should be described and analyzed. When the requirements are
described as suggested in Chapter 5, missing and conflicting requirements can be identified.

This chapter presents a construction system and shows how to work with our construction sys-
tem built up on the predicates defined in Section 5.1. It can be used to find possible interactions
with other dependability requirements and helps to complete the dependability requirements by
a set of defined necessary conditions for each mechanism that can be used to solve dependability
problems.

This chapter is based on Hatebur and Heisel (2009b), in which we have presented a foundation
for requirements analysis of dependable systems, based on problem frames (Jackson, 2001). The
dependencies for security requirements are based on Hatebur et al. (2008a).

In Section 6.1, the construction system is presented. Section 6.2 describes how to integrate
the use of the dependability patterns into a system development process. The case study in
Section 6.3 applies that process to a cooperative adaptive cruise control system. Section 6.4
discusses related work, and the chapter closes with a summary and perspectives in Section 6.5.

6.1. Construction System

For each dependability requirement pattern from Chapter 5, we provide a table describing
mechanisms that can be used to address the requirement. For each mechanism in Column 1, we
provide a set of

• requirements that may interact and lead to conflicts in Column 2,

• domains that need to be introduced or considered in Column 3,

• necessary conditions that must be either assumed or established in Column 4, and

• related requirement that may be also relevant for the problem in Column 5.

In the following paragraphs, we explain these columns:

When a mechanism that addresses a requirement is chosen, this may have an negative impact
to another requirements. In case of such a conflict, either another mechanism has to be chosen,
or one of the requirements have to be changed (Column 2).

A mechanism usually needs some domains (e.g., keys) to realize the requirement to be ad-
dressed. These domains maybe already described in the context diagram. If it is not possible
to consider an already described domain, we have to introduce this domain (Column 3).
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For these introduced or considered domain, it is necessary to fulfill some conditions. If these
conditions are not fulfilled, the selected generic mechanism will not address the initial require-
ment, e.g., if a key used for encryption is not kept confidential, the initial confidentiality re-
quirement cannot be fulfilled (Column 4). Therefore, these necessary conditions lead to new
requirements or the necessary condition have to be established by the environment. For new
requirements, again a mechanism has to be selected and the whole procedure has to be repeated
for this requirement. To avoid an endless cycle at some point, the necessary conditions have to
established by the environment (expressed as domain knowledge, i.e., facts or assumptions).

If an initial requirement has to be addressed by the machine with a mechanism, there are often
related requirements, e.g. if same data has the be kept confidential, often it is important the its
integrity is preserved. The developer has to decide if the related requirements are necessary in
the context of the system (Column 5).

These tables have been created from project experience and patterns, describing the generic
mechanisms (Hamner (2007), Schumacher, Fernandez-Buglioni, Hybertson, Buschmann, and
Sommerlad (2006), Schumacher (2003)). Neither the set of dependability requirements nor the
set of generic mechanisms is complete, but can be easily extended. For each necessary condition
in the tables, a corresponding requirement is provided, and for each requirement at least one
generic mechanism is suggested.

The tables are constructed using the predicates introduced in Chapter 5. The dependability
requirement predicates in the table refer to

• all instances d of a causal domain to be protected (e.g., transmitted or stored data),

• all instances of the causal domains constrained by the functional requirement c1 and c2,

• all instances of a biddable domain (e.g., users or stakeholders) u, to all instances of the
Attacker domains a,

• all instances of the Machine domain including all relevant connection domains m, and

• a set of specific actions A as described in Section 5.1.2.

6.1.1. Confidentiality

To achieve confidentiality (confatt) (as introduced in Section 5.1.1), e.g., symmetric encryption,
asymmetric encryption, or access control can be used as mechanisms. All mechanisms may
lead to reduced availability - intentionally for the attacker, but if a key is lost, maybe also
for the stakeholder. A necessary authentication may also lead to reduced availability (e.g.,
due to login time or lost credentials). Depending on the mechanism, additional domains have
to be introduced or considered. For all mechanisms, the Machine needs to be protected from
modification and its data from modification since it processes data that is not protected.

For symmetric encryption, a Key1 for sender, a Key2 for receiver, and the plain text including
related data (PlainData) have to be introduced or considered. Note that Key1 and Key2 need to
be the same but are stored at different places. We have to ensure that the internal state of the
machine, the plain text including related data, the key of the sender, and the key of the receiver
are protected from disclosure. The integrity of both keys has to be ensured, because otherwise
an attacker can change the value to a known value in order to decrypt the protected data. For
symmetric encryption, the keys have to be distributed before in a secure manner (confidential
and integrity-preserving).

For asymmetric encryption, a SenderKey, a ReceiverKey, and the plain text including related
data (PlainData) have to be introduced or considered. We have to ensure the same conditions
as for symmetric encryption, except that the key used to encrypt the message (SenderKey) need
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not to be protected against disclosure. For asymmetric encryption, it is sufficient to ensure the
integrity of the SenderKey when distributing the keys – confidentiality is only necessary for the
ReceiverKey.

For access control, instead of keys, AccessRules have to be considered. These access rules are
used to allow or prevent the access of users to the data at the user interface. But access control
does not solve the confidentiality problem itself: the data is unprotected if the computer is stolen.
Therefore, protecting the confidentiality is still necessary. Additionally, the data processed by
the machine and the plain text including related data (PlainData) have to be protected from
disclosure and its integrity have to be preserved. Also the integrity of the access rules have to
be preserved. Modification of the access rule shall be only possible for trusted Administrators. If
confidentiality is required, often integrity is also important.

For the confidentiality predicate confatt({d}, {u}, {a}), Table 6.1 shows a set of mechanisms
with possible interaction, introduced / considered domains, necessary conditions and related
requirements.

Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

symmetric
encryption

avail∗({d}, {a}, ∗)
avail∗({d}, {u}, ∗)1

kSnd : Key1
kRcv : Key2
pr : PlainData
m : Machine

confatt({m}, {u}, {a})
intatt({m}, ∗, ∗, {u}, {a})
confatt({pr}, {u}, {a})
confatt({kSnd}, {u}, {a})
intatt({kSnd}, ∗, ∗, {u}, {a})
confatt({kRcv}, {u}, {a})
intatt({kRcv}, ∗, ∗, {u}, {a})
distatt({kSnd}, {u}, {a})
distatt({kRcv}, {u}, {a})

int

asymmet-
ric
encryption

avail∗({d}, {a}, ∗)
avail∗({d}, {u}, ∗)
1

kSnd : SenderKey
kRcv :
ReceiverKey
pr : PlainData
m : Machine

confatt({m}, {u}, {a})
intatt({m}, ∗, ∗, {u}, {a})
confatt({pr}, {u}, {a})
confatt({kRcv}, {u}, {a})
intatt({kSnd}, ∗, ∗, {u}, {a})
intatt({kRcv}, ∗, ∗, {u}, {a})
manatt({kSnd}, {u}, {a})
distatt({kRcv}, {u}, {a})

int

access
control

avail∗({d}, {a}, ∗)
avail∗({d}, {u}, ∗)2

ar : AccessRules
pr : PlainData
m : Machine
ad :
Administrator

confadd({d}, {u}, {a}) 3

confatt({m}, {u}, {a})
intatt({m}, ∗, ∗, {u}, {a})
confatt({pr}, {u}, {a})
intatt({ar}, ∗, ∗, {ad}, {u, a})
manrnd({ar}, {ad}, {u, a})
authatt({d}, {u}, {a})

int

. . . . . . . . . . . . . . .

1. Lost secrets may decrease availability.

2. Necessary authentication may decrease availability for User u.

3. The stored data d must be still protected. This is often just assumed.

Table 6.1.: Confidentiality – Dependencies
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6.1.2. Integrity

To achieve integrity of the domain constrained by the functional requirement (c1) (as introduced
in Section 5.1.2), considering random faults (intrnd ), e.g., checksums or plausibility checks can
be used. Other mechanisms to preserve integrity are the detection pattern in (Hamner, 2007),
e.g., Fault Correlation, Realistic Threshold, Complete Parameter Checking, or Voting. Further
mechanisms (e.g., Watchdog or test patterns) are described in the standard ISO/IEC 61508,
Part 2, Tables A.1 to A.15 (International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), 2000). The possible interactions, introduced or
considered domains, necessary conditions, and related requirements for these mechanisms are
similar to those described for checksums and plausibility checks. In case of a detected fault,
an action A has to be performed on another domain (c2). For all mechanisms, the availability
would be decreased if the performed action is to switch off the machine or delete corrupted data
in case of a detected fault.

For all mechanisms the Machine has to be considered. A necessary condition is, that the
integrity of the machine performing the integrity checks is preserved and the domain used in
case of a detected fault (c2) is reliable. A related requirement for all mechanisms maybe the
integrity considering an attacker.

For the checksum mechanism, no additional necessary conditions exist. For redundancy,
diverse input information (Input and DiverseInput) are used. They have to be reliable enough to
achieve the required probability of the initial integrity requirement.

To achieve integrity of the domain constrained by the functional requirement (c1) (as in-
troduced in Section 5.1.2), considering an attacker (intatt), e.g., message authentication codes
(MACs), cryptographic signatures, or access control can be used as mechanisms.

For MAC protection, a Key1 for sender, a Key2 for receiver, and the Machine have to be
introduced or considered. We have to ensure that the internal state of the machine and the key
for sender and the key of the receiver are protected from disclosure because the attackers can
create a valid MAC if they know the key. The integrity of the receiver keys have to be ensured,
because otherwise an attacker can change the value to a known value in order to accept invalid
MACs. The domain constrained in case of a detected modification (C2, e.g., the display) has
to be reliable for the stakeholder u. For MAC protection, additionally, the keys have to be
distributed before in a secure manner (confidential and integrity-preserving).

For cryptographic signatures, a SenderKey, a ReceiverKey, and the Machine have to be intro-
duced or considered. We have to ensure the same conditions as for MAC protection, except
that key used to verify the signature (ReceiverKey) need not to be protected against disclosure.
For cryptographic signatures, it is sufficient to ensure the integrity of the ReceiverKey when
distributing the keys - confidentiality is only necessary for the SenderKey.

For access control, instead of keys, access rules (AccessRules) have to be considered. But
access control does not solve the integrity preserve problem itself: the data is unprotected if
the physical access is possible. Therefore, the required integrity of the data is also a necessary
condition. Additionally, the data processed by the machine must be protected from disclosure
and modification. The domain constrained in case of a detected modification (c2, e.g., the
display) has to be reliable for the stakeholder u. Also the integrity of the access rules have to
be preserved for the Administrators.

If integrity is required, confidentiality often is also important.

For the integrity predicate intrnd ({c1},A, {c2},Pi), Table 6.2 shows a set of mechanisms with
possible interaction, introduced / considered domains, necessary conditions and related require-
ments.

For the integrity predicate intatt({c1},A, {c2}, {u}, {a}), Table 6.3 shows a set of mechanisms
with possible interaction, introduced / considered domains, necessary conditions and related
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Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

checksums avail∗({c1}, ∗) 1 m : Machine intrnd({m},A, {c2},Pi)
relrnd({c2}, ∅,Pi)

intatt

plausibility
checks

avail∗({c1}, ∗) 1 i : Input
d : DiverseInput
m : Machine

intrnd({m},A, {c2},Pi)
relrnd({c2}, ∅,Pi)
relrnd({d}, ∅,P ′i )
relrnd({i}, ∅,P ′′i ) 2

intatt

. . . . . . . . . . . . . . .

1. Availability may be decreased if modified data is just deleted.

2. It must be verified that the mechanism with P ′i and P ′′i can achieve Pi .

Table 6.2.: Integrity Considering Random Faults – Dependencies

requirements.

6.1.3. Availability

To achieve a certain availability of a domain (c1) (as introduced in Section 5.1.3), considering
random faults (availrnd ), e.g., redundancy or reliable hardware and software can be used. Other
mechanisms to achieve availability are described by patterns in (Hamner, 2007), e.g., Minimize
Human Intervention, Maximize Human Participation, Fallover, or Leaky Bucket Counter.

For the redundancy mechanism, confidentiality maybe decreased because of more targets can
be attacked. Especially, diverse machines used to achieve redundancy may have different vul-
nerabilities. In addition to the Machine, a redundant machine (RedundantMachine) is necessary.
It is possible, that only the critical parts of the software are executed on the redundant machine.

The availability of all machines may be lower than the availability to achieve, but together
the target availability has to be achieved. If availability is required, often reliability is also
important.

If reliable hardware and software is used, the required probability has to be achieved by the
used hardware and software of the Machine. In case of reliable hardware and software, reliability
considering an attacker maybe also important.

To achieve availability of a domain (c1) (as introduced in Section 5.1.3), considering attackers
(availatt), e.g., service degradation can be used. A Firewall that blocks requests from attackers
can be used for service degradation. This firewall has to be reliable and the users who should
be able to use the service have to show their authenticity. Such a firewall cannot increase
the availability, but it can keep the given availability even in case of malicious requests from
an identified attacker. If requests are bocked, or event the wrong requests are blocked, the
availability can be decreased by a firewall.

If availability is required, reliability can also be important.

For the availability predicate availrnd ({c1}, {u},Pa), Table 6.4 shows a set of mechanisms
with possible interaction, introduced / considered domains, necessary conditions and related
requirements.

For the availability predicate availatt({c1}, {u},Pa) , Table 6.5 shows a set of mechanisms
with possible interaction, introduced / considered domains, necessary conditions and related
requirements.
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Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

MAC avail∗({c1}, ∗, ∗) 1 kSnd : Key1
kRcv : Key2
m : Machine

confatt({m}, {u}, {a})
intatt({m},A, {c2}, {u}, {a})
relatt({c2}, {u}, {a})
confatt({kSnd}, {u}, {a})
confatt({kRcv}, {u}, {a})
intatt({kRcv}, ∗, ∗, {u}, {a})
distatt({kSnd}, {u}, {a})
distatt({kRcv}, {u}, {a})

confatt

crypto-
graphic
signature

avail∗({c1}, ∗, ∗) 1 kSnd : SenderKey
kRcv :
ReceiverKey
m : Machine

confatt({m}, {u}, {a})
intatt({m},A, {c2}, {u}, {a})
relatt({c2}, {u}, {a})
confatt({kRcv}, {u}, {a})
intatt({kRcv}, ∗, ∗, {c2}, {a})
distatt({kSnd}, {u}, {a})
distatt({kRcv}, {u}, {a})

confatt

access
control

avail∗({c1}, ∗, ∗) 2 ar : AccessRules
ad :
Administrator
m : Machine

intatt({c1},A, {c2},
{u}, {a}) 3

intatt({m},A, {c2},
{u}, {a})

intatt({ar},A, {c2}, {u}, {a})
manrnd({ar}, {ad}, {a})
authatt({d}, {u}, {a})

confatt

. . . . . . . . . . . . . . .

1. Availability may be decreased if modified data is just deleted.

2. Necessary authentication may decrease availability for User u.

3. The stored data d must be still protected. This is often just assumed.

Table 6.3.: Integrity Considering an Attacker – Dependencies

6.1.4. Reliability

To achieve a certain reliability of a domain (c1) (as introduced in Section 5.1.4), considering
random faults and attackers (relrnd and relatt) the same mechanisms as for availability with
the same possible interactions and necessary conditions can be used. In case of a redundant
implementation, reliability requirements instead of availability have to be considered by each of
the redundant machines.

Other mechanisms to achieve reliability are described by patterns in (Hamner, 2007), e.g.,
Error Correcting Audits, Remote Storage, or Fallover. Note that some mechanisms can be used
for both availability and reliability. If reliability of a certain domain is required, the behavior
of the domains for input and output must also be correct. Therefore, we require the same
integrity for these domains. If the integrity cannot be achieved, an appropiate action should be
performed.

If reliability considering random faults is required, reliability considering attackers can be also
important. If reliability considering attackers is required, reliability considering random faults
can be also important.

For the reliability predicate relrnd ({c1}, {u},Pr ), Table 6.6 shows a set of mechanisms with
possible interaction, introduced / considered domains, necessary conditions and related require-
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Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

redun-
dancy

conf 1 rm : Redundant-
Machine
m : Machine

availrnd({m}, {u},Pa1)
availrnd({rm}, {u},Pa2)
Pa1 ≤ PaPa2 ≤ Pa

2

rel

reliable
hardware
and
software

- m : Machine relrnd({m}, {u},Pa) relatt

. . . . . . . . . . . . . . .

1. More targets that can be attacked.

2. But the availability of both machines together must be ≥ Pa , even if common cause
errors are considered.

Table 6.4.: Availability Considering Random Faults – Dependencies

Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

service
degrada-
tion, e.g.,
block
requests
from a

avail∗({c1}, {a}, ∗) fw : Firewall relatt({fw}, {u}, {a})
authatt({c1}, {u}, {a})

rel

. . . . . . . . . . . . . . .

Table 6.5.: Availability Considering an Attacker – Dependencies

ments.

For the reliability predicate relatt({d}, {u}, {a}), Table 6.7 shows a set of mechanisms with
possible interaction, introduced / considered domains, necessary conditions and related require-
ments.

6.1.5. Authenticity

To achieve authenticity of a domain (auth({d}, {u}, {a})) (as introduced in Section 5.1.5), e.g.,
dynamic authentication using random numbers (symmetric), dynamic authentication using ran-
dom numbers (asymmetric), static authentication, or authentication using unforgeable credentials
can be used as mechanisms. All mechanisms may lead to reduced availability - intentionally for
the attacker, but due to login time or if the key or the credential is lost, maybe also for the
stakeholder (u). Depending on the mechanism, additional domains have to be introduced or
considered. For all mechanisms, the Machine needs to be protected from modification.

For dynamic authentication using random numbers with symmetric encryption, a Key1 kMchn

for the machine and a Key2 kExt for the external system (e.g., the authentic user) have to
be introduced or considered. Both keys have to be protected from disclosure and modifica-
tion. Additionally, the keys have to be distributed before in a secure manner (confidential and
integrity-preserving). Note that the random number generator is considered to be part of the
mechanism and therefore no necessary conditions about key freshness of the random number
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Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

redun-
dancy

conf 1 rm :
RedundantMachine
m : Machine
I : P Input
O : POutout

relrnd({m}, {u},Pr1)
relrnd({rm}, {u},Pr2)
Pr1 ≤ PrPr2 ≤ Pr

intrnd(I , ∗, ∗,Pr )
intrnd(O , ∗, ∗,Pr )

relatt

reliable
hardware
and
software

- m : Machine
I : P Input
O : POutout

relrnd({m}, {u},Pr )
intrnd(I , ∗, ∗,Pr )
intrnd(O , ∗, ∗,Pr )

relatt

. . . . . . . . . . . . . . .

1. More targets that can be attacked.

Table 6.6.: Reliability Considering Random Faults – Dependencies

Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

degredated
service,
e.g., block
requests
from a

avail∗({c1}, {a}, ∗) fw : Firewall relatt({fw}, {u}, {a})
authatt({d}, {u}, {a})

relrnd

. . . . . . . . . . . . . . .

Table 6.7.: Reliability Considering an Attacker – Dependencies

generator output are given.

For dynamic authentication using random numbers with asymmetric encryption, the similar
domains have to be considered. The keys are for asymmetric encryption instead of symmetric
encryption. Therefore, only the integrity of the machine’s key and the confidentiality of the
key owned by the external system have to be preserved. For adding a machine key, confiden-
tiality need not to be preserved. Therefore, security management is sufficient (instead of key
distribution).

Instead of dynamic authentication mechanisms using random numbers, other mechanism
based on key freshness can be used, e.g. authentication mechanisms using time stamps. Possible
interaction, necessary conditions, introduced / considered domains, and related requirements are
the same as for dynamic authentication using random numbers.

For static authentication, additionally a ConnectionDomain has to be considered. As for
dynamic authentication using random numbers with symmetric encryption, all keys and the
machine have to be protected from disclosure and modification. Since always the same key is
transmitted to the machine (using the connection domain) it could be reused by the attacker if
it is not protected from disclosure and modification.

If unforgeable credentials are used for authentication (e.g., idealized biometric mechanisms,
idealized identity card), an unforgeable reference data in the machine Credential has to be con-
sidered. Its integrity has to be preserved to prevent that an attacker replaces the unforgeable
reference data with its own values. If this mechanism is used, confidentiality can be relevant to
protect the privacy of users.
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For all mechanisms to achieve authenticity, integrity of other data may be relevant.

For the authenticity predicate authatt({d}, {u}, {a}), Table 6.8 shows a set of mechanisms
with possible interaction, introduced / considered domains, necessary conditions and related
requirements.

Generic
mecha-
nism

Possible
interaction

Introduced /
considered
domains

Necessary conditions Re-
lated

dynamic
authentica-
tion using
random
numbers
(symmet-
ric)

avail∗({d}, ∗, ∗) m : Machine
kMchn : Key1
kExt : Key2

confatt({m}, {u}, {a})
intatt({m}, ∗, ∗, {u}, {a})
confatt({kMchn}, {u}, {a})
intatt({kMchn}, ∗, ∗, {u}, {a})
confatt({kExt}, {u}, {a})
intatt({kExt}, ∗, ∗, {u}, {a})
distatt({kMchn}, {u}, {a})
distatt({kExt}, {u}, {a})

intatt

dynamic
authentica-
tion using
random
numbers
(asymmet-
ric)

avail∗({d}, ∗, ∗) m : Machine
kMchn :
VerifyKey
kExt : SignKey

intatt({m}, ∗, ∗, {u}, {a})
intatt({kMchn}, ∗, ∗, {u}, {a})
confatt({kExt}, {u}, {a})
manatt({kMchn}, {u}, {a})
distatt({kExt}, {u}, {a})

intatt

static
authentica-
tion

avail∗({d}, ∗, ∗) m : Machine
kMchn : Key1
kExt : Key2
con :
ConnectionDomain

confatt({m}, {u}, {a})
intatt({m}, ∗, ∗, {u}, {a})
confatt({kMchn}, {u}, {a})
intatt({kMchn}, ∗, ∗, {u}, {a})
confatt({kExt}, {u}, {a})
intatt({kExt}, ∗, ∗, {u}, {a})
confatt({con}, {u}, {a})
intatt({con}, ∗, ∗, {u}, {a})
distatt({kMchn}, {u}, {a})
distatt({kExt}, {u}, {a})

intatt

authentica-
tion using
unforge-
able
credentials

avail∗({d}, ∗, ∗) m : Machine
cred : Credential
con :
ConnectionDomain

intatt({m}, {u}, {a})
intatt({cred}, {u}, {a})
intatt({con}, {u}, {a})
distatt({cred}, {u}, {a})

intatt
conf

. . . . . . . . . . . . . . .

Table 6.8.: Authenticity – Dependencies

6.1.6. Security Management

If security management (man) (as introduced in Section 5.1.6) is required, functional require-
ments about the security data to be managed have to be stated. Since the functionality should
only be available for a limited group of persons, the authenticity of these persons is required
and the integrity of the security data to be managed have to be preserved. Hence, for security
management the same mechanisms as for authentication and integrity can be applied.

6.1.7. Secret Distribution

If secret distribution (dist) (as introduced in Section 5.1.7) is required, functional requirements
about the secrets to be distributed have to be stated. Since the functionality should only be
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available for a limited group of persons and the attacker should not be able to retrieve the secret,
the authenticity of these persons is required, the integrity of the secrets have to be preserved,
and the confidentiality of the secrets have to be preserved. Hence, for secret distribution the
same mechanisms as for authentication, integrity and confidentiality can be applied.

6.2. Working with Dependability Requirement Patterns

This section describes a process that allows to identify missing and conflicting requirements. To
identify missing and conflicting requirements, the following steps can be performed:

1. select a generic mechanism

2. check possible interactions

3. consider or introduce additional domains

4. inspect the necessary conditions

• assume necessary conditions, or

• establish necessary conditions (continue with Step 1)

5. consider all relevant domains and interfaces (for newly identified dependability require-
ments, continue with Step 1)

6. extend the environment description

7. check for related requirements (for newly identified dependability requirements, continue
with Step 1)

8. derive a specification (see next chapter)

For each dependability requirement stated as a predicate (see Chapter 5), we select one
generic mechanism that solves the problem; for example, to achieve integrity (intatt) message
authentication codes (MACs) can be used. Depending on the selected mechanism, different
additional requirements have to be considered. Tables 6.1–6.8 in Section 6.1 list the first columns
a set of possible mechanisms for each dependability requirement pattern. Within this pattern
system we do not consider the selection of a combination of mechanisms since a combination
may lead to completely different introduced domains and necessary conditions.

The tables in Section 6.1 support the analysis of conflicts between the dependability patterns.
For some of the mechanisms, possible interactions with other dependability requirements
are given (see second columns). These possible conflicts must be analyzed, and it must be
determined if they are relevant for the application domain. In case they are relevant, conflicts
can be resolved by modifying or prioritizing the requirements. Prioritizing requirements is not
subject of this chapter. For example, if the MAC protection mechanism is applied and the
specific action is to delete modified data, we may have a contradiction with the availability of
that data.

For many mechanisms, additional domains must be introduced or considered (see
3rd columns). These domains are classes with the stereotype �Domain� or a subtype, e.g.
�LexicalDomain�, �Attacker�, or �CausalDomain�. The introduced domains should be de-
scribed in the context of the problem, e.g., the reliability should be specified. We support this
description with the dependability stereotypes. For example, MAC protection requires a domain
Key1 kSnd used to calculate the MAC and another domain Key2 kRcv used to verify the MAC.

The next step is to inspect the necessary conditions given in the 4th columns. The generic
mechanisms usually have a set of necessary conditions to be fulfilled. These necessary conditions
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describe conditions that are necessary to establish the dependability requirement when a certain
mechanism is selected. For example, the introduced keys for the MAC protection must be kept
confidential, and their integrity must be preserved. Before the mechanism is applied, some
other activities are necessary, e.g., a key must be distributed before it can be used for MAC
calculation. The necessary condition ensures that the the key is kept confidential for the time
period the requirement should the fulfilled.

Two alternatives are possible to guarantee that the necessary conditions hold: either, they
can be assumed to hold, or they have to be established by instantiating a further dependability
requirement pattern, that matches the necessary condition. The set of reasonable assumptions
depends on the hazards to be avoided and the threats the system should be protected against.
Assumptions cannot be avoided completely, because otherwise it may be impossible to achieve a
dependability requirement. For example, we must assume that the user sees a warning messages
on a display or keeps a password confidential. Assumptions are appropriate if the environment
provides a solution, e.g., a physical protection or a certain reliability of a domain. Only in the
case that necessary conditions cannot be assumed to hold, one must instantiate further appro-
priate dependability patterns, and the procedure is repeated until all necessary conditions of
all applied mechanisms can be proved or assumed to hold. To avoid cyclic dependencies, the
selected mechanisms should reduce the completely of the problems to be solved. In the case that
necessary conditions are assumed to hold, domain knowledge have to be stated. The dependen-
cies expressed as necessary condition are used to develop a consolidated set of dependability
requirements and solution approaches that additionally cover all dependent requirements and
corresponding solution approaches, some of which may not have been known initially.

We have to consider all relevant domains and interface. Especially, connection domains
between or to domains considered in the necessary conditions have to be considered and either
domain knowledge or requirements have to be specified. For these dependability requirements,
we have to continue with the first step. All interfaces to the introduced or referred domains
must be considered. If they cannot be assumed to fulfill the stated dependability requirement
or dependency, a connection domain must be introduced. For example, the interface to the
introduced key s1 must also be kept confidential as the key itself. Since the dependencies for
interfaces are always the same as for corresponding connection domains, the tables in Section 6.1
does not consider interfaces.

Additionally, we extend the environment description with the new domains being not
part of the initial context diagram. This extended environment description is necessary to see
the whole problem context.

To find additional requirements, we check the related column (see 5th columns). There,
dependability requirements that are commonly used in combination with the described depend-
ability pattern are mentioned. This information helps to find missing dependability requirements
right at the beginning of the requirements engineering process. We add missing dependability
requirements and for these requirements, we continue with the first step.

The next step in the software development process is to derive a specification, which
describes the machine and is the starting point for its development. To specify the machine,
concrete mechanisms are chosen. For example, for encryption, a software developer must select
the algorithms and the key lengths according to the assumptions about the attacker. This step
and all design and test steps are beyond the scope of this chapter.

6.3. CACC Case Study

The approach is illustrated on the case study introduced in Section 3.2 with the initial depend-
ability requirements defined in Section 5.3.
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6.3.1. Select Appropriate Generic Mechanisms

To establish Equation 5.1 on Page 73 (requiring integrity considering attackers), Messages Au-
thentication Codes (MACs) can be used as a generic mechanism to check integrity and authen-
ticity of the messages (position and speed data) from other cars with trusted CACCs.

To establish Equation 5.2 on Page 74 (requiring integrity considering random faults), mech-
anisms described in the standard ISO/IEC 61508, Part 2, Tables A.1 to A.15 (International
Organization for Standardization (ISO) and International Electrotechnical Commission (IEC),
2000) can be used. Here, we only consider as one example the checksum mechanism from Ta-
ble 6.2 on Page 85. Therefore, our software has to check the hardware and initiate the required
actions.

To establish Equation 5.3 on Page 75 (requiring availability considering random faults) and
Equation 5.4 on Page 75 (requiring reliability considering random faults), reliable hardware and
software can be used, because relrnd ({c}, ∅,P) ⇒ availrnd ({c}, ∅,P).

6.3.2. Inspect Possible Interactions

A possible interaction when using MACs or checksums and deleting modified messages, is a
decreased availability of the messages (position, acceleration and speed data). We decided that
integrity of this data is more important than availability since the radar fall-back exists. For
using reliable hardware and software no possible interactions are given in Table 6.6 on Page 88.

6.3.3. Introduce or Consider Additional Domains

Keys for sender and receiver are necessary to calculate and verify the MAC. We decide to
use session keys for Sender (SessionKeySnd or SessionKeySndOC for the key in other cars) and
Receiver (SessionKeyRcv). A session key has the advantage that it has a short life-time: even
if the attacker is able to obtain this key, it can only be used for a short time period. For the
checksum mechanism (and most of the other mechanism from International Organization for
Standardization (ISO) and International Electrotechnical Commission (IEC) (2000)), we have to
regard the machine CACC as consisting of two parts: the software (CACC SW) and the hardware
(CACC HW). For the checksum mechanism, the integrity of the Machine has to be ensured and
the mechanisms to ensure that the EngineActuator Brake is not influenced have to be reliable. If
no signal to brake or accelerate is received by the EngineActuator Brake, it continues its normal
operation. Therefore, only the CACC has to be switched off (using SwitchOffHW) to ensure that
the EngineActuator Brake is not influenced. The Car is used to warn the driver acoustically and
visually. This driver information is considered not to be relevant for safety, since the driver also
perceives that the EngineActuator Brake is not influenced by CACC.

For the hardware we use, a reliability of only 1 − 10−6 is guaranteed. For our software
we assume (and try to achieve using several quality assurance activities, see ISO/IEC 61508
(International Organization for Standardization (ISO) and International Electrotechnical Com-
mission (IEC), 2000, Part 3)) a reliability of 1− 10−7. These reliabilities can be stated with the
following predicates:

∀ caccHW : CACC HW , caccSW : CACC SW •
relrnd ({caccHW }, ∅, 1− 10−6) ∧ (6.1)

relrnd ({caccSW }, ∅, 1− 10−7) (6.2)

For using reliable hardware and software, the CACC has to be considered as a relevant domain.
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6.3.4. Inspect Necessary Conditions

To use Messages Authentication Codes (MACs), according to Table 6.3 on Page 86, a “necessary
conditions” is that confidentiality and integrity of SessionKeySnd, SessionKeySndOC, Session-
KeyRcv, and the data of CACC have to be preserved. Any access by the CACCAttacker on the
CACC with its session keys (SessionKeySnd, SessionKeyRcv) has to be denied and the the session
keys of other cars (SessionKeySndOC) have to be kept confidential (Equations 6.3, 6.4, 6.6,and
6.5). Note that for SessionKeySnd and SessionKeySndOC confidentiality has to be ensured since
other cars and the car itself can act as a sender. Another necessary condition is that the keys
have to be distributed beforehand (Equation 6.7). The CACC and the OtherCarsWithCACC
should be allowed to access the session keys and the CACCAttacker not. The conditions can be
stated with the following predicates:

∀ cacc : CACC , otwc : OtherCarsWithCACC ,

c : Car , eab : EngineActuator Brake,

sk1 : SessionKeySnd , sk2 : SessionKeyRcv ,

skoc : SessionKeySndOC ,

m : Manufacturer , a : CACCAttacker •
confatt({cacc}, {m}, {a}) ∧ intatt d ({cacc}, {m}, {a}) ∧ (6.3)

∧ confatt({sk1}, {m}, {a}) ∧ (6.4)

intatt({sk2}, {’inform driver’, ’not brake/accelerate’}, {c, eab}, {m}, {a})
∧ confatt({sk2}, {m}, {a}) ∧ (6.5)

∧ confatt({skoc}, {m}, {a}) ∧ (6.6)

distatt({sk1, sk2}, {cacc, otwc}, {a}) (6.7)

To use the checksum mechanism, according to Table 6.6 on Page 88, a “necessary conditions”
is a sufficient integrity of the machine and a sufficient reliability of the domain used in case of
a violation. In this case study, the machine is the IntegrityChecksumRandom part of the overall
machine and the domain used in case of a violation is the SwitchOffHW. The conditions can be
stated with the following predicates:

∀ cso : SwitchOffHW , sw : IntegrityChecksumRandom,

intrnd ({sw}, {’not brake/accelerate’}, {cso}, 1− 10−7) (6.8)

relrnd ({cso}, ∅, 1− 10−7) (6.9)

We decided to fulfill all necessary conditions about confidentiality (see Equations 6.3, 6.4, 6.6
and 6.5) by physical protection. The physical protection ensures that the key values cannot be
exploited by any measurement (voltage, electromagnetic radiation) and in case of an opened
CACC the keys are destroyed. Therefore, we state domain knowledge about these domains.
The conditions can also be modeled with the stereotype�DomainKnowledge� of our profile, as
shown in the domain knowledge diagram in Fig. 6.1 on the next page.
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Figure 6.1.: CACC Domain Knowledge Diagram for Confidentiality

We decided to fulfill all necessary conditions about integrity (see Equations 6.3 on the pre-
ceding page and 6.5 on the previous page) also by physical protection. The physical protection
ensures that the key values cannot be modified, e.g., by external voltage or electromagnetic
radiation. Therefore, we state domain knowledge about these domains. The conditions can also
be modeled with the stereotype �DomainKnowledge� of our profile, as shown in the domain
knowledge diagram in Fig. 6.2.

Figure 6.2.: CACC Domain Knowledge Diagram for Integrity

To fulfill the necessary condition express in Equation 6.7 on the previous page, a requirement
for secret distribution is stated. A problem diagram describing this requirement is depicted in
Fig. 6.3 on the facing page.
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Figure 6.3.: CACC Problem Diagram for Secret Distribution

To detect hardware faults with the the checksum mechanism and inform the driver in case
of a detected fault (Equation 5.2 on Page 74) the integrity of the CACC software and the
reliability of the EngineActuator Brake and the Car (to inform the driver) has to be fulfilled.
The integrity of the CACC software (see Equation 6.8 on Page 93) is fulfilled by the reliability
statement expressed in Equation 6.2 on Page 92 (see Fig. 5.16 on Page 75). The reliability of
the CACC SwitchOff as a part of the CACC (see Equation 6.9 on Page 93) has to be fulfilled.
The problem diagram describing the reliability requirement is depicted in Fig. 6.4.

Figure 6.4.: CACC Problem Diagram for Reliability of Domains Necessary for Fault Reaction

6.3.5. Consider all Relevant Domains

All relevant additional domains have to be considered. The OtherCarsWithCACC acts as a con-
nection domain between the CACC and the SessionKeySndOC. Therefore, the same dependability
requirements as for the machine (Equation 6.3 on Page 93) have to also hold for the OtherCar-
sWithCACC:

∀ ac : OtherCarsWithCACC ,m : Manufacturer , a : CACCAttacker •
confatt({ac}, {m}, {a}) ∧ intatt d ({ac}, {m}, {a}) (6.10)
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The integrity and confidentiality of the CACC with its data, in particular the SessionKeyRcv ss1
(required by Equations 6.3 on Page 93 and 6.4 on Page 93), can be established by some physical
protection. To avoid that an attacker uses the CACC to send authentic messages to another
CACC, it have to be checked that the CACC is part of a real car. This can be done by checking
the signature provided by the ignition lock, and the immobilizer of the car. The corresponding
dependability requirements can also be stated using the predicates of Chapter 5 on Page 53.1 The
SessionKeySndOC ss2 is stored in the OtherCarsWithCACC. Its confidentiality (Equation 6.5 on
Page 93) and the interface to this key are also established by physical protection. For the
interface to the other cars WIFI WAFE integrity is required. It is achieved in the same way as
for Equation 5.1 on Page 73 with MAC protection.

Additionally, the OtherCarsWithCACC has to calculate the signature using the session key to
sign its position and speed. The same calculation as to be performed by the CACC to provide
speed and position to the following car. Therefore, the subproblem with the machine SendPos-
Speed is complemented by the subproblem SendPosSpeedWithSignature depicted in Fig. 6.5.

Figure 6.5.: CACC Problem Diagram for Signature Generation

6.3.6. Select Appropriate Generic Mechanisms (to Fulfill Conditions)

To establish Equation 6.7 on Page 93, a dynamic authentication mechanism with random num-
bers can be used. With this authentication mechanism additionally a session key can be gen-
erated. Since replay attacks cannot be avoided in the described context, random numbers are
used for authentication (cf. CSPF Dynamic Authentication in (Hatebur et al., 2006)).

To fulfill the reliability requirement for the SwitchOffHW, reliable hardware can be used.

6.3.7. Introduce or Consider Additional Domains (to Fulfill Conditions)

Table 6.3 on Page 86 shows that two keys are necessary for the MAC mechanism (Keys sMchn and
sExt). For our concrete problem the keys are of type AuthKey1 or AuthKey2. The mechanism
is applied as follows: The random number is sent to the car ahead. The CACC of this car
encrypts this random number with its AuthKey1 ak1 and sends it back. Our CACC checks if
the returned number is valid using its AuthKey2 ak2. Only if the returned number is valid, the

1Left out to avoid repetitions.
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speed and acceleration from the car ahead is used to calculate the acceleration or deceleration.
The returned number is used as session keys sk1 and sk2.

6.3.8. Inspect Necessary Conditions (to Fulfill Conditions)

Table 6.8 on Page 89 shows for the dynamic authentication mechanism that integrity and con-
fidentiality of the Machine (see Equations 6.12 and 6.11), as well as of AuthKey1 and AuthKey2
(see Equations 6.13 - 6.16) have to be preserved. Additionally, AuthKey1 and AuthKey2 have to
be distributed beforehand (see Equation 6.17).

∀ cacc : CACC , ac : ak1 : AuthKey1, ak2 : AuthKey2,

m : Manufacturer , a : CACCAttacker •
confatt({cacc}, {m}, {a}) ∧ (6.11)

intatt d ({cacc}, {m}, {a}) ∧ (6.12)

confatt({ak1}, {m}, {a}) ∧ (6.13)

intatt d ({ak1}, {m}, {a}) ∧ (6.14)

confatt({ak2}, {m}, {a}) ∧ (6.15)

intatt d ({ak2}, {cacc}, {a}) ∧ (6.16)

distatt d ({ak1}, {cacc}, {a}) ∧ distatt({ak2}, {cacc}, {a}) (6.17)

AuthKey1 is stored in the CACC and AuthKey2 in OtherCarsWithCACC. The integrity and the
confidentiality of the CACC and its data (required by Equations 6.11 - 6.16) can be established in
the same way as described above. Secure distribution of the authentication keys (Equation 6.17)
is assumed to be done in the production environment of the CACC.

6.3.9. Consider all Relevant Domains (to Fulfill Conditions)

All relevant additional domains have to be considered. OtherCarsWithCACC acts as a connection
domain between the CACC and SessionKeySndOC. Therefore, the same dependability require-
ments as for the machine (Equation 6.3 on Page 93) have to hold (see Equation 6.10 on Page 95).

6.3.10. Extended Environment Description

The new context diagram for the CACC resulting from applying dependability requirements pat-
terns is shown in Fig. 6.6 on the following page. New domains were added to the description
of the environment.
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Figure 6.6.: Refined CACC Context Diagram (Domain Knowledge Diagram)

Additionally, the machine CACC is split into CACC HW and CACC SW. Since some depend-
ability requirements state that the Driver have to be informed, the additional phenomenon
warn driver is introduced.

6.4. Related Work

We are not aware of any similar approach for modeling a wide range of dependability require-
ments. However, the Common Criteria (International Organization for Standardization (ISO)
and International Electrotechnical Commission (IEC), 2009a), Part 2 defines a large set of
so-called Security Functional Requirements (SFRs) with explicitly given dependencies between
these SFRs. For example, the SFR cryptographic operation in the class functional requirements
for cryptographic support (FCS COP) has a dependency to cryptographic key management in
the class functional requirements for cryptographic support (FCS CKM). The SFRs in the Com-
mon Criteria are limited to security issues. The dependencies given in the Common Criteria are
re-used for our pattern system. Our dependability requirements can be regarded on the level
of Security Objectives that have to be stated according to Common Criteria, Part 3, before
suitable SFRs are selected.

Røstad et al. (2006) present an initial set of possible conflicts between safety and security
requirements. The interactions described in this chapter are based on these initial possible
conflicts.

6.5. Conclusions and Future Work

In this chapter, we have described a pattern system that can be used to identify missing require-
ments in a systematic way. The pattern system is based on the predicates used to express the
requirements. The parameters of the predicates refer to domains of the environment descriptions
and are used to describe the dependencies precisely. The pattern system may also show possible
conflicts between dependability requirements in an early requirements engineering phase.

The pattern system is not complete, but can be easily extended with additional requirements
and mechanisms. Nevertheless, a huge set of real-live problems can be expressed and analyzed
using this pattern system.

In summary, our pattern system has the following advantages:

• The patterns help to structure and classify the dependability requirements. For example,
requirements considering integrity can be easily distinguished from availability require-
ments. It is also possible to trace all dependability requirements that refer to one domain.
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• The predicates are the basis of a modular construction system used to identify dependencies
and possible interactions with other dependability requirements.

In the future, we plan to systematically search for additional dependability requirements and
dependencies using existing specifications (e.g., public Security Targets). It is interesting to
develop a method for prioritizing the requirements in order to resolve conflicts. Additionally,
our tool can be extended to support interactive identification of missing and interacting require-
ments.





Chapter 7

Development of Specifications for

Dependable Systems

The specification of the machine describes the behavior at its external interfaces, while the re-
quirements refer to relevant domains in the environment (cf. Jackson (2001)). The specification
can be derived from the requirements using domain knowledge. Specifications are implementable
requirements. Requirements that are not implementable are transformed into specifications us-
ing domain knowledge and assumptions. For an example, see (Jackson & Zave, 1995). It must
be shown that, when the machine fulfills S , then the requirements are satisfied. For that proof,
domain knowledge and assumptions can be used in the validation condition D ∧ A ∧ S =⇒ R.
D ∧A∧S must be consistent, otherwise everything can be deduced. Several means of expressing
the specification are used in ADIT and are described in the appendix:

• Sequence Diagrams (Step A3, see Appendix A.3)

• Description of pre- and postconditions (Step A5, see Appendix A.5)

• Lifecycle expressions (A6, see Appendix A.6)

This chapter describes on one hand a method for deriving the specification from the functional
requirements more systematically and on the other hand a specialized approach for deriving spec-
ifications from dependability requirements that can be transformed into functional requirements,
especially security requirements.

The specifications are developed systematically based on given problem diagrams. When the
specifications have been derived systematically from functional requirements, the specifications
directly correspond to the problem diagrams, e.g., relevant domains are represented as lifelines
and the phenomena correspond to the messages. These conditions can be expressed with OCL
and validated automatically. This conditions are based on joined work with Côté et al. (2008).

The approach to derive a specification for dependability requirements expressed using problem
diagrams is based on Hatebur, Heisel, Jürjens, and Schmidt (2011) and Hatebur et al. (2006).

When building dependable systems, it is instrumental to take dependability requirements into
account right from the beginning of the development process to reach the best possible match
between the expressed requirements and the developed software product, and to eliminate any
source of error as early as possible. Knowing that building dependable systems is a highly
sensitive process, it is important to accomplish the transition from dependability requirements
to specifications correctly, i.e., without introducing vulnerabilities.

For dependability requirements considering random faults, usually the interface specifications
can be derived from the functional requirements. For systems with requirements considering
random faults, there are usually no dedicated protocols at the external interface of the ma-
chine. For these systems, dedicated protocols are used within the machine to be developed, e.g.,
protocols for handling faults with redundant machines or protocols handling a watchdog.
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For dependability requirements considering an attacker, the some dependability requirements
(i.e., security requirements) themselves have to be transformed into functional specifications –
especially if external systems have to exchange data with the machine. To express specifications
for systems with security requirements, UMLsec (Jürjens, 2005) can be used. Another alternative
notation not chosen for this chapter is described by Lodderstedt, Basin, and Doser (2002). This
notation can be used for specifying access control policies for actions on protected resources.

The different security requirements analysis (see Fabian et al. (2010) for an overview) and
secure specification methods are mostly not integrated with each other. In particular, for existing
approaches bridging the gap between dependability requirements analysis and specifications only
provide informal guidelines for the transition from dependability requirements to specifications.
Carrying out the transition manually according to these guidelines is highly non-trivial and
error-prone, which leaves the risk of inadvertently introducing vulnerabilities. Ultimately, this
would lead to the dependability requirements not being enforced in the specifications (and later
its implementation).

We present a method to systematically develop structural and behavioral specifications based
on security requirements. We use the security requirements analysis method presented in Chap-
ters 4, 5, and 6. to capture, structure, and analyze security requirements. We extend this
approach by a detailed procedure for developing UMLsec (Jürjens, 2005) design models from
previously captured and analyzed security requirements. Our method is supported by model
generation rules expressed as pre- and postconditions using the formal specification language
OCL (Object Constraint Language) (UML Revision Task Force, 2010a). Since our rules are
specified in a formal and evaluatable way, the implementation of this tool can be checked au-
tomatically for correctness with respect to the model generation rules. Consequently, applying
our method to generate UMLsec specifications supported by our tool and based on previously
captured and analyzed security requirements becomes systematic, less error-prone, and a more
routine engineering activity. We illustrate our method by the example of the already introduced
CACC case study.

The chapter is organized as follows: Section 7.1 describes how to derive and verify specifica-
tions for functional requirements. We show in Section 7.2 how sequence diagrams can be used
to express specifications and functional requirements. Section 7.3 presents an approach to sys-
tematically develop UMLsec specifications based on previously captured and analyzed security
requirements. We consider related work in Section 7.4. In Section 7.5, we give a summary and
directions for future research.

7.1. Derive and Verify Specification for Functional Requirements

Specifications are implementable requirements. They are requirements expressed using phenom-
ena of the machine interface. Requirements are not implementable, if they

• constrain phenomena that are controlled by the environment, e.g., the lift is not to be
overloaded.

• refer to phenomena that are not observable by the machine, e.g., the lift should go to a
floor where people are waiting.

• make constraints for the future, e.g., as soon as a user has dialed the last digit, he receives
the dial tone, the busy signal, or the announcement “number not assigned”.

To derive the specification in most cases, references in the requirements to domains or phe-
nomena that are not controlled or observed by the machine are replaced by phenomena that are
controlled or observed by the machine according to given or obtained domain knowledge. In the
CACC case study, the requirement
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R1 The CACC should accelerate the car if the desired speed is higher than the current speed,
the CACC is activated and the measured distance and the calculated distance to the car(s)
ahead is safe.

constrain the phenomenon accelerate that is controlled by the EngineActuator and it refers to
the phenomenon distance are not observable by the CACC. The requirement can be transformed
into a specification using the following domain knowledge (facts or assumptions):

F1 The car accelerates when the accelerate value provided to the EngineActuator Brake in-
crease and the brake value is zero (or quite small).

F2 The distance is either measured with the radar sensor integrated in the CACC, or calcu-
lated from the positions of the car itself (via GPS receiver integrated in the car) and the
car ahead (transmitted via Wifi Wave).

The derived specification is the following:1

S1 The CACC should increase the accelerate value for the EngineActuator Brake if the desired
speed is higher than the current speed, the CACC is activated and the measured distance
to the car ahead is safe and the positions provided by the car itself and provided via
Wifi Wave show that the distance is safe.

The other specifications derived in this way are:

S2 The CACC should increase the brake value for the EngineActuator Brake if the desired speed
is much (30 km/h) lower as the current speed provided via CAN, the CACC is activated
and measured distance to the car ahead is decreasing towards the safe limit or the positions
provided by the car itself and provided via Wifi Wave show that the distance to the car
ahead is decreasing towards the safe limit.

S3 When the CAN bus indicates that the brake pedal or the deactivate CACC button is pressed,
the CACC is deactivated and last speed is set to desired speed.

S4 When the CAN bus indicates that resume is pressed (and resume speed exists), the CACC
is activated and desired speed is set to last speed.

S5 When the CAN bus indicates that increase speed is pressed and CACC is activated, the
desired speed is increased by 5 km/h (max.: 200 km/h).

S6 When the CAN bus indicates that decrease speed is pressed and CACC is activated, de-
sired speed is decreased by 5 km/h (min: 30 km/h).

S7 When the CAN bus indicates that set speed is pressed, desired speed is set to current speed.

S8 At that point of time when the CACC is deactivated, a warning message and a new CACC
status is sent on the CAN bus in order to inform the driver the he has to take control over
accelerating and braking. The desired speed and the CACC state (CACC is activated or
not) should be send to Car when the CACC is powered in order to display this information.

S9 The position and speed received via CAN should be sent via Wifi Wave to OtherCarsWith-
CACC.

1To simplify the case study, the value changes for accelerating and braking are not specified. Compared to
(Hatebur & Heisel, 2009b), requirements are detailed.
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7.2. Express Specifications and Functional Requirements

Requirement and Specifications can be expressed using sequence diagrams. Whereas problem
diagrams are used to describe static aspects of the machine we are going to build, sequence
diagrams cover the dynamic aspects of the machine. In this section we show how sequence
diagrams can be checked to be consistent with the problem diagrams we created in a previous
step. We developed the following checks:

• Problem diagram domains vs. lifelines in sequence diagrams

• Lifelines in sequence diagrams vs. problem Diagram domains

• Sent messages in sequence diagrams vs. operations in controlled interfaces in problem
diagrams

• Received messages in sequence diagrams vs. operations in observed interfaces in problem
diagrams

For each problem diagram, we create a set of sequence diagrams (normal cases and exceptional
behavior). In each sequence diagram, we draw a lifeline for the machine and all domains in
the corresponding problem diagram. The consistency between problem diagram domains and
lifelines in the sequence diagram can be checked on an EMF model with the following OCL
expression (see Listing 7.1): for all sequence diagrams (Interaction in EMF) sd (line 1), check in
the set of all packages with the stereotype �ProblemDiagram� (line 2) if there exists a package
where the names of the sequence diagram lifelines (line 8) are included in the set of the names of
the package elements with the stereotype �Domain� or a subtype of �Domain� (lines 3-7).
Additional sequence diagrams for later phases may be included into the EMF model. These
sequence diagrams have no corresponding problem diagram. To avoid errors caused by these
sequence diagrams, interactions between classes that compose another class are allowed (lines
10-29).

1 Interaction.allInstances () ->forAll( sd |

2 Package.allInstances ()

->select(getAppliedStereotypes ().name ->includes(’ProblemDiagram ’))

3 ->exists(clientDependency.target ->select(oclIsTypeOf(Class))

4 ->select(getAppliedStereotypes ().name ->includes(’Domain ’) or

5 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

8 .oclAsType(Class).name ->includesAll(sd.oclAsType(Interaction).lifeline.name)

9 )

10 or

11 ( sd.oclAsType(Interaction).lifeline.name ->forAll(ln|

12 Class.allInstances ()->exists(c |

13 let names_of_included_classes:Set(String) =

14 c.member ->select(oclIsTypeOf(Property)).oclAsType(Property).type

->select(oclIsTypeOf(Class)).oclAsType(Class).name ->asSet()

15 in

16 let ln_ss:Sequence(String) = Sequence {1..ln.size()}

->collect(i|ln.substring(i,i))

17 in

18 let class_name: String =

19 if ln_ss ->indexOf(’:’) = null

20 then ln

21 else Sequence{(ln_ss ->indexOf(’:’) + 1)..ln_ss ->size()} ->iterate(i;

res:String=’’| res.concat(ln_ss ->at(i)))

22 endif

23 in
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24 names_of_included_classes ->includes(class_name)

25 )

26 or ln = ’ENVIRONMENT ’

27 )

28 )

29 )

Listing 7.1: Lifelines in sequence diagrams vs. problem Diagram domains

We have to describe the behavior for each problem diagram with at least one sequence diagram.
The OCL expression in Listing 7.2 checks this condition: when the first interaction has be created
(line 1), for all packages with the stereotype �ProblemDiagram� pd (line 2), check in the set
of all sequence diagrams (Interaction in EMF) (line 3) if there exists a sequence diagram where
the names of the sequence diagram lifelines (line 9) are included in the set of the names of the
package elements with the stereotype domain or a subtype of domain (lines 4-8). Additionally,
all domains in the package connected with the machine (lines 11-13) have to be included as
lifelines in the sequence diagram (line 14).

1 Interaction.allInstances ()->size() >0 implies

2 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’)) ->forAll( pd |

3 Interaction.allInstances ()

4 ->exists(pd.oclAsType(Package).clientDependency.target ->select(oclIsTypeOf(Class))

5 ->select(getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’))

9 .oclAsType(Class).name ->includesAll(lifeline.name )

10 and

11 pd.oclAsType(Package).clientDependency.target ->select(oclIsTypeOf(Class))

12 ->select(d | clientDependency.target

->select(oclIsTypeOf(Association)).oclAsType(Association)

13 ->exists(endType ->includes(d.oclAsType(Type)) and

endType.getAppliedStereotypes ().name ->includes(’Machine ’)))

14 ->forAll(d | lifeline.name ->includes(d.oclAsType(Class).name))

15 ) )

Listing 7.2: Problem diagram domains vs. lifelines in sequence diagrams

The messages in the diagram directly correspond to the operations in the interfaces. All
operations in observed interfaces of problem diagram domains must occur as messages in a
sequence diagram. These messages must point to the lifeline that corresponds to the observing
domain. This condition is expressed in Listing 7.3. In this expression, mchns is set to be the set
of machines being in a problem diagram (lines 1-7), doms is the set of machines mchns together
with all connected classes with the stereotype �DisplayDomain�, �ConnectionDomain�, or a
subtype (lines 8-23), lexsmsgs is set to be the set of all messages controlled by lexical domains
(lines 45-51), and obphen is set to be the set of all operations in interfaces observed by doms (line
54) and being part of a problem diagram (lines 55-57). The expression checks that all relevant
controlled phenomena in the problem diagrams at the machine interface are sent messages in the
sequence diagrams (lines 24-42). Relevant are all phenomena (interface operations) of interfaces
controlled by doms (line 25), being part of a problem diagram (lines 26-28), not controlled by a
lexical domain (lines 29-36). The expression also checks that the relevant sent messages in the
sequence diagrams are controlled phenomena in the problem diagram (lines 62-70). Relevant
are all messages sent by lifelines that correspond to an element of doms (lines 62-66) and are
not in the set of messages controlled by lexical domains lexsmsgs.
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1 let mchns: Set(Class) =

2 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

4 .target ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

5 getAppliedStereotypes ().general.name ->includes(’Machine ’))

6 .oclAsType(Class)->asSet()

7 in let doms: Set(Class) =

8 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

9 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

10 .target ->select(getAppliedStereotypes ().name ->includes(’DisplayDomain ’) or

11 getAppliedStereotypes ().general.name ->includes(’DisplayDomain ’) or

12 getAppliedStereotypes ().name ->includes(’ConnectionDomain ’) or

13 getAppliedStereotypes ().general.name ->includes(’ConnectionDomain ’))

14 ->select(cddd |

15 Association.allInstances ()

16 ->exists(as |

17 as.oclAsType(Association).endType ->includes(cddd.oclAsType(Class)) and

18 as.oclAsType(Association).endType ->exists(et | mchns

->includes(et.oclAsType(Class)))

19 )

20 )

21 ->union(mchns)

22 .oclAsType(Class)->asSet()

23 in

24 doms.clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target

25 ->intersection(Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

26 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’))

27 .target ->select(oclIsTypeOf(Interface)))

28 .ownedElement

29 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name ->asSet()

30 ->reject(op |

31 Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))

32 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target.oclAsType(Interface).ownedElement

33 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name

34 ->includes( op )

35 )

36 ->forAll( phen |

37 Lifeline.allInstances ()

38 .coveredBy

39 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and

name.substring (1,1)=’S’)

40 .oclAsType(MessageOccurrenceSpecification).message ->select(m | m <>

null).name

41 ->includes(phen)

42 )

43

44 and

45 let lexrmsgs: Set(String) =

46 Lifeline.allInstances ()

47 ->select(ln | Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))->exists(name=ln.name))

48 .coveredBy

49 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’R’)

50 .oclAsType(MessageOccurrenceSpecification).message.name

51 .oclAsType(String)->asSet()

52 in

53 let contrphen: Set(String) =

54 doms.clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target

55 ->intersection(Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

56

57 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’))
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58 .target ->select(oclIsTypeOf(Interface))).ownedElement

59 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name

60 .oclAsType(String)->asSet()

61 in

62 Lifeline.allInstances ()

63 ->reject(ln | Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))->exists(name=ln.name))

64 ->select(ln | doms ->exists(name=ln.name))

65 .coveredBy

66 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’S’)

67 .oclAsType(MessageOccurrenceSpecification).message.name

68 ->reject(n | lexrmsgs ->includes(n))

69 ->select(n | n<>’’)

70 ->forAll(msg | contrphen ->includes(msg) )

Listing 7.3: Sent messages in sequence diagrams vs. operations in controlled interfaces in problem
diagrams

The above-mentioned condition must also be valid for the opposite direction: all operations
in controlled interfaces of problem diagram domains must occur in a sequence diagram. They
must come from the lifeline that corresponds to the using or controlling domain. A similar OCL
expression can be used. The adaptations to be made are to exchange observes and controls, as
well as ’R’ (receives) and ’S’ (sends) (see Appendix C, Listing C.49).

Requirements R1 and R2 can be expressed by the sequence diagram in Fig. 7.1 on the next
page. In a loop, the machine receives the position and speed of the car itself, the position of
other cars with CACC, the desired speed and activation state of the CACC, and the measured
distance to the car ahead. Depending on these information the commands accelerate or brake
may be sent to the car. To express Specifications S1 and S2 exactly, a lifeline for the car has to
be replaced by a lifeline for the engine actuator and a lifeline for the brake.

Requirements R3 – R7 can be expressed by the sequence diagram in Fig. 7.2 on Page 109.
The Specifications S3 – S7 can be expressed in the same way. In a loop, the machine receives
the desired speed, the current speed and may be also the last desired speed. The driver can
perform different actions, expressed by alternatives. Depending on the requested action of the
driver, the specified activities are performed. Some of these activities are only performed if the
given condition is true.

Requirement R8 and also Specification S8 can be expressed by the sequence diagram in
Fig. 7.3 on Page 110. This diagram shows that the desired speed and the state of the CACC is
displayed continuously. If the CACC is deactivated, a warning message is sent to the driver. To
display the desired speed and the state, the CACC has to sent CAN messages to the car.

Specification S9 can be expressed by the sequence diagram in Fig. 7.4 on Page 110. It shows
that position and speed are forwarded to other cars via Wifi Wafe. The order of position
and speed is not relevant. Checking the constraints reveals that all expressions checking the
consistency between problem diagrams and sequence diagrams (Listings 7.2, 7.1, and 7.3, as
well as the expression in Appendix C, Listing C.49) are satisfied.
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sd S1_S2

Car ACCSpeed
<<machine>>

ControlAccelBra
ke

OtherCars
OtherCarsWithC

acc

LOOP

position

current_speed

position

desired_speed

activated = true

distance

OPT

[desired_speed > 
current_speed 
AND distance is 
safe AND postions 
indicate safe 
distance]

accelerate

OPT

[current_speed - 
desired_speed > 
30 OR distance is 
not safe OR 
postions do not 
indicate safe 
distance]

brake

Figure 7.1.: Sequence Diagram: CACC Specifications S1 and S2
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sd S3-S7

Driver Car <<machine>>
DriverControl

ACCSpeed

LOOP

desired_speed

current_speed

OPT last_desired_speed

ALT

brake_pedal

brake_pedal

set_activation(false)

set_resume_speed
(desired_speed)

deactivate

deactivate

set_activation(false)

set_resume_speed
(desired_speed)

[last_desired_spee
d exists] resume

resume

set_activation(true)

set_desired_speed
(current_speed)

[desired_speed+5 
< 200] increase_speed

increase_speed

set_activation(true)

set_desired_speed
(desired_speed+5)

[desired_speed-5 
>30] decrease_speed

decrease_speed

set_activation(true)

set_desired_speed
(desired_speed-5)

set_speed

set_speed

set_activation(true)

set_desired_speed
(current_speed)

Figure 7.2.: Sequence Diagram: CACC Specifications S3 – S7
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sd S8

Driver Car
<<machine>>
MonitorState

ACCSpeed

LOOP desired_speed

activated = true

CAN_message

CACC_state =  
activated

CAN_message

desired_speed

activated = false

CAN_message

CACC_state =  
deactivated

CAN_message

warn_driver

Figure 7.3.: Sequence Diagram: CACC Specification S8

sd R9

Car <<machine>>
SendSpeedPos

Wifi_Wave

LOOP

position

current_speed

ownPos

ownSpeed

Figure 7.4.: Sequence Diagram: CACC Specification S9
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7.3. From Security Requirements to UMLsec Specifications

In Sections 7.1 and 7.2, we showed how to handle functional requirements. In this section, we
connect the security requirements engineering approach presented in Chapters 4 – 6 with secure
specification based on UMLsec (cf. (Hatebur et al., 2011)). We first present a procedure to
generate UMLsec diagrams describing the environment in Section 7.3.1. Second, we introduce
a procedure to generate UMLsec diagrams describing security mechanisms in Section 7.3.2. We
finally present in Section 7.3.3 work in progress on the construction of a tool that realizes the
aforementioned procedures to develop UMLsec specification models based on security require-
ments. In contrast to the tool described in Sections 4.2 that can also be used for the validation
of the conditions in Sections 7.2, 5.1, and 8.2, this tool is used to generate specifications.

7.3.1. UMLsec Deployment Diagrams for Environment Descriptions

According to our security requirements engineering approach as illustrated in Chapters 4 – 6,
describing the operational environment of a secure software system is of great importance. In
fact, the environment description is also necessary for secure specification: security-critical design
decisions should lead to the fulfillment of the security requirements in the given environment.
However, in a different environment, the same design decisions might lead to an insecure system.

In the following, we present a procedure to develop deployment diagrams enriched with
UMLsec elements from context diagrams and security requirements. A deployment diagram
can be used by the UMLsec tool to perform certain checks. For each step, an operation name
with parameters is provided. These operations represent model generation rules.

1. Create a UML package named adequately that contains a deployment diagram (it is re-
quired that such a diagram does not yet exist and that exactly one context diagram exists).
createDeploymentDiagram(diagramName: String)

2. Add the �secure links� stereotype to the package and assign a certain type of attacker
(e.g., default or insider as described in (Jürjens, 2005, Chapter 4.1)) to the adversary tag.
Decide which attacker type is appropriate based on threats modeled in the context diagram
and domain knowledge collected during security requirements engineering. For example,
default attackers cannot execute attacks in a LAN environment, but insider attacker can.
Hence, if the context diagram describes an attack in a LAN environment, the attacker is
of type insider.
addSecureLinksStereotype(inDiagram: String, adv: String)

3. Each domain contained in the context diagram (it is required that exactly one context
diagram exists and that the deployment diagram exists) that is not a connection or biddable
domain (and not an attacker) is represented as a node in the deployment diagram.
createNodes(inDiagram: String)

4. Moreover, each domain that is part of another domain in the context diagram is repre-
sented either as a nested node or a nested class.
createNestedNodes(domainNames: String[]) or createNestedClasses(domain-

Names: String[])

5. Each connection between the aforementioned domains is represented as a communication
path and a dependency:

a) We create a communication path stereotyped according to the communication type
as described in Tab. 7.1. Note that only one of the UMLsec stereotypes is allowed for
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Context Diagram UMLsec Deployment Diagram

�physical� �wire� (physical protection against default adversary is assumed)

�ui� not considered since biddable domains are not part of deployment dia-
grams

�remote call� see �network connection�
�network -
connection�

�Internet�, �LAN�, �encrypted� depending on the domain knowl-
edge collected during security requirements engineering

Table 7.1.: From Context Diagrams to UMLsec Deployment Diagrams

each communication path. Moreover, the defined mapping for context diagram stereo-
types also applies to sub-stereotypes. For example,�wireless� is a sub-stereotype of
�network connection�, and therefore, �wireless� can be mapped to �Internet�,
�LAN�, and �encrypted�, too.

We create communication paths for all associations between the aforementioned do-
mains of type�physical�, and we also associate a communication type. For these as-
sociations no decision is necessary (createCommunicationPaths (inDiagram: St-

ring)). For all network connections (retrievable with getNetwork-

Connections(): String[]), the developer has to choose between �Internet�,
�LAN�, or �Encrypted� (setCommunicationPathType(inDiagram: String,

assName: String, type: String)).

b) We create a dependency stereotyped according to the control direction of the in-
terfaces in the problem diagram with a security requirement and according to the
following rules:

• the domain controlling the interface is translated into the target of the depen-
dency.

• if more than one observing domains exist, the same number of dependencies must
be introduced.

• if a confidentiality requirement constrains the connection domain in the problem
diagram exists that corresponds to the connection in the deployment diagram,
then the dependency is stereotyped �secrecy�.

• if an integrity requirement refers to the connection domain in the problem dia-
gram exists that corresponds to the connection in the deployment diagram, then
the dependency is stereotyped �integrity�.

createDependencies(inDiagram: String)

The result of applying this method to the context diagram of the CACC shown in Fig. 4.19 on
Page 44 is presented in Fig. 7.5. Please note that due to UMLsec limitations we have used
the stereotype �encrypted� although only integrity and not confidentiality is required. This
UMLsec deployment diagram can be created following the command sequence depicted in List-
ing 7.4.

1 createDeploymentDiagram(’CACC_deployment ’);

2 addSecureLinksStereotype(’CACC_deployment ’,’default ’);

3 createNodes(’CACC_deployment ’);

4 createNestedNodes ({’CACC , EngineActuator_Break ’});

5 createNestedClasses ({’ACCSpeed ’});

6 getNetworkConnections (); -- returns {’WW!{ postion , speed }’}

7 createCommunicationPaths(’CACC_deployment ’);

8 setCommunicationPathType(’CACC_deployment ’,’WW!{postion , speed}’,’encrypted ’);

9 createDependencies(’CACC_deployment ’);

Listing 7.4: Generating a UMLsec Deployment Diagram for CACC
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Figure 7.5.: UMLsec Deployment Diagram Representing the Target State of CACC

We now present the OCL specification of the model generation rule for step 5. We present
the complete set of specifications of the aforementioned model generation rules in Appendix D.
We express model generation rules using OCL pre- and postconditions.

Listing 7.5 contains the specification for step 5, generating the communication paths and
stereotypes for those associations that can be derived directly.

1 createCommunicationPaths(inDiagram: String)

2 PRE Package.allInstances () ->select(name=diagramName)

3 ->size()=0 and

4 Package.allInstances () ->select(getAppliedStereotypes ()

5 .name ->includes(’ContextDiagram ’)) ->size()=1 and

6 Package.allInstances () ->select(getAppliedStereotypes ()

7 .name ->includes(’ContextDiagram ’)) .clientDependency

8 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

9 ->select(not endType.getAppliedStereotypes ().name

10 ->includes(’BiddableDomain ’)

11 ).getAppliedStereotypes () ->forAll(rel_ass_st|

12 not rel_ass_st.name ->includes(’ui’) and

13 not rel_ass_st.general.name ->includes(’ui’) and

14 -- similar for ’event ’, ’call_return ’, ’stream ’, ’shared_memory ’

15 )

16 POST Package.allInstances () ->select(name=inDiagram).ownedElement

17 ->select(oclIsTypeOf(CommunicationPath)) .oclAsType(CommunicationPath

18 .endType.name =

19 Package.allInstances () ->select(getAppliedStereotypes ()

20 .name ->includes(’ContextDiagram ’)) .clientDependency

21 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

22 ->select(not endType.getAppliedStereotypes ().name

23 ->includes(’BiddableDomain ’)).endType.name and

24 Package.allInstances () ->select(getAppliedStereotypes ()

25 .name ->includes(’ContextDiagram ’)) .clientDependency

26 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

27 ->select(not endType.getAppliedStereotypes ().name

28 ->includes(’BiddableDomain ’)) ->forAll(rel_ass|

29 Package.allInstances () ->select(name=inDiagram).ownedElement

30 ->select(oclIsTypeOf(CommunicationPath)) .oclAsType(CommunicationPath)

31 ->exists(cp |

32 cp.name = rel_ass.name and

33 cp.endType.name = rel_ass.endType.name and

34 ( cp.getAppliedStereotypes ().name ->includes(’physical ’) implies

35 rel_ass.getAppliedStereotypes ().name ->includes(’wire’)) and

36 ( cp.getAppliedStereotypes ().general.name ->includes(’physical ’) implies

37 rel_ass.getAppliedStereotypes ().name ->includes(’wire’))

38 )

39 )

Listing 7.5: createCommunicationPaths(inDiagram: String)
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The first two formulas of the precondition of the model generation rule createCommunication-
Paths(inDiagram: String) state that there does not exist a package named equal to the
parameter diagramName (lines 2-3 in Listing 7.5), and that there exists exactly one package
that contains a diagram stereotyped �ContextDiagram� (lines 4-5). The third formula of the
precondition expresses that associations between transformed domains do not contain any of
the �ui�, �event�, �call return�, �stream�, �shared memory�, stereotypes and sub-
types (lines 6-21). If these conditions are fulfilled, then the postcondition can be guaranteed,
i.e., names of nodes connected by each communication path are the same as the names of do-
mains connected by an association in the context diagram (lines 22-29), and there exists for
each relevant association contained in the context diagram a corresponding and equally named
communication path in the deployment diagram that connects nodes with names equal to the
names of the domains connected by the association. These communication paths are stereotyped
�wire� if the corresponding associations are stereotyped�physical� or a subtype (lines 30-45).

7.3.2. UMLsec Class and Sequence Diagrams for Security Mechanism Descriptions

In the following, we show how to specify security mechanisms by developing UMLsec diagrams
based on security requirements. For each communication path contained in the UMLsec deploy-
ment diagram developed as shown in Section 7.3.1 that is not stereotyped�wire�, we select an
appropriate security mechanism according to the results of the problem analysis, e.g., MAC for
integrity, symmetric encryption for security, and a protocol for key exchange). A security mech-
anism specification commonly consists of a structural and a behavioral description, which we
specify based on the attributes of the UMLsec �data security� stereotype. To create security
mechanism specifications, we developed the following model generation rules:

• Securing data transmissions using MAC: createMACSecuredTransmission
(senderNodeName: String, receiverNodeName: String, newPackage: String)

• Symmetrically encrypted data transmissions: createSymmetricallyEncryptedTransmission

(senderNodeName: String, receiverNodeName: String, newPackage: String)

• Key exchange protocol: createKeyExchangeProtocol

(initiatorNodeName: String, responderNodeName: String, newPackage: String)

Model generation rules can be regarded as patterns for security mechanism specifications. Each
of the aforementioned model generation rules describes the construction of a package stereotyped
�data security� containing structural and behavioral descriptions of the mechanism expressed
as class and sequence diagrams. Moreover, the package contains a UMLsec deployment diagram
developed as shown in Section 7.3.1.

The model generation rule createKeyExchangeProtocol(initiatorNodeName: String,

responderNodeName: String, newPackage: String is presented in Hatebur et al. (2011)
and shown in Appendix D, Listing D.10. A detailed description of this protocol pattern is
given in (Jürjens, 2005, Chapter 5.2). As an additional example, we present in this chap-
ter the model generation rule createMACSecuredTransmission (senderNodeName: String,

receiverNodeName: String, newPackage: String) shown in Listing 7.6 in more detail.

1 createMACSecuredTransmission(senderNodeName: String , receiverNodeName: String ,

newPackage: String)

2 PRE Node.allInstances () ->select(name=senderNodeName) ->size()=1 and

3 Node.allInstances () ->select(name=receiverNodeName) ->size()=1 and

4 let cp_types: Bag(String) =

5 CommunicationPath.allInstances ()->select( cp |

6 cp.endType ->includes(Node.allInstances ()

->select(name=senderNodeName)->asSequence()->first() ) and

7 cp.endType ->includes(Node.allInstances ()

->select(name=receiverNodeName)->asSequence()->first() )
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8 ).getAppliedStereotypes ().name

9 in

10 cp_types ->includes(’encrypted ’) or cp_types ->includes(’Internet ’) or

cp_types ->includes(’LAN’) and

11 Package.allInstances () ->select(name=newPackage) ->size()=0

12

13 POST Package.allInstances () ->select(name=newPackage) ->size()=1 and

14 -- ... Stereotype with attributes exists

15 Class.allInstances () ->select(name=senderNodeName) ->select(oclIsTypeOf(Class))

->size()=1 and

16 Class.allInstances () ->select(name=receiverNodeName)

->select(oclIsTypeOf(Class)) ->size()=1 and

17 -- ... dependencies with integrity between initiator and responder (both

direction ) created ...

18 Class.allInstances () ->select(name=senderNodeName)

->select(oclIsTypeOf(Class)).ownedAttribute

19 ->select(name=’inv(AuthKey)’).type ->select(name = ’Keys’) -> size() = 1 and

20 -- ... other attributes exist ...

21 Class.allInstances () ->select(name=receiverNodeName)

->select(oclIsTypeOf(Class)).ownedOperation

22 ->select(name=’resp’)

23 ->select( member ->forAll(oclIsTypeOf(Parameter))) .member ->forAll( par |

24 par ->select( name ->includes(’encrData ’)) ->one(

oclAsType(Parameter).type.name ->includes(’Data’))

25 ) and

26 -- ... other operations exist

27 -- ... stereotype and tags for initiator and responder class exist

28 let intera : Bag(Interaction) =

29 Package.allInstances () ->select(name=newPackage) .ownedElement

->select(oclIsTypeOf(Collaboration))

30 .ownedElement ->select(oclIsTypeOf(Interaction)) .oclAsType(Interaction)

31 in

32 intera.ownedElement ->select(oclIsTypeOf(Lifeline)) .oclAsType(Lifeline).name

->includes(senderNodeName) and

33 intera.ownedElement ->select(oclIsTypeOf(Lifeline)) .oclAsType(Lifeline).name

->includes(receiverNodeName) and

34 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’init(Encr(inv(AuthKey),SessionKey))’) and

35 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’resp(Sign(snd(Dec(inv(AuthKey)),data))’) and

36 -- ... conditions in sequence diagram exist

Listing 7.6: createMACSecuredTransmission(senderNodeName: String, receiverNodeName: String,
newPackage: String)

We use this protocol to realize the security requirement “For Driver, the influence (as described
in R1 and R2) on the Car (brake, accelerate) must be either correct or in case of a modification
by CACCAttacker the Car (EngineActator Brake) shall not brake/accelerate and the Car shall
inform driver.” shown in Fig. 5.14 on Page 73.

The precondition of the model generation rule for key exchange protocols states that nodes
named senderNodeName and receiverNodeName exist (lines 2-3 in Listing 7.6). The communi-
cation path between these nodes (line 8) should have the stereotype�encrypted�,�Internet�,
or �LAN� (lines 4-10). Additionally, a package named newPackage must not exist (line 11).
If these conditions are fulfilled, then the postcondition can be guaranteed. The first part of the
postcondition describes the construction of a class diagram, and the second part specifies the
construction of a sequence diagram. Both are created according to the pattern The following
class diagram elements are created as shown in the example in Fig. 7.6 on the next page:

• exactly one package named newPackage (line 13)

• stereotype �data security� and tags (adversary) for this package

• classes for sender and receiver named senderNodeName and receiverNodeName (lines 15-
16)
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Figure 7.6.: Class Diagram of Securing Data Transmissions using MAC for CACC

• dependencies with �integrity� between sender and receiver (both directions)

• attributes for sender and receiver classes (lines 18-20)

• methods with parameters for sender and receiver classes (lines 21-26)

• stereotype�critical� and corresponding tags (e.g., integrity) for sender and receiver classes

The following sequence diagram elements are created as shown in the example in Fig. 7.7 on the
facing page:

• lifelines for initiator and for responder in an interaction being part of a collaboration that
is part of the created package (lines 28-33)

• messages in sequence diagram (lines 34-35)

• the condition in the sequence diagram as a guard for the following messages2

Figure 7.6 shows the class diagram and Fig. 7.7 the sequence diagram developed for the
CACC according to this model generation rule. They are created with createMACSecured-

Transmission(’CACC’, ’OtherCarWithCACC’, ’CACC MACSecuredTransmission’).

In the created model, the tag secrecy of the �critical� class CACC contains the secret Ses-
sionKey, which represents a the randomly chosen secret to be exchanged by this protocol. It
also contains the key inv(AuthKey) used to decrypt the secret SessionKey, Next to these assets,
the integrity tag additionally contains the data to be transmitted.

The tag secrecy of the �critical� class OtherCarWithCACC contains the session keys Ses-
sionKey and the authentication key inv(AuthKey) of the OtherCarWithCACC. The integrity tag
consists of assets similar to the ones of the same tag of the CACC.

These tag values are reasonable because the security domain knowledge in Section 6.3 states
that

• confidentiality of SessionKey1, SessionKey2, and the data of CACC have to be preserved
(see Fig. 6.1 on Page 94),

2Since UMLsec is based on UML 1.3 and UML 1.3 does not support combined fragments, in UMLsec conditions
are annotated as line comments.
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sd CACC MACSecuredTransmission

CACC OtherCarsWithCacc

init(Encr(inv(AuthKey),SessionKey))

resp(Sign(snd(Dec(inv(AuthKey)),data))

[snd(Sign(snd
(Dec(inv

(AuthKey)),data)) 
= Sign(snd(Dec

(inv
(AuthKey)),data)]

Figure 7.7.: Sequence Diagram of Securing Data Transmissions using MAC for CACC

• integrity of SessionKey1, SessionKey2, and the data of CACC have to be preserved (see
Fig. 6.2 on Page 94),

• confidentiality of AuthKey1 and AuthKey2 have to be preserved (see Equations 6.13 and 6.15 on
Page 97), and

• integrity of AuthKey1 and AuthKey2 have to be preserved (see Equations 6.14 and 6.16 on
Page 97).

The sequence diagram in Fig. 7.7 specifies two messages and one guard. The first message
from CACC initiates the communication by sending a generated SessionKey, encrypted with the
authentication key (AuthKey) to an OtherCarWithCACC. This car responds by sending its data
(position and speed) together with a MAC calculated with the SessionKey (using the operation
Sign). Only if the guard at the lifeline of the Car is true, i.e., the calculated MAC is correct,
the data is used for further processing within CACC.

7.3.3. Tool Design

We are currently constructing a graphical wizard-based tool that supports a software engi-
neer in interactively generating UMLsec specification models. The tool will implement the
model generation rules presented in the previous subsections to generate UMLsec deployment,
class, and sequence diagrams. A graphical user interface allows users to choose the param-
eters, and it ensures that these parameters fulfill the precondition. For example, users can
choose the value of the second parameter of the model generation rule setCommunicationPath-

Type(inDiagram: String, assName: String, type: String) based on the return values
of the rule getNetworkConnections(). Our tool will automatically construct the correspond-
ing parts of the UMLsec model as described in the postcondition. Since our model generation
rules are specified with OCL in a formal and evaluatable way, our tool implementation can be
checked automatically for correctness with respect to our specification based on an appropriate
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API such as the Eclipse implementation for EMF-based models (Eclipse Modeling Framework
Project (EMF), 2009).

In summary, we presented in this section a novel integrated and formal approach connecting
security requirements analysis and secure specification.

7.4. Related Work

The method for handling functional requirements and specifications presented in Section 7.1 is
directly based on the method developed by Jackson (2001).

The UML integration by using sequence diagrams (see Section 7.2) is also addressed by
Lavazza and Bianco (2004), Bianco and Lavazza (2006), Konrad and Cheng (2002) and Choppy
and Reggio (2005). We extended the presented methods by formal constraints about consis-
tency between problem diagrams and sequence diagrams. We are not aware of any other work
on expressing such constraints.

The method for handling security requirements presented in Section 7.3 can be compared on
the one hand-side to other work bridging the gap between security requirements engineering
secure specification, and on the other hand-side to work on transforming UML models based on
rules expressed in OCL.

Relatively little work has been done on the first category of related work, i.e., bridging the gap
between security requirements analysis and design. Recently, an approach to connect the secu-
rity requirements analysis method Secure Tropos by Mouratidis et al. (Giorgini & Mouratidis,
2007) and UMLsec (Jürjens, 2005) was published by Mouratidis and Jürjens (2010). A further
approach from Houmb, Islam, Knauss, Jürjens, and Schneider (2010) connects UMLsec with
security requirements analysis based on heuristics. In contrast to our work, these approaches
only provide informal guidelines for the transition from security requirements to design. Conse-
quently, they do not allow one to verify the correctness of this transition step.

The second category of related work considers the transformation of UML models based on
OCL transformation contracts (Cariou, Marvie, Seinturier, & Duchien, 2004; Millan, Sabatier,
Le Thi, Bazex, & Percebois, 2009). We basically use parts of this work, e.g., the specification
of transformation operations using OCL pre- and postconditions. Additionally, our model gen-
eration rules can be seen as patterns, because they describe the generation of completely new
model elements according to generic security mechanisms, e.g., cryptographic keys.

7.5. Conclusions and Future Work

In this chapter, we have presented a method for transforming functional requirements into
specifications.

We have also defined constraints describing the consistency between problem diagrams and
the specifications expressed with sequence diagrams. These constraints are specified with OCL,
which allows one to check them with out tool UML4PF.

We have also presented in this chapter a novel method to bridge the gap between security
requirements analysis and secure specification. We complemented our method by formal model
generation rules expressed in OCL. Thus, the construction of UMLsec specification models based
on results from security requirements engineering becomes

• more feasible,

• systematic,

• less error-prone, and
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• and a more routine engineering activity.

We validated the presented approach on the CACC case study.
Currently, our method is limited to functional requirements and security requirements to be

transformed into sequence diagrams. In the same way, it is possible to extend the method to
generate other notations expressing behavior. It can also be extended to other dependability
requirements that can be transformed into functional specifications.





Chapter 8

Systematic Architectural Design

based on Problem Patterns

In this chapter, we present a systematic method to derive system and software architectures
from problem descriptions. We give detailed guidance by elaborating concrete steps that are
equipped with validation conditions. The method works for different types of systems, e.g., for
embedded systems, web-applications, and distributed systems as well as standalone ones.

In previous work, we (Choppy et al., 2005) proposed architectural patterns for each of the basic
problem frameproposed by Jackson (Jackson, 2001). In a follow-up paper (Choppy, Hatebur, &
Heisel, 2006), we showed how to merge the different sub-architectures obtained according to the
patterns presented in (Choppy et al., 2005), based on the relationship between the subproblems.
In (Hatebur & Heisel, 2009a), we showed how interface descriptions for layered architectures can
be derived from problem descriptions. A more flexible approach that keeps the advantages is
presented in this chapter. It is based on joint work and is published in Choppy et al. (2011). The
published version focuses on software architecture and applies the method to an Automatic Teller
Machine (ATM) case study. In this chapter, we additionally consider the system architecture,
and we apply the procedure to the CACC case study.

The method is based on different kinds of patterns. On the one hand, it makes use of problem
frames (Jackson, 2001) (see Chapter 4). On the other hand, it builds on architectural and design
patterns.

The starting point of the method is a set of diagrams that are set up during requirements anal-
ysis, in particular, the technical context diagram. Furthermore, the overall development problem
must be decomposed into simple subproblems, which are represented by problem diagrams. The
different subproblems should be instances of problem frames.

From these pattern-based problem descriptions, we derive an architecture that is suitable to
solve the development problem described by the problem descriptions. The problem descriptions
as well as the architectures are represented as UML diagrams, extended by stereotypes. The
stereotypes are defined in profiles that extends the UML metamodel (UML Revision Task Force,
2010c).

The method to derive architectures from problem descriptions consists of three steps. In the
first step, an initial architecture is set up. It contains one component for each submachine in the
problem diagrams. The overall machine component has the same interface as described in the
technical context diagram (e.g., �call and return�, �shared memory�, �event�, �ui�).

In the second step, we apply different architectural and design patterns. We introduce coor-
dinator and facade components and specify them. A facade component is necessary if several
internal components are connected to one external interface. A coordinator component must be
added if the interactions of the machine with its environment must be performed in a certain
order. For different problem frames, specific architectural patterns are applied.

In the final step, the components of the implementable architecture are re-arranged to form
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a layered architecture, and interface and driver components are added. This process is driven
by the stereotypes introduced in the first step. For example, a connection stereotype �ui�
motivates to introduce a user interface component. Of course, a layered architecture is not
the only possible way to structure the software, but a very convenient one. We have chosen it
because a layered architecture makes it possible to divide platform-dependent from platform-
independent parts, because different layered systems can be combined in a systematic way, and
because other architectural styles can be incorporated in such an architecture. Furthermore,
layered architectures have proven useful in practice.

Our method exploits the subproblem structure and the classification of subproblems by prob-
lem frames. Additionally, most interfaces can be derived from the problem descriptions (Hatebur
& Heisel, 2009a). Stereotypes guide the introduction of new components. They also can be used
to generate adapter components automatically. The re-use of components is supported, as well.

The method is tool-supported, as described in Section 4.2 on Page 38. To support the ar-
chitectural design, we added a UML profile that allows us to annotate composite structure
diagrams with information on components and connectors. In order to automatically validate
the semantic integrity and coherence of the different models, we provide a number of validation
conditions. These conditions concern the following:

• coherence of problem descriptions and architectural descriptions

• internal coherence of single architectural descriptions

• coherence of different architectural descriptions

In Section 8.1, we introduce the UML profile for architectural descriptions that we have devel-
oped and which provides the notational elements for the architectures we derive. In Section 8.2,
we describe our method in detail. Not only do we give guidance on how to perform the three
steps, but we also give detailed validation conditions that help to detect errors as early as pos-
sible. As a running example, we apply our method to derive the architecture for the CACC.
Section 8.3 discusses related work, and in Section 8.4, we give a summary of our achievements
and point out directions for future work.

We illustrate the method by deriving an architecture for the CACC (see 4.3 on Page 43).

8.1. Architectural Descriptions

For each machine in the context diagram, we design an architecture that is described using
composite structure diagrams (UML Revision Task Force, 2010c). In such a diagram, the com-
ponents with their ports and the connectors between the ports are given. The components are
another representation of UML classes. The ports are typed by a class that uses and realizes
interfaces. An example is depicted in Figure 8.5 on Page 126. The ports (with this class as their
type) provide the implemented interfaces (depicted as lollipops) and require the used interfaces
(depicted as sockets), see Fig. 8.4 on Page 125.

In our UML profile, we introduce stereotypes to indicate which classes are components. The
stereotype �Component� extends the UML meta-class Class. For re-used components we use
the stereotype�ReusedComponent�, which is a specialization of the stereotype�Component�.
Reused components may also be used in other projects. This fact must be recorded in case such
a component is changed. Fig. 8.1 on the next page depicts this part of our profile.

A machine domain may represent completely different things. It can either be a distributed
system (e.g., a network consisting of several computers), a local system (e.g., a single computer),
a process running on a certain platform, or just a single task within a process (e.g., a clock as part
of a graphical user interface). The kind of the machine can be annotated with the stereotypes
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Figure 8.1.: Components

�distributed�, �local�, �process�, or �task�. They all extend the UML meta-class Class.
If design decisions on the operating system, the processor architecture, or the provided memory
and speed have been made, the attributes of these stereotypes can be used to document the
design decisions. This documentation is helpful for further design decisions, e.g. Windows
Message Queues cannot be used to connect components on a Linux operating system. Fig. 8.2
depicts this part of our profile.

Figure 8.2.: Machine Types

For the architectural connectors, we allow the same stereotypes as for associations, e.g. �ui�
or �tcp�, described in Section 4.1.2 on Page 25. However, these stereotypes extend the UML
meta-class Connector (instead of the meta-class Association).

8.2. Deriving Architectures from Problem Descriptions

We now present our method to derive software architectures from problem descriptions in detail.
For each of its three steps, we specify the input that is needed, the output that is produced,
and a procedure that can be followed to produce the output from the input. Of course, these
procedures are not automatic, and a number of decisions have to be taken by the developer.
Such developer decisions introduce the possibility to make errors. To detect such errors as early
as possible, each step of the method is equipped with validation conditions. These validation
conditions must be fulfilled if the developed documents are semantically coherent. For example,
a passive component cannot contain an active component. The validation conditions cannot be
complete in a formal sense. Instead, they constitute necessary but not sufficient conditions for



124 Chapter 8. Systematic Architectural Design based on Problem Patterns

the different documents to be semantically valid. New conditions can be defined and integrated
in our tool as appropriate.

8.2.1. Starting Point

To derive the architecture, we have to describe how the machine is embedded in its environment.
The technical context diagram contains the necessary information. For the CACC case study,
the technical context diagram given is in Fig. 8.3. In this diagram, the machine CACC is split into
software (Cacc Sw) and hardware (Cacc Hw). It only contains the domains directly connected
to the machine in the context diagram.

Figure 8.3.: Technical Context Diagram of CACC

Furthermore, the overall software development problem must be decomposed into simple sub-
problems, which are represented by problem diagrams, as shown in Section 4.3. The subproblems
can be found in Figs. 4.21 on Page 46, 4.22 on Page 47, and 4.23 on Page 48. Finally, the re-
lations between the different subproblem (life-cycle model, e.g. sequential or alternative) must
be known. In CACC case study, all subproblem have to work in parallel.

8.2.2. Initial Architecture

The purpose of this first step is to collect the necessary information for the architectural design
from the requirements analysis phase, to determine which component has to be connected to
which external port, to make coordination problems explicit (e.g. several components are con-
nected to the same external domain), and to decide on the machine type, verifying that it is
appropriate (considering the connections). At this stage, the submachine components are not
yet coordinated.
The input for this step are the technical context diagram and the problem diagrams. The output
is an initial architecture, represented by a composite structure diagram. It is set up as follows.
There is one component for the overall machine with stereotype�machine�, and it is equipped
with ports corresponding to the interfaces of the machine in the technical context diagram, see
Fig. 8.4.

Inside this component, there is one component for each submachine identified in the problem
diagrams, equipped with ports corresponding to the interfaces in the problem diagrams, and
typed with a class. This class has required and provided interfaces. A controlled interface
in a problem diagram becomes a required interface of the corresponding component in the
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architecture. Usually, an observed interface of the machine in the problem diagram will become
a provided interface of the corresponding component in the architecture. However, if the interface
connects a lexical domain, it will be a required interface containing operations with return values
(see Côté et al. (2008, Section 3.1)). The ports of the components should be connected to the
ports of the machine, and stereotypes describing the technical realization of these connectors
are added. A stereotype describing the type of the machine (local, distributed, process, task)
is added, as well as stereotypes �ReusedComponent� or �Component� to all components.
If appropriate, stereotypes describing the type of the components (local, distributed, process,
task) are also added.

Figure 8.4.: Initial Architecture of CACC

The initial architecture of the CACC software is given in Fig. 8.4. Note that it is not necessary
to split the machine into hardware and software beforehand: it is possible to create an initial
architecture for the machine including hardware and software. This initial architecture can
be split later according to a desired design in the next Step “Implementable Architecture”.
Starting from the technical context diagram in Fig. 8.3 on the preceding page, and the problem
diagrams (see Figs. 4.21 on Page 46, 4.22 on Page 47, 4.23 on Page 48, and 4.24 on Page 48),
the initial Cacc Sw architecture has the stereotypes �machine,initial architecture,local� and
one external port typed with :P CS that corresponds to the interface of the machine in the
technical context diagram. The components ControlAccelBrake, DriverControl, MonitorState, and
SendPosSpeed correspond to the submachines identified for this case study (see Figs. 4.21, 4.22,
4.23, and 4.24 on Page 48). The component ACCSpeed is included, because the technical context
diagram in Fig. 8.3 on the preceding page expresses that it is part of the machine. Phenomena at
the machine interface in the technical context diagram (CS!{HW Cmds} and CH!{HW State})
now occur in external interfaces of the machine. Phenomena controlled by the machine are
associated with required interfaces (CS!{HW Cmds}), and phenomena controlled otherwise (e.g.
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by the user), are associated with provided interfaces (CH!{HW State}).

Figure 8.5.: Port Type of P CS

Note that connections in the technical context diagram in Fig. 8.3 being not related to the
Cacc Sw (such as the one between Cacc Hw and OtherCars) are not reflected in the initial
architecture.

The ports have a class as a type. This class uses and realizes interfaces. For example,
as depicted in Fig. 8.5, the class ∼P CS realizes the interface CH!{HW State} and uses the
interface CS!{HW Cmds}. The ports with this class as a type (see Fig. 8.4) provide the interface
CH!{HW State} (depicted as a lollipop) and requires the interface CS!{HW Cmds} (depicted as
a socket). The definition of the other used port types is provided in Appendix B, Figures B.2
and B.3 on Page 234.

We have defined two sets of validation conditions for this first phase of our method. The
first set is common to all architectures (and hence should be checked after each step of our
method), whereas the second one is specialized for the initial architecture. We give a selection
of the validations conditions in the following. Additional validations conditions can be found in
Appendix C, Sections C.12 and C.13.

Following our approach, a strong relation between the problem analysis and the developed
architectures exists, i.e., the machines of the subproblems yield components that are part of
a machine or another component. Moreover, in all architectures, required operations must be
provided by the connected component, and the composition hierarchy must be valid, e.g., a
distributed network cannot be contained in a single process. We first present some conditions
that should be satisfied by all architectures in our development approach. We then provide the
OCL expression for condition VA.1 in Listing 8.1, as well as a way to find out where an error
comes from if this condition is not satisfied.

Validation conditions for All architectures:

VA.1. Each machine in a problem diagram must be a component or a re-used component in
the architectural description. For example in the CACC case study, MonitorState in the
problem diagram in Fig. 4.23 on Page 48 has the stereotype�Component� (see Fig. 8.4 on
the preceding page).

VA.2. All components in the model must be contained in a machine or another component.

VA.3. For each operation in a required interface of a port of a component, there exists a connector
to a port providing an interface with this operation, or it is connected to a re-used com-
ponent. For example in the CACC case study, the operation HW Cmds() in the interface
CS!{HW Cmds} is required by the port with type ∼P CS of the component Cacc Sw and
provided by the port with type P CS of the component Cacc Hw.
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VA.4. If a component port is connected to an external port of the machine, the components’
interfaces must fit to the connected interfaces of the machine, i.e., each operation in a
required or provided interface of a component port must correspond to an operation in a
required or provided interface of a connected machine port. For example in the CACC case
study, the operation CAN message() required by the ports with the type P C corresponds
to the operation clHW Cmds() the ports with the type ∼P CS.

VA.5. Passive components cannot contain active components.

VA.6. Classes with stereotype�machine� must also have one of the stereotypes�Distributed�,
�Local�, �Process�, �Task�, �Component�, or �ResusedComponent�.

VA.7. A class with the stereotype�Local� cannot contain classes with the stereotype�Distributed�.

In the following, we present the OCL expression for Condition VA.1. All packages in the
model with the stereotype �ProblemDiagram� (Listing 8.1, line 1) are selected. For these
packages we collect the targets of the package dependencies with the stereotype �isPart�
(line 2) and select those being classes and having the stereotype �machine� (lines 3 and 4).
These classes must also have the stereotype �Component� or �ReusedComponent� (line 5).

1 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

2 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

3 ->select(oclIsTypeOf(Class))

4 ->select(getAppliedStereotypes ().name ->includes(’Machine ’))

5 ->forAll(getAppliedStereotypes ().name ->includes(’Component ’) or

getAppliedStereotypes ().name ->includes(’ReusedComponent ’))

Listing 8.1: Machines in problem diagrams must be components

To find out which problem diagram machines are not components, the same expression can be
used with reject instead of forAll.

The initial architecture should fit to the technical context diagram, i.e, the external con-
nections and interfaces of the architecture must correspond to associations and interfaces of
the machines in the technical context diagram. The following conditions consider the initial
architecture and its relationship with the technical diagram.

Validation conditions specific to the Initial architecture:

VI.1. For each provided or required interface of machine ports in the initial architecture, there
exists a corresponding interface in the technical context diagram. Corresponding interface
are

a) exactly the observed or controlled interfaces,

b) interfaces combined from observed or controlled interfaces,

c) interfaces contained in observed or controlled interfaces,

d) interfaces being refined or concretized by observed or controlled interfaces, or

e) interfaces refining or concretizing observed or controlled interfaces.

VI.2. For each observed or controlled interface of each machine in the technical context diagram,
the corresponding machine component of the architecture has ports providing or requiring
the corresponding interfaces. Corresponding interface are the same as in Condition VI.1

VI.3. Each phenomenon in a machine interface in the technical context diagram must corre-
spond to an operation in some interface of the corresponding machine component of the
architecture. For this condition we provide no OCL because operation X() may be refined
by Y() and Z().
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VI.4. For each machine in the technical context diagram:
each stereotype name of all associations to the machine (or a specialization of this stereo-
type) must be included in the set of stereotype names of the connectors from the internal
components to external interfaces inside the machine. In the CACC case study, the associ-
ation to the domain Cacc Sw in the technical context diagram in Fig. 8.3 on Page 124 has
the stereotype �electrical� and all connections to the corresponding port in Fig. 8.4 on
Page 125 have the stereotype �electrical�.

VI.5. Each stereotype name of the connectors from components to external interfaces inside
an architectural machine component (or their supertypes) must be included in the set of
associations to the corresponding machine domain in the technical context diagram.

In the following, we present the OCL expressions checking Condition VI.1. It checks that
for each provided or required interfaces of machine ports, there exists a corresponding interface
in the technical context diagram. In the OCL expression in Listing 8.2, we define the set of
interfaces tcd if as all interfaces being part of the technical context diagram (lines 1-5). We se-
lect all technical context diagrams1 (line 6) and collect all parts of these diagrams (line 7) with
the stereotype �machine� (line 8). For all technical context diagram machines (tcd machine)
(line 9) we define the set of interfaces tcd machine ifs to be all interfaces observed or controlled
by tcd machine (lines 10-17), we define the set of interfaces tcd m contained ifs to be all inter-
faces contained in the interfaces in tcd machine ifs (lines 18-22), we define the set of interfaces
tcd m combined ifs to be all interfaces combining the interfaces in tcd machine ifs (lines 23-32),
we define the set of interfaces tcd m concr ifs to be all interfaces concretizing or refining the
interfaces in tcd machine ifs (lines 33-39), and we define the set of interfaces tcd m abst ifs to
be all concretized or refined interfaces of tcd machine ifs (lines 40-51), and we define the set of
interfaces tcd machine port ifs to be all interfaces being provided or required by tcd machine
(lines 52-56). For each interface in the set tcd machine port ifs (tmpi) (line 57) we check that
it is

1. exactly the observed or controlled interface (line 58),

2. an interface combined from observed or controlled interface (line 59),

3. an interface contained in observed or controlled interface (line 60),

4. an interface being refined or concretized by observed or controlled interface (line 61), or

5. an interface refining or concretizing observed or controlled interface (line 62).

1 let tcd_ifs: Set(Interface) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

4 ->select(oclIsTypeOf(Interface)).oclAsType(Interface)->asSet()

5 in

6 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

7 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

8 ->select(getAppliedStereotypes ().name ->includes(’Machine ’)).oclAsType(Class)

9 ->forAll(tcd_machine |

10 let tcd_machine_ifs: Set(Interface) =

11 tcd_machine.clientDependency

12 ->select(

13 getAppliedStereotypes ().name ->includes(’observes ’) or

14 getAppliedStereotypes ().name ->includes(’controls ’))

15 .target.oclAsType(Interface)->select(mif | tcd_ifs ->includes(mif))

1Several technical context diagrams may exist to describe different aspects or the context of different machines.
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16 ->asSet()

17 in

18 let tcd_m_contained_ifs: Set(Interface) =

19 tcd_machine_ifs.member

20 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

21 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

22 in

23 let tcd_m_combined_ifs: Set(Interface) =

24 Interface.allInstances ()->select(

25 let comb_elem: Set(Interface) =

26 member ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

27 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

28 in

29 comb_elem ->size() >0 and

30 tcd_machine_ifs ->includesAll(comb_elem)

31 )

32 in

33 let tcd_m_concr_ifs: Set(Interface) =

34 tcd_machine_ifs.clientDependency ->select(

35 getAppliedStereotypes ().name ->includes(’concretizes ’) or

36 getAppliedStereotypes ().name ->includes(’refines ’)

37 ).target

38 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

39 in

40 let tcd_m_abstr_ifs: Set(Interface) =

41 Interface.allInstances ()->select(

42 let abstr_ifs: Set(Interface) =

43 clientDependency ->select(

44 getAppliedStereotypes ().name ->includes(’concretizes ’) or

45 getAppliedStereotypes ().name ->includes(’refines ’)

46 ).target

47 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

48 in

49 tcd_machine_ifs ->exists(ti | abstr_ifs ->includes(ti))

50 )

51 in

52 let tcd_machine_port_ifs: Set(Interface) =

53 tcd_machine.member ->select(oclIsTypeOf(Port)) .oclAsType(Port).required ->union(

54 tcd_machine.member ->select(oclIsTypeOf(Port)) .oclAsType(Port).provided)

55 ->asSet()

56 in

57 tcd_machine_port_ifs ->forAll( tmpi|

58 tcd_machine_ifs ->includes(tmpi) or

59 tcd_m_contained_ifs ->includes(tmpi) or

60 tcd_m_combined_ifs ->includes(tmpi) or

61 tcd_m_concr_ifs ->includes(tmpi) or

62 tcd_m_abstr_ifs ->includes(tmpi)

63 )

64 )

Listing 8.2: Machine port interfaces are in technical context diagram

As already noticed, these validation conditions can be checked automatically, using the tool
UML4PF described in Section 4.2 on Page 38.

8.2.3. Implementable Architecture

The purpose of this step is to introduce coordination mechanisms between the different sub-
machine components of the initial architecture and its external interfaces, thus obtaining an
implementable architecture. This implementable architecture can be either a system architec-
ture or a software architecture. Components or machines with the stereotype �distributed�
describe a system architecture and components or machines with the stereotypes �local�,
�process� or �task� describe a software architecture.

Moreover, we exploit the fact that the subproblems are instances of problem frames by apply-
ing architectural patterns that are particularly suited for some of the problem frames. We also
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decide if some domains should be merged or split. Finally, we decide whether the components
should be implemented as active or passive components.

The input to this step are the initial architecture, the problem diagrams as instances of prob-
lem frames, and a specification of interaction restrictions2. The output is an architecture that
is already implementable. It contains coordinator and facade components as well as architec-
tural patterns corresponding to the used problem frames. The implementable architecture is
annotated with the stereotype �implementable architecture� to distinguish it from the final
architecture.

The implementable architecture is set up as follows. When several internal components are
connected to one external interface in the initial architecture, a facade component3 is added.
Such a component has one provided interface containing all operations of some external port
and several used interfaces as provided by the submachine components. The implementable
architecture for our case study is depicted in Fig. 8.6.

Figure 8.6.: Implementable Architecture of CACC

If interaction restrictions have to be taken into account, we need a component to enforce these
restrictions. We call such a component a coordinator component. A coordinator component has
one provided interface containing all operations of some external port and required interfaces
containing all operations of some internal port. To ensure the interaction restrictions, a state
machine can be used inside the component. Typically, coordinator components are needed
for interfaces connected to biddable domains (also via connection domains). This is because
often, a user must do things in a certain order. In our example, a user must first authenticate

2Our method does not rely on how these restrictions are represented. Possible representations are sequence
diagrams, state machines, grammars, or life-cycle expressions as used in the PCS case study in Section 13.6

3See the corresponding design pattern by Gamma et al. (Gamma, Helm, Johnson, & Vlissides, 1995b): “Provide
a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface that makes the
subsystems easier to use.”
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before being allowed to enter a request to withdraw money. The coordinator components can
be integrated into the facade components. Usually, it is efficient to integrate the coordinator
component into the facade component.

For the case study presented here, no coordinator is necessary, because all components work
in parallel. We introduce a facade named P PC Facade in Fig. 8.6 for the communication with
other car components via CAN (Display, EngineActuator Brake), WiFi Wave and the distance
measurement with a radar being part of the CACC hardware.

Additional to facade and coordinator components, additional architectural patterns can be
applied. Problem frames can help to select appropriate patterns, because similar problems may
have similar solutions. We identified the following architectural patterns that are related to
problem frames:

• Fig. 8.7 shows an architectural pattern for transformation problems. It is a pipe-and-filter
architecture.

Figure 8.7.: Pattern for Component Realizing Transformation Problem

• The machine in a simple transformation problem frame (see Section 4.1.6) or the required
behaviour problem frame (see Section 2.4) needs to trigger the activity on the constrained
domain automatically. Therefore, the architectural pattern that can be applied to this
machine is a decomposition into an active timer that triggers the activity and a passive
component that performs the processing. The timer component is usually a re-used com-
ponent.

• The machine in a commanded information problem (see Fig. 2.3 on Page 7) has to acquire
information, store them and provide requested information. Therefore, the architectural
pattern that can be applied for these machine is a decomposition into components for the
acquisition, the storage, and the request of information.

After adding facade and coordinator components and applying architectural patterns related
to problem frames, we have to decide for each component if it has to be active or not. In the case
of the CACC, the components ControlAccelBrake and MonitorState are active components since
they trigger actions themselves and work in parallel to the other components. The component
DriverControl only reacts to actions performed by the driver. The component ACCSpeed just
acts as a passive data storage, and the component P CS Facade just forwards information from
and to the other components. For new connectors, their technical realization should be added
as stereotypes. For the CACC case study, we use the stereotype �call return� for all new
connectors, because the connected parts are software and a call and return interface can be
implemented easily. Finally, for all newly introduced components it has to be specified if they
are a�Component� or a�ReusedComponent�. In Figure 8.6, we have no re-used components.

To validate the implementable architecture, we have to check (among others) the following
conditions (in addition to the conditions VA.1 to VA.7 given in Section 8.2.2).

Validation conditions for the iMplementable architecture:

VM.1. All components of the initial architecture must be contained in the implementable archi-
tecture.
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VM.2. The connectors connected to the ports in the implementable architecture must have the
same stereotypes or more specific ones than in the initial architecture. In the CACC case
study, the connectors also have the stereotypes �electrical� and �call return�.

VM.3. The stereotypes �physical� and �ui�, and their subtypes are not allowed between
components.

VM.4. Ports of components of the implementable architecture that are connected to external
ports, require and provide the same interfaces as the external ports. In the CACC case
study, the type of both ports is ∼P CS and therefore they require and provide the same
interfaces.

VM.5. It is only possible to perform operation calls on one local machine. A shared memory
and a unix pipe also cannot be used between different computers. Therefore, connec-
tors with the stereotypes �shared memory�, �unix pipe� and subtypes as well as the
stereotype �call return� do not connect different classes with the stereotype �Local�
or �Distributed�.

In the following Listing 8.3, we present the OCL expression checking Condition VM.1. It
checks whether all components of the initial architectures are contained in the implementable
architectures. For each intermediate architecture (line 1-3), the set of contained component is
determined (comps, lines 4-7). For these components, the set of contained component is deter-
mined (comp comps, lines 8-11). For each component in the initial (generalized) architecture
(line 12), the components are collected (line 12) and it is checked that each of these components
is part of the implementable architecture (line 15) or its components (line 16).

1 Class.allInstances ()->select(

2 getAppliedStereotypes ().name ->includes(’implementable_architecture ’)

3 )->forAll(ia |

4 let comps: Set(Class) =

5 ia.ownedAttribute.type

6 ->select(oclIsTypeOf(Class) and oclAsType(Class) .getAppliedStereotypes ().name

->includes(’Component ’)).oclAsType(Class)->asSet()

7 in

8 let comp_comps: Set(Class) =

9 comps.ownedAttribute.type

10 ->select(oclIsTypeOf(Class) and oclAsType(Class) .getAppliedStereotypes ().name

->includes(’Component ’)).oclAsType(Class)->asSet()

11 in

12 ia.generalization.oclAsType(Class).ownedAttribute.type

13 ->select(oclIsTypeOf(Class) and oclAsType(Class).getAppliedStereotypes ().name

->includes(’Component ’)).oclAsType(Class)->asSet()

14 ->forAll( general_comp |

15 comps ->includes(general_comp) or

16 comp_comps ->includes(general_comp)

17 )

18 )

Listing 8.3: Connectors in the specialized architecture must have the same components as the more
general architecture

8.2.4. Layered Architecture

In this step, we finalize the software architecture. We make sure to handle the external con-
nections appropriately. For example, for a connection marked �gui�, we need a component
handling the input from the user. For�physical� connections, we introduce appropriate driver
components, which are often re-used.

We arrange the components in three layers. The highest layer is the application layer. It im-
plements the core functionality of the software, and its interfaces mostly correspond to high-level
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phenomena, as they are used in the context diagram. The lowest layer establishes the connec-
tion of the software to the outside world. It consists of user interface components and hardware
abstraction layer (HAL) components, i.e., the driver components establishing the connections to
hardware components. The low-level interfaces can mostly be obtained from the technical con-
text diagram. The middle layer consists of adapter components that translate low-level signals
from the hardware drivers to high-level signals of the application components and vice versa.
If the machine sends signals to some hardware, then these signals are contained in a required
interface of the application component, connected to an adapter component. If the machine
receives signals from some hardware, then these signals are contained in a provided interface of
the application component, connected to an adapter component.

The input to this step are the implementable architecture, the context diagram, the technical
context diagram, and the interaction restrictions. The output is a layered architecture. It is
annotated with the stereotype�layered architecture� to distinguish it from the implementable
architecture. Note, however, that a layered architecture can only be defined for a software, i.e., a
machine or component with the stereotype�local�, �process� or�task�. For a distributed
machine, a layered architecture will be defined for each local component.

If the implementable architecture is not a distributed architecture, the layered architecture
is expressed by a composite structure diagram with the same stereotypes as the implementable
architecture (�machine� and, e.g., �local�) and the stereotype �layered architecture�. To
obtain the layered architecture, we assign all components from the implementable architecture
to one of the layers. The submachine components will belong to the application layer. Each
facade components will be split into smaller parts that can be assigned to the application layer,
the adapter layer or the hardware abstraction layer. Some of these parts could be without
functionality and left out. As already mentioned, connection stereotypes guide the introduction
of new components, namely user interface and driver components. All component interfaces for
the newly created parts must be defined. A heuristic for defining the interface of the application
layer is, that they should correspond to the interfaces in the context diagram.

If the implementable architecture is a distributed architecture, we have to combine the com-
ponents of the implementable architecture in new components that represent the local machines
that should include a layered architecture. When a functionality should be realized by two or
more components, the component that realizes the functionality must be split. In this case, new
problem diagrams for split machines and requirements have to be created.

The stereotypes of connectors connecting the external interfaces of the implementable archi-
tecture support the developers in their design activities since the application should not access
technical interfaces (e.g., gui, network-connection, electrical...) directly. In case of a connector
with the stereotype �ui� or a more specific stereotype (e.g., �gui�), a component imple-
menting a user interface is necessary. This component has to handle the user input and output,
coordinate the execution order and provide an interface to the application components with
abstract operations necessary to fulfill the requirements. In case of a connector with the stereo-
type �physical�, �electrical�, �network connection�, or with a more specific stereotype
(e.g., �smtp�), a hardware abstraction layer component and an adapter have to be used. The
hardware abstraction layer component is usually re-used in several projects, but the adapter
has to transform the information that provided or required by the HAL into abstract abstract
operations necessary to fulfill the requirements. It is possible to generate some of the adapter
components automatically based on the stereotype, a pattern for the general mapping procedure
and a description of the concrete information to be transformed. In case of a connector with
the stereotype �call return�, �shared memory�, �stream�, �event� or a more specific
stereotype (e.g., �api�) the components are usually able to handle these connectors directly,
and no additional component need to be introduced.
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Figure 8.8.: Layered Architecture of CACC

The final software architecture of the CACC is given in Figure 8.8. Note that we have split the
P CS Facade into three adapters and three hardware abstraction layer components to handle
the electrical connection to the hardware. Using these adapters and hardware abstraction layer
components, information from and to the CAN connection, radar, and WiFi is handled by
separate components in order to achieve a separation of concerns.

The validation conditions to be checked for the layered architecture are similar to the vali-
dation conditions for the implementable architectures. Condition VM.3 must also hold for the
layered architecture, and conditions VM.1 and VM.2 become

VL.1. All components of the implementable architecture must be contained in the layered archi-
tecture.

VL.2. The connectors connected to the ports in the layered architecture must have the same
stereotypes or more specific ones than in the implementable architecture.

This final step could be carried out in a different way – resulting in a different final architecture
– for other types of systems, e.g., when domain-specific languages are used.

8.3. Related Work

Since our approach heavily relies on the use of patterns, our work is related to research on prob-
lem frames and architectural styles. However, we are not aware of similar methods that provide
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such a detailed guidance for developing software architectures, together with the associated
validation conditions.

The related work on problem analysis can be found in Section 4.4.

Aiming to integrate problem frames in a formal development process, Choppy and Reggio
(2000) show how a formal specification skeleton may be associated with some problem frames.
Choppy and Heisel give heuristics for the transition from problem frames to architectural styles.
In (Choppy & Heisel, 2003), they give criteria for choosing between architectural styles that
could be associated with a given problem frame. In (Choppy & Heisel, 2004), a proposal for
the development of information systems is given, using update and query problem frames. A
component-based architecture reflecting the repository architectural style is used for the design
and integration of the different system parts.

The approach developed by Hall, Jackson, Laney, Nuseibeh, and Rapanotti (2002); Rapanotti,
Hall, Jackson, and Nuseibeh (2004) is quite complementary to ours, since the idea developed
there is to introduce architectural concepts into problem frames (introducing “AFrames”) so as
to benefit from existing architectures. In (Hall et al., 2002), the applicability of problem frames
is extended to include domains with existing architectural support, and to allow both for an
annotated machine domain, and for annotations to discharge the frame concern. In (Rapanotti
et al., 2004), “AFrames” are presented corresponding to the architectural styles Pipe-and-Filter
and Model-View-Controller (MVC), and applied to transformation and control problems.

Barroca, Fiadeiro, Jackson, Laney, and Nuseibeh (2004) extend the problem frame approach
with coordination concepts. This leads to a description of coordination interfaces in terms
of services and events together with required properties, and the use of coordination rules to
describe the machine behavior. Their approach complements our approach and is especially
helpful for specifying the behavior of the coordinator component.

Hofmeister, Nord, and Soni (1999) describe software architectures in four views (conceptual,
module, execution, and code) with UML and stereotypes. Five industrial architecture design
methods are compared in (Hofmeister et al., 2007), and a general approach is extracted where
the design activities are the architecture analysis, synthesis (i.e. the core of the design) and
evaluation. We may consider that, although our approach is quite different, it complies with
these design activities.

Lavazza and Bianco (2006) also represent problem diagrams in a UML notation. They use
component diagrams (and not stereotyped class diagrams) to represent domains. Jackson’s in-
terfaces are directly transformed into used/required classes (and not�observe� and�control�
stereotypes that are translated in the architectural phase). In a later paper, Lavazza and Bianco
(2008) suggest to enhance problem frames with scenarios and timing.

Hall, Rapanotti, and Jackson (Hall, Rapanotti, & Jackson, 2008) describe a formal approach
for transforming requirements into specifications. This specification is then transformed into
the detailed specifications of an architecture. We intentionally left out deriving the specification
describing the dynamic behavior of the components within this thesis and focus on the static
aspects of the architecture.

8.4. Conclusions and Future Work

We have shown how software architectures can be derived in a systematic way from problem
descriptions as they are set up during the requirements analysis phase of software development.
In particular, our method builds on information that is elicitated when applying (an extension of)
the problem frame approach. The method consists of three steps, starting with a simple initial
architecture. That architecture is gradually refined, resulting in a final layered architecture.
The refinement is guided by patterns and stereotypes. The method is independent of system
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characteristics – it works e.g., for embedded systems, for web-applications, and for distributed
systems as well as for local ones. Its most important advantages are the following:

• The method provides a systematic approach to derive software architectures from problem
descriptions. Detailed guidance is given in three concrete steps.

• Problem descriptions and architectural descriptions can both be expressed as UML models.
This is possible by defining appropriate UML profiles.

• Because all models are expressed in UML, we have been able to develop a tool for auto-
matically checking the integrity conditions that is based on existing UML tools.

• We have presented a number of semantic integrity conditions that must be fulfilled if our
method is applied correctly. These integrity conditions serve to detect any incoherences be-
tween the models developed during requirements analysis and architectural design. These
conditions can be checked automatically using our tool UML4PF.

• The OCL conditions are quite technical and not easy to read. However, users of UML4PF
usually do not need to inspect them. They have to be familiar with our method and
must be able to use an editor to set up the different diagrams. Then, they just press the
“validator” button. If a condition does not hold, the user is provided with the natural-
language description of the condition, and the wrong model element is pointed out to him
or her. Therefore, no deep knowledge of OCL and formal methods is necessary to apply
our method and use our tool.

• The subproblem structure can be exploited for setting up the architecture.

• Most interfaces can be derived from the problem descriptions.

• Only one model is constructed containing all the different development artifacts. There-
fore, traceability between the different models is achieved, and changes propagate to all
graphical views of the model.

• Frequently used technologies are taken into account by stereotypes. The stereotype hier-
archy can be extended for new developments.

• Stereotypes guide the introduction of new components.

• The application components use high-level phenomena from the application domain. Thus,
the application components are independent of the used technology.

• Our methods, integrity conditions, and tool support can easily be extended to cover fur-
ther diagram types (e.g., sequence diagrams) and development phases, for the example
specifying the internal behavior of the architectural components.

An interesting topic for further investigation is, to extend our approach to support the develop-
ment of design alternatives according to quality requirements and to support software evolution.
On the long run, the method can also be extended to cover further phases of the software de-
velopment lifecycle. For generating adapters automatically, further research and development is
necessary. In the next chapter, we extend the approach to handle dependability requirements
systematically.



Chapter 9

Development of Architectures

for Dependable Systems

Taking dependability requirements into account when developing an architecture is a demand-
ing task, for which satisfactory solutions are still sought for. There are several reasons for this
situation. First, dependability requirements must be elicitated, analyzed, and documented as
thoroughly as functional ones, which is often not the case. Second, requirements engineering and
architectural design must be integrated in such a way that the knowledge gained in the require-
ments engineering phase is used in a systematic way when developing a software architecture,
which cannot be taken for granted. Third, the current techniques for incorporating dependabil-
ity requirements into architectures are even less developed than the ones that concentrate on
functional requirements only.

In this chapter, we want to contribute to improve this situation. We present a method that

• takes dependability requirements into account explicitly,

• is model- and pattern-based, and for which

• tool support exists.

This chapter is based on joint work and is published in (Alebrahim et al., 2011). The pub-
lished version is about quality requirements, focuses on performance and security requirement,
and applies the approach to a Chat System case study. In this chapter, we consider depend-
ability requirements (including security requirements, but no performance requirements) and
we apply the approach on the CACC case study. Since dependability requirements are specific
quality requirements, the same procedure can be applied. We published first ideas for han-
dling dependability requirement within the architectural design in (Hatebur & Heisel, 2005b),
(Lanoix, Hatebur, Heisel, & Souquières, 2007), and (Hatebur et al., 2008a).

As a basis for requirements analysis, we use the approach presented in Chapters 4, 5, and 6.
As a basis for architectural design, we use a method we developed for deriving architectures
based on functional requirements (see Chapter 8).

In this chapter, we extend our previous requirements analysis and architectural design meth-
ods by explicitly taking into account dependability requirements. The analysis documents are
extended by dependability requirements that complement functional ones. The so enhanced
problem descriptions (see Chapter 5) form the starting point for architectural design. As de-
scribed in Chapter 8, in a first step, we define an initial software architecture that is oriented
on the decomposition of the overall software development problem into subproblems. In a
second step, we transform that architecture according to the dependability requirements to be
considered. For this purpose, we apply appropriate dependability patterns, or we introduce com-
ponents providing proven dependability mechanisms, as described in Chapter 6. As described in
Chapter 8, we apply functional design patterns (Gamma et al., 1995b), such as Facade, to obtain
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a clean and modular software architecture. Finally, we have defined dependability stereotypes
that serve as hints for implementers (e.g., for reliability or confidentiality).

This chapter is organized as follows: Section 9.1 is devoted to describing our method in detail.
Related work is discussed in Section 9.2, and conclusions and future work are given in Section 9.3.

9.1. Deriving quality-based Architectures

We first give an overview of our method illustrated in Fig. 9.1 on the next page. In this thesis,
we do not consider the question-based catalog. Then we apply our method to the CACC case
study described in Section 4.3.

We first decompose the overall problem into subproblems (Problem Diagrams), each of which
is related to one or more functional requirements (see Chapter 4). Then we annotate each
subproblem by complementing functional requirements with related dependability requirements
(Quality Problem Diagrams, see also Chapters 5 and 6). In the next step we take a design
decision concerning the kind of distribution of the software architecture (Choose Design Alter-
native). Then we go back to the requirements descriptions and regarding the design decision
split the problem diagrams accordingly (Split Problem Diagrams). Analogously to splitting the
problem diagrams and so splitting the functional requirements, we also have to split the corre-
sponding dependability requirements (Split Quality Requirements). Then we set up an initial
architecture by mapping each machine domain in a problem diagram to a component (Initial
Architecture). After that we elaborate the problem diagrams annotated with dependability re-
quirements by introducing domains reflecting specific solution approaches (Concretized Quality
Problem Diagrams). In the next step we derive an architecture, which is implementable and ad-
dresses the dependability requirements (Implementable Architecture). We make use of problem
diagrams annotated with dependability requirements and concretized quality problem diagrams.
To obtain the implementable architecture, we first merge related components (Merge Compo-
nents). Next, we apply appropriate design patterns (Apply Design Patterns). Finally we make
use of mechanisms and patterns and the concretized quality problem diagrams (Apply Quality
Mechanisms/Patterns). We now present the architectural design steps in detail.

Setting up the problem diagrams and quality problem diagrams is described in Chapters 4, 5,
and 6. The next step is to choose a design alternative.

9.1.1. Choose Design Alternative

When we have set up the problem diagrams and have annotated the dependability requirements,
we need to take a design decision concerning the kind of distribution of the software to be
developed, e.g., client-server, peer-to-peer, or standalone. This decision is either taken by the
stakeholder or by the software architect. In this chapter, we do not discuss how this decision is
taken.

For standalone applications, we can skip two steps and continue with the step “Initial Archi-
tecture”. In the CACC case study, we consider one standalone application that operates in a
distributed environment. Therefore, the problems have already been split into subproblems for
sending and receiving position and speed. The subproblem for sending is depicted in Fig. 4.24 on
Page 48 and for receiving is depicted in Fig. 4.21 on Page 46.

9.1.2. Split Problem Diagrams

After having chosen the architecture for the distributed system, we go back to the requirements
descriptions and decompose the problem diagrams in such a way that each subproblem is al-
located to only one of the distributed components. This may lead us to introduce connection
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Figure 9.1.: Method for Derivation of Architectures based on Dependability Requirements (cf. (Alebrahim
et al., 2011))

domains, e.g., networks (see Wifi Wave in Fig. 4.24 on Page 48).

9.1.3. Split Quality Requirements

Analogously to splitting the problem diagrams and so splitting the functional requirements, we
also have to split the corresponding quality and dependability requirements. Several solutions are
possible: For example, confidentiality can either be preserved by all subproblems and additional
domain knowledge about the newly introduced domains (stating that no information is leaked),
or confidentiality can be preserved by sender and receiver and established sending encrypted
data.

The quality problem for secret distribution was described in Chapter 6, Fig. 6.3 on Page 95
and also the mechanism was chosen there. Figures 9.2 and 9.3 on the following page depict
the corresponding concretized dependability problems with the secret distribution mechanism
(and the authentication keys as domains) as described in Fig. 7.7 on Page 117. Each of these
subproblems is already assigned to exactly one machine in the technical context diagram and
therefore does not need to be split.

The quality problem for checking the integrity considering an attacker was described in Chap-
ter 5, Fig. 5.14 on Page 73. In Chapter 6, the MAC mechanism was chosen. Figure 9.4 on
the next page depicts the corresponding concretized quality problem with the considered ses-
sion keys as domains. The mechanism is described in the second part of Fig. 7.7 on Page 117.
The quality problem for creating the signature for the the MAC mechanism was identified in
Chapter 6, Figure 6.5 on Page 96. The mechanism is described in the second part of Fig. 7.7 on
Page 117. Each of these subproblems is already assigned to exactly one machine in the technical
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Figure 9.2.: Concretized Secret Distribution Problem Diagram (with Signing Mechanism)

Figure 9.3.: Concretized Secret Receiving Problem Diagram (with Signing Mechanism)

Figure 9.4.: Concretized Integrity Check Problem Diagram (with Signing Mechanism)

context diagram and therefore does not need to be split.

9.1.4. Initial Architecture

The initial architecture consists of one component for the overall machine (in our case, CACC ),
with stereotypes �machine� and �initial architecture�. In the case of a distributed archi-
tecture, we add the stereotype �distributed� to the architecture component and in case of a
standalone system (like the CACC), we add the stereotype�local�. The procedure is the same
as described in Chapter 8 but the problem diagrams for dependability are also considered, as
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depicted in Fig. 9.5.

The machines ControlAccelBrake, DriverControl, MonitorState, and SendSpeedPos in the sub-
problem describing functional requirements are represented as components. All lexical domains
AccSpeed, SessionKeySnd, SessionKeyRcv, and AuthKey1 are also considered to be part of the ma-
chine. The machines CalcSignature, ReceiveSessionKey, IntegrityCheckAttacker, DistributeSession-
Key, and IntegrityCheckRandom in the dependability subproblems are additionally represented
as components.

Compared to Fig. 8.4 on Page 125 in Chapter 8, we additionally have

• the component CalcSignature,

• the component ReceiveSessionKey,

• the component IntegrityCheckAttacker,

• the component DistributeSessionKey, and

• the component IntegrityCheckRandom.

9.1.5. Concretized Quality Problem Diagrams

The goal of this step is to find solution approaches in terms of mechanisms and patterns to
prepare for solving the given dependability problems. We have given examples of such solutions
in Chapter 6 and depict the missing problem diagrams in Section 9.1.3. We elaborate the problem
diagrams annotated with quality requirements by introducing domains reflecting specific solution
approaches. We call the elaborated problem diagrams containing solution approaches concretized
quality problem diagrams.

9.1.6. Implementable Architecture

The purpose of this step is to derive an architecture, which is implementable and fulfills the
performance and security requirements.

9.1.6.1. Merge Components

Related components that realize a similar functionality and contain at least one similar domain
in their problem diagrams can be merged to one component. In the CACC case study, we merged
the components IntegrityCheckAttacker, DistributeSessionKey, and SessionKeyRcv into the com-
ponent ControlAccelBrake. We also merged the components ReceiveSessionKey, CAlcSignature,
and SessionKeySnd into the component SendSpeedPos.

In general, the decision about the merging of components should be taken by an experienced
architect.

9.1.6.2. Apply Design Patterns and Quality Patterns

We introduce a Facade component (Gamma et al., 1995b), if several internal components are
connected to one external interface in the initial architecture. As Facade components, we in-
troduce the P CS Facade component and the P CS HWF component in order to prevent each
single component from communicating with the hardware directly.

If interaction restrictions have to be taken into account, i.e., actions have to happen in a certain
order, we have to add one or more Coordinator components. In our CACC case study, The
session keys have to be distributed before the communication can be established. Therefore, the
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Figure 9.5.: Initial Architecture with Dependability Components

components RcvFacadeCtrl and SndFacade are introduced. They also perform the functionality
described in subproblem PD1 (see Fig. 4.21 on Page 46) and PD4 (see Fig. 4.24 on Page 48).

If a redundancy is selected as a generic mechanism in the analysis phase, the machine has to be
split into a certain number of independent channels that all can perform the critical functionality,
monitors that may be integrated into these channels, and a kind of voter component that ensures
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that a correct output is given to the actuators. Usually, each channel is build with an individual
hardware (microprocessor, memory). The monitors have to check the hardware of the individual
channels, check input signals, check output, may check other channels, and support the voter
component. In our second case study in Figures 13.21 on Page 199 and 13.23 on Page 201), we
present an instance of such a pattern.

The implementable architecture after applying these patterns is shown in Fig. 9.6 on the
following page. Compared to Fig. 8.6 on Page 130 in Chapter 8, we additionally have the
following components

• the component IntegrityCheckRandom (as in the initial architecture),

• the facade component P CS HWF,

• the storage for the authentication key (AuthKey1) that is used by the modified components
SendSpeedPos and ControlAccelBrake from the initial architecture.

The component SendSpeedPos contains the component SndFacade with a coordinator, the com-
ponent ReceiveSessionKey, the component CAlcSignature, and the storage for the SessionKeySnd.
The component ControlAccelBrake contains the component RcvFacadeCtrl with a coordinator, the
component IntegrityCheckAttacker, the component DistributeSessionKey, and the storage for the
SessionKeyRcv. The facade component P CS Facade has an additional port connected compo-
nent IntegrityCheckRandom. This port is used to send error messages.

9.1.7. Layered Architecture

The layered architecture can be designed in the same way as described in Chapter 8. The
layered architecture including all components realizing the mechanisms for dependability is de-
picted in Fig. 9.7 on the following page. In this architecture the AuthKey1 component and
the IntegrityCheckRandom component from the implementable architecture are included in the
application layer. The facade component P CS HWF is split into a part for switching off the
CACC (SO HAL) and a part checking the hardware integrity (e.g. RAM and ROM checks) and
assigned to the hardware abstraction layer. Compared to Fig. 8.8 on Page 134 in Chapter 8, we
additionally have the following components

• the application component IntegrityCheckRandom (as in the implementable architecture),

• the hardware abstraction layer component SO HAL,

• the hardware abstraction layer component Check HAL, and

• the storage for the authentication key (AuthKey1) that is used by the application compo-
nents SendSpeedPos and ControlAccelBrake from the implementable architecture.



144 Chapter 9. Development of Architectures for Dependable Systems

Figure 9.6.: Implementable Architecture of CACC for Dependability

Figure 9.7.: Layered Architecture of CACC for Dependability
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9.2. Related Work

Consideration of software quality during the software development process, especially in the
requirement analysis phase, is still a challenging research problem. There are approaches that
deal with only one type of quality requirement, e.g., security.

An approach to transform security requirements to design is provided by Mouratidis and
Jürjens (2010b). It starts with the goal-oriented security requirements engineering approach
Secure Tropos (Mouratidis, 2004b), and connects it with a model-based security engineering
approach, namely UMLsec (Jürjens, 2005). UMLsec is a UML profile for representing security
properties in UML diagrams. It does not provide support for the analysis phase of the software
development process. Thus a seamless integration of requirements analysis and architectural
design is not supported by UMLsec.

Schmidt and Wentzlaff Schmidt and Wentzlaff (2006) develop architectures from requirements
based on the problem frame approach, taking into account usability and security. By way of an
example, they show how to balance security and usability requirements.

Attribute Driven Design (ADD) (Wojcik et al., 2006) is a method to design a conceptual
architecture. It focuses on the high-level design of an architecture, and hence does not support
detailed design. Identifying mechanisms to achieve quality attributes relies on the architect’s
expertise.

Q-ImPrESS (Becker, Dešić, et al., 2009) is a project that focuses on the generation and
evaluation of architectures according to quality properties, in particular performance. The
phases design and implementation of the software development process are particularly in focus.
In contrast to our contribution, it does not use requirements descriptions as a starting point.

The notation and evaluation of performance attributes of an architecture is the focus of the
component model Palladio (Becker, Koziolek, & Reussner, 2009), which is also included in the
project Q-ImPrESS. In Palladio, a set of notations, concepts and a tool are provided, which
allow its users to model and simulate architectures for performance evaluation. The tool could
be used for simulating and thus evaluating software architecture performance. The concepts and
the included tool, however, cannot be used to evaluate an architecture’s dependability.

9.3. Conclusion

In this chapter, we have presented a detailed, UML-based and tool-supported method to derive
software architectures from requirements documents, thereby taking dependability requirements
into account. Our method addresses all the problems we identified in the introduction:

• We achieve a seamless transition from requirements analysis to architectural design. The
two phases are not separated, but intertwined. An architectural decision drives the revision
of problem descriptions, and concretized problem descriptions lead directly to architectural
components and connections.

• dependability requirements are explicitly considered. Our method builds on established
approaches to achieve dependability properties, such as encryption or redundancy. The
application of these mechanisms or patterns is directly visible in the software architecture.

Our method is based om problem frames, and known dependability patterns. Its novelty is
the fact that the different approaches are integrated and intertwined explicitly by an underlying
methodology and a common notation. The notation as well as the methodology are open and
can be developed further to enhance the power and breadth of the approach.

Our approach is limited on structural descriptions of software architectures. It is interest-
ing to investigate, how to extend our method to also support deriving behavioral descriptions
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for the developed architectures and automatically checking their coherence with the structural
descriptions. It is also possible to give rules for selecting appropriate design alternatives, eval-
uate the approach for different dependability requirements and describe additional patterns for
architectural design.
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Implementing Dependable Systems

In this chapter, we present a methodology to implement an architecture with Java considering
dependability requirements.

In Section 10.1, we present a method for implementing components in Java without using a
component framework. The components implemented with this method are separately testable,
but cannot be compiled and linked separately. This method is emerged from different industrial
projects. We are not aware on any publication describing this method. Documenting and refining
this method is joint work and only published within the lecture note of different lectures (Heisel
& Hatebur, 2008; Heisel, 2011). This section describes the foundation to implement dependable
software. In Section 10.2, we present rules for developing secure software. It just summarizes
the content of the Common Criteria (International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC), 2009a). In Section 10.3, we present rules
for developing safe software. It addresses the dependability requirements considering integrity,
availability, and reliability considering random faults and also tries to prevent systematic faults.
The rules are derived from the rules in the ISO/IEC 61508 (International Organization for
Standardization (ISO) and International Electrotechnical Commission (IEC), 2000) and adjusted
for object-oriented software. The presented results are based on preliminary results of joint work
with the OOSE subgroup of EWICS (Bitsch et al., 2011). No dedicated section discussing related
work is given since the whole chapter only describes related work. In Section 10.4, we give a
summary of this chapter and point out directions for future work.

10.1. Implementation of Components

In this section, we describe a methods for structuring object-oriented software systems into
(white-box) components. Other methods for implementing components are e.g., OSGi (Wütherich,
Hartmann, Kolb, & Lübken, 2008) or Enterprise JavaBeans (EJB) (Burke & Monson-Haefel,
2006). We describe a method for implementing architectures in this section, since it is supports
the dependability and is applied commonly in industry but we are not aware of any publication.
The advantage of such an implementation is, that it supports the testability by explicit required
interfaces and supports the localization of implemented dependability features in the source
code.

Within the implementation of the machine, the structure of the software may be not given
explicitly. In the source code and in UML models, we usually have associations between classes.
These associations can be either references to other components, or the referenced objects are
part of one component. For the following code, the class diagram is depicted in Fig. 10.1. This
class diagram may implement different architectures:

• One design alternative that is implemented could be a component typed by ClassA contain-
ing components typed by ClassB and ClassC. Both components ClassA and ClassB provide
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the interface InterfaceI. The component ClassA implements the interface by providing the
implementation of component ClassB.

• Alternatively, the component ClassC could be external with respect to the component
ClassA.

• It is also possible, that all classes represent separate components. In this case, the com-
ponent ClassA uses the components ClassB and ClassC and both components ClassA and
ClassB provide the interface InterfaceI with individual implementations.

class ClassA implements InterfaceI{

private ClassB b;

private ClassC c;

}

class ClassB implements InterfaceI\{

private ClassC c;

}

class ClassC {

...

}

ClassC

ClassA

ClassB

ClassC

ClassBClassA

<<interface>>

<<provides>>

ClassA

InterfaceI

ClassBb

c

ClassC

c

Extracted from Code:

<<provides>>

ClassA

ClassB

ClassC

Design variant 3:

Design variant 2:

Design variant 1:

Figure 10.1.: Translation from Class Diagram to Composite Structure Diagram

Note that not all objects (typed by a class) can be clearly associated to a certain component:
some objects are used to exchange complex data between components and passed as parame-
ters, e.g. a user object is created in the user interface component and sent to the application
component for further processing. In Fig. 10.2 an example with address data to be exchanged
is shown. In the class diagram on the left-hand side, the class Address has an association to
both components Class1PartOfA and Class2PartOfA. This class represents a data type used as a
parameter in the interface shown below the composite structure diagram on the right hand side.

Several component coupling levels exist:
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Class1PartOfA

Class2PartOfA

Address

name: String

street: String

phone: String

isValid(): Bool

Address

name: String

street: String

phone: String

isValid(): Bool

<<interface>>
InterfaceJ

send(a: Address)

<<interface>>
InterfaceJ

send(a: Address)

<<interface>>
InterfaceI

InterfaceJ

ClassA

Class1PartOfA

Class2PartOfA

InterfaceJ

InterfaceI<<provides>>
InterfaceI

Figure 10.2.: Translation from Class Diagram to Composite Structure Diagram – Data

• A component may be just an object of a class. In this case, it may use other objects to
provide its functionality, and the public operations of the class represent the component.
But it is not clear which of the objects used to provide the functionality (associated)
are part of that component, and which are not. When analyzing software consisting of
such components, other objects created by this object can be considered to be part of the
component. Usually components of this type are not built separately.

• A component may be an object with explicit provided interfaces. In this case, it may
also use other object to provide its functionality. It is still not clear which of the objects
used to provide the functionality are part of that component. An advantage is that the
implementation can be better replaced. Usually components of this type are also not built
separately. If this coupling level is used, the notations depicted in Fig. 10.3 are appropriate.
This coupling level is also used by Cheesman and Daniels (2001).

<<interface>>

ClassA

InterfaceI
<<interface>>

<<provides>>

ClassA

InterfaceI

ClassA
<<comp spec>>ClassA

InterfaceI

ClassA

Figure 10.3.: Notation for Class with Provided Interface / Lollipop Notation / Component According
Cheesman, Daniels 2001

• A component may be an object with explicit provided and required interfaces. This kind
implements a loose coupling, i.e., other components used to provide the functionality are
connected during instantiation or initialization. An advantage is that the components can
be easily tested separately. Other object used to provide the functionality may be created,
and they are considered to be part of the component. If this coupling level is used, the
notations depicted in Fig. 10.4 is appropriate. This coupling level is also used in Fig. 10.2.

• A component may be object with explicit provided and required interfaces that makes use
of a component standard (e.g., providing events or messages) to communicate with other
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<<interface>>

ClassA

InterfaceI

ClassA

ClassUsingAClassUsingA

ClassA

ClassUsingA

InterfaceI

<<interface>>

<<provides>>

ClassA

InterfaceI

<<requires>> <<uses>> ClassUsingA

ClassA
<<comp spec>>

<<comp spec>>

ClassUsingA

InterfaceI

ClassA

ClassUsingA

Figure 10.4.: Notation for 2 Connected Classes / Lollipop Notation / Component according Cheesman
and Daniels (2001) / Composite Structure

components. This is also a loose coupling approach and the components are connected
at run-time with the advantage that the components can be easily tested separately. In
contrast to the coupling levels above, usually these components can be built separately.
The same notation as for objects with explicit provided and required interfaces can be
used.

• It is also possible that all components are separate processes that communicate using
events or messages. The component have the same properties as the components above,
but a crashing component here may not affect the other components.

The following paragraphs describes an implementation method for components in Java with
explicit provided and required interfaces. This implementation method is illustrated on a small
example of a stereo. As partly mentioned above, the implementation has the following properties:

• A component has provided and required interfaces that can be connected with other com-
ponents.

• A component only uses functionality from its required interfaces, from the programming
language, and a limited set of operations of the operating system (e.g., tasks, threads,
memory allocation, timers, messages, synchronization mechanisms).

• Provided and required interfaces are represented by interface classes.

• Interface operations are called synchronously.

• Advantage: These classes / components can be easily tested separately.

For such an implementation, first, the interface of the architecture have to translated into
Java interfaces as shown for the following example:

� interface �
if name

method 1 (par1: Integer)
method 2 (): String

package project_name;

public interface if_name {

public void method_1 (int par1);

public String method_2 ();

}

The interfaces in the architecture can be directly represented as Java interfaces. Note that
the project name should be added as a package for small projects and note that the type int is
a simple data type, whereas the type String is a class.

For the architecture given in Fig. 10.5, each provided interface is defined as an interface class,
e.g.:

public interface LineInOut {

public void transmitMusic();
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Tuner
AndSpeaker
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LineInOut

OnOff

but1: Button but2: Button

OnOff

UserInterface UserInterface

Figure 10.5.: Stereo Example Architecture

}

public interface OnOff {

public void pressed();

}

A component can implement / provide several interfaces. For each interface, all provided
operations have to be implemented as methods, e.g. the AmplifierAndSpeaker implements the
interfaces LineInOut and OnOff with the operations transmitMusic() and pressed():

public class AmplifierAndSpeaker implements

LineInOut, OnOff {

public AmplifierAndSpeaker (){} //constructor

public void transmitMusic() { Play;}

public void pressed() { Action2;}

}

A component can use / require several interfaces, defined as interface classes. Required
interfaces are implemented in Java as shown in the following example:

public class Tuner implements OnOff {

private LineInOut outputDevice;

private boolean isOn;

public Tuner(){ outputDevice = null; isOn = false; }

public void connectTo(LineInOut par) {outputDevice = par;}

public void pressed() {

isOn = !isOn;

if (isOn && outputDevice!=null) {

outputDevice.transmitMusic();

}

}

}

Required interfaces of a component become private attributes. In the example, the Tuner com-
ponent has a private attributes outputDevice of type LineInOut. The component has to provide
methods to connect the component to the required components (connectTo). In these connect
methods, the private attributes are initialized. Via these private attributes, the connected com-
ponents can be used. They should only be used if they are initialized (if (outputDevice!=null)
... ). Alternatively, it is possible to leave out the method connectTo and initialize the con-
nected interface in the constructor. The component Tuner also provides the interface OnOff and
implements the method pressed.

In the example, the component Button forwards buttonPressed from UserInterface to the con-
nected device. It requires the interface OnOff:
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public class Button implements UserInterface {

private OnOff connectedDevice;

public Button(){ connectedDevice=null }

public void connectTo(OnOff conDev) {

connectedDevice = conDev;

}

public void buttonPressed() {

connectedDevice.pressed();

}

}

The components but1, but2, myTuner, and myAmp can be connected as follows:

AmplifierAndSpeaker myAmp = new AmplifierAndSpeaker();

Tuner myTuner = new Tuner();

Button but1 = new Button();

Button but2 = new Button()

myTuner.connectTo(myAmp);

but2.connectTo(myAmp);

but1.connectTo(myTuner);

10.2. Implementation of Secure Software

The Common Criteria from International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC) (2009a) defines some rules for implementation in
order to “determine that the implementation representation made available by the developer
is suitable for use in other analysis activities. Suitability is judged by its conformance to the
requirements for this component.”

The following aspects are required by the Common Criteria (International Organization for
Standardization (ISO) and International Electrotechnical Commission (IEC), 2009a).

• Any programming language used must be well defined with an unambiguous definition of
all statements, as well as the compiler options used to generate the object code.

• The mapping between the Target of Evaluation (TOE) 1 design description and the sam-
ple of the implementation representation shall demonstrate their correspondence. This
mapping can be supported by using the method described in Section 10.1.

• The implementation representation shall be internally consistent. For example, if one por-
tion of the source code includes a call to a subprogram in another portion, the arguments
of the calling program must match the called program’s handling of the arguments.

• The implementation representation shall accurately instantiate the TOE security func-
tional requirements.

• The part of the implementation that do not implement any TOE security functional re-
quirements should not interfere with the portions that do.

1In the Common Criteria the machine is called Target of Evaluation (TOE).
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10.3. Implementation of Safe and Reliable Software

The following rules are considered by Bitsch et al. (2011) to be important for developing object-
oriented software for safety-related system with object-oriented programming languages. Follow-
ing these rules also supports the reliability of the software part of the system. The rules refer to
the safety integrity level (SIL) defined in ISO/IEC 61508 (International Organization for Stan-
dardization (ISO) and International Electrotechnical Commission (IEC), 2000). SIL 1 is the
lowest SIL and SIL 4 is the highest SIL. The level depends on the necessary failure reduction for
the functionality. The rules are also consider the rules given in the ISO/IEC 61508 International
Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
(2000, Part 7, Annex G).

• Programming shall be essentially against the fixed interfaces of the neighboring classes.
Using fixed interfaces of the neighboring classes facilitate understanding of the code. This
rule is recommend for all safety integrity levels (SILs). (See Section 10.1 for one possible
solution approach.)

• Overriding of methods shall be used only, if understanding the code is thereby simplified.
This is reached by keeping the essential meaning of the related operation. This rule is
recommend for SIL 1 and highly recommend for higher SILs.

• Visibility of attributes (variables) from outside shall be as much restricted as possible.
This rule is highly recommend for all SILs.

• Inheritance shall only be used, if the derived class is a specialization of its basic class. All
other use of inheritance would make it more difficult to understand and to maintain the
code. In case of need another class or class hierarchy should be used. Deep inheritance
entails poor testability and difficulties in understanding. This rule is recommend for SIL 1
and highly recommend for higher SILs.

• No automated type conversion shall be used. Automated type conversions have sometimes
entailed run-time failures. This rule is recommend for SIL 1 and 2 and highly recommend
for higher SILs.

• Side effects to other inheritance hierarchies shall be avoided. All such side effect shall be
documented. This rule is recommend for SIL 1 and highly recommend for higher SILs.

• The interface of any class shall be complete and minimal. This rule is recommend for all
SILs and highly recommend for SIL 4.

• Recursion shall be avoided. This rule is highly recommend for all SILs.

• Temporary objects shall be banned. The necessary objects should rather be instantiated
at program start. Safety-related software should work with static binding in the first place.
This rule is recommend for SIL 1 and 2 and highly recommend for higher SILs.

• If temporary objects are not banned, the number of temporary objects shall be minimized.
This rule is highly recommend for SIL 1 and 2 and not applicable for higher SILs since
temporary objects are not allowed for SIL 3 and SIL 4.

• If temporary objects are not banned, an object that is no longer used, shall be deleted
immediately after its last usage. Some safety-related programs can rest for years in the
equipment, they are controlling without any humanly executed maintenance. Gathering
of unused objects over time in such a program can have devastating effects. This rule
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is mandatory for all safety levels and not applicable for SIL 3 and SIL 4 since dynamic
memory allocation shall be not allowed for SIL 3 and SIL 4.

• It shall be visible at each object and each variable whether or not it can be affected by
another thread. This rule is recommend for SIL 1 and highly recommend for higher SILs.

• All error information that is returned by a method shall be processed. This rule is highly
recommend for all SILs.

• Small concrete parameters shall be passed by value. This rule is recommend for all SILs
and highly recommend for SIL 4.

• Assertions shall be used, where appropriate to document invariants, preconditions, and
postconditions. Assertions can be used during development to test invariants, precondi-
tions, and postconditions. This rule is recommend for all SILs.

• Preconditions shall be as weak as allowed in view of the considered functionality. This
rule is recommend for all SILs.

• Postconditions shall be as strong as allowed in view of the considered functionality. This
rule is recommend for all SILs.

10.4. Conclusions and Future Work

In this chapter, we have shown how software components can be implemented in a systematic
way and we summarized rules for implementing secure and safe software.

The method for implementing software components is limited to Java and does not have direct
impact to the dependability of the software. The method can be easily extended to support other
object-oriented languages. A well-structured software (as derived by this method) supports the
localization of functionality implemented to realized dependability requirements.

The rules for security software realization just describes the state of the art for security
software.

The rules for safe and reliable software are dedicated to object-oriented software. These
rules here are not limited to a certain programming language. Rules for non-object-oriented
software are given in the ISO/IEC 61508 (International Organization for Standardization (ISO)
and International Electrotechnical Commission (IEC), 2000). The presented rules address the
avoidance of systematic faults.

It is interesting to elaborate a more comprehensive set of rules from different standards ad-
dressing all dependability requirement types.



Chapter 11

Testing of Dependable Systems

Model-based software development proceeds by setting up models of the software to be con-
structed. This approach has proven useful, because it allows developers to first elaborate the
most important properties of the software before proceeding with the implementation. Often,
software models are also used for code generation. In this case, however, a problem arises: it
does not make sense any more to test the software against its models, because these were already
used to generate it. We therefore propose to test the software not only against its specification
(i.e., against the models), but also against its requirements, which describe the how the envi-
ronment should behave in which the software will be operating (acceptance testing). For this
purpose, we have to set up a model of the environment, too.

In this chapter, we describe how UML state machines (with a corresponding support tool
Teager (Santen & Seifert, 2006)) can be used to realize the described approach in the area of
reactive and/or embedded systems. For this kind of system, state machine models are particu-
larly useful. We elaborate on two different testing approaches:
On-the-fly testing: Here, generating and executing test cases is intertwined. This has the ad-
vantage that state explosion is not a problem, but the disadvantage that for non-deterministic
systems the tests may not be repeatable.
Batch testing: Here, test cases are generated and stored for later execution. This has the
advantage that regression tests become possible but the disadvantage that all possible behavior
variants must be computed.

This chapter is based on Heisel, Hatebur, Santen, and Seifert (2008b) and Heisel, Hatebur,
Santen, and Seifert (2008a). The approach has been verified and improved by Sun (2008),
Naveed (2010), and Mohammadi (2010) in their master thesis documentations.

In Section 11.1, we describe our approach for automatic test case generation using UML-
Models. Section 11.2 contains patterns for modeling the requirements and the environment for
testing. In Section 11.3, we describe the tool support for automatic test case generation using
UML-Models. The models for the CACC case study are presented in Section 11.4. Section 11.5
discusses related work, and in Section 11.6, we give a summary of our achievements and point
out directions for future work.

11.1. Automatic Test Case Generation using UML-Models

To test the CACC system (SUT, system under test), usually, conformance with the specification
would be checked. However, if the specification was not correctly derived from the requirements,
the SUT would pass the test nevertheless. We therefore propose to test the SUT against the
requirements. We showed in Section 7.1 how the specification is derived from the requirements.
Besides detecting errors made in transforming requirements into specifications, testing against
requirements allows us to verify that customer needs are satisfied (acceptance test). In order
to test the SUT against its requirements, we need a model of the environment, because the
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requirements refer to the environment and not to the machine. Much like the SUT, the environ-
ment can be modeled using UML state machines. The model explicitly contains the facts and
the assumptions about the environment. The environment model consists of adaptors1 and the
input event generator : Adaptors transform abstract events such as decelerate car into concrete
ones, such as send braking CAN message. The input event generator produces abstract events.
To capture stochastic properties of the environment probabilistic state machines of Teager can
be used.

CO: Concrete Observation AO: Abstract Observation
CS: Concrete Stimulus AS: Abstract Stimulus

tick: Request for new Stimulus Violation: Test Result

Figure 11.1.: Architecture of Batch testing

The requirements are translated into state machines, too. These state machines serve to
inform the tester when a requirement is violated. They observe the stimuli and SUT outputs at
an adequate level of abstraction. As shown in Fig. 11.1, the Test Case Generator component of
the tool Teager can be used to simulate the environment model and to check the requirements.
To calculate test cases, for each tick (1) an abstract stimulus (2) is generated by the Input-Event-
Generator in the environment model. Adaptors transform the abstract stimuli into concrete
stimuli for the Test Case Generator (3a) and send the abstract stimuli to the State machines of
requirements (3b). The Test Case Generator sends the concrete stimuli to the Specifications SUT
Model (4a), which determines suitable responses (5), and it stores the concrete stimuli (4b) and
the determined concrete observations (6b). The Adaptors transform the concrete observations
(6a) into abstract observations that are checked by the State machines of requirements (8a) and
used to generate reasonable stimuli (8b). Violations can be detected by the State machines of
requirements (9) and by the Adaptors while transforming concrete observations into abstract ones
(7). After the requirements are checked, a new tick (1) is generated. The concrete stimuli (4b)
and the concrete observations (6b) form the Allowed Traces that can be used for testing.

The generated test cases (Allowed Traces) can be used to test the SUT with the Test Case
Executer. Concrete stimuli and observations in the allowed traces (A) are used to stimulate the
SUT (B) and check the responses (C). Test results (D) are the output of the Test Case Executer.

Alternatively, the environment model can be directly connected to the SUT, and within the
simulated environment the requirements are checked at runtime. In this case no SUT model is
necessary. This scenario is especially useful for acceptance tests. The test system architecture
– annotated with sample observations and stimuli and with the execution order – for this “on
the fly”-testing approach is shown in Fig. 11.2.

1We use “adaptor” for the environment models and “adapter” for the machine models.
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CO: Concrete Observation AO: Abstract Observation
CS: Concrete Stimulus AS: Abstract Stimulus

tick: Request for new Stimulus Violation: Test Result

Figure 11.2.: Architecture of On-the-fly testing

11.2. Patterns for Modeling Requirements and Environment for
Testing

Setting up the state machines for the environment model is not a trivial task. However, we can
identify different patterns for setting up environment models, especially for expressing require-
ments (Ri) as state machines. The overall structure of the state machine consists of parallel
regions. That is, the environment model is in all of the parallel machines Ri , Input-Event-
Generator and Adaptor at the same time, and the different sub-machines communicate with
each other via common events. For the Input-Event-Generators and the Adaptors it is hard
to identify patterns. A general rule is that for each domain in the environment controlling a
phenomenon observed by the SUT, an Input-Event-Generator has to be created and that all
concrete phenomena between machine and environment have to be transformed into abstract
ones (or vice versa) by adaptors. Figure 11.3 on Page 159 shows an example of an input event
generator. The Input-Event-Generator is separated into 3 parts that work in parallel.

• The first Input-Event-Generator serves to calculate a speed value. It simulates in a very
simplified way, how the speed is derived from the position of the accelerate and brake
pedal position or the corresponding messages that can also be generated by the CACC.
For calculation, it takes into account that the car can accelerate and decelerate. In the
accelerate state, the speed of the vehicle (vspeed, measured in kilometers per hour) is
increased or decreased stepwise to the speed given by the accelerate pedal position (apos)
combined with a scale factor. The scale factor is modeled a constant, but in reality depends
on the selected gear, the speed and the road. In the decelerate state, the speed is decrease
by the brake pedal position value that is between 0 and 20. It is possible to add in this
state machine probabilistic values that e.g. simulates hills and for road surface.

• The second Input-Event-Generator simulates a driver with his/her actions. The driver
can either do normal driving or let the CACC adjust the speed of the car in an automatic
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mode. While normal driving the driver may press the brake or the accelerate pedal. When
the CACC sends no messages (while normal driving), the engine actuator receives the
brake pedal position directly. This is modeled with the effects accelerate and brake. All
transitions are triggered automatically according to the probabilities we assigned. We
decided that with a probability of 40 %, the accelerate pedal is pressed, with a probability
of 20 % each of the other transitions should be taken. In general, the probabilities can be
chosen according to the reality of to reach a certain test criteria. With resume or set speed
the driver enters the automatic mode. In this mode, it is possible to increase or decrease
the desired speed using the dedicated buttons. In this mode, the CACC will measure the
distance to the car ahead. The distance measurement is modeled by sending the message
distance with a parameter (meter) that changes randomly. The driver can also press the
accelerate pedal to override the CACC. If the driver presses the brake pedal or explicitly
presses the deactivate button, it is expected that the CACC enters the normal driving mode.
In this mode, we assign to the transition that sends a new distance value to the SUT a
probability of 30 %. For all other transitions, we assign a probability of 10 %.

• Like the distance, also the own coordinates (latitude and longitude), the coordinates of
the car ahead, the speed of the car ahead, and the position of the accelerate pedal of the
driver may change. Here again, we use automatic transitions that are triggered according
to the assigned probabilities.

This state machine can be processed by the Teager tool. As an example of an adap-
tor, we present the motor adaptor, which transforms concrete observations into abstract ones
(Fig. 11.4 on Page 160). It specifies how speed commands correspond to wheel pulses that could
be visible at the external interface of the SUT. The Adaptor receives the signal current speed and
stores the parameter value into the attribute speed. If the attribute speed is not 0, a wheel pulse
is generated every 200/speed milliseconds. This results in 1000 pulses per second for a speed of
200 kilometers per hour, 100 pulses per second for a speed of 20 kilometers per hour, 10 pulses
per second for a speed of 2 kilometers per hour, and no pulses in standstill.

For modeling requirements, we have developed several patterns:

11.2.1. Single Event – In State

The pattern represented in the state machine shown in Fig. 11.5 is usable when the requirement
has the form “When [eventRi ] happens, [controlled domain] should be in [desiredStateRi ]”.
When the event of interest happens, then the precondition of the requirement is fulfilled, and
the event checkRi is generated. The state machine representing the postcondition contains the
desired state and may also contain other states. Only if it is in the desired state, the test passes;
otherwise, a violation is determined, or the test is inconclusive. The latter happens, for example,
if the actual state of the system is not known. Then, the result of checking a requirement should
neither be pass nor fail. In many cases, we do not initially know the (physical) state of the SUT.
Hence, we introduce an ”unknown state” (denoted by ANY) expressing this situation. Checking
requirement R1 in this state yields an inconclusive result.

11.2.2. Multiple States, Single Event – Output Event

The pattern represented in the state machine shown in Fig. 11.6 is usable when the requirement
has the form “When [domains] are in state [Check {i.1}] and ... and in state [Check {i.n-1}] and
[inEventR i ] happens, [outEventR i ] should happen after a certain time”. The state machines in
the regions with the prefix Pre monitor the relevant states by observing the corresponding events.
The the state machine in the region Pre-R{1.n} additionally generates the event checkRi when
the [inEventR i ] happens. The state machine checking the postcondition of the requirement
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Figure 11.3.: Input Event Generator for CACC
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Figure 11.4.: Adaptor for CACC

Figure 11.5.: Pattern for SingleEvent-InState (cf. (Naveed, 2010))

in region Post-Ri starts in the state ANY. If the generated event checkRi is observed and the
defined states are active, the state machine enters the state CheckingRi. Then either the desired
outEvent can be observed and the requirement is rated as satisfied, or after the specified time
interval the state FailR1 is entered. When the precondition is established again after a received
outEvent, the state CheckingRi is entered again. This pattern is applied for R01 of the CACC
case study in Section 11.4.

11.2.3. Multiple States – Output Event

The pattern represented in the state machine shown in Fig. 11.7 is usable when the requirement
has the form “When [domains] are in state [Check {i.1}] and ... and in state [Check {i.n-1}],
[outEventR i ] should happen after a certain time”.

The state machines is similar to the state machine in Fig. 11.6 on the facing page, but no
input event is observed by the state machines for the precondition.
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Figure 11.6.: Pattern of MultiStatesSingleEvent-OutEvent (cf. (Naveed, 2010))

Figure 11.7.: Pattern of MultiStates-OutEvent (cf. (Naveed, 2010))

11.2.4. Multiple States – No Event

The pattern represented in the state machine shown in Fig. 11.8 is usable when the requirement
has the form “When [domains] are in state [Check {i.1}] and ... and in state [Check {i.n-1}],
[outEventR i ] should not happen within a certain time”. This state machine again has the
initial state ANY. In this state, the state of the environment model is not yet determined. If the
outEventR i happens at this point of time, the state machine results an InconclusiveRi. When
the preconditions are fulfilled, i.e., the environment is in the given state, the state chechkingRi
is entered. This state is either left with the output event satisfactionRi if the precondition is no
longer fulfilled or with output event failR1 if the event that should not happen is observed.

11.2.5. Other Combinations, e.g., Single Event – Not In State

The list of patterns given here is not complete: pattern for other combinations of states and
events can be created by using the basic elements used by the given patterns, see Sun (2008).
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Figure 11.8.: Pattern for MultiStates-NoEvent (cf. (Naveed, 2010))

11.3. Tool Support for Automatic Test Case Generation using
UML-Models

The approach can be realized by using the tool Teager (Seifert, 2009). Teager is a tool
automating tests based on UML state machines, with regard to the UML semantics definition
(UML Revision Task Force, 2010c).

It provides features for non-determinism in models to be executed. The generation of test cases
is in a batch fashion using several probabilistic strategies. It has a simulator for state machines,
which enables validation of state machine models. This section discusses the realization in
Teager.

Figure 11.9.: The architecture of Teager

We can use Teager on the one hand as a test environment for test case generation and
execution, and on the other hand, as an environment for the simulation of state machines and
testing the SUT against state machines.

As shown in Fig. 11.9, Teager consists of three main components TCGD (Test Case Generator
and test Driver), SME (State Machine Executor) and UI (User Interface), which communicate
via the TCP/IP protocol.

The TCGD enables test case generation and test case execution. The test cases are generated
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by stimulating a UML state machine with random stimuli. Stimuli and the responses according
to the UML model (including alternatives in case of nondeterministic state machines) are stored
as a test suite. The TCGD can execute the test cases in the suite in order to check the SUT
by triggering an SUT and matching the responses of the SUT with the results the test case
description. The SUT could be the implementation or also another model.

The SME can execute UML state machines. It calculates the responses to given stimuli.
In case of nondeterministic state machines, the responses are chosen randomly. Additionally,
it is possible to annotate probabilities at transitions without a trigger. In this case, these
probabilities are used for calculating the responses. We extended Teager with the capability
to handle transitions that are triggered automatically after a given time interval.

The UI also has the state machine as an input. The state machine has to be integrated into
a class with a used interface. For all operations in the class, the UI, generates buttons and for
the given parameters, input fields are generated. The UI can be used for a manual validation of
the state machine.

The communication between the test driver (in the TCGD), the SUT and UI takes place
asynchronously over a TCP/IP connection which uses two buffers for incoming and outgoing
events (messages).

Teager is limited to a subset of the UML state machine specification (UML Revision Task
Force, 2010c, Chapter 15). It cannot handle the UML state machine elements shallow history,
deep history, entry point, exit point, junction, fork, joint, choice pseudo state, and terminate
note. But the most important elements can be simulated by other elements, e.g. a choice pseudo
state can be also realized by guarded transitions and a fork can be also realized by a transition
to a state with several regions in a hierarchical state machine. It is only only allowed to use the
data types boolean and integer for state machines used by Teager. Teager can handle state
machines in different representations:

• Files with the extensions .spec and .impl contain textual representation of the state ma-
chine. These files can be directly loaded into editor panel of the Teager components
(TCGD, SME or UI). The format of the textual representation is defined in Seifert (2007).

• Files with the extension .uml can be created with an EMF-based UML tool, e.g. Papyrus
UML. These files can be imported and are transformed into the textual representation of
these UML state machine. To import the state machine, Teager makes use of of EMF
framework.

11.4. CACC Case Study

To check behavior of the machine CACC in the CACC case study, the state machine of the
CACC (here SUT), the state machine for the input event generator, and the state machine for
the requirements have to be defined.

The state machines for the CACC have been defined in the design step D4 (see Appendix A.12).
The state machines can be processed by Teager if the following conditions are true:

• A class diagram exists where the SUT is represented as a class with operations that
correspond to the observed phenomena of the machine (or a submachine according to a
mapping diagram). Parameters have been added according to the analysis steps and the
provided interfaces in the design.

• An interface used by the class representing the SUT exists. The operations in this interface
correspond to the controlled phenomena of the machine. Parameters have been added
according to the analysis steps and the used interfaces in the design.
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• Since Teager currently cannot handle the data type “String” and complex data types,
parameters with these types have to be replaced by parameters of type “Integer”.

• The class representing the SUT contains the CACC state machine. All operations of
CACC are trigger events for the transitions (e.g., time event() in Figures 11.10 and 11.11)

• In the effect specification of the triggers (e.g., apos:=apos+10, accelerate(apos) in Fig. 11.11),
the operations of the used interface are used or/and the variables of the class are changed.

• The elements in optional transition guards refer to parameters or attributes of the class
(e.g., [(desired speed>own speed) and (dist>own speed/2)] in Fig. 11.11).

The class diagram for the CACC as system under test is shown in Fig. 11.10. The state

Figure 11.10.: Class Diagram for CACC as SUT

machine of the CACC is depicted in Fig. 11.11. The diagram fulfills all rules given above. It
contains the same attributes desired speed and last desired speed of the lexical domain ACC-
Speed in Fig. 4.22 on Page 47. The parameters given in the operation gps position are stored
in the attributes own latitude and own longitude. The parameter given in the operation cur-
rent speed is stored in own speed. The position to be given to the engine actuator is stored in
apos and the position to be given to the brake is is stored in bpos. The distance is either given
by the operation distance or calculated from own latitude, own longitude, own speed and the
parameters of the operation ahead.

The state machine depicted in Fig. 11.11 models the attribute activated of the lexical domain
ACCSpeed in Fig. 4.22 on Page 47 by the states CACC deactivated and CACC activated since
the behavior of the CACC is different. In the state CACC deactivated, just the current pedal
positions are stored. The attribute apos represents the acceleration pedal position with a range
from 0-200. The attribute dpos represents the break pedal position with a range from 0-200.
With resume or set speed the CACC activated state is entered. In this state, the driver’s buttons
increase speed and decrease speed are used to adjust the desired speed, the current speed and
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Figure 11.11.: State Machine of CACC as SUT

current distance are stored, and the driver can override the automatic control by pressing the ac-
celerate pedal. When the brake pedal is pressed, the deactivate button is pressed or the distance
to the car ahead is below a critical distance, the driver is warned and the state CACC deactivated
is entered.

The state CACC activated has the sub-states accelerating, hold, decelerating, and braking. The
initial state is hold. The transitions between the sub-states are triggered by a time event.
This event is sent every 20 ms by the CACC hardware. The state changes to accelerating if
desired speed is higher than own speed and the distance to the car ahead is safe. In this case,
the value apos is increased by 10 and passed on to the engine. The same activity is performed in
the state accelerating when the time event is received. The state accelerating is left and hold is
entered again if the distance to the car ahead becomes too small or the desired speed is reached.
The state changes to decelerating if desired speed lower higher than own speed or the distance
to the car ahead is not safe. In this case, the an acceleration value of 0 is passed on to the
engine. The state decelerating is left and hold is entered again if the distance to the car ahead
becomes safe enough or the desired speed is reached. The state decelerating is left and braking
is entered if the desired speed is much lower than own speed or the distance to the car ahead
becomes much too small. In this case the brake is activated. The constant brake parameter
value of 10 is used here to simplify the model. This state braking is left and the state hold is
entered if the distance to the car ahead is again safe and the desired speed is reached. Note the
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handling of position operator gps position is not included in the state machine diagram.
To test the requirements, the input event generators, the adaptors and the requirements

have to be modeled as state machines. In this chapter we omit the adaptors and present the
state machine for one requirement. The other requirements are also instances of the patterns
in Section 11.2. Additionally, a class diagram defining the interfaces have to be specified. In
this class diagram (see Fig. 11.12 the used interfaces of the SUT become operations of the
environment and operations of the SUT become used interfaces.

Figure 11.12.: Class Diagram for Environment Model

The requirement

R1 The CACC should accelerate the car if the desired speed is higher than the current speed,
the CACC is activated and the distance to the car(s) ahead is safe.

can be modeled with the state machine in Fig. 11.13. It is an instance of the pattern depicted
in Fig. 11.6 on Page 161. The precondition in the instance consists of 2 parts: The first part
enters the state SafeDistanceR1.1 if the distance is safe (meter>(speed/2)), and it leaves this
state if the distance is no longer safe (meter>(speed/2)). The terms meter and speed refer to
attributes of the environment class. The state SafeDistanceR1.1 in the instance corresponds the
state Check i.1. The second part triggers the postcondition state machine with CheckR1 if the
signal desired speed is received and its parameter kmh is higher than the current speed of the
car (attribute vspeed). We choose the SUT output signal desired speed as a trigger because
it indicates that CACC is activated and carries the desired speed. In the postcondition of
the instance, the state Unknown R1 corresponds to the state ANY in the pattern, Checking R1
corresponds to CheckingRi in the pattern, NotChecking R1 corresponds to StopCheckingRi, and
Fail R1 corresponds to FailRi in the pattern.

The Input-Event-Generator is presented in Section 11.2. Here, we omit the Interface Abstrac-
tion Layer in the environment model as well as the adaptors and the Hardware Abstraction
Layer with the Drivers in the SUT model in order to focus on the main aspects. Additionally,
the handling of the speed and position transmitted by a wireless interfaces are omitted.
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Figure 11.13.: State Machine to check Requirement R1

The presented state machines for the Input-Event-Generators and Requirement R1 can be
imported into Teager . Its textual state machine representation for Teager is shown in
Listing 11.1.

1 name = CACC_env;

2

3 structure =

RegionIII(STATEIII !( Region1(State_0 !)&Region2(State_0 !)&Region3(State_0 !)&

Region4(accelerate !| decelerate)&Region5(NormalDriving !| Automatic)&

Region6(GenPos !)&Region7(NoCheckR1 .1!| SafeDistanceR1 .1)&

Region8(NoFulfillmentR1 .1!| FulfillmentR1 .1)));

4

5 public brake(int pos);

6 public accelerate(int pos);

7 public desired_speed(int kmh);

8 public warn_driver;

9 public CACC_state(boolean state);

10 public ownPosSpeed(int long , int lat , int kmh);

11

12 private CheckR1 ();

13

14 timer TimeEvent_0(after 1 s);

15

16 external brake_pedal(int pos);

17 external accelerate_pedal(int pos);

18 external set_speed;

19 external increase_speed;

20 external decrease_speed;

21 external deactivate;

22 external resume;

23 external distance(int m);

24 external ahead(int long , int lat , int kmh);

25 external current_speed(int kmh);

26 external gps_position(int long , int lat);

27 external time_event;

28
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29 int vspeed = 0;

30 int dspeed = 0;

31 int apos = 0;

32 int dpos = 0;

33 int apos_driver = 0;

34 int meter = 50;

35 int own_lat = 6023;

36 int ahead_lat = 6073;

37 int own_long = 30;

38 int ahead_long = 30;

39 int ahead_speed = 10;

40 int scale_factor = 1;

41

42 decelerate -> accelerate[dpos ==0] / apos=accelerate.pos; -> accelerate;

43 accelerate -> accelerate[dpos ==0] / apos=accelerate.pos; -> accelerate;

44 accelerate -> brake[apos ==0] / dpos=brake.pos; -> decelerate;

45 decelerate -> brake[apos ==0] / vspeed=vspeed -dpos; -> decelerate;

46 accelerate -> *[apos*scale_factor >vspeed] / vspeed=vspeed +4; -> accelerate;

47 accelerate -> *[( apos*scale_factor <vspeed)&(vspeed >=2)] / vspeed=vspeed -2; ->

accelerate;

48 decelerate -> *[dpos > vspeed] / vspeed=vspeed -dpos; -> decelerate;

49

50 NormalDriving -> %20 / send(resume); -> Automatic;

51 NormalDriving -> %20 / send(set_speed); -> Automatic;

52 NormalDriving -> %40 / send(accelerate_pedal(apos_driver));

send(accelerate(apos_driver)); -> NormalDriving;

53 NormalDriving -> %20 / send(brake_pedal (4)); send(brake (4));-> NormalDriving;

54 Automatic -> %10 / send(deactivate); -> NormalDriving;

55 Automatic -> %10 / send(increase_speed); -> Automatic;

56 Automatic -> %10 / send(decrease_speed); -> Automatic;

57 Automatic -> %10 / send(accelerate_pedal(apos_driver)); -> Automatic;

58 Automatic -> %10 / send(brake_pedal (1)); dspeed=0;-> NormalDriving;

59 Automatic -> %30 / send(distance(meter)); -> Automatic;

60 Automatic -> %10[ meter >10] / meter=meter -10; -> Automatic;

61 Automatic -> %10 / meter=meter +10; -> Automatic;

62

63 GenPos -> %52 / send(ahead(ahead_long ,ahead_lat ,ahead_speed));

send(gps_position(own_long ,own_lat)); send(current_speed(vspeed));

send(time_event); -> GenPos;

64 GenPos -> %04 / ahead_speed=ahead_speed +10; -> GenPos;

65 GenPos -> %04 / ahead_speed=ahead_speed -10; -> GenPos;

66 GenPos -> %04 / own_lat=own_lat +10; -> GenPos;

67 GenPos -> %04 / own_lat=own_lat -10; -> GenPos;

68 GenPos -> %04 / own_long=own_long +10; -> GenPos;

69 GenPos -> %04 / own_long=own_long -10; -> GenPos;

70 GenPos -> %04 / apos_driver=apos_driver +10; -> GenPos;

71 GenPos -> %04[ apos_driver >=10] / apos_driver=apos_driver -10; -> GenPos;

72 GenPos -> %04 / ahead_long=ahead_long +10; -> GenPos;

73 GenPos -> %04 / ahead_long=ahead_long -10; -> GenPos;

74 GenPos -> %04 / ahead_lat=ahead_lat +10; -> GenPos;

75 GenPos -> %04 / ahead_lat=ahead_lat -10; -> GenPos;

76

77 NoCheckR1 .1 -> *[meter >( vspeed /2)] / -> SafeDistanceR1 .1;

78 SafeDistanceR1 .1 -> *[meter <=( vspeed /2)] / -> NoCheckR1 .1;

79

80 NoFulfillmentR1 .1 -> desired_speed[desired_speed.kmh >vspeed] / send(CheckR1 ()); ->

FulfillmentR1 .1;

81 FulfillmentR1 .1 -> desired_speed[desired_speed.kmh >vspeed] / send(CheckR1 ()); ->

FulfillmentR1 .1;

82

83 Unknown_R1 -> CheckR1[InState(SafeDistanceR1 .1)] / setTimer(TimeEvent_0); ->

Checking_R1;

84 NotChecking_R1; -> CheckR1[InState(SafeDistanceR1 .1)] / setTimer(TimeEvent_0); ->

Checking_R1;

85 Checking_R1 -> accelerate / send(SatisfactionR1); -> NotChecking_R1;

86 Checking_R1 -> TimeEvent_0 / send(FailR1); -> Fail_R1;

Listing 11.1: Environment State Machine for Testing with Teager

The textual state machine describes exactly the same behavior as the state machines in the
environment class diagram (see Figures 11.3 on Page 159 and 11.13 on the previous page). In
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line 1 of Listing 11.1, the name of the class is given. Line 3 describes the structure of the state
machine. Regions are described by the name of the region followed by brackets with the states
inside. If a state is a composite state, it can contain several regions separated by ’&’. The initial
state of each region is marked by a following exclamation mark. Lines 5-10 contain the public
operation declarations of the class (see Fig. 11.12). In Line 12 the internal operation CheckR1
used in the state machine for R1 is declared. Line 14 declares the time event after 1s used in the
state machine for R1. Lines 16-27 represent the operations of the used interface (see Fig. 11.12).
In lines 29-40, the attributes of the class in Fig. 11.12 are specified. In lines 42-87, all transitions
are described in the form ’source state’, followed by ’->’, followed by the trigger event, followed
by an optional guard in square brackets, followed by ’/’, followed by the effect, followed by ’->’,
and followed by the target state. Within the effect, Java notation is used for calculations and
the keyword ’send’ is used for sending events. For parameters of an operation, the operation
name followed by a dot and the parameter name is used. The state machines are modeled in
the following lines:

• Lines 42-28 model the state machine of region InputEventGeneratorCarSpeed of Fig. 11.3.

• Lines 51-62 model the state machine of region InputEventGeneratorDriver of Fig. 11.3

• Lines 64-76 model the state machine of region InputEventGeneratorPos of Fig. 11.3

• Lines 78-79 model the state machine of region PreR1.1 of Fig. 11.13

• Lines 81-82 model the state machine of region PreR1.2 of Fig. 11.13

• Lines 84-87 model the state machine of region PostR1 of Fig. 11.13

All in all, to completely model the CACC problem, 3 input event generators, some adaptors
(omitted), and one state machines for each requirement have to be set up. All the requirements
are instances of patterns:

• R1: Multiple States, Single Event – Output Event (see above)

• R2: Multiple States, Single Event – Output Event (similar to R1)

• R3: Single Event – In State (activated)
(Note that the changes in the internal lexical domain cannot be checked directly.)

• R4: Single Event – In State (activated)
(Note that the changes in the internal lexical domain cannot be checked directly.)

• R3+R4: Multiple States, Single Event – Output Event (desired speed)
(Note: A second instance of the pattern is necessary for one requirement because of second
output events.)

• R5: Multiple States, Single Event – Output Event (desired speed)

• R6: Multiple States, Single Event – Output Event (desired speed)

• R7: Multiple States, Single Event – Output Event (desired speed)
(with an empty set of states)

• R8: Multiple States, Single Event – Output Event (warn driver)

• R8: Multiple States, Single Event – Output Event (CACC state)
(Note: A second instance of the pattern is necessary for one requirement because of second
output events.)
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• R9: Multiple States, Single Event – Output Event (ownPosSpeed)
(with an empty set of states)

11.5. Related Work

To our knowledge, no method for testing requirements expressed as UML state machines has
been published.

A detailed overview of the fundamental literature for classical formal testing can be found in
Brinksma’s and Tretmans’ annotated bibliography (Brinksma & Tretmans, 2001). De Nicola and
Hennessy (Rocco De Nicola and M. C. B. Hennessy, 1984) introduce a formal theory of testing
on which Brinksma (Brinksma, 1988) and Tretmans (Tretmans, 1996) build approaches to derive
test cases from a formal specification. In contrast to our work, these approaches assume that
a testing process communicates synchronously with the system under test. The developed tool
TorX (fmt.cs.utwente.nl/tools/torx) also allows conformance testing of reactive systems.

Belli at al. (see (Belli & Hollmann, 2007) and the work cited there) base their testing method-
ology on a variant of state machines. In contrast to our approach, they do not test against
requirements, but against a fault model that has to be set up explicitly. Moreover, they do not
execute the state machines directly, but represent them as event sequence graphs.

Auguston et al. (Auguston, Michael, & Shing, 2005) use environment models for test case
generation. In contrast to our approach, they do not use state machines, but attributed event
grammars.

While these works have their merits, we think that the combination of environment models
and UML state machines for testing is a particularly attractive one.

Besides the work from academia, an increasing number of CASE Tool manufacturers offer
components for model based testing. I-Logix Rhapsody, for example, offers two add-on prod-
ucts for testing state machines, Test Conduct and Testing and Validation (www.telelogic.com).
Simulink Verification and Validation generates test cases in Simulink and Stateflow, and mea-
sures test coverage for Statecharts (www.mathworks.com). Conformiq Software Ltd. offers a Test
Generator which accepts “extended UML state charts” as the model of the system under test
for dynamic testing (www.conformiq.com). AsmL 2 by Microsoft provides an executable speci-
fication language based on the theory of Abstract State Machines (research.microsoft.com/
fse/asml). The AsmL 2 test tool supports parameter generation and test sequence generation
based on interface automata.

11.6. Conclusions and Future Work

We have developed a novel approach to testing reactive and embedded systems, based on en-
vironment models and using UML state machines. To evaluate our approach, we used the
Teager tool suite (Santen & Seifert, 2006; Seifert, 2009). It allows its users to generate and
execute test cases or to directly stimulate the SUT. Teager logs the stimuli it sends to the
SUT and the reactions of the SUT. During execution, these reactions are compared to the pre-
calculated possible correct reactions to evaluate the test execution process (Seifert, 2007). Using
Jackson’s terminology, we have defined uniform architectures and procedures for on-the-fly as
well as batch testing that have the following characteristics:

• Requirements, facts, and assumptions are modeled explicitly.

• We have defined patterns for the different state machines: For requirements, a parallel
state machine is set up for each precondition. When all preconditions are fulfilled, the

fmt.cs.utwente.nl/tools/torx
www.telelogic.com
www.mathworks.com
www.conformiq.com
research.microsoft.com/fse/asml
research.microsoft.com/fse/asml
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postcondition is checked. Input generators and adaptors also consist of parallel state ma-
chines, one for each item of the environment that generates stimuli or receives observations,
respectively.

• Once these models have been set up manually (but systematically), the tests are performed
automatically, using the tool Teager .

Currently our approach is limited to reactive systems that can be modeled with state machines.
Systems that are based on complex data types cannot be tested with this approach. It is an
interesting task to extend Teager to be able to handle complex data types.

Our approach has the following advantages:

• When requirements change, in the test case generator only the state machine describing
those requirements must be changed.

• Modeling the facts and assumptions about the environment supports the validation of
requirements.

• States can be left out in the environment model if the machine implements features that
are not part of the requirements. The same environment model can be (re-)used for a
CACC that uses GPS position and a CACC that uses only the radar sensor.

• Modeling the environment adds diversity to the development process and thus helps to
avoid that the same mistake occurs for test development and SUT development. This
is because the test developers, who model the environment, must think in terms of the
environment rather than the SUT behavior.

• In the environment model, a reasonable test case selection strategy can be defined, so that
no inadequate test cases are generated. Atypical behavior can be identified and tested
using a dedicated environment model.





Chapter 12

Relation to Standards

The development of safe and secure systems is performed differently and certification is done ac-
cording to different standards with different approaches. The standard ISO/IEC 61508
(International Organization for Standardization (ISO) and International Electrotechnical Com-
mission (IEC), 2000) is applied for many safety-critical systems. It focuses on processes. In
contrast, the Common Criteria (ISO/IEC 15408, CC, International Organization for Standard-
ization (ISO) and International Electrotechnical Commission (IEC) (2009a)), as applied for
many security-critical systems, focuses on documents. The ISO/IEC 61508 classifies systems
into different Safety Integrity Levels (SIL 1 to SIL 4). The SIL describes the necessary risk
reduction by reducing the failure rate of the functionality. To achieve a higher SIL additional
safety mechanisms must be added or the design must be changed. The Common Criteria (CC)
define seven Evaluation Assurance Levels (EAL). A higher EAL provides a higher level of trust.
Since the CC is document-oriented, the same system can, e.g. be certified EAL 3 and later
EAL4 without any change of the system. The terminology used in the two standards is com-
pletely different. The differences will be discussed in the sections below. This chapter is based
on joint work with Maritta Heisel and Holger Schmidt. Results have been presented on the
SQS Conference 2008 in Düsseldorf in our talk “Combining safety and security in a model-based
development process”.

With the methods described in Chapters 4 - 11 the development of safe and secure systems can
be integrated seamlessly. This allows certification according to Common Criteria and ISO/IEC
61508 for the same product without doubling the effort. This chapter provides information about
the relation between our approach (see Chapter 3) and the Common Criteria in Section 12.1 and
ISO/IEC 61508 in Section 12.2. No dedicated section discussing related work is given since the
whole chapter only describes related work. In Section 12.3, we give a summary of this chapter
and point out directions for future work.

12.1. Common Criteria

Within the Common Criteria (International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), 2009a), the machine is called Target Of Evaluation
(TOE), the requirements correspond to the Security Objectives and the specification is stated
as TOE Security Functionality (TSF). The TSF describe the combined functionality of all hard-
ware, software, and firmware of a TOE that must be relied upon for the correct enforcement
of the Security Functional Requirements (SFRs). For the SFRs, the Common Criteria provides
textual patterns.

The Common Criteria defines a set of Security Assurance Components that have to be consid-
ered for a chosen Evaluation Assurance Level (EAL). For these components, developer activities,
content of corresponding components, and actions for an evaluator are defined. The Common
Criteria defines security assurance components for the following Assurance classes:
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• Protection Profile Evaluation (APE)

• Security Target Evaluation (ASE)

• Development (ADV)

• Life-Cycle support (ALC)

• Tests (ATE)

• Vulnerability Assessment (AVA)

The security assurance components for Protection Profile evaluation and Security Target eval-
uation are similar. They cover the requirements engineering phases - the Protection Profile from
customer side, and the Security Target from supplier side. Creating these documents can be
supported by the methods described in Chapters 4, 5, and 6. The Common Criteria requires
a description of the threats. Not only the functionality of the TOE, but also the functionality
provided by the environment is described using SFRs. Threats and SFRs for the environment
constitute the domain knowledge. Examples for domain knowledge of the CACC are physical
properties about acceleration, breaking, and measurement of the distance (relevant for safety).
Other examples are the assumed intention, knowledge and equipment of an attacker. The in-
tention of the attacker could be to change the speed of the car, in order to produce a rear-end
collision. The requirements describe how the environment should behave when the system is
in action. The security requirements correspond to the objectives that must be specified in
Common Criteria documents. An example for a security objective is to only accept position,
acceleration and speed data from another trusted cooperative adaptive cruise control. An overall
safety requirement may be to keep a certain distance to the car ahead while being activated.
Using Table 5.1 on Page 79, Security Functional Requirements for the TOE and the environ-
ment can be easily derived from the security requirements (that correspond to the Security
Objectives). For example, the CACC should check if the car ahead has a trusted CACC using
an authentication mechanism. It should prevent replay attacks by using random numbers for
authentication and a session key for checking the signature of each message. This functionality
fulfills the security functional requirements FPD UIT.1, FTP ITC.1 and FDP IFC.1 of the CC
(integrity preserving data transmission, see Section 5.5).

The activities within the development process defined by the Common Criteria is structured
by a set of assurance classes and each assurance classed is structured by a set of assurance com-
ponents. For the development assurance class, the following assurance components are defined:

• Functional specification (FSC)

• Security architecture description (ARC)

• TOE design (TDS, Subsystems and Modules)

• Supplementary material on TSF internals (INT)

• Security policy model (SPM)

• Mapping of the implementation representation of the TSF (IMP)

The functional specification can be supported by the method described in Chapter 7. The
security architecture description and the TOE design can be supported by the method described
in Chapters 8 and 9. It can be applied for hardware and software architectures. The Common
Criteria requires to describe the purpose, the associated security requirements, the method of
use, as well as all parameters and error messages of the interfaces to security functions. For
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each component, the purpose, the behavior, and the interaction with other modules must be
described (explicitly required in the assurance component ADV TDS). The description effort can
be substantially decreased if described and verified modules are reused. Such a reuse is supported
by the structured requirements analysis presented in Chapters 4, 5, and 6. Supplementary
material on TSF internals and a security policy model are very specific for the Common Criteria
and only required for high EALs (≥ 5). The mapping of the implementation representation of
the TSF can be created with low effort if the method described in Section 10.1 is used.

The life-cycle support in the Common Criteria includes configuration management, product
delivery, development security, flaw remediation, a life-cycle definition and the documentation
of tools and techniques. These aspects are not covered by this thesis.

For testing, the Common Criteria requires state-of-the-art testing with a documentation that
shows that the security aspects are covered and additionally penetration testing based on the
vulnerability assessment. These aspects are not covered by this thesis. Nevertheless, for com-
ponent tests (required in assurance component ATE DPT of the Common Criteria and 61508
Part 3, Chapter 7.4.7) the specified behavior must be tested. If the behavior is described using
semi-formal methods such as UML, the specification can be used for test case generation. For
the acceptance test, the requirements and the environment description are necessary. This is
particularly important since the requirements can only be fulfilled in the assumed environment.
For example, if we can assume a physically protected server, penetration tests that require
physical access to the machine are not appropriate.

12.2. IEC 61508

Within the ISO/IEC 61508 (International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), 2000), the machine is called Electrical/Electron-
ic/Programmable Electric System (E/E/PES), the requirements correspond to overall safety
requirements in the ISO/IEC 61508 and the specifications correspond to E/E/PES safety re-
quirements in the ISO/IEC 61508.

The activities required by ISO/IEC 61508, Part 1, are covered by this thesis as described in
the following list:

• The ISO/IEC 61508 requires a description of the Concepts (Section 7.2) and a description
of the Overall scope (Section 7.3). Both descriptions are part of the domain knowledge
and machine definition as shown in Chapter 4.

• The hazard and risk analysis (Section 7.4) acts as an input of the process described in
Chapter 3.

• Creating the overall safety requirements (Section 7.5) and overall safety requirements al-
location (Section 7.6) can be supported by the methods described in Chapters 4, 5, and 6.
The requirements can be classified according to requirements patterns. Patterns for safety
requirements consider the reliability of the safety function. For example, the reliability of
the safety function for the CACC allows at most 10−7 failures per hour (determined by
the risk analysis corresponding to a SIL).

• Overall operation and maintenance planning (Section 7.7) is not covered by this thesis.

• Parts of the overall safety validation planning (Section 7.8) and parts of the verification
are covered by Phase T3 of ADIT (see Chapter 3/ Appendix A.16).

• Overall installation and commissioning planning (Section 7.9) is not covered by this thesis.
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• E/E/PE system safety requirements specification (Section 7.10) and E/E/PE safety-related
systems: realization (Section 7.11) are covered by the methods presented in Chapter 7.

• Input for the documentation of other risk reduction measures (Section 7.12) is provided
by the methods described in Chapter 6. The specification of the system to be built
(called machine) can be derived considering the specified domain knowledge by choosing
mechanisms. This specification describes the behavior of the machine at its external
interfaces. Moreover, if the plausibility check of the distance sensor detects a failure or the
self-test of the CACC hardware fails, the CACC should be deactivated.

• Overall installation and commissioning (Section 7.13) is not covered by this thesis.

• For the Overall safety validation (Section 7.14) we only provide support for reactive sys-
tems that can be described by a state machine in Chapter 11.

• Overall operation, maintenance and repair (Section 7.15), Overall modification and retrofit
(Section 7.16), and Decommissioning or disposal (Section 7.17) are not covered by this
thesis.

• For Verification (Section 7.18) we only provide support for reactive systems that can be
described by state machine in Chapter 11.

In Part 2 of the ISO/IEC 61508, activities with a set of requirements are defined for elec-
trical/electronic/programmable electronic (E/E/PE)) safety-related systems. In Part 3 of the
ISO/IEC 61508, activities with a set of requirements are defined for software. The activities are
covered by this thesis as follows:

• The Safety lifecycle requirements (Part 2, Section 7.1 and Part 3, Section 7.1) are not
covered by this thesis.

• E/E/PE system design requirements (Part 2, Section 7.2), Software Safety Requirements
Specification (Part 3, Section 7.2), E/E/PE system design and development (Part 2, Sec-
tion 7.4), Software design and development (architecture, tools, programming languages,
detailed design, implementation, testing, Part 3, Section 7.4), E/E/PE system integration
(Part 2, Section 7.5), and Programmable electronics integration (hardware and software,
Part 3, Section 7.5) are addressed in Chapters 8 and 9. They are not separated between
hardware and software to allow late hardware and software partitioning. Nevertheless, the
presented methods allow the developer to use stereotypes to show which parts are hard-
ware and which parts are software. Hardware and software integration is supported by
explicit definition and documentation of interfaces as shown in Chapter 8. The description
effort can be substantially decreased if described and verified modules are reused. Such
a reuse is supported by the structured requirements analysis presented in Chapters 4,
5, and 6. For the CACC, components performing plausibility checks on sensor values
and checks of the standard electronic control unit can be instantiated to achieve the re-
quested detection coverage. Chapter 9 shows how to split requirements to systematically
derive software requirements from system requirements. The ISO/IEC 61508 recommends
a module-oriented design with, e.g., a software module size limit, information hiding/en-
capsulation, a parameter number limit, fully defined interfaces, and a description of all
interfaces. These descriptions are a result of the methods described in Chapter 8.

The methods presented in Chapter 10 shows how to implement the specified software
components according to their specification in the module description. The presented
implementation methods allows static verification and reduces unpredictable behavior as
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required for safety systems. Implementation requirement of the standard are not repeated
in Chapter 10, but additional requirements on object-oriented software are presented.

• E/E/PE system safety validation planning (Part 2, Section 7.3), Validation Plan for Soft-
ware Aspects of System Safety (Part 3, Section 7.3), E/E/PE system operation and main-
tenance procedures (Part 2, Section 7.6), Software operation and modification procedures
(Part 3, Section 7.6), E/E/PE system modification (Part 2, Section 7.8), and Software
modification (Part 3, Section 7.8) are not covered by this thesis.

• For testing (see E/E/PE system safety validation (Part 2, Section 7.7), Software aspects
of system safety validation (Part 3, Section 7.7), E/E/PE system verification (Part 2,
Section 7.9), and Software verification (Part 3, Section 7.9)), the 61508 requires state-of-
the-art testing with a documentation that shows that the safety requirements are fulfilled.
The approach for automatic test case generation described in Chapter 11 can be applied
for systems with state-dependent behavior. For the acceptance tests, the requirements
and the environment description are necessary. This is particularly important since the
requirements can only be fulfilled in the assumed environment. If for special reasons a
reliable power supply can be assumed, we need no fault injection tests for the power
supply.

Part 4 of the ISO/IEC 61508 contains definitions and abbreviations. Part 5 of the ISO/IEC
61508 is an informative part that presents different approaches for the risk assessment and haz-
ard analysis that can be used as an input for the requirement engineering methods presented
in Chapter 4. Part 6 of the ISO/IEC 61508 is also an informative part with guidelines for the
application of parts 2 and 3, techniques for evaluating probabilities of hardware failure, calcula-
tion of diagnostic coverage, common cause quantification, and it gives example applications of
ISO/IEC 61508 software safety integrity tables.

In Annex A of Part 7 of the ISO/IEC 61508, mechanisms for the control of random hardware
failures are listed and explained. These mechanisms extend the list of mechanisms given in
Chapter 6. The informative guidance for the development of safety-related object oriented-
software in Annex G of Part 7 is considered in Chapter 10. Following informative annexes of
ISO/IEC 61508, Part 7 are not in the scope of this thesis:

• Techniques and measures for E/E/PE safety related systems (Annex B and C)

• The probabilistic approach to determining software safety integrity for pre-developed soft-
ware (Annex D)

• Overview of techniques and measures for design of ASICs (Annex E)

• Definitions of properties of software lifecycle phases (Annex F)

12.3. Conclusion

In this chapter we have shown, how the method presented in Chapters 3 with the detailed
descriptions in Chapter 4 to 11 help in generating a documentation suitable for safety and
security certification. We have presented a mapping between the methods presented in this
thesis and the security standard Common Criteria and the Safety standard ISO/IEC 61508.
Using these mappings, the following points can be achieved. These advantages are neither
provided by the Common Criteria nor by the ISO/IEC 61508 alone

• Synergies between standards can be used. The method described in this thesis supports
the generation of documentation necessary for certification according to both standards,
the Common Criteria and the ISO/IEC 61508.
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• Patterns for requirements support a systematic search for missing requirements and help
to find contradictions as early as possible.

• The patterns can be associated to a set of components. When a requirement pattern is
instantiated, a component that fulfills the requirements can be chosen.

• The acceptance test can be based on the environment model necessary for both standards.

In the future, we plan to achieve a tighter integration of ADIT and the standards. We
plan to create guidelines describing the generation of documentation for certification according
standards, and maybe also a tool that exports this documentation from the model. We will
consider additional standards, e.g. the ISO 26262 that is a specific adaption of the standard
ISO/IEC 61508 for automotive systems.



Chapter 13

Case Study

In addition to the CACC case study that served as a running example in the previous chap-
ters, we present a second case study in this chapter. In this case study, a patient care system
is developed. It displays the vital signs of patients to physicians and nurses, and controls an
infusion flow according to previously configured rules. In this setting, the display data and the
configuration rules are transmitted over an insecure wireless network. To this case study, we
apply the procedures referenced in Chapter 3. Problem elicitation and description are presented
in Section 13.1. The prpartoblem decomposition is presented in Section 13.2. Section 13.3
contains the abstract machine specification including the specification of the dependability re-
quirements. Technical context diagram, operations and data specification, and machine life-cycle
are discussed in Sections 13.4, 13.5, and 13.6. The architecture of the machine is presented in
Sections 13.7 (initial), 13.8 (implementable), and 13.9 (restructured). Communication behavior
within this architecture are discussed in Sections 13.10 (inter-component) and 13.11 (intra-
component). Section 13.12 discusses the complete behavior specification. The approaches for
implementation, unit tests, component tests and system test are state-of-the-art and therefore
not considered in this case study. The behavior of the patient care system is not based on the
state of machine and environment, but on the internal data. Therefore, the approach presented
in Chapter 11 is not applicable.

13.1. Step A1 – Problem Elicitation and Description

Figure 13.1 shows the context diagram of the PatientCareSystem (PCS) case study in UML
notation with stereotypes defined in the UML profile UML4PF defined in Chapter 4.

The machine (stereotyped with �machine�) in Fig. 13.1 is represented by the class Patient-
CareSystem. The context diagram in Fig. 13.1 shows the biddable domains Patient and Physi-
ciansAndNurses, and the causal domains O2Sensor, HeartbeatSensor, InfusionPump, and Terminal.

The domain knowledge (facts and assumptions) in this case study are the following:

F1 The O2Sensor measures the O2 (oxygen) saturation in the blood of the patient and the
pulse of the patient. This physical information (indicated by the stereotype�physical�) is
forwarded as electrical signals (indicated by the stereotype �electrical�) to the machine.

F2 The HeartbeatSensor measures the heart frequency. This physical information (indicated
by the stereotype �physical�) is forwarded as electrical signals (indicated by the stereo-
type �electrical�) to the machine.

F3 The InfusionPump provides the requested amount of medicine to the patient by controlling
the flow of the infusion. The flow is requested using an electrical signal (indicated by the
stereotype �electrical�).
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Figure 13.1.: Context Diagram of Patient Care System

F4 The Terminal provides a graphical user interface (stereotype�gui�) for nurses and physi-
cians. It displays the alarms and vital signs from the patient care systems and can be
used to configure the patient care systems.

F5 Dose and limits for the alarm are stored in the internal PatientSettings of the patient case
system.

A1 Nurses and physicians perceive the alarms.

A2 Nurses and physicians configure the patient care systems correctly and appropriately.

The functional requirements are the following:

R1 The vital signs should be displayed, and an alarm should be raised if the vital signs exceed
the limits.

R2 Physicians and nurses can change the configuration.

R3 The infusion flow is controlled according to the configured doses for the current vital signs.

The glossary content (definitions, designations, domains, phenomena) can be directly derived
from the facts and assumptions.

We validated manually that the following conditions are true:

• The domains and phenomena of the context diagram are consistent with R and D .

• Phenomena controlled by a biddable domain have counterpart phenomena located between
machine and causal, lexical, or designed domains. To perform this check successfully, the
following relationships are defined:

– VitalSigns is a combination of Heartbeat, Pulse, and O2Saturation.

– Alarm can be calculated from limits, Heartbeat, Pulse, and O2Saturation.

– config is a combination of limits and dose.

All automatic validations have been performed.



13.2. Step A2 – Problem Decomposition 181

13.2. Step A2 – Problem Decomposition

Fig. 13.2 depicts the problem diagram for requirement R1. It shows that the Terminal is con-
strained based on the information on the domains Patient and PatientSettings. The interface in
the problem diagram with P!{VitalSigns} combines the interfaces in the context diagram with
P!{Heartbeat} and P!{O2Saturation, Pulse}.

Figure 13.2.: Problem Diagram WarnShow of Patient Care System

Fig. 13.3 depicts the problem diagram for requirement R2. It shows that the PatientSettings
are constrained based on the commands of the domain PhysiciansAndNurses. The connection
domain Terminal of the context diagram is left out.

Figure 13.3.: Problem Diagram ConfigSettings of Patient Care System

Fig. 13.4 depicts the problem diagram for requirement R3. It shows that the InfusionPump is
constrained based on the information on the domains Patient and PatientSettings. The interface
in the problem diagram with P!{VitalSigns} combines the interfaces in the context diagram with
P!{Heartbeat} and P!{O2Saturation, Pulse}.
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Figure 13.4.: Problem Diagram Control of Patient Care System

All subproblems are summarized in Table 13.1.

No Requirement �refersTo� �constrains�
R1 The vital signs should be displayed,

and an alarm should be raised if the
vital signs exceed the limits.

Patient, Pa-
tientSettings

Terminal

R2 Physicians and nurses can change the
configuration.

PhysiciansAnd-
Nurses

PatientSettings

R3 The infusion flow is controlled accord-
ing to the configured doses for the cur-
rent vital signs.

Patient, Pa-
tientSettings

InfusionPump

Table 13.1.: Functional Requirements of Patient Care System

Dependability requirements are associated with functional requirements, which we express
using the stereotype �complements�. For the functional requirements listed in Tab. 13.1,
we initially identified some dependability requirements, as shown in Tab. 13.2 in DR1 - DR4
are expressed as proposed in Chapter 5. The required integrity (DR1 and DR2) supports the
safety of the system, the required confidentiality (DR3) is necessary for privacy reasons, and
the reliability required (DR4) is necessary for safety. We decide on generic mechanisms that
represent solutions of these requirements.
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Figure 13.5.: Problem Diagram ConfigSettings with Integrity Requirement

Figure 13.5 exemplary shows how the problem diagram for the functional requirement de-
picted in Fig. 13.3 on Page 181 (gray boxes) is complemented with the integrity requirement
considered an attacker. The requirement DR1 complements the R2 (R Config) and the machine
implementing the requirement PCS MACEncr is part of the machine PCS ConfigSettings in the
problem diagram of the functional requirement. As shown in Tab. 13.1, the requirement refers
to the Patient as the stakeholder and to the Attacker. It constrains the PatientSettings to avoid
that values are set and the Terminal to inform the physicians and nurses.

To implement these mechanisms, additional domains have to be introduced, and additional
requirements have to be fulfilled (see Fig. 13.6). We choose the security mechanism MAC (Mes-
sage Authentication Code) for integrity and symmetric encryption for confidentiality. For the
mechanisms MAC and encryption, a Shared Key known by the Terminal and by the Patient-
CareSystem is necessary. As required in Tab. 13.2, DR5, this Shared Key must be distributed
to the Terminal and to the PCS. The integrity and confidentiality of the Shared Key must be
preserved. This will be implemented using a key exchange protocol. For the key exchange,
additional secrets (KE keys) are necessary. PhysiciansAndNurses must be able to set these secret
in a protected environment (R4). The protected environment has to ensure that no attacker
can read or modify the KE keys. To achieve the reliability requirement DR4 considering random
faults, redundancy will be used in the architecture. For this mechanism, the input signal must
be correct: The integrity of PatientSettings is ensured by using the checksum mechanism (DR6).
To ensure that the correct values are set, the functional requirement is implemented in a way,
that after setting the values, the new values are re-read from the PatientCareSystem. Redundant
information in O2Saturation and Heartbeat help to detect sensor faults (DR7) and for the output,
redundant FeedbackFlowSensors are used to detect a wrong infusion flow (DR8).



184 Chapter 13. Case Study

No Dependability Requirement �compl-
ements�

�refersTo� �con-
strains�/
Mechanism

DR1 PatientSettings should be protected
from modification for Patient
against Attacker OR
PatientSettings should be set and
PhysiciansAndNurses should be
informed.

R2 PatientSettings is asset,
Terminal and WLAN
know asset, Patient is
stakeholder, against
Attacker

Terminal Pa-
tientSettings/
MAC part of
SSL protocol

DR2 Alarm and Vital Signs should be
protected from modification for
Patient against Attacker or
PhysiciansAndNurses should be
informed.

R1 Alarm and Vital Signs are
assets, Terminal and
WLAN know asset,
Patient is stakeholder,
against Attacker

Terminal/
MAC part of
SSL protocol

DR3 PatientSettings, Alarm, and Vital
Signs should be protected from
disclosure for Patient against
Attacker.

R1, R2 PatientSettings, Alarm,
and Vital Signs are
assets, Patient is
stakeholder, against
Attacker

WLAN/
encryption
part of SSL
protocol

DR4 The service (described in R3) with
influence on InfusionPump should
be reliable with a probability of
10−8/h.

R3 O2Sensor,
HeartbeatSensor,
PatientSettings,
FlowFeedBackSensor

Infusion-
Pump/
Redundancy
of Patient-
CareSystem
and input

DR5 The Shared Keys should be
distributed to Terminal and PCS
(for Patient) and Attacker should
not be able to access Shared Keys.

R1, R2 Shared Keys are assets,
Patient is stakeholder,
against Attacker

WLAN/
key exchange
of SSL (KE)

DR6 With a probability of 10−8/h, one
of the following things should
happen: the data of PatientSettings
must be either correct, or
PhysiciansAndNurses should be
informed.

R3 PatientSettings Terminal/
Checksum

DR7 With a probability of 10−8/h, one
of the following things should
happen: the value of O2Sensor
must be either correct, or
PhysiciansAndNurses should be
informed.

R3 O2Sensor Terminal/
Plausibility
check with
Heartbeat

DR8 The service with influence on the
InfusionPump must be reliable with
a probability of 10−8/h.

R3 FeedbackFlowSensor Terminal/
Redundancy

DR9 With a probability of 10−8/h, one
of the following things should
happen: the value of
FeedbackFlowSensor must be either
correct, or PhysiciansAndNurses
should be informed.

R3 FeedbackFlowSensor Terminal/
Plausibility
check with
redundant
Feedback-
FlowSensor

R4 PhysiciansAndNurses should be able
to set the KE Key in the
PatientCareSystem.

- PhysiciansAndNurses KEKeyP /
set in
protected
environment

Table 13.2.: Dependability Requirements of Patient Care System
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The dependability requirements DR1 - DR8 have necessary conditions that can be fulfilled
by other requirement or assumptions. We decided to assume the conditions stated in Tab. 13.3.
Nevertheless, we describe the assumptions in the same way as we describe requirements.

The KE keys are distributed manually as described in Tab. 13.3, DA1. The corresponding
associations is necessary for R1 and R2 and therefore we state that they complements R1 and
R2. The assumption refers to KE Keys since they have to be distributed securely considering der
Patient as a stakeholder and the described Attacker. No domain is constrained by this assumption
since it is realized by a manual import in a protected area.

Integrity and confidentiality of the Infusion Flow and the PatientCareSystem (domains con-
strained by the assumption) have to be achieved. We decided that integrity and confidentiality
of these domains for the Patient (stakeholder) and against the Attacker are ensured by

• physical protection (e.g., by reducing electromagnetic field (EMF) radiation and by pro-
tection against EMF radiation), and

No Dependability Assumption �compl-
ements�

�refersTo� �constrains�/
Mechanism

DA1 The KE keys are distributed to
Terminal and PCS for Patient, and
Attacker should not be able to
access Shared Keys.

R1, R2 KE keys are assets,
Patient is
stakeholder, against
Attacker

none/
manual import in
physically
protected area

DA2 Infusion Flow and
PatientCareSystem are protected
from modification for Patient
against Attacker or Patient is
informed.

R1, R2,
R3

Infusion Flow and
PatientCareSystem
are assets, Patient is
stakeholder, against
Attacker

Infusion Pump,
PatientCare-
System/
physical
protection (e.g.,
EMF) and
protection by
Patient

DA3 Infusion Flow and
PatientCareSystem are protected
from disclosure for Patient against
Attacker.

R1, R2,
R3

Infusion Flow and
PatientCareSystem
are assets, Patient is
stakeholder, against
Attacker

Infusion Pump,
PatientCare-
System/
physical
protection (e.g.,
EMF) and
protection by
Patient

DA4 Terminal is protected from
modification for Patient against
Attacker or PhysiciansAndNurses
are informed.

R1, R2 Terminal is asset,
Patient is
stakeholder, against
Attacker

Terminal/
physical
protection (e.g.,
EMF) and
protection by
PhysiciansAnd-
Nurses

DA5 Terminal is protected from
disclosure for Patient against
Attacker.

R1, R2 Terminal is asset,
Patient is
stakeholder, against
Attacker

Terminal/
physical
protection (e.g.,
EMF) and
protection by
PhysiciansAnd-
Nurses

Table 13.3.: Domain Knowledge of Patient Care System
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• and protection by Patient (e.g., by preventing someone else from accessing the Patient-
CareSystem)

The assumptions are described by Tab. 13.3, DA2 and DA3. They are necessary for R1, R2,
and R3.

Integrity and confidentiality of the Terminal (domains constrained by the assumption) have
to be achieved. We decided that integrity and confidentiality of these domains for the Patient
(stakeholder) and against the Attacker are ensured by

• physical protection (e.g., by reducing electromagnetic field (EMF) radiation and by pro-
tection against EMF radiation), and

• protection by PhysiciansAndNurses (e.g., by preventing someone else from accessing the
Terminal)

The assumptions are described by Tab. 13.3, DA4 and DA5. They are necessary for R1 and R2.
The context diagram is extended with the domains necessary to fulfill the dependability re-

quirements. This extension is depicted in a separate diagram. This diagram provides additional
information (i.e. connections) about some domains in the context diagram and therefore a do-
main knowledge diagram (see Fig. 13.6). It adds redundant sensors measuring the infusion flow
(FlowFeedBackSensors), additional phenomena (init, resp, xchd, see Fig. 7.7 on Page 117) for the
key exchange between Terminal and PatientCareSystem, the SessionKeys, the key exchange keys

Figure 13.6.: Domain Knowledge Diagram with Dependability Extension of Context Diagram
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(KEKeys), and an additional interface to PhysiciansAndNurses for an initial import of the KEKeys.
We use no additional redundant sensor for measuring the O2 concentration and the heartbeat
since these both sensors provide redundant information that can be used for plausibility checks
and the patient should not be connected with additional sensors.

All functional and dependability requirements are implemented by a submachine. The glossary
contains the following submachine names:

• PCS Show submachine that implements requirement R1.

• PCS Config submachine that implements requirement R2.

• PCS Control submachine that implements requirement R3.

• PCS MACEncr submachine that implements requirements DR1, DR2, and DR3.

• PCS KeyEx submachine that implements requirement DR5.

• PCS PSInteg submachine that implements requirement DR6.

• PCS InInteg submachine that implements requirement DR7.

• PCS OutInteg submachine that implements requirement DR9.

• PCS InitKey submachine that implements requirement R4.

Requirement DR8 has to be realized by the overall machine using redundancy mechanisms.

The following new phenomena and domains have been introduced:

• Init phenomenon to initialize the KEKey.

• init phenomenon in initiate the key exchange protocol.

• resp phenomenon in answer the key exchange initialization.

• xchd phenomenon to finalize the key exchange protocol.

We performed all automatic checks for this step.

13.3. Step A3 – Abstract Machine Specification

The sequence diagram in Fig. 13.7 depicts the behavior for subproblem WarnShow. The Vital-
Signs are continuously forwarded to the PhysiciansAndNurses using the Terminal. If the VitalSigns
exceed the limits, a warning is raised. To express the specification, the connection domains Heart-
beatSensor and O2Sensor has to be depicted and the message VitalSigns need to be replaced by
the messages Heartbeat and O2Saturation.
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sd WarnShow

Patient PatientSettings PSC_Warn
Show

Terminal PhysiciansAndN
urses

LOOP

VitalSigns

VitalSigns

VitalSigns

getLimits

limits

OPT

[VitalSi
gns 
exceed 
limits]

Alarm

Alarm

Figure 13.7.: Sequence Diagram for Subproblem WarnShow

The sequence diagram in Fig. 13.8 depicts the behavior for subproblem ConfigSettings. The
machine stored the configuration with limits and dose for the patient in its PatientSettings.

sd ConfigSettings

PhysiciansAnd
Nurses

PCS_ConfigSe
ttings

PatientSettings

config

limits

dose

Figure 13.8.: Sequence Diagram for Subproblem ConfigSettings

The sequence diagram in Fig. 13.9 depicts the behavior for subproblem Control. The machine
continuously sends an updated InfusionFlow to the InfusionPump. The flow is calculated based
on the VitalSigns and the configured dose. To express the specification, the connection domains
HeartbeatSensor and O2Sensor has to be depicted and the message VitalSigns needs to be replaced
by the messages Heartbeat and O2Saturation.
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sd Control

Patient InfusionPump PSC_Control PatientSettings

LOOP

VitalSigns

getDose

dose

InfusionFlow

InfusionFlow

Figure 13.9.: Sequence Diagram for Subproblem Control

The result of applying the rules for creating a specification described in Section 7.3 to the
context diagram of the patient care system shown in Fig. 13.1 on Page 180 is presented in
Fig. 13.10. This UMLsec deployment diagram can be created following the command sequence
depicted in Listing 13.1.

1 createDeploymentDiagram(’PCS_deployment ’);

2 addSecureLinksStereotype(’PCS_deployment ’,’default ’);

3 createNodes(’PCS_deployment ’);

4 createNestedClasses ({’PatientSettings ’});

5 createCommunicationPaths(’PCS_deployment ’);

6 getNetworkConnections (); -- returns {’PCS !{Alarm , VitalSigns },T!{ config }’}

7 setCommunicationPathType(’PCS_deployment ’,’PCS!{Alarm , VitalSigns},

T!{ config}’,’encrypted ’);

8 createDependencies(’PCS_deployment ’);

Listing 13.1: Generating a UMLsec Deployment Diagram

First (line 1), the deployment diagram is created. In Line 2, to this deployment diagram
the secure link stereotype with an attribute stating that adversary is a default adversary. In
the next step (line 3), the nodes are created according to the domains in the context dia-
gram. We decided that the PatientSettings should be shown as a nested class (line 4). In
the next step (line 5), the communication paths are generated. The network connections
without type are retrieved with getCommunicationPaths (line 6). For the returned connection

Figure 13.10.: UMLsec Deployment Diagram Representing the Target State of Patient Care System
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(PCS!{Alarm,VitalSigns},T!{config}), we set the the communication path type to encryted (line 7)
and at last the dependencies are created (line 8).

In the following, we show how to specify security mechanism by developing UMLsec diagrams
based on security requirements. For each communication path contained in the UMLsec deploy-
ment diagram developed as shown in Fig. 13.10 on the preceding page that is not stereotyped
�wire�, we select an appropriate security mechanism according to the results of the problem
analysis, e.g., MAC for integrity, symmetric encryption for security, and a protocol for key ex-
change (see Tab. 13.2 on Page 184). A security mechanism specification commonly consists of a
structural and a behavioral description, which we specify based on the UMLsec�data security�
stereotype.

We use the key exchange protocol (see Section 7.3) to realize the security requirement given
in Table 13.2 on Page 184, DR4, of the patient care system. We use the protocol that secures
data transmissions using MACs for the security requirements DR1 and DR2, and we use the
protocol for symmetrically encrypted data transmissions for the security requirement DR3.

The model generation rule createKeyExchangeProtocol(initiatorNodeName: String,

responderNodeName: String, newPackage: String) was presented in Hatebur et al. (2011)
and can be found in Appendix D. The diagrams shown in Fig. 13.11 and 13.12 for the patient
care system haven been created with createKeyExchangeProtocol(’Terminal’, ’Patient-

CareSystem’, ’PCS KeyExchProt’).

In the created model (see in Fig. 13.11), the tag secrecy of the �critical� class Terminal
contains the secret s , which represents an array of secrets to be exchanged in different rounds
of this protocol. It also contains the private key inv(K T) of the Terminal. Next to these
assets, the integrity tag additionally contains the nonces N used for the protocol, the public key
K T of the Terminal, the public key K CA of the certification authority, and the round iterator
i. These tag values are reasonable because the security domain knowledge in Tab. 13.3, DR2
and DR3 states that the PatientCareSystem with its contained data is kept confidential and its
integrity is preserved. The tag secrecy of the �critical� class PatientCareSystem contains the
session keys k and the private key inv(K P) of the PatientCareSystem. The integrity tag of the
PatientCareSystem consists of assets similar to the ones of the same tag of the Terminal. Integrity
and confidentiality of the data stored in the Terminal (private key inv(K P), the public key K R,

Figure 13.11.: Class Diagram of Key Exchange Protocol for Patient Case System
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the public key K CA of the certification authority, and the round iterator j) are covered by the
domain knowledge in Tab. 13.3, DR4 and DR5.

The attributes correspond to the domains already defined in Step A2 - Problem Decomposition
in the diagram in Fig. 13.6:

• The attribute s corresponds to the domain SharedKeyT.

• N represents the nonce generated by the Terminal in order to prevent replay attacks.

• The attributes K T, inv(K T) and inv(K CA) are stored in the domain KEKeyT.

• The attributes K P, and inv(K P) are stored in the domain KEKeyP.

• The attribute k corresponds to the domain SharedKeyP.

• The attributes i and j are internal attributes of Terminal and PatientCareSystem.

The sequence diagram in Fig. 13.12 specifies three messages and two guards, and it considers
the ith protocol run of the Terminal, and the jth protocol run of the PatientCareSystem. It is
expressed in UML notation with side comments according to the description of Jürjens (2005).
A translation of the guards in the line comments into combined fragments in UML2 is shown in
Fig. 13.13. The sequence counters i and j are part of the Terminal and the PatientCareSystem,
respectively. The init(. . . ) message sent from the Terminal to the PatientCareSystem initiates the
protocol. If the guard at the lifeline of the PatientCareSystem is true, i.e., the key K T contained
in the signature matches the one transmitted as clear text, then the PatientCareSystem sends
the message resp(. . . ) to the Terminal. If the guard at the lifeline of the Terminal is true, i.e.,
the certificate is actually for S and the Terminal returns the correct nonce is returned with the
message xchd(. . . ) to the PatientCareSystem. If the protocol is executed successfully, i.e., the
two guards are evaluated to true, then both parties share the secret s i.

The key exchange protocol only fulfills the corresponding security requirements if integrity,
confidentiality, and authenticity of the keys are ensured. According to our pattern system
for security requirements engineering (Hatebur & Heisel, 2010b), applying the key exchange

sd PCS KeyExchProt

Terminal PatientCareSystem

init(N_i,K_T,Sign(inv(K_T),T::K_T))

resp({Sign(inv(K_P_i),k_j::N'::K'_T)}_K'_T,  
Sign(inv(K_CA),P_i::K_P_i)) [snd(Ext

(K'_T,c_c))=K'_T]

xchd({s_i}_k)

[fst(Ext
(K_CA),c_S=S_i) 

and snd(Ext
(K'_S_i,Dec(inv

(K_T),c_k)))=N_i]

Figure 13.12.: Sequence Diagram of Key Exchange Protocol for Patient Care System in UML 1.4
notation with UMLsec extension
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sd PCS KeyExchProt

Terminal PatientCareSystem

init(N_i,K_T,Sign(inv(K_T),T::K_T))

resp({Sign(inv(K_P_i),k_j::N'::K'_T)}_K'_T,  
Sign(inv(K_CA),P_i::K_P_i)) [snd(Ext

(K'_T,c_c))=K'_T]

xchd({s_i}_k)

[fst(Ext
(K_CA),c_S=S_i) 

and snd(Ext
(K'_S_i,Dec(inv

(K_T),c_k)))=N_i]

Figure 13.13.: Sequence Diagram of Key Exchange Protocol for Patient Care System in UML 2 notation

mechanism leads to dependent statements about integrity, confidentiality, and authenticity of
the keys as stated in Tab. 13.3 on Page 185.

The specifications (given in Fig. 13.7 on Page 188, 13.8 on Page 188, 13.16 on Page 194,
and 13.12 on the previous page) is created with messages that directly correspond to the phe-
nomena of the context diagram. We found no contradictions in the abstract specification and the
domain knowledge. We performed all automatic checks for this step to show that messages and
phenomena are consistent and for each subproblem there exists at least one sequence diagram.
For each subproblem there exists one normal case scenario. Exceptional cases are not considered
for this case study.

13.4. Step A4 – Technical Context Diagram

The technical context diagram and the context diagram in Fig. 13.1 on Page 180 together with
the domain knowledge diagram in Fig. 13.6 on Page 186 are the same. No new phenomena and
domains have been introduced.

13.5. Step A5 – Operations and Data Specification

For each abstract submachine specification in Section 13.3, we developed the class model for the
operation specification as depicted in Figures 13.14 on the facing page, 13.15 on the next page,
and 13.16 on Page 194 and the operation specifications as presented in the following paragraphs.
The procedure is described in Appendix A.
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Figure 13.14.: Class Diagram for Operation Specification for R1

In the submachine PCS WarnShow the Heartbeat value is stored when a new value is received
in the parameter bpm (precondition is true and postcondition is hb=bpm). The precondition of
PCS WarnShow::O2Saturation is true. When a O2Saturation is received, the limits are retrieved
using getLimits and depending on the configured limits warnings are sent to the terminal (see
Listings 13.2).

1 terminal^VitalSigns(hb, bpm , sat) and

2 patientSettings.getLimits(LimitType :: max_bpm)>hb implies

terminal^Alarm(LimitType :: max_bpm) and

3 patientSettings.getLimits(LimitType :: max_bpm)>bpm implies

terminal^Alarm(LimitType :: max_bpm) and

4 patientSettings.getLimits(LimitType :: min_bpm)<hb implies

terminal^Alarm(LimitType :: min_bpm) and

5 patientSettings.getLimits(LimitType :: min_bpm)<bpm implies

terminal^Alarm(LimitType :: min_bpm) and

6 patientSettings.getLimits(LimitType :: max_sat)>sat implies

terminal^Alarm(LimitType :: max_sat) and

7 patientSettings.getLimits(LimitType :: min_sat)<sat implies

terminal^Alarm(LimitType :: min_sat)

Listing 13.2: Postcondition for PCS WarnShow::O2Saturation

Figure 13.15.: Class Diagram for Operation Specification for R2
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When the machine PCS ConfigSettings receives a configuration message, the values are stored
in the PatientSettings (precondition is true and postcondition is shown in Listings 13.3).

1 patientSettings.limits ->includesAll(limits) and patientSettings.doseRate = dose

Listing 13.3: Postcondition for PCS ConfigSettings::config

Figure 13.16.: Class Diagram for Operation Specification for R3

In the submachine PCS Control the Heartbeat value is stored when a new value is received
(precondition is true and postcondition is hb=bpm). When a O2Saturation is received, the
configured dose is retrieved using getDose. This dose is sent to the InfusionPump (precondition
is true and postcondition is shown in Listings 13.4).

1 infusionPump^InfusionFlow(patientSettings.getDose(hb,sat))

Listing 13.4: Postcondition for PCS Control::O2Saturation

The behavioral description for the submachines PCS MACEncr, PCS PSInteg, PCS InInteg, and
PCS OutInteg is intentionally omitted, because the basic idea is similar.

In the glossary, the following terms are defined:

• hb is an attribute in which the heartbeat from the HeatbeatSensor is stored.

• getLimits is an operation that returns the limit requested by the parameter.

• getDose is an operation that returns the configured dose for a given heartbeat value and
a O2 saturation value.

We checked that

• exactly the operations (Heartbeat, O2Saturation, and config) occurring in the abstract
specification in Step A3 - Abstract Machine Specification are described,

• for each described operation, a pre- and postcondition exist,

• the pre- and postconditions expressed in OCL are syntactically correct,

• the postcondition covers all cases exhibited in the abstract specification of Step Abstract
Machine Specification,

• all parameters of operations are known by the caller and all parameters of sent messages
must be known by the machine,

• all parameters are used in the pre- and/or postcondition,
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• the operation specification is consistent with class model of the machine state, and

• all classes, associations, and attributes newly introduced in the class model are motivated
by some operation specification.

13.6. Step A6 – Machine Life-Cycle

The relationship of the abstract specifications can be described by the following expression:

LifeCycle = InitKey; (KeyExchProt (ConfigSettings* ‖ WarnShow ‖ Control))*

The behavior of the submachines PCS MACEncr, PCS PSInteg, PCS InInteg, and PCS OutInteg
are only extensions of the behavior described in ConfigSettings, WarnShow, and Control, as
described in A2.

We checked that

• each sequence diagram of Step Abstract Machine Specification is contained in at least one
life-cycle expression,

• for each biddable domain exactly one life-cycle exists,

• the life-cycles are consistent with the state predicates in Step Abstract Machine Specifica-
tion,

• the life-cycles are consistent with the pre- and postconditions in Step Operations and Data
Specification, and

• exactly one life-cycle exists for the machine domain, that combines all life-cycles.

13.7. Step D1a – Initial Architecture

In the initial software architecture shown in Fig. 13.17, exactly the machines in the subproblem
diagrams are used as components. Additionally, the lexical domains PatientSettings, KEKeyP,
and SharedKeyP become components of the initial architecture. All components are connected
in the same way as the domains in the problem diagrams, e.g., PCS WarnShow is connected
with the PatientSettings, with the ports to the external domains HeartbeatSensor and O2Sensor,
and via the component for encryption and MAC protection PCS MACEncr with the port to the
Terminal.

The connectors to external interface have the same types as the associations in the technical
context diagram. All internal connectors represent software interfaces and have the stereotype
�call return�.



196 Chapter 13. Case Study

Figure 13.17.: Initial Architecture for Patient Care System

The external ports of the machine are defined based on the interfaces in the context diagram
(see Fig. 13.1 on Page 180) and the domain knowledge diagram extending the context diagram
(see Fig. 13.6 on Page 186). The ports of the components are defined based on the interfaces
in the problem diagrams (see Tables 13.1 and 13.2). The external ports of the machine from
the context diagram are depicted in Fig. 13.18. The port type P P1 for the patient information
implements the same interface as the port types P HS and P OS for the sensors. All ports
starting with ˜ are inverse port types: they use the implemented interfaces and implement
the used interfaces of the port types with same name without the prefix ˜. The port types
P T for the terminal and P IP for the infusion pump are also defined using the interfaces from
the context diagram. The port type P K is used for all cryptographic keys. The port type
P FFS for the feedback flow sensor and P PAN for the direct interface to physicians and nurses
in a protected environment are defined using the interfaces in the domain knowledge diagram
extending the context diagram.

1For external ports, we use the prefix P followed by the abbreviation of the connected domain.
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Figure 13.18.: Port Types for Patient Care System

The port type CP PS for the patient settings is depicted in Fig. 13.19. It is derived from the
problem digram using exactly the rules described in Appendix A.7.

Figure 13.19.: Component Port Type CP PS for Patient Care System

The port type CP T for the terminal, CP PAN for the direct interface to the physicians and
nurses in a protected environment, CP P for the interface to the patient, and CP IP for the
interface to the infusion pump are depicted in Fig. 13.20. They are defined using the interfaces
of the problem diagrams in Tables 13.1 on Page 182 and 13.2 on Page 184.

No new entry is added to the glossary because the component names are already included as
subproblem machines.

We checked that

• for each provided or required interface of machine ports in the architecture, there exists a
corresponding interface in the technical context diagram,

• there is one component for each submachine related to the given machine of the (technical)
context diagram as well as for all relevant lexical domains found in the problem diagrams.

• the internal components have the stereotype �Component� or �ReusedComponent�,

• the internal components are connected to each other and to the external ports according
to the connections in the technical context diagram / subproblems, and
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Figure 13.20.: Further Component Port Types for Patient Care System

• the stereotypes of the connectors are consistent to the associations of the technical context
diagram.
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13.8. Step D1b – Implementable Architecture

In the implementable architecture, we apply the pattern for redundancy to achieve the reliability
requirement (see Requirement DR8)). This pattern consists of components for two channels and
a kind of voter component for the actuator (ChooseActiveChannel). The channels supervise each
other (using the port of type P Lifeness) and are able to select the active channel (using the
port of type P ChooseChannel).

To instantiate this pattern, we connected the output port of each channel that controls the
infusion pump (P IP) to the component ChooseActiveChannel. All other ports of the single
channels are connected to the machine ports as in the initial architecture.

Figure 13.21.: Implementable Architecture for Patient Care System

To realize the redundancy concept, we need the port types P ChooseChannel, its inverse type
∼P ChooseChannel, and P Lifeness on the highest architectural level (see Fig 13.22).

Additionally, each channel needs an interface to the hardware that can be used to switch of
the channel in case of a critical fault (see CP HW in Figures 13.22 and 13.23). This is used
by the component PCS RedundencyHandler that monitors the other channel, switches off the
channel, and activates the correctly working channel. The other parts of the architecture of
each channel (depicted in Fig. 13.23) can be directly derived from the initial architecture. The
ports of type P OS and P HS are connected to several components. Therefore, we introduce
the facade Sensor Facade. The port of type P T is connected to the components PCS KeyEx
and PCS MACEncr. Therefore, we introduce the facade Terminal Facade.
New components we add to the glossary are

• PCS RedundencyHandler

• Terminal Facade

• Sensor Facade
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Figure 13.22.: Port Types for Implementable Architecture of Patient Care System

with the functionality as describe above.
We checked that

• the facade has port types that correspond to the external ports of the initial architecture,

• the facade has ports corresponding to the component ports. The port types are the inverse
of the component ports,

• a concretizes dependency exists from the implementable architecture to the initial archi-
tecture (only in model, not depicted in this document), and

• the stereotypes of the connectors to the facade are the same as in the initial architecture.
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Figure 13.23.: Implementable Architecture for one Channel of Patient Care System

13.9. Step D1c – Re-structure Software Architecture

For each channel, we can create a layered architecture as shown for the CACC case study in
Section 8.2. The following components could be part of the application layer:

• PCS InitKey is in the application layer since it realizes one of the main functions of the
machine (and bridges the interface abstraction layer).

• PCS ConfigSettings is in the application layer since it realizes one of the main functions of
the machine.

• PCS WarnShow is in the application layer since it realizes one of the main functions of the
machine.

• The control part of PCS Control is in the application layer since it realizes one of the main
functions of the machine.
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The following components could be part of the interface abstraction layer (containing adapters):

• Terminal Facade (functionality part) is an adapter since it converts the technical operations
into logical operations).

• PCS MACEncr is an adapter since it realizes complementary functionality for PCS Config-
Settings, PCS WarnShow, and PCS Control.

• InInteg is an adapter since it realizes complementary functionality for PCS WarnShow and
PCS Control.

• PSInteg is an adapter since it realizes complementary functionality for PCS WarnShow and
PCS Control.

• Parts of OutInteg are in the interface abstraction layer since they realize complementary
functionality for PCS Control and generates warnings using PCS MACEncr.

• Parts of the SensorFacade are in the interface abstraction layer since the values provided
by the sensors has to be converted to the application and provided to several components.

• The parts of the RedundancyHandler not accessing the hardware directly are in the interface
abstraction layer since they realize complementary functionality for PCS Control.

• The parts of PCS Control realizing the conversion are in the interface abstraction layer.

The following components could be part of the hardware abstraction layer:

• The parts of the SensorFacade that are used to directly access the hardware sensors.

• Parts of OutInteg are used to directly access the hardware sensor for feedback.

• SharedKeyP, KEKeyP, and PatientSettings are components storing the keys or settings and
therefore access the hardware.

• The hardware-dependent part of the Terminal Facade are in the hardware abstraction
layer.

• The parts of PCS Control accessing the hardware are in the hardware abstraction layer.

• The parts of RedundancyHandler accessing the hardware are in the hardware abstraction
layer.

In the glossary, the following terms are defined:

• InfusionFlow HAL: parts of PCS Control accessing the hardware

• Terminal HAL: hardware dependent part of the Terminal Facade

• FlowSensor HAL: parts of OutInteg for accessing the hardware

• HB HAL: parts of SensorFacade for accessing the heartbeat sensor

• O2 HAL: parts of SensorFacade for accessing the O2 saturation sensor

• Mem ALU HAL: parts of RedundancyHandler for accessing the hardware for fault
checking

• Off HAL: parts of RedundancyHandler for switching off the channel
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• Sensor Adapter: conversion parts of SensorFacade

• Terminal Adapter: conversion parts of Terminal Facade

We checked that

• all components of the implementable architecture are contained in the layered architecture,
and

• the connectors connected to the ports in the layered architecture have the same stereotypes
or more specific ones than in the implementable architecture.

13.10. Step D2 – Inter-Component Interaction

Breaking down the sequence diagrams for the specifications expressed in Sections 13.3 and 13.5
to derive the interface behavior of all components for all operations is a routine task the regular
development2. Since the redundancy mechanism is applied (see Section 13.2 and Chapter 9),
the protocol for handling faults in a single channel has to be specified. The protocol presented
in Figures 13.24 on Page 205 and 13.25 on Page 206 can be abstracted and used as a pattern.

In Fig. 13.24 on Page 205, first the normal behavior is described. The channel c1 is active and
channel c2 is passive. Both channels receive the sensor values (O2Saturation, Pulse, clHeartbeat)
and calculate the InfusionFlow. The component ChooseActiveChannel forwards the InfusionFlow
of channel c1 to the infusion pump in the environment. Each channel also sends the message
active to the other channel. If an error is detected in channel c1, e.g. a memory error (Mem
error), channel c1 tries to send the command choose2 to the component ChooseActiveChannel,
raises an alarm and stops working. If channel c2 receives no message active (due to an error),
it also sends the command choose2 to the component ChooseActiveChannel and raises an alarm.
It is then the active channel. The sensor values (O2Saturation, Pulse, clHeartbeat) are sent to
both channels, but only channel c2 calculates the InfusionFlow and sends the message active to
the other channel.

In Fig. 13.25 on Page 206, again, first the normal behavior is described. The channel c1 is
active and channel c2 is passive. In this figure, the scenario with an detected error in channel c2
is described. In this case, channel c2 tries to raise an alarm. If channel c1 receives no message
active, it also raises an alarm. It is then the active channel. The sensor values (O2Saturation,
Pulse, clHeartbeat) are sent to both channels, but only channel c2 calculates the InfusionFlow
and sends the message active to the other channel.

No new messages have been introduced. In the glossary the following state predicates have
been defined:

• active: The channel is active and the output is forwarded to the infusion pump.

• passive: The channel is passive and its output is not forwarded to the infusion pump.

• off : The channel is switched off.

The following validations conditions have been checked for the redundancy protocol and have
to be checked for the diagrams not shown in this thesis.

• The sequence diagrams must be consistent with the behavior described in Step Abstract
Machine Specification and in Step Machine Life-Cycle.

• The sequence diagrams must realize the operations described in Step Operations and Data
Specification.

2development of systems without dependability requirements
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• All messages in the application interface classes of Step Machine Architecture must be
used in some sequence diagram.

• The direction of messages must be consistent with the required and provided interfaces of
Step Machine Architecture.

• The messages must connect components as connected in the software architecture of Step
Machine Architecture

• It must be possible to relate any new state predicates to the state predicates of Step
Abstract Machine Specification
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13.11. Step D3 – Intra-Component Interaction

The components in this case study are quite simple. Therefore, they are not split into subcom-
ponent and no interaction needs to be described.

13.12. Step D4 – Complete Component or Class Behavior

In this step, we check for each component if a state machine is necessary:

• To describe the behavior of the component ChooseActiveChannel, no state machine is
necessary: By default the flow given via port p1 is forwarded to the output port of
type P IP. When choose1 was the last message received via one of the ports of type
∼P ChooseChannel, the flow given via port p1 is forwarded to the output port of type P IP.
When choose2 was the last message received via one of the ports of type∼P ChooseChannel,
the flow given via port p2 is forwarded to the output port of type P IP.

• The component PCS InitKey just sets the SharedKeyP when the environment authenticates
itself. This component is stateless.

• The component SharedKeyP just represents a key (data type).

• The component PCS KeyEx is a re-used component realizing the SSL protocol. Therefore,
we do not specify the state machine.

• The component Terminal Facade just forwards the messages depending on the type either
to PCS KeyEx or to PCS MACEncr.

• The component PCS MACEncr encrypts the following messages and creates Message Au-
thentication Codes using the key of type KE KeyP:

– warnings from InInteg

– warnings from OutInteg

– warnings from PSInteg

– warnings from PCS WarnShow

– vital signs from PCS WarnShow

– configurations to PCS ConfigSettings

In case of warnings from the integrity checking components, it may initiates a switch of
the channel using the RedundancyHandler. The state machine describing this behavior is
trivial and not necessary.

• The component PSInteg cyclically checks the integrity of the data of type PatientSettings
using a Cyclic Redundancy Check (CRC, see (International Organization for Standard-
ization (ISO) and International Electrotechnical Commission (IEC), 2000)). In case of an
error a warning is raised. The state machine describing this behavior is trivial and not
necessary.

• The component PCS ConfigSettings sets the data of type PatientSettings and updates its
CRC. The state machine describing this behavior is trivial and not necessary.

• The component PCS WarnShow forwards the vital signs and raises a warning if these vital
signs exceed the configured limits. The state machine describing this behavior is trivial
and not necessary.
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• The component PCS InInteg performs plausibility checks on the sensor data. In case of
detected errors, a warning is raised. The state machine describing this behavior is trivial
and not necessary.

• The component PCS WarnShow forwards the vital signs and raises a waring if these vital
signs exceed the configured limits. The state machine describing this behavior is trivial
and not necessary.

• The component PCS Control controls the infusion flow according to the configured rules
and the current sensor data. The state machine describing this behavior is trivial and not
necessary.

• The component PCS OutInteg checks if the measured infusion flow corresponds to the
desired flow. In case of detected errors, a warning is raised. The state machine describing
this behavior is trivial and not necessary.

• The component RedundancyHandler continuously checks the hardware and may be informed
about errors by other components. As long as no error is detected, it sends in regular
intervals that this channel is still working correctly. If an error is detected, it tries to
choose the other channel as the active one (controlling the infusion flow), tries to inform
the physicians or nurses that service is necessary and shuts down the current channel. If
the component RedundancyHandler receives no messages from the other channel that it is
working correctly, it decides that this channel is the active one and informs the physicians
or nurses that service is necessary. Since this is a re-used component, we give no state
machine.

No new state predicates have been introduced.

13.13. Step I1 – Step T3

The patient care system can be implemented and tested as described in ADIT Steps I1 – Imple-
mentation and Unit Test, Step T1 – Component Tests, T2 – System Test, and T3 – Acceptance
Test. The approaches for implementation, unit tests, component tests and system test are
state-of-the-art and therefore not considered in this case study. The behavior of the patient
care system is not based on the state of machine and environment, but on the internal data.
Therefore, the approach presented in Chapter 11 is not applicable.
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Conclusions and Future Work

We give a summary of this thesis in Section 14.1 and present ideas for future work in Section 14.2.

14.1. Conclusions

In this thesis, we have presented several procedures to develop dependable systems. These
procedures are integrated into ADIT, a process that covers Analysis, Design, Implementation
and Testing. This process makes use of different kinds of patterns and ready-made components.
In ADIT, we have provided a detailed description of the process steps with input, output,
glossary, procedure and validation conditions (see Appendix A).

We have shown in Chapter 3 that such a structured heavyweight process (like ADIT) supports
dependability even without extensions. The environment description helps to express depend-
ability requirements, because dependability refers to domains in the environment. Patterns for
requirements help to select solution approaches, re-use the corresponding behavioral descriptions
and select appropriate dependability components. For dependable systems, often testing with a
huge number of test cases is necessary. The environment models can also be used for test case
generation.

Such a structured heavyweight process can only be handled with appropriate tool support,
because even small changes in one output document lead to many other outputs to be updated.
A tool should at least show all inconsistencies. If a single model is used for the different models
that avoids redundant model elements, changes automatically propagate to other diagrams. We
have extended a UML tool to support requirements engineering, the development of specifi-
cations, and the design of architectures. This has been achieved by defining stereotypes and
validation conditions. A validation condition is, e.g., to check if a given sequence diagram is
consistent with its problem diagram. These conditions can be checked automatically using our
tool UML4PF described in Section 4.2. Users just have to press the “validator” button to check
the validation conditions. If a condition does not hold, the user is provided with the natural-
language description of the condition, and the wrong model element is pointed out to him or
her. The possibility to identify inconsistencies leads to a reduced number of errors. A reduced
number of errors is a necessary condition for dependable systems.

In Chapter 4, we have developed a UML profile to support the requirements engineering ap-
proach proposed by Jackson including problem diagrams, problem frames, and context diagram.
With this profile, we enhanced the requirements engineering approach of Jackson by making
use of UML concepts, such as multiplicities and aggregations. We also added the diagram type
“technical context diagram” to prepare the architectural design in the analyses phase and the
domain knowledge diagram to express domain knowledge. With our profile, a structured and
seamlessly integrated development is possible. A structured and seamlessly integrated develop-
ment process supports error reduction and therefore the dependability of the developed system.

Based on this UML profile for problem frames, in Chapter 5, we have developed dependability
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patterns that address confidentiality, integrity, availability, reliability and the security manage-
ment.1 These patterns are re-usable, because they refer to the environment description and are
independent of solutions. The patterns are represented by a textual pattern with references to
relevant domains, stereotypes that can be used to extend a problem diagram, and a correspond-
ing predicate. For the dependability patterns expressed with UML classes and stereotypes, we
developed integrity conditions, for example, that security requirements must explicitly address
a potential attacker. The patterns and integrity conditions help the developers that they do not
forget to describe important attributes of the requirements. Missing attributes are one possible
source of errors in the development. This risk of such errors can be reduced by using our patterns
and checking our integrity conditions.

Using these dependability patterns, in Chapter 6, we have developed a pattern system that
can be used to identify missing requirements in a systematic way. The pattern system may also
show possible conflicts between dependability requirements. Our pattern system is based on
selecting generic mechanisms. Depending on the the selected mechanisms, other requirements
that may conflict are given, additional domains are suggested, necessary conditions are given,
and some related requirements are pointed out. Missing or conflicting requirements are another
source of errors. This risk of such errors can be reduced by using our patterns and checking our
integrity conditions.

When a set of requirements is selected, specifications (describing the behavior of the machine
at the external interface) can be developed based on the requirements (see Chapter 7). The
specifications can be expressed using sequence diagrams. We have defined constraints describ-
ing the consistency between problem diagrams and the specifications expressed with sequence
diagrams. For security requirements, we have described a method to systematically derive the
corresponding specifications. The method is formalized using model generation rules expressed
in OCL. Our consistency check helps to avoid errors in the step to develop the specifications.
This error avoidance supports the development of dependable systems.

When the behavior at the external interface is specified, the architecture of the machine can
be designed. We have shown in Chapters 8 and 9 how software architectures can be derived in
a systematic way from problem descriptions. First, we develop a simple initial architecture only
based of the knowledge acquired in the requirements engineering phase. Using patterns, this
architecture is refined to be implementable, and finally a layered architecture can be derived. We
express the models with UML composite diagrams with stereotypes, and we developed a set of
integrity conditions that allow one to identify inconsistencies in a diagram or between different
diagrams. Since architectural design and requirements analysis are intertwined, design decisions
drive the revision of the problem descriptions. Our method builds on established approaches to
achieve dependability properties, such as encryption or redundancy. Its novelty is the fact that
the different approaches are integrated and intertwined explicitly by an underlying methodology
and a common notation.

To implement the architecture, we have presented in Chapter 10 how to implement components
in Java, and we summarized rules for implementing secure and safe software. A well-structured
software (as derived by this approach) supports the localization of functionality implemented to
realized dependability requirements. The rules for safe and secure software realization help to
avoid systematic faults.

Especially for dependability systems, testing is of great importance. In Chapter 11, we have
proposed a new method for system validation by means of testing, which is based on environment
models expressed as UML state machines. We extended a tool that can be used to generate
and execute test cases and to execute UML state machines. In our method we propose to
model requirements, facts, and assumptions explicitly by parallel state machines. We have
defined patterns that help the developer to model requirements with state machines. Using

1Integrity, availability, reliability are addressed in the safety and security context.
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the patterns, the environment model is structured in a way that parts can be easily re-used.
Modeling the environment adds diversity to the development process and thus helps to avoid
that the same mistake occurs for test development and SUT development.

Compliance to standards is an important property of many dependable systems. In Chap-
ter 12, we have related the presented work to the Common Criteria for security aspects and to
IEC/ISO 61508 for safety aspects. This helps to generate a documentation suitable for safety
and security certification and use synergies.

We have illustrated the presented work with a Cooperative Adaptive Cruise Control case
study and a Patient Care System Case study.

14.2. Future Work

The thesis covers the entire development process, and therefore it is not possible to address
all important and interesting research topics in the field of dependability engineering. In the
following sections, we outline the limitations of the methods presented in this thesis, sketch
interesting research questions, and give first ideas for these questions.

14.2.1. Hazard, Threat, and Vulnerability Analyses

In this thesis, the risk assessment and hazard analyses necessary for systems with safety re-
quirements and the threat and vulnerability analyses for systems with security requirements
are not integrated. An agenda that outlines the integration has been presented in Section 3.1.
Detailed validation conditions and procedures would help engineers in the task to perform these
analysis steps. With such procedures and validation conditions, missing hazards or threats can
be identified, and missing requirements that address the threat or hazard mitigation can be
detected.

14.2.2. Problem Frame Approach

The problem frame approach is currently scarcely applied in industry, because

• many diagrams have to be created for a real project,

• no tools suitable for industrial applications exist, and

• the notation is not known by the majority of engineers.

The translation of all diagrams of the problem frames approach into the well-known UML
notation is a first step to make the approach more applicable in industry. A UML-based tool
that can generate the diagrams with minimal user interaction could help to make the approach
more applicable.

14.2.3. Development of Further Requirements Patterns

Our patterns for dependability requirements are not complete. Patterns for maintainability
requirements are missing, and we did not specify any patterns for privacy requirements and
accountability requirements. With our set of patterns it is possible to describe the dependability
requirements of many systems. We are currently working on patterns for privacy requirements.
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14.2.4. Pattern System for Dependability Requirements

Our pattern system for dependability requirements is not complete. Especially, only a small
set of mechanisms is suggested for each requirement. Nevertheless, a huge set of real-live prob-
lems can be expressed and analyzed using this pattern system. By an investigation of applied
solutions, possible interactions, necessary requirements, domains to be considered, and related
requirements can be determined. To investigate applied solutions, existing specifications (e.g.,
public Security Targets) and standards (e.g., ISO/IEC 61508) can be used as an input. Another
interesting research question is the prioritization of dependability requirements. It is desirable
to build a tool to support interactive identification of missing and interacting requirements.

14.2.5. Specification of Dependable Systems

The method for the development of specifications presented in this thesis is currently limited to
functional requirements and security requirements expressed by sequence diagrams. Although
sequence diagrams are well-accepted in industry, other notations such as UML communication
diagrams can be generated in a similar way with different patterns. An interesting research
question is to extend the method presented in Chapter 7 and to develop patterns for other
dependability requirements that can be transformed into functional specifications.

14.2.6. Architecture of Dependable Systems

The architecture obtained by our method is not an optimized architecture, but a working one.
An interesting research question for further investigation is to extend our approach to support
the development of design alternatives and to support software evolution. Our approach is
limited on structural descriptions of software architectures. It is also desirable to give rules
for selecting appropriate design alternatives, evaluate the architectures for different dependabil-
ity requirements, optimize the architectures, and describe additional patterns for architectural
design.

14.2.7. Interface Behavior Description of Components

In this thesis no guidance and no patterns are provided for the interface description of compo-
nents. According to the selected generic mechanism, a set of patterns for behavioral description
between components can be provided. For example. the redundancy protocol in the PCS case
study could be expressed as a pattern. It is interesting to investigate how to extend our method
to also support automatically checking the coherence of behavioral descriptions with the struc-
tural descriptions.

14.2.8. Implementation of Dependable Systems

The implementation method for software components is presented in this thesis is limited to
Java, but it can be extended easily to support other object-oriented languages. Only a subset
of the rules for the implementation of safe and secure software is given in this thesis. It is
interesting to elaborate a more comprehensive set of rules from different standards addressing
all dependability requirement types.

14.2.9. Testing

Currently our method is limited to reactive systems that can be modeled with state machines.
Systems that are based on complex data types cannot be tested. It is an interesting task to
extend the tool and the method to be able to handle complex data types.
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The method can be adapted to use model checking instead of testing. For example, the model
and the requirements can be expressed with PROMELA (Process or Protocol Meta Language).
They could be analyzed, e.g., with the SPIN model checker.

14.2.10. Standards for Dependable Systems

In this thesis, we only provide a mapping between the aspects covered in this thesis and the
ISO/IEC 61508 and the Common Criteria. In the future, we plan to achieve a tighter integration
of ADIT and these standards: We plan to create guidelines describing the generation of docu-
mentation for certification according to these standards, and possibly also a tool that exports
this documentation from the model. We will consider additional standards, e.g. the ISO 26262,
which is a specific adaption of the standard ISO/IEC 61508 for automotive systems, or the ISO
27001, which is a standard for security management systems in companies.

14.2.11. Validiation of the Process

The complete process has been evaluated by its application on two case studies, the Cooperative
Cruise Control and the Patient Care System. Previous versions of the process and single aspects
have been evaluated on different case studies presented in the cited papers. An interesting
question is how the process scales to industrial applications. For an industrial application, the
tool support needs to be improved and the process has to be integrated into the established
processes in the given company.





AppendixA

ADIT steps

A.1. Step A1: Problem Elicitation and Description

A.1.1. Input, Output, Glossary, Validation

Input: informal description of the task natural language

Output: requirements R optative statements

domain knowledge D ≡ F ∧ A
indicative state-
ments

context diagram of system to be built
extended UML no-
tation

Glossary: definitions, designations
natural language /
formulas

domains natural language
phenomena natural language

Validation:
The domains and phenomena of the context diagram must be con-
sistent with R and D .

check manually

Phenomena controlled by a biddable domain must have counterpart
phenomena located between machine and causal, lexical, or designed
domains.

check manually

Biddable domains cannot be directly connected to lexical domains. check automatically
A context diagram has at least one machine domain. check automatically
The machine domain must control at least one interface. check automatically
There must be exactly one context diagram. check automatically
Connection domains must have at least one observed and one con-
trolled interface.

check automatically

The elements allowed in a package with the stereotype
�ContextDiagram� are:
• classes with stereotype �Domain� or any of its sub-types

• associations with stereotype �connection� or any of its sub-
types

• dependencies with stereotypes �controls�, �observes�, or
�isPart�

check automatically

The stereotypes �CausalDomain�, �DesignedDomain�,
�LexicalDomain�, �DisplayDomain�, or �Machine� are
not allowed together with �BiddableDomain�.

check automatically

A.1.2. Procedure

The procedure for this step is as follows:

1. Derive requirements from the given informal description.

2. Collect the necessary domain knowledge.

3. Describe the environment by setting up a context diagram using domains and phenomena.
To identify domains and phenomena in the derived requirements, we can use the following
heuristics:

Nouns are good candidates for domains.

Verbs are good candidates for phenomena.
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All items of the output can be developed in parallel. When e.g., a new requirement is identified,
it is possible that an additional phenomenon must be added to the context diagram or the
domain knowledge must be described in more detail.

A.2. Step A2: Problem Decomposition

A.2.1. Input, Output, Glossary, Validation

Input: all results of Step Problem Elicitation and Description

Output: set of subproblems
extended UML no-
tation

Glossary: machine domains of subproblems natural language
new phenomena and domains (if introduced) natural language
name of composed requirements natural language

Validation: A problem diagram has exactly one machine domain. check automatically
Requirements do not constrain a machine domain. check automatically
Requirements do not constrain biddable domains. check automatically
A problem diagram contains at least one requirement. check automatically
All subproblems can be derived from the context diagrams by means
of decomposition operators.

check automatically

Connection domains must have at least one observed and one con-
trolled interface.

check automatically

The machine domain must control at least one interface. check automatically
Dependency �contains� is only allowed between interfaces. check automatically
Dependency �restricts�, �complements�, or �similar� is only
allowed between statements or any of their sub-types.

check automatically

Dependency �constrains� and�refersTo� point from statements
to domains.

check automatically

Elements allowed in a package with the stereotype
�ProblemDiagram� or �ProblemFrame� are:
• classes with stereotype �Domain� or any of its sub-types

• classes with stereotype �Statement� or any of its sub-types

• associations with stereotype �connection� or any of its sub-
types

• dependencies with stereotypes �refersTo�,
�constrains�, �controls�, �observes�,
�isPart� or �complements�

check automatically

Dependency �concretizes� or �refines� is only allowed between
(a) interfaces,

(b) classes with stereotype�Domain� or any of its sub-types and
classes with stereotype �ConnectionDomains� or any of its
sub-types

(c) classes with stereotype �ConnectionDomains� or any of its
sub-types and associations with stereotype �connection� or
any of its sub-types or interfaces

check automatically

All requirements R are covered in some subproblem, i.e., a class
with stereotype �Statement� has at least one �constrains� de-
pendency.

check automatically

The problem diagrams must be consistent with the context diagram
• The submachines of the problem diagrams must be part of the

machine(s) in the context diagram.
check automatically

A.2.2. Procedure

In a problem diagram, the knowledge for a sub-problem described by a set of requirements is
represented. A problem diagram can be systematically derived from the context diagram by
means of decomposition operators. To obtain these subproblems, proceed as follows:

1. Identify subsets of related requirements that could be solved by one subproblem.

2. Make use of decomposition operators (see Section 4.1.4) for deriving the subproblems as
projections of the overall problem stated in the context diagram.
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3. Set up a problem diagram for each subproblem.

A.3. Step A3: Abstract Machine Specification

A.3.1. Input, Output, Glossary, Validation

Input: All results of Step Problem Decomposition
All results of Step Problem Elicitation and Description

Output:
set of abstract submachine specifications Sabstract represented by
sequence diagrams

UML notation

Glossary: state predicates
natural language/
formulas

validation: Sabstract ∧D are non-contradictory, Sabstract ∧D ⇒ R check manually
messages and phenomena are consistent check automatically
there exists at least one scenario for each subproblem check automatically
for each subproblem scenarios exist that consider normal and ex-
ceptional cases

check manually

A.3.2. Procedure

1. Derive a specification for the machine: For each subproblem, we check if the corresponding
requirements are implementable and identify necessary domain knowledge. In Section 7.1,
we stated three conditions when a requirement is not implementable and give guidance for
deriving the specification.

2. For each subproblem, draw sequence diagrams that capture normal as well as exceptional
cases to express the specification.

a) For each domain which is directly connected to the machine in a problem diagram, a
lifeline is drawn. Biddable domains are represented as actors.

b) The phenomena from the environment to the machine are represented by asyn-
chronous signals between lifelines.

c) Phenomena to lexical domains are represented by synchronous signals.

d) Add user feedback, where appropriate.

e) Introduce state predicates serving as pre- and postcondition on the lifeline of the
machine, where applicable.

f) Introduce getter and setter messages with corresponding return messages.

A problem diagram does not contain getter or setter phenomena. However, we need
them in a sequence diagram. Therefore, we add them where appropriate. We propose
the following naming convention for getters: ’get ’ followed by the message name.
The same applies to setters.

g) Add timing constraints and lost/found messages, where appropriate.
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A.4. Step A4: Technical Context Diagram

A.4.1. Input, Output, Glossary, Validation

Input: Results of Step Problem Elicitation and Description
All results of Step Problem Decomposition

Output: Technical context diagram
extended UML no-
tation

Glossary: New phenomena and domains natural language
Technical description of interfaces natural language

Validation: New phenomena and domains are suitable to implement Sabstract check manually
The technical context diagram must be consistent to the problem
diagrams

check automatically

Each machine in the technical context diagram must be a machine
in the context diagram

check automatically

Elements allowed in a package with the stereotype
�TechnicalContextDiagram� are:
• classes with stereotype �Domain� or any of its sub-types

• associations with stereotype �connection� or any of its sub-
types

• dependencies with stereotypes �controls�, �observes�, or
�isPart�

check automatically

There is at least one machine domain in a technical context diagram check automatically

A.4.2. Procedure

1. Collect the results from the subproblem decomposition (new domains and phenomena).

2. Introduce necessary connection domains.

3. Identify the technical interfaces that must be considered. Technical phenomena (such as
TCP/IP packets, SMTP commands, etc.) should be used.

4. Describe the technical phenomena in detail or refer to an existing technical specification.

Rules for the technical context diagrams:

• The operators “introduce connection domain” and “introduce shared phenomena” (for
that connection domain) are allowed.

• The operators “Refine phenomena” and “Combine (i.e., abstract) phenomena” are allowed.

• Domains with no direct connection to the machine are left out.
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A.5. Step A5: Operations and Data Specification

A.5.1. Input, Output, Glossary, Validation

Input: all results of Step Abstract Machine Specification

Output: class model for machine state UML notation

operation specification for each abstract submachine specification
operations with
OCL

Glossary: class names natural language
attribute names natural language
auxiliary function names natural language
association names and role names natural language
relation between state predicates in Step Abstract Machine Specifi-
cation and pre-/postconditions

natural language/
OCL

Validation:
Exactly the operations occurring in the abstract specification in
Step Abstract Machine Specification must be described

check automatically

Operation specifications must be consistent with abstract specifica-
tions in Step Abstract Machine Specification

check manually

For each described operation, a pre- and postcondition must exist check automatically
The pre- and postconditions expressed in OCL must be syntactically
correct

check automatically

The postcondition covers all cases exhibited in the abstract specifi-
cation of Step Abstract Machine Specification

check manually

All parameters of operations must be known by the caller and all
parameters of sent messages must be known by the machine

check manually

Parameters must be used in the pre- and/or postcondition check manually
Operation specification must be consistent with class model of the
machine state

check automatically

All classes, associations, and attributes newly introduced in the class
model must be motivated by some operation specification

check manually

A.5.2. Procedure

1. Collect all operations contained in the abstract specification (arrow from the environment
to the machine) and associated output events (arrows from the machine to the environ-
ment). Lexical domains are considered to be part of the machine.

2. For each operation, create exactly one operation schema.

a) Enter the name of the operation in the section Name. The name must be equal to
the name introduced in the abstract specification.

b) Enter a short description of the operation in the section Description based on the
textual task description.

c) Draw a class diagram serving as class model:

• For each lifeline except actors, a class is drawn.

• Operations contained in the abstract specification (arrow from the environment
to the machine) are operations of the submachine. Decide what user input is
necessary to achieve the informally described effect of the operation and add
parameters accordingly.

• Output events (arrows from the machine to the environment) are operations of
display domains. The names of the output events must be equal to the names
introduced in the abstract specification. Possibly parameters must be added.
Biddable domains do not occur in the class diagram.

d) Specify a Precondition. The precondition of the corresponding sequence diagram
must be taken into account.

e) Specify a Postcondition.

f) Update the class diagram:
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• Collect newly introduced classes, attributes, associations, etc. and add necessary
dataTypes, enumerations and auxiliary functions. Functions that correspond to
API functions are added to a special class APIProvided .

g) Enter additional information about the operation, i.e., about auxiliary functions,
conceptual remarks, etc., in the section Remarks.

3. Collect all used state predicates in the class models and define them.

A.6. Step A6: Machine Life-Cycle

A.6.1. Input, Output, Glossary, Validation

Input:
All results of Steps Abstract Machine Specification and Operations
and Data Specification

Output: Relationship of abstract specifications
life-cycle expres-
sions

Glossary: new life-cycle expression names natural language

Validation:
Each sequence diagram of Step Abstract Machine Specification is
contained in at least one life-cycle expression

check manually

For each biddable domain exactly one life-cycle exists check manually
The life-cycles must be consistent with the state predicates in Step
Abstract Machine Specification

check manually

The life-cycles must be consistent with the pre- and postconditions
in Step Operations and Data Specification

check manually

Exactly one life-cycle exists for the machine domain, that combines
all life-cycles

check manually

A.6.2. Procedure

1. Set up exactly one life-cycle for each biddable domain:

a) Collect all names of sequence diagrams, where the respective biddable domain invokes
an operation.

b) Combine life-cycle expressions for a biddable domain by means of life-cycle operators.
Note that the pre-clause of the current operation must be implied by the post-clause
of the previous operation.

c) Check consistency between state predicates and each life-cycle.

2. Set up exactly one life-cycle for the machine domain:

a) Collect all names of sequence diagrams, that specify internal operations.

b) Combine life-cycles of biddable domains and internal operations by means of life-cycle
operators.

c) Check consistency between state predicates and machine life-cycle.
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A.7. Step D1a: Initial Architecture

A.7.1. Input, Output, Glossary, Validation

Input: Results of Step Problem Decomposition
Results of Step Technical Context Diagram

Output: Initial software architecture
UML composite
structure diagram

Specification of initial component interfaces
UML interface
classes or references
to APIs

Glossary: component names natural language

Validation:
For each provided or required interface of machine ports in the ar-
chitecture, there exists a corresponding interface in the technical
context diagram.

check manually

There is one component for each submachine related to the given
machine of the technical context diagram as well as for all relevant
lexical domains found in the problem diagrams.

check manually

The internal components have the stereotype �Component� or
�ReusedComponent�.

check automatically

The internal components are connected to each other and to the
external ports according to the connections in the technical context
diagram /subproblems.

check manually

The stereotypes of the connectors are consistent to the associations
of the technical context diagram.

check manually

A.7.2. Procedure

Repeat this procedure for each machine in the technical context diagram:

• Select a machine in the technical context diagram. We create an initial architecture dia-
gram for this machine.

– Collect all domains that have a direct connection to this machine and are not part of
the machine domain. For each of these domains we define a corresponding external
port.

– Define required and provided interfaces for the external ports according to the ob-
served and controlled interfaces of the technical context diagram.

– Collect all sub-machines as well as relevant lexical domains related to the machine in
the technical context diagram. A lexical domain is considered to be relevant if it has
a composition/aggregation relation to a machine domain.

The sub-machines and lexical domains become internal components.

– Add ports to the internal components.

This is done according to the associations found in the problem diagrams. We create
one port per association. These ports are considered as component ports.

– Define required and provided interfaces for the component ports according to the
observed and controlled interfaces of the corresponding problem diagram(s).

We have identified the following cases for defining such required and provided inter-
faces:

1. An observed interface in a problem diagram corresponds to a provided interface
of the component.

This case applies if the controlling domain is not lexical. The domain type of the
observing component does not matter, i.e., it may or may not be lexical.

Define an interface implementation from the component port to the interface.
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2. A controlled interface in a problem diagram corresponds to a required interface
of the component.

This applies if the controlling component is not lexical. The domain type of the
observing component does not matter, i.e., it may or may not be lexical.

Define a �use�-dependency from the component port to the interface.

3. A controlled interface in a problem diagram corresponds to a required interface
with operations with return values of the component.

This case applies if the component is lexical and the observing domain is not
lexical.

Create a new “getter”-interface

To create the name of this interface, we use ’get ’ followed by an operation name
of the interface controlled by the lexical component. Add necessary return values,
where applicable. This is repeated for each operation. The overall name of the
“getter”-interface starts with ’{’ and ends with ’}’.

or

add the elements to an already existing “getter”-interface for this component.

Define a �concretizes�-dependency from the “getter”-interface to the interface
controlled by the lexical component.

Define an interface implementation relation from the component port to the
“getter”-interface.

4. An observed interface in a problem diagram corresponds to a required interface
with operations with return values of a component.

This case applies, if the component is not lexical and the controlling domain is
lexical.

Since lexical domains cannot call operations of other components, it is necessary
to create a “getter”-interface or add the elements to an already existing “getter”-
interface for this component.

The name of this interface is created by using ’get ’ followed by an operation
name of the interface controlled by the lexical component. Add necessary return
values, where applicable. This is repeated for each operation. The “getter”-
interface name starts with ’{’ and ends with ’}’.

Define a �concretizes�-dependency from the “getter”-interface to the interface
controlled by the lexical component.

Define a �use�-dependency from the component port to the “getter”-interface.

• Connect the component ports to the component ports according to the connections found
in the problem diagram.

• Connect component ports to component ports according to the connections found in the
technical context diagram.

The “setter”-interfaces correspond to phenomena names. Therefore, it is not necessary to treat
them in a special way.
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A.8. Step D1b: Implementable Architecture

A.8.1. Input, Output, Glossary, Validation

Input: Result of Step Initial Architecture
Results of Step Machine Life-Cycle

Output: Implementable software architecture
UML composite
structure diagram

Specification of components and their interfaces
UML interface
classes or references
to APIs

Glossary: component names natural language

Validation:
The facade has port types that correspond to the external ports of
the initial architecture.

check manually

The facade has ports corresponding to the component ports. The
port types are the inverse of the component ports.

check manually

A �concretizes� dependency exists from the implementable archi-
tecture to the initial architecture.

check manually

The stereotypes of the connectors to the facade are the same as in
the initial architecture.

check manually

A.8.2. Procedure

For each initial architecture do the following:

• If several internal components are connected to one or more external interface(s) in the
initial architecture, a facade component (see the corresponding design pattern by Gamma
et al. (1995b)) may be added. That component has one provided interface containing all
operations of the corresponding component port and several used interfaces provided by
the submachine components.

• If a facade has to ensure that the operations are called in a certain order, the facade
component will contain an internal coordinator component. Such a coordinator is usually
required if the component is connected to a biddable domain to assure that certain things
are done in a specific order. A coordinator may also be necessary if certain interaction
restrictions must be enforced. The software life-cycle for the respective biddable domain
states how the coordinator has to be built.

• Add connectors between internal components and facade as well as between facade and
external port.

• Apply patterns solving known problems. For example, for problems that automatically
trigger actions, add a component responsible for handling timing.

A.9. Step D1c: Re-structure Software Architecture

A.9.1. Input, Output, Glossary, Validation

Input: Results of Step Implementable Architecture
Results of Step Technical Context Diagram

Output: Software architecture of a specific architectural style
UML composite
structure diagram

Glossary: component names, e.g., of adapters, user interface natural language

Validation:
All components of the implementable architecture must be con-
tained in the layered architecture.

check manually

The connectors connected to the ports in the layered architecture
must have the same stereotypes or more specific ones than in the
implementable architecture.

check manually
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A.9.2. Procedure

In our layered architecture, we distinguish three different layers. The first and at the same
time the highest layer is the application layer. One or more components of this layer implement
the core functionality of the software. Their interfaces usually reflect the phenomena found
in the context diagram. The application components are clearly separated from components
responsible for handling auxiliary functionalities, such as translating signals from (hardware)
drivers to signals of the application components and vice-versa. These components are called
adapters and form the second, middle layer. The last and lowest layer consists of the hardware
abstraction layer (HAL) and components realizing user interfaces. The signals processed at
the interfaces are used to communicate with the environment and usually correspond to the
phenomena found in the technical context diagram.

There is no universally valid approach on how to assign the different components to the different
layers. Many design decisions have to be made by the developer. Therefore, many decisions
rely on the personal experience of the developer. In the following, we illustrate our approach to
tackle the arising design decisions.

To obtain a layered architecture we have to assign all components from the implementable
architecture to one of the layers:

• Assign submachine components to the application layer.

Add one port for each occurring port type of the submachine components.

• Facades related to causal domains: split facade into three parts

1. A facade, which can be assigned to the application layer.

Note that coordinator components for physical connections usually belong the the
application layer.

A facade in the application layer serves to keep the interfaces “narrow”.

2. An adapter, which can be assigned to the middle layer.

3. A (re-used) component, which can be usually assigned to the lowest layer.

• Facades related to biddable domains: split into two parts

1. A facade, which can be assigned to the application layer.

2. A user interface, which can be assigned to the middle/lowest layer.

Note that coordinator components for biddable domains should be part of the corre-
sponding user interface component.

However, before actually assigning a component part to the application or middle layer, we
ask ourselves “Is this component really necessary?” For example, “Is this adapter really
necessary?” The answer in this case is no should the adapter only implement a function
call or pass on data without processing it further (i.e., it is considered as trivial).

• Connection stereotypes of the technical context diagram (referring to external interfaces)
and the context diagram (referring to interfaces of the application layer) help in identifying
new components, e.g., user interfaces or network drivers and corresponding adapters.
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A.10. Step D2: Inter-Component Interaction

A.10.1. Input, Output, Glossary, Validation

Input: results of Step Machine Architecture
results of Step Operations and Data Specification

Output: interface behavior of all components for all operations
UML sequence dia-
grams

Glossary: new messages
new state predicates, if introduced

Validation:
the sequence diagrams must be consistent with the behavior de-
scribed in Step Abstract Machine Specification and in Step Machine
Life-Cycle

check manually

the sequence diagrams must realize the operations described in Step
Operations and Data Specification

check manually

all messages in the application interface classes of Step Machine
Architecture must be used in some sequence diagram

check manually

direction of messages must be consistent with the required and pro-
vided interfaces of Step Machine Architecture

check manually

messages must connect components as connected in the software
architecture of Step Machine Architecture

check manually

it must be possible to relate any new state predicates to the state
predicates of Step Abstract Machine Specification

check manually

A.10.2. Procedure

For each operation we identified in Step Operations and Data Specification:

1. Select the software components that realize the operation.

2. Collect the interface classes of the corresponding software components.

3. Create a sequence diagram that describes the communication flow between the software
components such that the postcondition of the operation can be fulfilled.

4. Universally quantified expressions and set comprehensions contained in the postcondition
of the operation are translated into loop combined fragments.

5. Re-use names of variables and parameters contained in the corresponding operation schema.
If necessary, invent missing variables, parameters, and state predicates.

6. Use APIs of re-used software components and given domains (e.g., database management
systems, web server).

7. Use synchronous messages only (exception: messages from or to the environment without
feedback).

A.11. Step D3: Intra-Component Interaction

A.11.1. Input, Output, Glossary, Validation

Input: all results of Step Inter-Component Interaction
class and operation model of Step Operations and Data Specification

Output:
architectural description including interface descriptions of complex
components

UML class diagram
or composite struc-
ture diagram

intra-component interaction
UML sequence dia-
grams

description of internal functions as appropriate

glossary: new messages
new state predicates if introduced

Validation:
sequence diagrams of one component must be consistent with the
same interface behavior in Step Inter-Component Interaction

check manually

it must be possible to relate any new state (predicates) to the state
predicates of Step Inter-Component Interaction

check manually
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A.11.2. Procedure

1. Set up a preliminary structure of complex components

• For lexical domains take the class diagram of Step Operations and Data Specification
into account.

• If applicable use design patterns

2. For each sequence diagram of Step Inter-Component Interaction select the operations and
the corresponding output messages of the component to be described and create a sequence
diagram.

3. Set up a behavioral design for each operation; further messages and auxiliary functions
can be invented.

4. Add newly introduced messages and auxiliary functions to the architectural description.

A.12. Step D4: Complete Component or Class Behavior

A.12.1. Input, Output, Glossary, Validation

Input: results of Step Machine Architecture
all results of Steps Inter-Component Interaction and Intra-
Component Interaction
results of Step Machine Life-Cycle

Output:
complete internal behavior of the class or component (if it has more
than two different states)

UML state ma-
chines

Glossary: new state predicates if introduced

Validation:
the state machines must describe the same behavior as in Step Inter-
Component Interaction or Step Intra-Component Interaction

check manually

the state machines must be consistent with the life-cycle model of
Step Machine Life-Cycle

check manually

A.12.2. Procedure

For each component of the software architecture of Step Re-structure Software Architecture
check whether a state machine is necessary.

• For re-used components no state machine must be created.

• Check the corresponding sequence diagrams together with the life-cycle expression if more
than two states are to be expected.

• Check whether a refinement of the component exists in Step Inter-Component Interaction.
If a refinement exists, the subsequent steps must be performed on the results of Step
Intra-Component Interaction.

For each component of Step Re-structure Software Architecture where a state machine is
necessary, perform the following steps according to the sequence diagrams:

• Messages to the component or class are triggers for a transition.

• Messages from the component or class are output signals or actions.

• Explicitly mentioned state predicates are transformed into states.

• Introduce new states where necessary.

• The states reached after a transition must be consistent with the life-cycle model.
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A.13. Step I1: Implementation and Unit Test

A.13.1. Input, Output, Glossary, Validation

Input: interface behavior of Steps Inter-Component Interaction and
Intra-Component Interaction
interfaces and components of Step Machine Architecture

complete interface behavior of Step Complete Component or Class Behavior

operation model of Step Operations and Data Specification

Output: unit tests with expected results source code
implementation source code
test drivers and test stubs source code

Glossary:
names and purpose test drivers/test stubs comments in source code

names and purpose test cases comments in source code

Validation: tests pass check automatically

A.14. Step T1: Component Tests

A.14.1. Input, Output, Glossary, Validation

Input: life-cycle of Step Machine Life-Cycle
interface behavior of Steps Inter-Component Interaction and
Intra-Component Interaction
implementation of Step Implementation and Unit Test

Output: component tests with expected results source code
test drivers and test stubs source code

Glossary:
names and purpose test drivers/test stubs comments in source code

names and purpose test cases comments in source code

Validation: tests pass check automatically

A.14.2. Procedure

• Each sequence diagram of Step Inter-Component Interaction must be covered by test cases.

• To test internal operations, Step Intra-Component Interaction can be consulted.

• Use concrete values according to equivalence classes.

• JUnit can be used for testing components.

• The following procedure should be performed for all components:

1. Instantiate all classes that implement the component.

2. Create stubs for all components in the environment.

3. Connect the component to stubs (maybe additional code for testing must be inserted).

4. For each sequence diagram:

– For each message the component sends to its environment, define the expecta-
tions. The method verify(...) can be used to specify how often a certain stub
expects the messages.

– If messages have return values, the expected return values must be defined.

– For each message to the component, the corresponding operation must be called
with concrete parameters.
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– If the component returns a value, it must be checked with assertEquals(...).

Alternative for components accessing a database

For each test case:

1. Set database to a defined state (using SQL-statements).

2. For each message to the component and expected database state:

• Call operation with concrete parameters.

• Check database state (using SQL-statements).

3. Reset database state (using SQL-statements).

A.15. Step T2: System Test

A.15.1. Input, Output, Glossary, Validation

Input: life-cycle of Step Machine Life-Cycle
interface behavior of Step Abstract Machine Specification

implementation of Step Implementation and Unit Test

Output:
“system tests” (machine tests, black-box) with expected results source code

test drivers and test stubs source code

Glossary:
names and purpose test drivers/test stubs comments in source code

names and purpose test cases comments in source code

Validation: tests pass check automatically

A.15.2. Procedure

• Each sequence diagram of Step Abstract Machine Specification must be covered by test
cases.

• Use concrete values according to equivalence classes.

• JWebUnit can be used for testing web applications.

• The following procedure should be performed:

1. For each message to the machine, the corresponding request (e.g. HTTP-POST or
HTTP-GET) must be sent with concrete parameters.

2. For each message from the machine to the environment, define the expectations.

A.16. Step T3: Acceptance Test

A.16.1. Input, Output, Glossary, Validation

Input: life-cycle of Step Machine Life-Cycle
subproblems of Step Problem Decomposition with corresponding
requirements of Step Problem Elicitation and Description

implementation of Step Implementation and Unit Test

Output: test description and test data for black-box tests natural language

Glossary: test cases

Validation: tests pass check manually
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A.16.2. Procedure

Remarks:

• Use checklists with expected results to describe test cases.

• Test data should come from the application domain.

1. Perform installation test.

2. Perform tests in intended environment.

3. Perform usability and performance tests.
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AppendixB

CACC case study - additional

figures

Figure B.1.: Mapping of CACC Problem Diagram and Context Diagram
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Figure B.2.: Port Type Definition of External Ports
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Figure B.3.: Port Type Definition of Internal Ports



AppendixC

OCL expressions

C.1. General constraints

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().name ->includes(’Domain ’) or

3 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

4 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

5 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

6 ->isUnique(name)

Listing C.1: Name of domains must be unique

We select the classes with the stereotype �Domain� or any of its sub-types (lines 1-5) and
check if the names are unique using the built-in operation isUnique (line 6).

1 Interface.allInstances () ->isUnique(name)

Listing C.2: Name of interfaces must be unique

We check that all names of interfaces are unique using the built-in operation isUnique.

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().name ->includes(’Statement ’) or

3 getAppliedStereotypes ().general.name ->includes(’Statement ’) or

4 getAppliedStereotypes ().general.general.name ->includes(’Statement ’) or

5 getAppliedStereotypes ().general.general.general.name

->includes(’Statement ’))

6 ->isUnique(name)

Listing C.3: Name of statements must be unique

We select the classes with the stereotype �statements� or any of its sub-types (lines 1-5) and
check if their names are unique using the build-in operation isUnique (line 6).

1 Class.allInstances () ->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Domain ’) or

3 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’Domain ’)

or

4 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

5 oe.oclAsType(Class).getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’))

6 ->select(c | c.oclAsType(Class).getValue(c.oclAsType(Class).getAppliedStereotypes ()

->select(s |

7 s.oclAsType(Stereotype).name ->includes(’Domain ’) or

8 s.oclAsType(Stereotype).general.name ->includes(’Domain ’) or

9 s.oclAsType(Stereotype).general.general.name ->includes(’Domain ’) or

10 s.oclAsType(Stereotype).general.general.general.name ->includes(’Domain ’))

11 ->asSequence() ->first(),’abbreviation ’)=null) ->size()=0

Listing C.4: The property abbreviation of a domain must be set



236 Appendix C. OCL expressions

First, we select all classes marked with the stereotype �Domain� or any of its sub-types (lines
1-5). Second, we select the values (keyword getValue, line 6) for the selected stereotypes (lines
6-10) and check whether the resulting bag of abbreviation-properties with the value null is empty
(line 11).

1 Class.allInstances () ->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Domain ’) or

3 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’Domain ’)

or

4 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

5 oe.oclAsType(Class).getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’))

6 ->collect(c | c.oclAsType(Class).getValue(c.oclAsType(Class).getAppliedStereotypes ()

->select(s |

7 s.oclAsType(Stereotype).name ->includes(’Domain ’) or

8 s.oclAsType(Stereotype).general.name ->includes(’Domain ’) or

9 s.oclAsType(Stereotype).general.general.name ->includes(’Domain ’) or

10 s.oclAsType(Stereotype).general.general.general.name ->includes(’Domain ’))

11 ->asSequence() ->first(),’abbreviation ’)) ->isUnique(oclAsType(String))

Listing C.5: The abbreviation of a domain must be unique

We select the classes having the stereotype �Domain� or any of its sub-types assigned (lines
1-5). For these classes, we collect the property values (lines 6-10) and check whether the value
of the property abbreviation is unique (line 11).

1 Class.allInstances () ->forAll(oe |

2 (oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Domain ’) or

3 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’Domain ’)

or

4 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

5 oe.oclAsType(Class).getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’))

6 implies

7 oe.oclAsType(Class).getAppliedStereotypes () ->forAll(s |

8 (s.oclAsType(Stereotype).name ->includes(’Domain ’) or

9 s.oclAsType(Stereotype).general.name ->includes(’Domain ’) or

10 s.oclAsType(Stereotype).general.general.name ->includes(’Domain ’) or

11 s.oclAsType(Stereotype).general.general.general.name

->includes(’Domain ’))

12 implies

13 oe.oclAsType(Class).getValue(s,’abbreviation ’)=

14 oe.oclAsType(Class).getValue(oe.oclAsType(Class).getAppliedStereotypes ()

->select(s1 |

15 s1.oclAsType(Stereotype).name ->includes(’Domain ’) or

16 s1.oclAsType(Stereotype).general.name ->includes(’Domain ’) or

17 s1.oclAsType(Stereotype).general.general.name ->includes(’Domain ’) or

18 s1.oclAsType(Stereotype).general.general.general.name

->includes(’Domain ’))

19 ->asSequence() ->first(),’abbreviation ’)))

Listing C.6: The same abbreviation is used for all stereotypes of a domain

It is possible to assign more than one stereotype to one domain. However, we only have one
abbreviation per domain. Thus, the abbreviation property for the different domain stereotypes
assigned to one domain must be the same. We check this condition as follows: For each class
with the stereotype �Domain� or any its sub-types (lines 1-5) the domain stereotype (s, lines
7-11) must have the same (line 13) abbreviation as the first domain stereotype (line 14-19).

1 Dependency.allInstances ()->select(

2 getAppliedStereotypes ().name -> includes(’isPart ’)

).source ->forAll(oclIsTypeOf(Package) or oclIsTypeOf(Model))

Listing C.7: The �isPart�-dependencies are only allowed with a package or a model as source
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This expression checks whether all dependencies with the stereotype �isPart� (line 1) have a
package or the model as source (line 2).

1 Interface.allInstances () ->forAll(i | let dif: Set(Dependency) =

2 Dependency.allInstances ()->select (d | d.target

->exists(oclAsType(Interface)=i))

3 in

4 dif ->select(r | r.oclAsType(Relationship).getAppliedStereotypes ().name

5 ->includes(’controls ’)) ->size()=1

6 implies dif ->select(r |

r.oclAsType(Relationship).getAppliedStereotypes ().name

7 ->includes(’observes ’)) ->size() >=1 )

Listing C.8: A controlled interface must be observed by at least one domain

We check that a relationship with the stereotype �controls� (lines 4 and 5) found within the
set of interfaces (lines 1 and 2) must have at least one �observes� relationship (lines 6 and 7).

1 Dependency.allInstances () ->select(getAppliedStereotypes () .name

2 ->includes(’observes ’) ).target ->forAll(ot | Dependency.allInstances ()

3 ->select(getAppliedStereotypes ().name ->includes(’controls ’) )

4 ->select(target ->exists(ct| ct=ot) )->size()=1 )

Listing C.9: An observed interface must be controlled by exactly one domain

An observed interface must be controlled by exactly one domain. We select all �observes�-
dependency targets (lines 1 and 2). Next, we select the the�controls�-dependencies belonging
to the aforementioned dependencies (lines 2 and 3). Afterwards, we check for each�controls�-
dependency whether there exists exactly one target (line 4). Note that used and provided
interfaces of the architecture are not being considered at this place.

C.2. Constraints related to the context diagram

1 (*@\label{OneCDOne}@*) Package.allInstances () ->select(getAppliedStereotypes ().name

2 ->includes(’ContextDiagram ’)) ->size()=1

Listing C.10: There must be exactly one context diagram

All packages in the model (line 1) having the stereotype�ContextDiagram� assigned (keyword
getAppliedStereotypes in line 2) are selected. We then check that the number of packages in the
resulting bag is equal to one (line 2).

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name

2 ->includes(’ContextDiagram ’)).ownedElement

3 ->forAll(oe |

4 (oe.oclIsTypeOf(Class) and

5 (oe.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Domain ’) or

6 oe.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’Domain ’) or

7 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

8 oe.oclAsType(Class).getAppliedStereotypes ().general.general

9 .general.name ->includes(’Domain ’) ) or

10 oe.oclIsTypeOf(Interface) or

11 (oe.oclIsTypeOf(Association) and

12 (oe.oclAsType(Association).getAppliedStereotypes ().name

->includes(’connection ’) or

13 oe.oclAsType(Association).getAppliedStereotypes ().general.name

->includes(’connection ’) or

14 oe.oclAsType(Association).getAppliedStereotypes ().general.general

15 .name ->includes(’connection ’) or
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16 oe.oclAsType(Association).getAppliedStereotypes ().general.general

17 .general.name ->includes(’connection ’) ) ) or

18 (oe.oclIsTypeOf(Dependency) and

19 (oe.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’controls ’) or

20 oe.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’observes ’) or

21 oe.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’isPart ’))

22 )or

23 oe.oclIsTypeOf(Comment)

24 )

25 )

Listing C.11: Allowed elements for a context diagram

First, we select the package that is annotated with the stereotype
�ContextDiagram� (lines 1-2) as well as all the elements associated to it (keyword ownedEle-
ment ; line 2). Second, we check for each owned element oe (line 3) whether it is allowed to
appear in a context diagram. The allowed elements are:

• Classes with the stereotype �Domain� or any of its sub-types (lines 4 - 9) assigned.

• Interfaces (line 10). Currently no restrictions considering the stereotypes for interfaces
exist.

• Associations with the stereotype �connection� or any of its sub-types, e.g., �ui� for a
user interface assigned (lines 11-17).

• Dependencies with �controls�, �observes�, or �isPart� as stereotype.

• Comments (line 23). Currently, no limitations considering comments exist.

1 Package.allInstances () ->select(p |

2 p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’ContextDiagram ’)

3 ) -> forAll (p |

4 p.clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

5 .target ->select(cd_elem |

6 cd_elem .oclIsTypeOf(Class) and cd_elem

.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Machine ’)

7 ) ->size() >=1

8 )

Listing C.12: A context diagram has at least one machine domain

A context diagram must contain at least one machine: We first select all packages with the
appropriate stereotype, i.e, �ContextDiagram� (lines 1 and 2). For the resulting package (we
only have one package with this stereotype assigned, see Listing C.10 on the previous page) we
collect all dependencies (keyword clientDependency line 4) and select those with the stereotype
�isPart� (line 4). Using the target ends of the dependencies, we collect all elements of the
package and select (line 5) those (cd elem; line 6) being classes with the stereotype�Machine�
(line 6) assigned. The size of the resulting bag must be greater than or equal to one (line 7).

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name

2 ->includes(’ContextDiagram ’)).clientDependency.target

3 ->select(oclIsTypeOf(Class)).oclAsType(Class)

4 ->select(oe | (

5 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’BiddableDomain ’) or

6 oe.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’BiddableDomain ’)

7 ) and (

8 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’CausalDomain ’) or
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9 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’CausalDomain ’)

or

10 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’CausalDomain ’)

11 ) ) ->size()=0

Listing C.13: The stereotypes biddable and causal are not allowed to appear together

It is possible to assign several stereotypes to one domain. However, not all combinations are
allowed. For instance, it is not possible to have a domain which is biddable and causal at
the same time. To check that the stereotypes, �BiddableDomain� and �CausalDomain� are
not applied to the same class, we select the classes belonging to the context diagram (lines
1-3). Next, we select those classes that have the stereotype �BiddableDomain� or a direct
sub-type of �BiddableDomain� (lines 4-7) and the stereotype �CausalDomain� or a sub-type
of �CausalDomain� (lines 8-10) assigned. We then check whether the resulting bag is empty,
i.e., the size of the bag is equal to zero (line 11).

1 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’))->asSequence()->first()

2 .ownedElement ->select(oclIsTypeOf(Association)).oclAsType(Association)

3 ->forAll(a: Association |

4 not (

5 a.endType

->select(oclIsTypeOf(Class)).oclAsType(Class).getAppliedStereotypes ().name

->includes(’BiddableDomain ’)

6 and a.endType

->select(oclIsTypeOf(Class)).oclAsType(Class).getAppliedStereotypes ().name

->includes(’LexicalDomain ’)

7 )

8 )

Listing C.14: Biddable domains are not directly connected to lexical domains

A biddable domain cannot directly interact with a lexical domain. Therefore, we check this
condition as follows: For all associations of the context diagram (lines 1 and 2) we check that
the association ends (keyword endType) do not connect biddable and lexical domains (lines
3-6).

1 Package.allInstances ()

2 ->select(p | p.oclAsType(Package).getAppliedStereotypes ().name

3 ->includes(’ContextDiagram ’) )

4 .clientDependency.target ->select(oe |

5 oe.oclAsType(Class).getAppliedStereotypes ().name

->includes(’ConnectionDomain ’))

6 .oclAsType(Class)->forAll(c |

7 c->select (clientDependency.getAppliedStereotypes ().name

->includes(’observes ’)) ->size() >=1

8 and

9 c->select (clientDependency.getAppliedStereotypes ().name

->includes(’controls ’)) ->size() >=1

10 )

Listing C.15: Connection domains in the context diagram have at least one observed and one controlled
interface

Connection domains in the context diagram (lines 1-6) must have at least one observed interface
(line 7) and one controlled interface (line 9).

1 Package.allInstances ()

2 ->select(p | p.oclAsType(Package).getAppliedStereotypes ().name

3 ->includes(’ContextDiagram ’) )

4 .clientDependency.target ->select(getAppliedStereotypes ().name

->includes(’Machine ’) )

5 ->forAll( oclAsType(Class).clientDependency
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6 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

7 ->size() >=1 or

8 oclAsType(Class).generalization ->size() >0 )

Listing C.16: Each machine controls at least one interface

To check that each machine controls at least one interface each, all classes in the context diagram
with the stereotype �Machine� are selected (lines 1-3). For these classes, the dependencies
(keyword clientDependency, line 5) with the stereotype �controls� assigned are collected (line
6). The number of these dependencies must be greater than or equal to one (line 7). This condi-
tion is not necessary for classes being a specialization of another machine (using generalization,
line 8).

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name

2 ->includes(’ContextDiagram ’)).clientDependency.target

3 ->select(oclIsTypeOf(Class)).oclAsType(Class)

4 ->forAll(oe | (

5 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’DesignedDomain ’)

6 ) implies (

7 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’CausalDomain ’) or

8 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’CausalDomain ’)

9 ) )

Listing C.17: Designed domains are always lexical

We check within the classes of the context diagram (lines 1-3), if a class with the stereotype
�DesignedDomain� also has the stereotype �CausalDomain� or any of its sub-types assigned
(line 4-8). Should this be the case, the condition fails.

C.3. Constraints related to problem diagrams and problem frames

1 Package.allInstances () ->select(p |

2 let n: Bag(String) = p.oclAsType(Package).getAppliedStereotypes ().name

3 in n->includes(’ProblemDiagram ’) or n->includes(’ProblemFrame ’))

4 .ownedElement

5 ->forAll(el | (el.oclIsTypeOf(Class) and

6 (el.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Domain ’) or

7 el.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’Domain ’)

or

8 el.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

9 el.oclAsType(Class).getAppliedStereotypes ().general.general

10 .general.name ->includes(’Domain ’) or

11 el.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Statement ’) or

12 el.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’Statement ’) or

13 el.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Statement ’) or

14 el.oclAsType(Class).getAppliedStereotypes ().general.general

15 .general.name ->includes(’Statement ’))) or

16 el.oclIsTypeOf(Interface) or (el.oclIsTypeOf(Association) and

17 (el.oclAsType(Association).getAppliedStereotypes ().name

->includes(’connection ’) or

18 el.oclAsType(Association).getAppliedStereotypes ().general.name

->includes(’connection ’) or

19 el.oclAsType(Association).getAppliedStereotypes ().general.general

20 .name ->includes(’connection ’) or

21 el.oclAsType(Association).getAppliedStereotypes ().general.general

22 .general.name ->includes(’connection ’) or

23 el.oclAsType(Association).endType ->forAll(

24 getAppliedStereotypes ().name ->includes(’Statement ’) or

25 getAppliedStereotypes ().general.name ->includes(’Statement ’)))

26 ) or
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27 (el.oclIsTypeOf(Dependency) and

28 (el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’refersTo ’)

or

29 el.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’constrains ’) or

30 el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’controls ’)

or

31 el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’observes ’)

or

32 el.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’isPart ’) or

33 el.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’complements ’))

34 )or

35 el.oclIsTypeOf(CallEvent) or

36 el.oclIsTypeOf(ProfileApplication) or

37 el.oclIsTypeOf(Comment)

38 )

Listing C.18: Allowed elements for a problem diagram/frame

First, we retrieve all packages (line 1). Second, we collect those packages that have the stereo-
types �ProblemDiagram� or �ProblemFrame� (lines 2-3) assigned. as well as all associated
elements (keyword ownedElement ; line 4). Third, we check for each owned element el (line 4-5)
whether it is:

• a class with the stereotype �Domain� or any of its sub-types (lines 5-10) assigned.
Additionally, a class may also have the stereotype �Statement� or a sub-type, e.g.,
�Requirement� (lines 10-15)assigned.

• an interface (line 16; no restrictions considering the stereotypes apply here).

• an association. An association must have the stereotype �connection� or any of its
sub-types assigned. (lines 16-22).

• an association between statements (e.g., aggregation) (lines 23-25).

• a dependency (line 27). In this case, it must have either �refersTo�, �constrains�,
�controls�, �observes�, �isPart�, or �complements� as stereotype (lines 28-33).

• a comment (line 37).

For technical reasons, i.e., compatibility to PapyrusUML, Profile Application are allowed
(lines 35-36), as well.

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name ->includes(’ProblemDiagram ’) or

p.oclAsType(Package).getAppliedStereotypes () .name ->includes(’ProblemFrame ’))

2 .clientDependency.target

3 ->select(oclIsTypeOf(Class)).oclAsType(Class)

4 ->select(oe | (

5 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’BiddableDomain ’) or

6 oe.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’BiddableDomain ’)

7 ) and (

8 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’CausalDomain ’) or

9 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’CausalDomain ’)

or

10 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’CausalDomain ’)

11 ) ) ->size()=0

Listing C.19: The stereotypes biddable and causal are not allowed to appear together
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To check that the stereotypes, �BiddableDomain� and �CausalDomain� are not applied to
the same class, we select the classes belonging to the problem diagram or problem frame (lines
1-3). Next, we select those classes that have the stereotype �BiddableDomain� or a direct
sub-type of �BiddableDomain� (lines 4-7) and the stereotype �CausalDomain� or a sub-type
of �CausalDomain� (lines 8-10) assigned. We then check whether the resulting bag is empty,
i.e., the size of the bag is equal to zero (line 11).

1 Package.allInstances () ->select(p |

2 p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’ProblemDiagram ’) or

3 p.oclAsType(Package).getAppliedStereotypes ().name ->includes(’ProblemFrame ’)

4 ) -> forAll (p |

5 p.clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

6 .target ->select(pdf_elem |

7 pdf_elem .oclIsTypeOf(Class) and pdf_elem

.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Machine ’)

8 ) ->size()=1

9 )

Listing C.20: A problem diagram/frame has exactly one machine domain

A problem diagram/problem frame must contain exactly one machine: We first select all pack-
ages with the appropriate stereotype, i.e,�ProblemDiagram� or�ProblemFrame� (lines 1 -3).
For each package we collect all dependencies (using clientDependency line 5) and select those
with the stereotype �isPart� (line 5). Using the target ends of these dependencies, we collect
all elements of the package and select (line 6) those elements (pdf elem; line 6) being classes
with the stereotype �Machine� (line 7). The size of the resulting bag must be greater than or
equal to one (line 8).

1 Dependency.allInstances ()

2 ->select(a | a.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’constrains ’)) ->forAll(

3 source.getAppliedStereotypes () .name ->includes(’Requirement ’) implies not

4 target.getAppliedStereotypes (). name ->includes(’Machine ’)

5 or ( target.getAppliedStereotypes ().name

->includes(’CausalDomain ’) or

6 target.getAppliedStereotypes ().general.name

->includes(’CausalDomain ’) or

7 target.getAppliedStereotypes ().general.general.name

->includes(’CausalDomain ’)

8 )

9 )

Listing C.21: A requirement does not constrain a machine domain

We retrieve all dependencies (line 1). After that, we select those dependencies that have the
stereotype �constrains� assigned (line 2). It is then necessary to verify that all dependencies
originating (keyword source) from a requirement (line 3) do not point (keyword target) to a
machine domain (line 4). The expression also passes if this dependency points to a machine
that is also a causal domain or a sub-type (in another subproblem) (line 5-7).

1 Dependency.allInstances ()

2 ->select( oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’constrains ’))

3 ->forAll( source.getAppliedStereotypes ()

.name ->includes(’Requirement ’) implies not

4 target.getAppliedStereotypes (). name ->includes(’BiddableDomain ’))

Listing C.22: A requirement does not constrain a biddable domain

We retrieve all dependencies (line 1). After that, we select those dependencies that have the
stereotype �constrains� assigned (line 2). It is then necessary to verify that all dependencies
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originating (keyword source) from a requirement (line 3) do not point (keyword target) to a
biddable domain (line 4).

1 Package.allInstances ()

2 ->select(p | p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’ProblemDiagram ’) or

3 p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’ProblemFrame ’) )

4 ->forAll( clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’)).target ->select(oe |

oe.oclIsTypeOf(Class) and

oe.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Requirement ’))

5 ->size() >=1 )

Listing C.23: A problem diagram/frame contains at least one requirement

We select all packages that have the stereotypes �ProblemDiagram� or �ProblemFrame�
assigned (lines 1-3). For each diagram, we check that it contains at least one requirement (lines
4 and 5).

1 Dependency.allInstances ()

2 ->select(a | a.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’constrains ’) or

3 a.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’refersTo ’) )

4 ->forAll(d | d.oclAsType(Dependency).target.getAppliedStereotypes ().name

->includes(’Domain ’) or

5 d.oclAsType(Dependency).target.getAppliedStereotypes ().general.name

->includes(’Domain ’) or

6 d.oclAsType(Dependency).target.getAppliedStereotypes ().general.general.name

->includes(’Domain ’)

7 ) and Dependency.allInstances ()

8 ->select(a | a.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’constrains ’) or

9 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’refersTo ’) )

10 ->forAll(d | d.oclAsType(Dependency).source.getAppliedStereotypes ().name

->includes(’Statement ’) or

11 d.oclAsType(Dependency).source.getAppliedStereotypes ().general.name

->includes(’Statement ’) or

12 d.oclAsType(Dependency).source.getAppliedStereotypes ().general.general.name

->includes(’Statement ’) )

Listing C.24: Dependencies with stereotypes �constrains� or �refersTo� point from statements to
domains

A domain can never be the origin of a �constrains� or �refersTo� dependency. We check
this condition as follows: We select the dependencies that have the stereotypes �constrains�
or�refersTo� assigned (lines 1-3). We then select all dependencies that point (keyword target,
line 4) to a domain or a sub-type of domain (lines 4-6). We check that the dependencies having
�constrains� or �refersTo� as stereotype (lines 8-9) originate (keyword source, line 8) from
a statement or sub-type of statement (lines 10-12).

1 Package.allInstances ()

2 ->select(p | p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’ProblemDiagram ’) or

3 p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’ProblemFrame ’) )

4 .clientDependency.target ->select(oe |

5 oe.oclAsType(Class).getAppliedStereotypes ().name

->includes(’ConnectionDomain ’))

6 .oclAsType(Class)->forAll(c |

7 c->select (clientDependency.getAppliedStereotypes ().name

->includes(’observes ’)) ->size() >=1

8 and
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9 c->select (clientDependency.getAppliedStereotypes ().name

->includes(’controls ’)) ->size() >=1

10 )

Listing C.25: Connection domains in a problem diagram or problem frame have at least one observed
and one controlled interface

Connection domains in problem diagrams or problem frames (lines 1-6) must have at least one
observed interface (line 7) and one controlled interface (line 9).

1 Package.allInstances ()

2 ->select(p | p.oclAsType(Package).getAppliedStereotypes ().name

3 ->includes(’ProblemDiagram ’) or

p.oclAsType(Package).getAppliedStereotypes ().name

4 ->includes(’ProblemFrame ’) )

5 .clientDependency.target ->select(getAppliedStereotypes ().name

->includes(’Machine ’) )

6 ->forAll( oclAsType(Class).clientDependency

7 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

8 ->size() >=1 or

9 oclAsType(Class).generalization ->size() >0 )

Listing C.26: Each machine controls at least one interface

To check that all machines control at least one interface, all classes in problem diagrams with the
stereotype �Machine� are selected (lines 1-3). For these classes, the dependencies of the class
(using clientDependency, line 5) with the stereotype �controls� assigned are collected (line 6).
The number of these dependencies must be greater than or equal to one (line 7). This condition
is not necessary for classes being a specialization of another machine (using generalization, lines
5 and 8).

1 Class.allInstances () ->select( getAppliedStereotypes ().name ->includes(’Requirement ’)

or

2 getAppliedStereotypes ().general.name -> includes(’Requirement ’) or

3 getAppliedStereotypes ().general.general.name -> includes(’Requirement ’) or

4 getAppliedStereotypes ().general.general.general.name ->

includes(’Requirement ’))

5 ->reject(st | Class.allInstances ().ownedElement

->select(oclIsTypeOf(Property)).oclAsType(Property).type ->

includes(st))

6 ->forAll(clientDependency ->collect(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name

7 -> includes(’constrains ’)) ->count(true) >=1)

Listing C.27: A requirement has at least one constrains dependency

A requirement or composed requirement must have at least one constrains dependency: We
collect all classes having the stereotype �Requirement� or any of its sub-types (lines 1 - 4)
assigned. We ignore all requirements being part of another requirement (line 5). We then check
for each of these dependencies that there is at least one �constrains�-dependency (lines 6 and
7).

1 Dependency.allInstances () ->select(a |

2 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’restricts ’)

or

3 a.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’complements ’) or

4 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’similar ’)

5 )

6 -> forAll(dep |

7 (

8 dep.source.getAppliedStereotypes ().name -> includes(’Statement ’) or

9 dep.source.getAppliedStereotypes ().general.name -> includes(’Statement ’) or
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10 dep.source.getAppliedStereotypes ().general.general.name -> includes(’Statement ’) or

11 dep.source.getAppliedStereotypes ().general.general.general.name ->

includes(’Statement ’)

12 ) and

13 (

14 dep.target.getAppliedStereotypes ().name -> includes(’Statement ’) or

15 dep.target.getAppliedStereotypes ().general.name -> includes(’Statement ’) or

16 dep.target.getAppliedStereotypes ().general.general.name -> includes(’Statement ’) or

17 dep.target.getAppliedStereotypes ().general.general.general.name ->

includes(’Statement ’)

18 )

19 )

Listing C.28: Allowed dependency stereotypes between statements

To check that only allowed stereotypes are used for dependencies involving a statement or any
of its sub-types, we collect all dependencies with the stereotypes�restricts�,�complements�,
�similar�,�remove�, or�replaces� (lines 1-7) assigned and check for each dependency that
it starts from a statement or any of its sub-types (lines 8-13) and that it points to a statement
or any of its sub-types (lines 14-21).

1 Dependency.allInstances () ->select(a |

2 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’contains ’)

3 )

4 -> forAll(dep |

5 dep.source ->forAll(oclIsTypeOf(Interface)) and

6 dep.target ->forAll(oclIsTypeOf(Interface))

7 )

Listing C.29: �contains�-dependencies are only between interfaces

This expression checks if all dependencies with the stereotype �contains� (lines 1-3) are be-
tween two interfaces (lines 4-7), i.e., the source as well as the target of the dependency are both
interfaces.

1 Dependency.allInstances () ->select(a |

2 a.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’concretizes ’) or

3 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’refines ’)

4 )

5 -> forAll(dep |

6 (dep.source ->forAll(oclIsTypeOf(Interface))

7 and

8 dep.target ->forAll(oclIsTypeOf(Interface)) )

9 or

10 (dep.source.getAppliedStereotypes ().name -> includes(’Domain ’) or

11 dep.source.getAppliedStereotypes ().general.name -> includes(’Domain ’) or

12 dep.source.getAppliedStereotypes ().general.general.name -> includes(’Domain ’) or

13 dep.source.getAppliedStereotypes ().general.general.general.name ->

includes(’Domain ’) or

14 dep.source.getAppliedStereotypes ().general.general.general.general.name ->

includes(’Domain ’)

15 and

16 dep.target.getAppliedStereotypes ().name -> includes(’ConnectionDomain ’) or

17 dep.target.getAppliedStereotypes ().general.name -> includes(’ConnectionDomain ’) or

18 dep.target.getAppliedStereotypes ().general.general.name ->

includes(’ConnectionDomain ’)

19 )

20 or

21 (dep.source.getAppliedStereotypes ().name -> includes(’ConnectionDomain ’) or

22 dep.source.getAppliedStereotypes ().general.name -> includes(’ConnectionDomain ’) or

23 dep.source.getAppliedStereotypes ().general.general.name ->

includes(’ConnectionDomain ’)

24 and

25 ( dep.target.getAppliedStereotypes ().name -> includes(’Connection ’) or

26 dep.target.getAppliedStereotypes ().general.name -> includes(’Connection ’) or

27 dep.target.getAppliedStereotypes ().general.general.name -> includes(’Connection ’)

or
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28 dep.target.getAppliedStereotypes ().general.general.general.name ->

includes(’Connection ’) or

29 dep.target.getAppliedStereotypes ().general.general.general.general.name ->

includes(’Connection ’) or

30 dep.target ->forAll(oclIsTypeOf(Interface)))

31 )

32 or

33 (dep.target.getAppliedStereotypes ().name -> includes(’Machine ’) and

34 ( dep.source.getAppliedStereotypes ().name ->

includes(’Implementable_architecture ’) or

35 dep.source.getAppliedStereotypes ().name -> includes(’Layered_architecture ’)

36 )

37 )

38 )

Listing C.30: Allowed application of concretizes or refines dependencies

This expression checks for all dependencies with the stereotypes �concretizes� or �refines�
(lines 1-5) that the source and target are interfaces (lines 6-8), or that the source is a class
with the stereotype �Domain� or any of its sub-types and the target is a class with the
stereotype �ConnectionDomain� or any of its sub-types (lines 10-19), or that the source is a
class with the stereotype�ConnectionDomain� or a subtype and the target is an interface or has
the stereotype �Connection� (lines 21-31) assigned, or source and target have the stereotype
�Machine� (lines 33-35).

1 Package.allInstances ()->select(getAppliedStereotypes ().name ->includes(’ProblemDiagram ’)

or getAppliedStereotypes ().name ->includes(’ProblemFrame ’))

2 .ownedElement ->select(oclIsTypeOf(Association)).oclAsType(Association)

3 ->forAll(a: Association |

4 not (

5 a.endType ->select(oclIsTypeOf(Class)) .oclAsType(Class).getAppliedStereotypes ()

.name ->includes(’BiddableDomain ’)

6 and a.endType ->select(oclIsTypeOf(Class))

.oclAsType(Class).getAppliedStereotypes () .name ->includes(’LexicalDomain ’)

7 )

8 )

Listing C.31: Biddable domains are not directly connected to lexical domains

For all associations of problem diagrams or problem frames (lines 1 and 2), we check that the
associations (keyword endType) do not connect biddable and lexical domains (lines 3-6).

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name ->includes(’ProblemDiagram ’) or

p.oclAsType(Package).getAppliedStereotypes () .name

2 ->includes(’ProblemFrame ’)).clientDependency.target

3 ->select(oclIsTypeOf(Class)).oclAsType(Class)

4 ->forAll(oe | (

5 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’DesignedDomain ’)

6 ) implies (

7 oe.oclAsType(Class).getAppliedStereotypes ().name ->includes(’LexicalDomain ’) or

8 oe.oclAsType(Class).getAppliedStereotypes ().general.name ->includes(’LexicalDomain ’)

9 ) )

Listing C.32: Designed domains are always lexical

In the classes of the problem diagram and problem frame (lines 1-3), we check if a class with the
stereotype�DesignedDomain� also has the stereotype�CausalDomain� or one of its sub-types
assigned (line 4-8).

C.4. Constraints related to the consistency between the context
diagram and problem diagrams



C.4. Consistency between context diagram and problem diagrams 247

1 let m: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

3 .clientDependency.target

4 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

5 getAppliedStereotypes ().general.name ->includes(’Machine ’))

6 .oclAsType(Class) ->asSet()

7 in

8 m.oclAsType(Class).member

9 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

10 ->select(cm |

11 cm->select(oclIsTypeOf(Class)) .oclAsType(Class).member

12 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

13 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

getAppliedStereotypes ().general.name ->includes(’Machine ’))->size()=0

14 )

15 ->union(

16 m.oclAsType(Class).member

17 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

18 ->select(oclIsTypeOf(Class)) .oclAsType(Class).member

19 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

20 )

21 ->select(oclIsTypeOf(Class)).oclAsType(Class)

22 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

getAppliedStereotypes ().general.name ->includes(’Machine ’)) ->asSet()

23 =

24 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

25 .clientDependency.target

26 ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

getAppliedStereotypes ().general.name ->includes(’Machine ’))

27 .oclAsType(Class) ->asSet()

Listing C.33: The submachines of the problem diagrams must be part of the machine(s) of the context
diagram

A problem diagram is consistent to a context diagram, if the machine in the problem diagrams
are part of the machines in the context diagram: First, we select the machine(s) of the context
diagram (lines 1-7). Second, we collect the set of all directly contained machines (lines 8-9)
for each machine in the context diagram. Third, we only consider machines with no contained
machines (lines 10-14) and unify the machines with no contained machines with the machines
contained in the other machines (lines 15-22). This set must be the same as the set of all
machines found in problem diagrams (lines 23-27).

1 let cd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

3 .clientDependency.target

4 ->select(

5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

9 .oclAsType(Class) ->asSet()

10 in

11 let cd_spec_dom: Set(Class) =

12 Class.allInstances ()->select(c| cd_domains ->exists(cdd| c.general ()->includes(cdd)))

13 in

14 let cd_contained_domains: Set(Class) =

15 cd_domains.member

16 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

17 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

18 in

19 let cd_ccontained_domains: Set(Class) =

20 cd_contained_domains

21 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

22 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()
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23 in

24 let cd_combined_domains: Set(Class) =

25 Class.allInstances ()

26 ->select(cl |

27 let cl_members: Set(Class) =

28 cl.member

29 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

30 ->select(oclIsTypeOf(Class)) .oclAsType(Class) ->asSet()

31 in

32 cl_members ->exists(clm | cd_domains ->includes(clm))

33 )

34 in

35 let cd_connection_ifs: Set(Interface)=

36 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first ()

37 .clientDependency.target

38 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

39 in

40 let cd_connection_if_parts: Set(Interface)=

41 cd_connection_ifs.member

42 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

43 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

44 in

45 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

46 ->forAll(pd_tcd |

47 pd_tcd.clientDependency -> select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

48 ->select(oclIsTypeOf(Class))

49 ->select(

50 getAppliedStereotypes ().name ->includes(’Domain ’) or

51 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

52 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

53 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class)

54 ->forAll(pd_domain |

55 cd_domains ->includes(pd_domain) or

56 cd_domains.general ()->includes(pd_domain) or

57 cd_spec_dom ->includes(pd_domain) or

58 cd_contained_domains ->includes(pd_domain) or

59 cd_ccontained_domains ->includes(pd_domain) or

60 cd_combined_domains ->includes(pd_domain) or

61 let concr_ifs_of_pd_domain: Set(Interface) =

62 pd_domain.clientDependency ->select(

63 getAppliedStereotypes ().name ->includes(’concretizes ’) or

64 getAppliedStereotypes ().name ->includes(’refines ’)

65 ).target.oclAsType(Interface) ->asSet()

66 in

67 concr_ifs_of_pd_domain -> exists(if_pd |

68 cd_connection_ifs ->includes(if_pd) or

69 cd_connection_if_parts ->includes(if_pd)

70 )

71 ) )

Listing C.34: Domains in the problem diagrams are consistent to the domains in the context diagram

A problem diagram is consistent to a context diagram, if additionally each domain in the problem
diagram (lines 45-54)

• is a domain in the context diagram (line 55), or

• is a specialization of a domain of the context diagram (line 56), or

• is a generalization of a domain of the context diagram (line 57), or

• is part of a domain in the context diagram (line 58 and line 59, operator: split domain),
or

• is composed of several domains being part of the context diagram (line 60, operator: merge
domain), or
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• refines or concretized an interface in the context diagram (lines 61-68, operator: introduce
connection domain)

• refines or concretized a part of an interface in the context diagram (line 69, operator:
introduce connection domain)

1 let cd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

3 .clientDependency.target

4 ->select(

5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’)

9 ).oclAsType(Class) ->asSet()

10 in

11 let cd_contained_domains: Set(Class) =

12 cd_domains.member

13 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

14 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

15 in

16 let ifs_between_split_dom: Set(Interface) =

17 Interface.allInstances ()->select(i |

18 cd_contained_domains.clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target ->includes(i) and

19 cd_contained_domains.clientDependency ->select(getAppliedStereotypes ().name

->includes(’observes ’)).target ->includes(i)

20 )

21 in

22 let cd_ifs: Set(Interface) =

23 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

24 .clientDependency.target

25 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

26 in

27 let cd_if_parts: Set(Interface) =

28 cd_ifs.member

29 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

30 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

31 in

32 let cd_concr_ifs: Set(Interface)=

33 cd_ifs.clientDependency ->select(

34 getAppliedStereotypes ().name ->includes(’concretizes ’) or

35 getAppliedStereotypes ().name ->includes(’refines ’) or

36 getAppliedStereotypes ().name ->includes(’contains ’)

37 ).target

38 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

39 in

40 let cd_concr_concr_ifs: Set(Interface)=

41 cd_concr_ifs.clientDependency ->select(

42 getAppliedStereotypes ().name ->includes(’concretizes ’) or

43 getAppliedStereotypes ().name ->includes(’refines ’) or

44 getAppliedStereotypes ().name ->includes(’contains ’)

45 ).target

46 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

47 in

48 let cd_conn_doms: Set(Class) =

49 Class.allInstances () ->select(cl |

50 cl.clientDependency

51 ->select(

52 getAppliedStereotypes ().name ->includes(’concretizes ’) or

53 getAppliedStereotypes ().name ->includes(’refines ’) )

54 ->select(target ->asSequence() ->first().oclIsTypeOf(Interface))

55 ->exists(

56 cd_ifs ->includes(target.oclAsType(Interface) ->asSequence() ->first()) or

57 cd_if_parts ->includes(target.oclAsType(Interface) ->asSequence() ->first())

58 )

59 ) ->asSet()

60 in
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61 let cd_con_dom_if: Set(Interface) =

62 cd_conn_doms.clientDependency ->select(

63 getAppliedStereotypes ().name ->includes(’observes ’) or

64 getAppliedStereotypes ().name ->includes(’controls ’)

65 ).target

66 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

67 in

68 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

69 ->forAll(pd_tcd |

70 pd_tcd.clientDependency -> select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

71 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

72 ->forAll(pd_if |

73 cd_ifs ->includes(pd_if) or

74 cd_if_parts ->includes(pd_if) or

75 cd_concr_ifs ->includes(pd_if) or

76 cd_concr_concr_ifs ->includes(pd_if) or

77 cd_con_dom_if ->includes(pd_if) or

78 ifs_between_split_dom ->includes(pd_if) or

79 let pd_concr_ifs: Set(Interface)=

80 pd_if.clientDependency ->select(

81 getAppliedStereotypes ().name ->includes(’concretizes ’) or

82 getAppliedStereotypes ().name ->includes(’refines ’) or

83 getAppliedStereotypes ().name ->includes(’contains ’)

84 ).target

85 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

86 in

87 pd_concr_ifs -> exists(if_pd | cd_ifs ->includes(if_pd))

88 or

89 let pd_concr_domains: Set(Interface)=

90 pd_if.clientDependency ->select(

91 getAppliedStereotypes ().name ->includes(’concretizes ’) or

92 getAppliedStereotypes ().name ->includes(’refines ’)

93 ).target

94 ->select(oclIsTypeOf(Class)).oclAsType(Interface) ->asSet()

95 in

96 pd_concr_domains -> exists(if_pd | cd_ifs ->includes(if_pd))

97 )

98 )

Listing C.35: Interfaces in the problem diagrams are consistent to the interfaces in the context diagram

A problem diagram is consistent to a context diagram, if also each interface in the problem
diagram (lines 68-72)

• is a (new) interface between a domain and a new part of the domain (line 78, operator:
split domain),

• is an interface in the context diagram (line 73),

• is part of an interface (line 74, operator: reduce interface) in the context diagram,

• refines or concretizes an interface in the context diagram (line 75),

• refines or concretizes an interface in the context diagram indirectly (line 76),

• is observed or controlled by a connection domain introduced for an interface (or a part of
this interface) in the context diagram (line 77),

• is refined or concretized by an interface in the context diagram (lines 79-87), or

• refines or concretizes a (connection-)domain in the context diagram (lines 89-96).

1 let cd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first ()

3 .clientDependency.target

4 ->select(
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5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

9 .oclAsType(Class) ->asSet()

10 in

11 let cd_domains_obs_if: Set(Interface) =

12 cd_domains.clientDependency

13 ->select(getAppliedStereotypes ().name ->includes(’observes ’))

14 .target.oclAsType(Interface) ->asSet()

15 in

16 let cd_spec_dom: Set(Class) =

17 Class.allInstances ()->select(c| cd_domains ->exists(cdd| c.general ()->includes(cdd)))

18 in

19 let cd_spec_dom_obs_if: Set(Interface) =

20 cd_domains.clientDependency

21 ->select(getAppliedStereotypes ().name ->includes(’observes ’))

22 .target.oclAsType(Interface) ->asSet()

23 in

24 let cd_gene_dom_obs_if: Set(Interface) =

25 cd_domains.general ().clientDependency

26 ->select(getAppliedStereotypes ().name ->includes(’observes ’))

27 .target.oclAsType(Interface) ->asSet()

28 in

29 let cd_domain_parts: Set(Class) =

30 cd_domains.member

31 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

32 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

33 in

34 let cd_domain_parts_obs_if: Set(Interface) =

35 cd_domain_parts.clientDependency

36 ->select(getAppliedStereotypes ().name ->includes(’observes ’))

37 .target.oclAsType(Interface) ->asSet()

38 in

39 let cd_merged_domains: Set(Class) =

40 Class.allInstances ()

41 ->select(cl |

42 let cl_members: Set(Class) =

43 cl.member

44 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

45 ->select(oclIsTypeOf(Class)) .oclAsType(Class) ->asSet()

46 in

47 cl_members ->exists(clm | cd_domains ->includes(clm))

48 )

49 in

50 let cd_merged_domains_obs_if: Set(Interface) =

51 cd_merged_domains.clientDependency

52 ->select(getAppliedStereotypes ().name ->includes(’observes ’))

53 .target.oclAsType(Interface) ->asSet()

54 in

55 let cd_ifs: Set(Interface)=

56 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

57 .clientDependency.target

58 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

59 in

60 let cd_if_parts: Set(Interface)=

61 cd_ifs.member

62 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

63 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

64 in

65 let cd_conn_doms: Set(Class) =

66 Class.allInstances () ->select(cl |

67 cl.clientDependency

68 ->select(

69 getAppliedStereotypes ().name ->includes(’concretizes ’) or

70 getAppliedStereotypes ().name ->includes(’refines ’))

71 ->select(target ->asSequence() ->first().oclIsTypeOf(Interface))

72 ->exists(

73 cd_ifs ->includes(target.oclAsType(Interface) ->asSequence() ->first()) or

74 cd_if_parts ->includes(target.oclAsType(Interface) ->asSequence() ->first())



252 Appendix C. OCL expressions

75 )

76 ) ->asSet()

77 in

78 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

79 ->forAll(pd_tcd |

80 pd_tcd.clientDependency -> select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

81 ->select(oclIsTypeOf(Class))

82 ->select(

83 getAppliedStereotypes ().name ->includes(’Domain ’) or

84 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

85 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

86 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class)

87 ->forAll(pd_domain |

88 cd_conn_doms ->includes(pd_domain) or

89 let pd_domain_obs_if: Set(Interface) =

90 pd_domain.clientDependency

91 ->select(getAppliedStereotypes ().name ->includes(’observes ’))

92 .target.oclAsType(Interface) ->asSet()

93 in

94 let pd_domain_concr_if: Set(Interface) =

95 pd_domain.clientDependency ->select(

96 getAppliedStereotypes ().name ->includes(’concretizes ’) or

97 getAppliedStereotypes ().name ->includes(’refines ’))

98 .target ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

99 in

100 cd_domains_obs_if ->includesAll(pd_domain_obs_if) or

101 cd_gene_dom_obs_if ->includesAll(pd_domain_obs_if) or

102 cd_spec_dom_obs_if ->includesAll(pd_domain_obs_if) or

103 cd_domain_parts_obs_if ->includesAll(pd_domain_obs_if) or

104 cd_merged_domains_obs_if ->includesAll(pd_domain_obs_if) or

105 (

106 cd_ifs ->includesAll(pd_domain_concr_if) and

107 pd_domain_concr_if ->notEmpty () and

108 pd_domain.clientDependency ->exists(

109 getAppliedStereotypes ().name ->includes(’observes ’) and

110 pd_tcd.clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

111 ->select(oclIsTypeOf(Interface))

112 ->includesAll(target ->select(oclIsTypeOf(Interface))

.oclAsType(Interface))

113 )

114 ) or (

115 cd_if_parts ->includesAll(pd_domain_concr_if) and

116 pd_domain_concr_if ->notEmpty () and

117 pd_domain.clientDependency ->exists(

118 getAppliedStereotypes ().name ->includes(’observes ’) and

119 pd_tcd.clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

120 ->select(oclIsTypeOf(Interface))

121 ->includesAll(target ->select(oclIsTypeOf(Interface))

.oclAsType(Interface))

122 )

123 )

124 )

125 )

Listing C.36: Observed interfaces in the problem diagrams are consistent to the observed interfaces in
the context diagram

A problem diagram is consistent to a context diagram, if also each interface observed by domain
d in the problem diagram is observed by the domain corresponding to d in the context diagram.

1 let cd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

3 .clientDependency.target

4 ->select(
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5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

9 .oclAsType(Class) ->asSet()

10 in

11 let cd_domains_contr_if: Set(Interface) =

12 cd_domains.clientDependency

13 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

14 .target.oclAsType(Interface) ->asSet()

15 in

16 let cd_spec_dom: Set(Class) =

17 Class.allInstances ()->select(c| cd_domains ->exists(cdd| c.general ()->includes(cdd)))

18 in

19 let cd_spec_dom_contr_if: Set(Interface) =

20 cd_domains.clientDependency

21 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

22 .target.oclAsType(Interface) ->asSet()

23 in

24 let cd_gene_dom_contr_if: Set(Interface) =

25 cd_domains.general ().clientDependency

26 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

27 .target.oclAsType(Interface) ->asSet()

28 in

29 let cd_domain_parts: Set(Class) =

30 cd_domains.member

31 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

32 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

33 in

34 let cd_domain_parts_contr_if: Set(Interface) =

35 cd_domain_parts.clientDependency

36 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

37 .target.oclAsType(Interface) ->asSet()

38 in

39 let cd_merged_domains: Set(Class) =

40 Class.allInstances ()

41 ->select(cl |

42 let cl_members: Set(Class) =

43 cl.member

44 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

45 ->select(oclIsTypeOf(Class)) .oclAsType(Class) ->asSet()

46 in

47 cl_members ->exists(clm | cd_domains ->includes(clm))

48 )

49 in

50 let cd_merged_domains_contr_if: Set(Interface) =

51 cd_merged_domains.clientDependency

52 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

53 .target.oclAsType(Interface) ->asSet()

54 in

55 let cd_ifs: Set(Interface)=

56 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

57 .clientDependency.target

58 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

59 in

60 let cd_if_parts: Set(Interface)=

61 cd_ifs.member

62 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

63 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

64 in

65 let cd_conn_doms: Set(Class) =

66 Class.allInstances () ->select(cl |

67 cl.clientDependency

68 ->select(

69 getAppliedStereotypes ().name ->includes(’concretizes ’) or

70 getAppliedStereotypes ().name ->includes(’refines ’))

71 ->select(target ->asSequence() ->first().oclIsTypeOf(Interface))

72 ->exists(

73 cd_ifs ->includes(target.oclAsType(Interface) ->asSequence() ->first()) or

74 cd_if_parts ->includes(target.oclAsType(Interface) ->asSequence() ->first())
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75 )

76 ) ->asSet()

77 in

78 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

79 ->forAll(pd_tcd |

80 pd_tcd.clientDependency -> select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

81 ->select(oclIsTypeOf(Class))

82 ->select(

83 getAppliedStereotypes ().name ->includes(’Domain ’) or

84 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

85 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

86 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class)

87 ->forAll(pd_domain |

88 cd_conn_doms ->includes(pd_domain) or

89 let pd_domain_contr_if: Set(Interface) =

90 pd_domain.clientDependency

91 ->select(getAppliedStereotypes ().name ->includes(’controls ’))

92 .target.oclAsType(Interface) ->asSet()

93 in

94 let pd_domain_concr_if: Set(Interface) =

95 pd_domain.clientDependency ->select(

96 getAppliedStereotypes ().name ->includes(’concretizes ’) or

97 getAppliedStereotypes ().name ->includes(’refines ’))

98 .target ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

99 in

100 cd_domains_contr_if ->includesAll(pd_domain_contr_if) or

101 cd_gene_dom_contr_if ->includesAll(pd_domain_contr_if) or

102 cd_spec_dom_contr_if ->includesAll(pd_domain_contr_if) or

103 cd_domain_parts_contr_if ->includesAll(pd_domain_contr_if) or

104 cd_merged_domains_contr_if ->includesAll(pd_domain_contr_if) or

105 (

106 cd_ifs ->includesAll(pd_domain_concr_if) and

107 pd_domain_concr_if ->notEmpty () and

108 pd_domain.clientDependency ->exists(

109 getAppliedStereotypes ().name ->includes(’controls ’) and

110 pd_tcd.clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

111 ->select(oclIsTypeOf(Interface))

112 ->includesAll(target ->select(oclIsTypeOf(Interface)) .oclAsType(Interface))

113 )

114 ) or (

115 cd_if_parts ->includesAll(pd_domain_concr_if) and

116 pd_domain_concr_if ->notEmpty () and

117 pd_domain.clientDependency ->exists(

118 getAppliedStereotypes ().name ->includes(’controls ’) and

119 pd_tcd.clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

120 ->select(oclIsTypeOf(Interface))

121 ->includesAll(target ->select(oclIsTypeOf(Interface)) .oclAsType(Interface))

122 )

123 )

124 )

125 )

Listing C.37: Controlled interfaces in the problem diagrams are consistent to the controlled interfaces
in the context diagram

A problem diagram is consistent to a context diagram, if also each interface controlled by domain
d in the problem diagram is controlled by the domain corresponding to d in the context diagram.

1 let pd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

3 .clientDependency.target

4 ->select(

5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or
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7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

9 .oclAsType(Class) ->asSet()

10 in

11 let pd_spec_dom: Set(Class) =

12 Class.allInstances ()->select(c| pd_domains ->exists(pdd| c.general ()->includes(pdd)))

13 in

14 let pd_domain_parts: Set(Class) =

15 pd_domains.member

16 ->select(oclIsTypeOf(Property) and

oclAsType(Property).type.oclIsTypeOf(Class)).oclAsType(Property).type

17 .oclAsType(Class) ->asSet()

18 in

19 let connection_domains: Set(Class) =

20 Class.allInstances () ->select(

21 getAppliedStereotypes ().name ->includes(’Domain ’) or

22 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

23 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

24 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

25 ->select(

26 clientDependency.getAppliedStereotypes ().name ->includes(’refines ’) or

27 clientDependency.getAppliedStereotypes ().name ->includes(’concretizes ’) )

28 ->select(clientDependency ->exists(target ->forAll(oclIsTypeOf(Interface))))

29 ->asSet()

30 in

31 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’) ) ->asSequence() ->first()

32 ->forAll(cd |

33 cd.ownedElement ->select(oclIsTypeOf(Association)).oclAsType(Association)

34 ->select(a | a.endType ->exists(et|

et->select(oclIsTypeOf(Class)).oclAsType(Class).getAppliedStereotypes ().name

->includes(’Machine ’)))

35 .endType ->select(oclIsTypeOf(Class))

36 ->select(

37 getAppliedStereotypes ().name ->includes(’Domain ’) or

38 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

39 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

40 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class)

41 ->forAll(cd_dom |

42 pd_domains ->includes(cd_dom) or

43 pd_domains.general ()->includes(cd_dom) or

44 pd_spec_dom ->includes(cd_dom) or

45 pd_domain_parts ->includes(cd_dom) or

46 let cd_dom_parts: Set(Class) =

47 cd_dom.member

48 ->select(oclIsTypeOf(Property) and

oclAsType(Property).type.oclIsTypeOf(Class)).oclAsType(Property).type

49 ->select(oclIsTypeOf(Class))

50 ->select(

51 getAppliedStereotypes ().name ->includes(’Domain ’) or

52 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

53 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

54 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class) ->asSet()

55 in

56 (cd_dom_parts ->notEmpty () and

57 pd_domains ->includesAll(cd_dom_parts))

58 or

59 connection_domains ->includes(cd_dom)) )

Listing C.38: Domains in the context diagram connected to the machine must be found in problem
diagrams

All domains in the context diagram must be (using the decomposition operators) in at least one
problem diagram:

• as the domain itself (line 42),

• as generalized or specialized domains (lines 43 and 44),
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• as a merged domain (line 45),

• as a split domain (lines 46-57), or

• as an interface concretizing a connection domain (line 59, operator: remove connection
domain).

C.5. Constraints related to the consistency between problem
diagrams and problem frames

1 Dependency.allInstances () ->select(a |

2 a.oclAsType(Dependency).getAppliedStereotypes ().name ->includes(’instanceOf ’) )

->forAll(d |

3 d.oclAsType(Dependency).source ->forAll(oclIsTypeOf(Package)) and

4 d.oclAsType(Dependency).source.getAppliedStereotypes ().name

->includes(’ProblemDiagram ’) and

5 d.oclAsType(Dependency).target ->forAll(oclIsTypeOf(Package)) and

6 d.oclAsType(Dependency).target.getAppliedStereotypes ().name

->includes(’ProblemFrame ’)

7 )

Listing C.39: The stereotype �instanceOf� points from �ProblemDiagram� to �ProblemFrame�

A dependency with the stereotype�instanceOf� (lines 1-2) only points from a problem diagram
(lines 3-4) to a problem frame (lines 5-6).

1 Dependency.allInstances () -> select(getAppliedStereotypes ().name

->includes(’instanceOf ’) ) ->forAll(

2 target.oclAsType(Package)

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

4 ->select(getAppliedStereotypes ().name ->includes(’Requirement ’)).oclAsType(Class)

5 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’constrains ’)).

6 target.getAppliedStereotypes ().name

7 ->reject(n | n=’ConnectionDomain ’ or n=’DesignedDomain ’)

8 =

9 source.oclAsType(Package)

10 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

11 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

12 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’constrains ’)).

13 target.getAppliedStereotypes ().name

14 ->reject(n | n=’ConnectionDomain ’ or n=’DesignedDomain ’)

15 )

Listing C.40: Domain types of constrained domains in problem frame are the same as in instantiated
frame

The domain types of constrained domains in a problem frame (lines 2-7) are the same types as
in the instantiated frame (lines 7-14).

1 Dependency.allInstances () -> select(getAppliedStereotypes ().name

->includes(’instanceOf ’) ) ->forAll(

2 source.oclAsType(Package)

3 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

4 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

5 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’refersTo ’))

6 .target.getAppliedStereotypes ().name

7 ->includesAll(

8 target.oclAsType(Package)

9 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

10 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

11 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’refersTo ’))

12 .target.getAppliedStereotypes ().name
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13 ->reject(n | n=’ConnectionDomain ’ or n=’DesignedDomain ’)

14 )

15 )

Listing C.41: A referred domain in the problem frame corresponds to a domain in the problem diagram

The referred domains in the problem frame (lines 8-13) correspond to referred domains in the
problem diagram (lines 2-6).

1 Dependency.allInstances () -> select(getAppliedStereotypes ().name

->includes(’instanceOf ’) )

2 ->forAll(

3 target.oclAsType(Package)

4 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

5 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

6 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’constrains ’)).

7 target.getAppliedStereotypes ().name

8 =

9 source.oclAsType(Package)

10 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

11 .target -> select(getAppliedStereotypes ().name

->includes(’Requirement ’)).oclAsType(Class)

12 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’constrains ’)).

13 target.getAppliedStereotypes ().name

14 )

Listing C.42: A constrained domain in the problem frame corresponds to a domain in the problem
diagram

The domain types of the constrained domains in the problem frame are the same as in the
problem diagram.

All dependencies in the model with the stereotype �instanceOf� (line 1) are selected. For
these dependencies (line 2) the parts of the target (i.e, the problem frame) being requirements
(lines 4 and 5) are selected. For these requirements, the dependencies with the stereotype
�constrains� are selected (line 6). The target of these dependencies are the constrained classes,
and the bag of their stereotype names (line 7) must be the same (line 8) as the bag of stereotype
names of constrained domains in the problem diagram (lines 9-13).

1 Dependency.allInstances () -> select(getAppliedStereotypes ().name

->includes(’instanceOf ’) )

2 ->forAll(inst_of_dep |

3 Association.allInstances ()

4 ->select(endType ->forAll(oclIsTypeOf(Class))).oclAsType(Association)

5 ->select(ass |

6 ass.oclAsType(Association).endType ->forAll (ass_end |

7 inst_of_dep.oclAsType(Dependency)

8 .target.oclAsType(Package)

9 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

10 .target ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

11 ->includes(ass_end.oclAsType(Class))

12 )

13 )->forAll(ass_in_pf |

14 Association.allInstances ()

15 ->select(endType ->forAll(oclIsTypeOf(Class))).oclAsType(Association) ->select(ass

|

16 ass.oclAsType(Association).endType ->forAll (ass_end |

inst_of_dep.oclAsType(Dependency)

17 .source.oclAsType(Package)

18 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

19 .target ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

20 ->includes(ass_end.oclAsType(Class)))

21 ) ->exists(ass_in_pd |

22 ass_in_pd.endType.oclAsType(Class).getAppliedStereotypes ().name ->includesAll(

23 ass_in_pf.endType.oclAsType(Class).getAppliedStereotypes ().name

24 )
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25 )

26 )

27 )

Listing C.43: All connections in problem frames correspond to connections in a problem diagram (being
an instance of that frame) (i.e., the connection connects same domain types)

All connections in a problem frame (lines 1-13) correspond to connections in the problem diagram
being an instance of that frame (lines 14-23), i.e., a connection connects same domain types.

1 Dependency.allInstances () ->

select(getAppliedStereotypes ().name ->includes(’instanceOf ’) )

2 ->forAll(inst_of_dep |

3 not

4 inst_of_dep.getValue(inst_of_dep.oclAsType(Dependency) .getAppliedStereotypes ()

->select(name ->includes(’instanceOf ’))

->asSequence()->first(),’weak’).oclAsType(Boolean)

5 implies

6 Association.allInstances ()

7 ->select(endType ->forAll(oclIsTypeOf(Class))) .oclAsType(Association)

8 ->select(ass |

9 ass.oclAsType(Association).endType ->forAll (ass_end |

inst_of_dep.oclAsType(Dependency)

10 .source.oclAsType(Package)

11 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

12 .target ->select(oclIsTypeOf(Class)).oclAsType(Class)->asSet()

13 ->includes(ass_end.oclAsType(Class)))

14 )->forAll(ass_in_pd |

15 Association.allInstances ()

16 ->select(endType ->forAll(oclIsTypeOf(Class))) .oclAsType(Association)

17 ->select(ass |

18 ass.oclAsType(Association).endType ->forAll (ass_end |

inst_of_dep.oclAsType(Dependency)

19 .target.oclAsType(Package)

20 .clientDependency -> select(getAppliedStereotypes ().name ->includes(’isPart ’))

21 .target ->select(oclIsTypeOf(Class)).oclAsType(Class)->asSet()

22 ->includes(ass_end.oclAsType(Class)))

23 )->exists(ass_in_pf |

24 ass_in_pd.endType.oclAsType(Class) .getAppliedStereotypes ().name

25 ->includesAll (

26 ass_in_pf.endType.oclAsType(Class) .getAppliedStereotypes ().name

27 )

28 )

29 )

30 )

Listing C.44: If not weak: All connections in problem diagrams correspond to connections in the
instantiated problem frame (connect same domain types) - No additional connections exist)

If the dependency between problem diagram and problem frame is not weak (lines 3-5) then
all connections in the problem diagram (lines 6-14) correspond to connections in the problem
frame that is instantiated (connect same domain types, lines 15-28) - no additional connections
are allowed.
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1 Dependency.allInstances () ->

select(getAppliedStereotypes ().name ->includes(’instanceOf ’) )

2 ->forAll( inst_of_dep |

3 let pf_domains: Bag(Class) =

4 inst_of_dep.target.oclAsType(Package)

5 .clientDependency -> select(getAppliedStereotypes ().name -> includes(’isPart ’))

6 .target -> select(oclIsTypeOf(Class)) -> reject(getAppliedStereotypes ().name ->

includes(’Requirement ’)).oclAsType(Class)

7 in

8 let pd_domains: Bag(Class) =

9 inst_of_dep.source.oclAsType(Package)

10 .clientDependency -> select(getAppliedStereotypes ().name -> includes(’isPart ’))

11 .target -> select(oclIsTypeOf(Class)) -> reject(getAppliedStereotypes ().name ->

includes(’Requirement ’)).oclAsType(Class)

12 in

13 let pf_ifs: Set(Interface) =

14 inst_of_dep.target.oclAsType(Package)

15 .clientDependency -> select(getAppliedStereotypes ().name -> includes(’isPart ’))

16 .target -> select(oclIsTypeOf(Interface)).oclAsType(Interface) -> asSet()

17 in

18 let pd_ifs: Set(Interface) =

19 inst_of_dep.source.oclAsType(Package)

20 .clientDependency -> select(getAppliedStereotypes ().name -> includes(’isPart ’))

21 .target -> select(oclIsTypeOf(Interface)).oclAsType(Interface) -> asSet()

22 in

23 pf_domains ->select(getAppliedStereotypes ().name -> includes(’Machine ’))

24 .clientDependency -> select(getAppliedStereotypes ().name -> includes(’controls ’))

25 -> select(pf_ifs ->includesAll(target.oclAsType(Interface))) -> asSet() ->size ()

26 =

27 pd_domains ->select(getAppliedStereotypes ().name -> includes(’Machine ’))

28 .clientDependency -> select(getAppliedStereotypes ().name -> includes(’controls ’))

29 -> select(pd_ifs ->includesAll(target.oclAsType(Interface))) -> asSet() ->size ()

30 )

Listing C.45: Interfaces cannot be left out if they are controlled by the machine.

Interfaces cannot be left out if they are controlled by the machine. This is expressed in the same
way as in Expression C.42. Using the same definitions, we check that the number of controlled
interfaces of each domain in each problem frame with the stereotype �machine� (lines 23-25)
is equal to (line 26) the number of controlled interfaces of each domain in each problem diagram
with the stereotype �machine� (lines 27-29).

C.6. Constraints related to the consistency between problem
diagrams and sequence diagrams

1 Interaction.allInstances ()->size() >0 implies

2 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’)) ->forAll( pd |

3 Interaction.allInstances ()

4 ->exists(pd.oclAsType(Package).clientDependency.target ->select(oclIsTypeOf(Class))

5 ->select(getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’))

9 .oclAsType(Class).name ->includesAll(lifeline.name )

10 and

11 pd.oclAsType(Package).clientDependency.target ->select(oclIsTypeOf(Class))

12 ->select(d | clientDependency.target

->select(oclIsTypeOf(Association)).oclAsType(Association)

13 ->exists(endType ->includes(d.oclAsType(Type)) and

endType.getAppliedStereotypes ().name ->includes(’Machine ’)))

14 ->forAll(d | lifeline.name ->includes(d.oclAsType(Class).name))

15 ) )
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Listing C.46: Problem diagram domains vs. lifelines in sequence diagrams

This expression checks whether there exist sequence diagrams for all problem diagrams. If at
least one sequence diagram exists (line 1), we have to check the following: For all packages with
the stereotype�ProblemDiagram� (pd, line 2), check the set of all sequence diagrams (keyword
Interaction) (line 3) whether there exists a sequence diagram where the names of the lifelines
(line 9) are a subset of the names of the package elements (line 4) with the stereotype domain
or a sub-type of domain (lines 5-8 as well as line 10). Additionally, all domains connected with
the machine (lines 11-13) have to be represented as lifelines (line 14).

1 Interaction.allInstances () ->forAll( sd |

2 Package.allInstances ()

->select(getAppliedStereotypes ().name ->includes(’ProblemDiagram ’))

3 ->exists(clientDependency.target ->select(oclIsTypeOf(Class))

4 ->select(getAppliedStereotypes ().name ->includes(’Domain ’) or

5 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

8 .oclAsType(Class).name ->includesAll(sd.oclAsType(Interaction).lifeline.name)

9 )

10 or

11 ( sd.oclAsType(Interaction).lifeline.name ->forAll(ln|

12 Class.allInstances ()->exists(c |

13 let names_of_included_classes:Set(String) =

14 c.member ->select(oclIsTypeOf(Property)).oclAsType(Property).type

->select(oclIsTypeOf(Class)).oclAsType(Class).name ->asSet()

15 in

16 let ln_ss:Sequence(String) = Sequence {1..ln.size()}

->collect(i|ln.substring(i,i))

17 in

18 let class_name: String =

19 if ln_ss ->indexOf(’:’) = null

20 then ln

21 else Sequence{(ln_ss ->indexOf(’:’) + 1)..ln_ss ->size()} ->iterate(i;

res:String=’’| res.concat(ln_ss ->at(i)))

22 endif

23 in

24 names_of_included_classes ->includes(class_name)

25 )

26 or ln = ’ENVIRONMENT ’

27 )

28 )

29 )

Listing C.47: Lifelines in sequence diagrams vs. problem diagram domains

For all sequence diagrams (line 1), we check the set of all packages with the stereotype�Problem-
Diagram� (line 2) whether there exists (line 3) a problem diagram where the names of the
sequence diagram lifelines (line 8) are a subset of the names of the package elements (line 4)
with the stereotype domain or a sub-type of domain (lines 4-8) or (line 10). To allow sequence
diagrams that describe the behavior of components (needed in the design phase), we check that
the set of names of the classes that are part of another class (variable names of included classes)
includes the set of lifeline names (variable class name) (line 24) or that the lifeline name is
’ENVIRONMENT’ (line 26). In order to be able to compare the names, we must extract the
names of the lifelines that describe objects (variable class name, lines 16-23) beforehand.

1 let mchns: Set(Class) =

2 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

4 .target ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

5 getAppliedStereotypes ().general.name ->includes(’Machine ’))
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6 .oclAsType(Class)->asSet()

7 in let doms: Set(Class) =

8 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

9 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

10 .target ->select(getAppliedStereotypes ().name ->includes(’DisplayDomain ’) or

11 getAppliedStereotypes ().general.name ->includes(’DisplayDomain ’) or

12 getAppliedStereotypes ().name ->includes(’ConnectionDomain ’) or

13 getAppliedStereotypes ().general.name ->includes(’ConnectionDomain ’))

14 ->select(cddd |

15 Association.allInstances ()

16 ->exists(as |

17 as.oclAsType(Association).endType ->includes(cddd.oclAsType(Class)) and

18 as.oclAsType(Association).endType ->exists(et | mchns

->includes(et.oclAsType(Class)))

19 )

20 )

21 ->union(mchns)

22 .oclAsType(Class)->asSet()

23 in

24 doms.clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target

25 ->intersection(Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

26 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’))

27 .target ->select(oclIsTypeOf(Interface)))

28 .ownedElement

29 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name ->asSet()

30 ->reject(op |

31 Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))

32 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target.oclAsType(Interface).ownedElement

33 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name

34 ->includes( op )

35 )

36 ->forAll( phen |

37 Lifeline.allInstances ()

38 .coveredBy

39 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and

name.substring (1,1)=’S’)

40 .oclAsType(MessageOccurrenceSpecification).message ->select(m | m <>

null).name

41 ->includes(phen)

42 )

43

44 and

45 let lexrmsgs: Set(String) =

46 Lifeline.allInstances ()

47 ->select(ln | Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))->exists(name=ln.name))

48 .coveredBy

49 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’R’)

50 .oclAsType(MessageOccurrenceSpecification).message.name

51 .oclAsType(String)->asSet()

52 in

53 let contrphen: Set(String) =

54 doms.clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target

55 ->intersection(Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

56

57 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’))

58 .target ->select(oclIsTypeOf(Interface))).ownedElement

59 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name

60 .oclAsType(String)->asSet()

61 in

62 Lifeline.allInstances ()
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63 ->reject(ln | Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))->exists(name=ln.name))

64 ->select(ln | doms ->exists(name=ln.name))

65 .coveredBy

66 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’S’)

67 .oclAsType(MessageOccurrenceSpecification).message.name

68 ->reject(n | lexrmsgs ->includes(n))

69 ->select(n | n<>’’)

70 ->forAll(msg | contrphen ->includes(msg) )

Listing C.48: Sent messages in sequence diagrams vs. operations in controlled interfaces in problem
diagrams

This expression checks that all relevant controlled phenomena in the problem diagrams related
to the machine are sent messages in the sequence diagrams (lines 24-42). By relevant we mean
all phenomena (interface operations) controlled by doms (line 25) found in a problem diagram
(lines 26-28), which are not controlled by a lexical domain (lines 29-36).

The expression also checks that the relevant sent messages in the sequence diagrams are
controlled phenomena in the problem diagram (lines 62-70). All messages sent by lifelines
that correspond to an element of doms (lines 62-66) and which are neither in the set of messages
observed by lexical domains (variable lexrmsgs) nor are empty are considered as being relevant.

In order to check this, we set

• variable mchns to the set of machines found in a problem diagram (lines 1-7).

• variable doms to the set of connected classes with the stereotype �DisplayDomain�,
�ConnectionDomain�, or any of the sub-types of the aforementioned stereotypes (lines 8-
23).

• variable lexrmsgs to the set of all messages observed by lexical domains (lines 45-51).

• variable contrphen to the set of all operations in interfaces controlled by doms (line 54)
and being part of a problem diagram (lines 55-57).

1 let mchns: Set(Class) =

2 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

4 .target ->select(getAppliedStereotypes ().name ->includes(’Machine ’) or

5 getAppliedStereotypes ().general.name ->includes(’Machine ’))

6 .oclAsType(Class)->asSet()

7 in

8 let doms: Set(Class) =

9 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

10 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

11 .target ->select(getAppliedStereotypes ().name ->includes(’DisplayDomain ’) or

12 getAppliedStereotypes ().general.name ->includes(’DisplayDomain ’) or

13 getAppliedStereotypes ().name ->includes(’ConnectionDomain ’) or

14 getAppliedStereotypes ().general.name ->includes(’ConnectionDomain ’))

15 ->select(cddd |

16 Association.allInstances ()

17 ->exists(as |

18 as.oclAsType(Association).endType ->includes(cddd.oclAsType(Class)) and

19 as.oclAsType(Association).endType ->exists(et | mchns

->includes(et.oclAsType(Class)))

20 )

21 )

22 ->union(mchns)

23 .oclAsType(Class)->asSet()

24 in

25 doms.clientDependency ->select(getAppliedStereotypes ().name

->includes(’observes ’)).target

26 ->intersection(Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))
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27 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’))

28 .target ->select(oclIsTypeOf(Interface)))

29 .ownedElement

30 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name ->asSet()

31 ->reject(op |

32 Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))

33 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’controls ’)).target.oclAsType(Interface).ownedElement

34 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name

35 ->includes( op )

36 )

37 ->forAll( phen |

38 Lifeline.allInstances ()

39 .coveredBy

40 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and

name.substring (1,1)=’R’)

41 .oclAsType(MessageOccurrenceSpecification).message.name

42 ->includes(phen)

43 )

44 and

45 let lexsmsgs: Set(String) =

46 Lifeline.allInstances ()

47 ->select(ln | Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))->exists(name=ln.name))

48 .coveredBy

49 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’S’)

50 .oclAsType(MessageOccurrenceSpecification).message.name

51 .oclAsType(String)->asSet()

52 in

53 let obsphen: Set(String) =

54 doms.clientDependency ->select(getAppliedStereotypes ().name

->includes(’observes ’)).target

55 ->intersection(Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

56 .clientDependency ->select(getAppliedStereotypes ().name

->includes(’isPart ’))

57 .target ->select(oclIsTypeOf(Interface)))

58 .ownedElement

59 ->select(oclIsTypeOf(Operation)).oclAsType(Operation).name

60 .oclAsType(String)->asSet()

61 in

62 Lifeline.allInstances ()

63 ->reject(ln | Class.allInstances ()->select(getAppliedStereotypes ().name

->includes(’LexicalDomain ’))->exists(name=ln.name))

64 ->select(ln | doms ->exists(name=ln.name))

65 .coveredBy

66 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’R’)

67 .oclAsType(MessageOccurrenceSpecification).message.name

68 ->reject(n | lexsmsgs ->includes(n))

69 ->select(n | n<>’’)

70 ->forAll(msg | obsphen ->includes(msg) )

Listing C.49: Received messages in sequence diagrams vs. operations in observed interfaces in problem
diagrams

This expression checks that all relevant observed phenomena in the problem diagrams related to
the machine are received messages in the sequence diagrams (lines 25-42). By relevant we mean
all phenomena (interface operations) observed by doms (line 25) found in a problem diagram
(lines 26-28), which are not controlled by a lexical domain (lines 29-36).

The expression also checks that the relevant sent messages in the sequence diagrams are
controlled phenomena in the problem diagram (lines 62-70). All messages sent by lifelines
that correspond to an element of doms (lines 62-66) and which are neither in the set of messages
observed by lexical domains (variable lexsmsgs) nor are empty are considered as being relevant.

In order to check this, we set

• variable mchns to the set of machines found in a problem diagram (lines 1-7).
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• variable doms to the set of connected classes with the stereotype �DisplayDomain�,
�ConnectionDomain�, or any of the sub-types of the aforementioned stereotypes (lines 8-
23).

• variable lexsmsgs to the set of all messages controlled by lexical domains (lines 45-51).

• variable obphen to the set of all operations in interfaces observed by doms (line 54) and
being part of a problem diagram (lines 55-57).

C.7. Constraints related to technical context diagrams

1 Package.allInstances () ->select(p | p.oclAsType(Package).getAppliedStereotypes ()

.name

2 ->includes(’TechnicalContextDiagram ’)).ownedElement

3 ->forAll(oe |

4 (oe.oclIsTypeOf(Class) and

5 (oe.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Domain ’) or

6 oe.oclAsType(Class).getAppliedStereotypes ().general.name

->includes(’Domain ’) or

7 oe.oclAsType(Class).getAppliedStereotypes ().general.general.name

->includes(’Domain ’) or

8 oe.oclAsType(Class).getAppliedStereotypes ().general.general

9 .general.name ->includes(’Domain ’) ) or

10 oe.oclIsTypeOf(Interface) or

11 (oe.oclIsTypeOf(Association) and

12 (oe.oclAsType(Association).getAppliedStereotypes ().name

->includes(’connection ’) or

13 oe.oclAsType(Association).getAppliedStereotypes ().general.name

->includes(’connection ’) or

14 oe.oclAsType(Association).getAppliedStereotypes ().general.general

15 .name ->includes(’connection ’) or

16 oe.oclAsType(Association).getAppliedStereotypes ().general.general

17 .general.name ->includes(’connection ’) ) ) or

18 (oe.oclIsTypeOf(Dependency) and

19 (oe.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’controls ’) or

20 oe.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’observes ’) or

21 oe.oclAsType(Dependency).getAppliedStereotypes ().name

->includes(’isPart ’))

22 )or

23 oe.oclIsTypeOf(Comment)

24 )

25 )

Listing C.50: Allowed elements for a technical context diagram

First, we select the package that is annotated with the stereotype �TechnicalContextDiagram�
(lines 1-2) and all the elements associated to it (keyword ownedElement, line 2). Second, we
check for each owned element oe (line 3) if it is a class with the stereotype�Domain� or any of
its subtypes (lines 4 - 8), or if it is an interface (line 9; no restrictions considering the stereotypes
apply here), or an association. An association must have the stereotype�connection� or a sub-
type of �connection�, e.g.,�ui� for a user interface (lines 10-17), or if it is a dependency (line
18). In this case, it must have either �controls�, �observes�, or �isPart�, or as stereotype,
or if it is a comment (line 23).

1 Package.allInstances () ->select(p |

2 p.oclAsType(Package).getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’)

3 ) -> forAll (p |

4 p.clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

5 .target ->select(cd_elem |

6 cd_elem .oclIsTypeOf(Class) and cd_elem

.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Machine ’)
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7 ) ->size() >=1

8 )

Listing C.51: A technical context diagram has at least one machine domain

A technical context diagram must contain at least one machine: We first select all packages
with the appropriate stereotype, i.e, �TechnicalContextDiagram� (lines 1 and 2). For this
package we collect all dependencies (keyword clientDependency, line 4) and select those with
the stereotype �isPart� (line 4). Using the target ends of these dependencies, we collect all
elements of the package and select (line 5) those (variable cd elem; line 6) being classes with the
stereotype �Machine� (line 6). The size of the resulting bag must be greater than or equal to
one (line 7).

C.8. Constraints related to the consistency between the context
diagram and technical context diagrams

1 let cd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’) or getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

3 .clientDependency.target

4 ->select(

5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

9 .oclAsType(Class) ->asSet()

10 in

11 let cd_domain_parts: Set(Class) =

12 cd_domains.member

13 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

14 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->asSet()

15 in

16 let cd_dom_concr: Set(Class) =

17 Class.allInstances ()->select(clientDependency ->select(cdep|

cdep.getAppliedStereotypes ().name ->includes(’concretizes ’) and

cdep.target ->select(oclIsTypeOf(Class)).oclAsType(Class)

18 ->exists(d| cd_domains ->includes(d)))->size() >=1)

19 in

20 let cd_merged_domains: Set(Class) =

21 Class.allInstances ()

22 ->select(cl |

23 let cl_members: Set(Class) =

24 cl.member

25 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

26 ->select(oclIsTypeOf(Class)) .oclAsType(Class) ->asSet()

27 in

28 cl_members ->exists(clm | cd_domains ->includes(clm))

29 )

30 in

31 let cd_connection_ifs: Set(Interface)=

32 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ContextDiagram ’)) ->asSequence() ->first()

33 .clientDependency.target

34 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

35 in

36 let cd_connection_if_parts: Set(Interface)=

37 cd_connection_ifs.member

38 ->select(oclIsTypeOf(Property)).oclAsType(Property).type

39 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

40 in

41 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

42 ->forAll(pd_tcd |
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43 pd_tcd.clientDependency -> select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

44 ->select(oclIsTypeOf(Class))

45 ->select(

46 getAppliedStereotypes ().name ->includes(’Domain ’) or

47 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

48 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

49 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class)

50 ->forAll(pd_domain |

51 cd_domains ->includes(pd_domain) or

52 cd_domain_parts ->includes(pd_domain) or

53 cd_merged_domains ->includes(pd_domain) or

54 cd_dom_concr ->includes(pd_domain) or

55 let concr_ifs_of_pd_domain: Set(Interface) =

56 pd_domain.clientDependency ->select(

57 getAppliedStereotypes ().name ->includes(’concretizes ’) or

58 getAppliedStereotypes ().name ->includes(’refines ’)

59 ).target.oclAsType(Interface) ->asSet()

60 in

61 concr_ifs_of_pd_domain -> exists(if_pd |

62 cd_connection_ifs ->includes(if_pd) or

63 cd_connection_if_parts ->includes(if_pd)

64 )

65 )

66 )

Listing C.52: Domains in the technical context diagram are consistent to the domains in the context
diagram

A technical context diagram is consistent to a context diagram, if each domain in the technical
context diagrams (lines 41-50)

• is a domain in the context diagram (line 51), or

• is part of a domain in the context diagram (line 52, operator: split domain), or

• is composed of several domains being part of the context diagram (line 53, operator: merge
domain),

• refines or concretized a domain in the context diagram (line 54, operator: introduce con-
nection domain),

• refines or concretized an interface in the context diagram (lines 55-62, operator: introduce
connection domain), or

• refines or concretized a part of an interface in the context diagram (line 63, operator:
introduce connection domain)

C.9. Constraints related to the consistency between problem
diagrams and technical context diagrams

1 let pd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

3 .clientDependency.target

4 ->select(

5 getAppliedStereotypes ().name ->includes(’Domain ’) or

6 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

7 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

8 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

9 .oclAsType(Class) ->asSet()

10 in



C.9. Consistency between problem diagrams and technical context diagrams 267

11 let pd_domain_parts: Set(Class) =

12 pd_domains.member

13 ->select(oclIsTypeOf(Property) and

oclAsType(Property).type.oclIsTypeOf(Class)).oclAsType(Property).type

14 .oclAsType(Class) ->asSet()

15 in

16 let pd_dom_concr: Set(Class) =

17 Class.allInstances ()->select(clientDependency ->select(cdep|

cdep.getAppliedStereotypes ().name ->includes(’concretizes ’) and

cdep.target ->select(oclIsTypeOf(Class)).oclAsType(Class)

18 ->exists(d| pd_domains ->includes(d)))->size() >=1)

19 in

20 let connection_domains: Set(Class) =

21 Class.allInstances () ->select(

22 getAppliedStereotypes ().name ->includes(’Domain ’) or

23 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

24 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

25 getAppliedStereotypes ().general.general.general.name ->includes(’Domain ’))

26 ->select(

27 clientDependency.getAppliedStereotypes ().name ->includes(’refines ’) or

28 clientDependency.getAppliedStereotypes ().name ->includes(’concretizes ’) )

29 ->select(clientDependency ->exists(target ->forAll(oclIsTypeOf(Interface))))

30 ->asSet()

31 in

32 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’) )

33 ->forAll(cd |

34 cd.clientDependency -> select(getAppliedStereotypes ().name

->includes(’isPart ’)).target

35 ->select(oclIsTypeOf(Class))

36

37 ->select(

38 getAppliedStereotypes ().name ->includes(’Domain ’) or

39 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

40 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

41 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class)

42 ->forAll(cd_dom |

43 pd_domains ->includes(cd_dom) or

44 pd_domain_parts ->includes(cd_dom) or

45 pd_dom_concr ->includes(cd_dom) or

46 let cd_dom_parts: Set(Class) =

47 cd_dom.member

48 ->select(oclIsTypeOf(Property) and

oclAsType(Property).type.oclIsTypeOf(Class)).oclAsType(Property).type

49 ->select(oclIsTypeOf(Class))

50 ->select(

51 getAppliedStereotypes ().name ->includes(’Domain ’) or

52 getAppliedStereotypes ().general.name ->includes(’Domain ’) or

53 getAppliedStereotypes ().general.general.name ->includes(’Domain ’) or

54 getAppliedStereotypes ().general.general.general.name

->includes(’Domain ’)).oclAsType(Class) ->asSet()

55 in

56 (cd_dom_parts ->notEmpty () and

57 pd_domains ->includesAll(cd_dom_parts))

58 or

59 connection_domains ->includes(cd_dom)

60 )

61 )

Listing C.53: Domains in the technical context diagram connected to the machine must be found in
problem diagrams

All domains in technical context diagrams must be (using the decomposition operators) in at
least on problem diagram (lines 32-42). The domain is considered

• as the domain itself (line 43),

• as a merged domain (line 44),
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• as a concretized or refined domain (line 45),

• as a split domain (lines 46-57), or

• as an interface concretizing a connection domain (line 59), operator: remove connection
domain)

C.10. Constraints related to the consistency between sequence
diagrams and operation specifications

1 Lifeline.allInstances ().coveredBy

2 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name.substring (1,1)=’R’)

3 .oclAsType(MessageOccurrenceSpecification).message.name

4 ->forAll(receivedMsg |

5 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

6 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

7 .target ->select(getAppliedStereotypes ().name ->includes(’Machine ’))

8 .ownedElement

9 ->select(oclIsTypeOf(Operation)) .oclAsType(Operation)

.precondition ->size() >0

10 )

Listing C.54: Precondition exists for problem diagram machine operations used in sequence diagrams

For each operation of problem diagram machines (lines 4-8) which are used in sequence diagrams
(lines 1-3) a precondition must exist (line 9).

1 Lifeline.allInstances ().coveredBy

2 ->select(oclIsTypeOf(MessageOccurrenceSpecification) and name .substring (1,1)=’R’)

3 .oclAsType(MessageOccurrenceSpecification).message.name

4 ->forAll(receivedMsg |

5 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’ProblemDiagram ’))

6 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’))

7 .target ->select(getAppliedStereotypes ().name ->includes(’Machine ’))

8 .ownedElement

9 ->select(oclIsTypeOf(Operation)) .oclAsType(Operation) .postcondition

->size() >0

10 )

Listing C.55: Postcondition exists for problem diagram machine operations used in sequence diagrams

For each operation of problem diagram machines (lines 4-8) which are used in sequence diagrams
(lines 1-3) a postcondition must exist (line 9).

C.11. Dependability

C.11.1. All

1 Class.allInstances ()->select(

2 (getAppliedStereotypes ().name ->includes(’Dependability ’) or

3 getAppliedStereotypes ().general.name ->includes(’Dependability ’) or

4 getAppliedStereotypes ().general.general.name ->includes(’Dependability ’) )

5 and getAppliedStereotypes ().name ->includes(’Requirement ’))

6 ->forAll(clientDependency ->select(d |

7 d.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’complements ’))

8 .oclAsType(Dependency).target.getAppliedStereotypes ().name ->

includes(’Requirement ’)->count(true) >=1 )

Listing C.56: Each dependability requirement complements another requirement
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A dependability requirement always complements (stereotype �complements�) a functional
requirement. In this OCL expression, all classes with a stereotype indicating a dependability
statement or a subtype (e.g., �Integrity att� or �Availability rnd�) and additionally the
stereotype �Requirement� are selected in lines 1-5. In all of these requirement classes, it is
checked that their dependencies (line 6) with the stereotype �complements� (line 7) point to
at least one class with the stereotype �Requirement� (line 8).

C.11.2. Confidentiality

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Confidentiality ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(

4 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

5 .oclAsType(Dependency).target.getAppliedStereotypes () -> collect(

6 name ->includes(’CausalDomain ’) or

7 general.name ->includes(’CausalDomain ’) or

8 general.general.name ->includes(’CausalDomain ’)

9 )->count(true) >=1)

Listing C.57: Each confidentiality statement constrains a causal domain

All classes in the model with the stereotypes �Confidentiality� and also �Statement� or
�Requirement� are selected, and for all confidentiality statements the following condition is
checked (lines 1-3). The dependencies starting at this class (clientDependency) with the stereo-
type �constrains� (line 4) are considered. The targets of the ’constrains’ are checked to have
the stereotype �CausalDomain� or a subtype, and the boolean results are collected (lines 5-8).
It is checked by counting the positive results if there is at least one causal domain (or a subtype)
constrained (line 9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Confidentiality ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’Confidentiality ’) )

6 ->asSequence()->first(),’constrained ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.58: The attribute ’constrained’ contains the constrained domains

For all classes in the model with the stereotypes �Confidentiality� and also �Statement� or
�Requirement� (lines 1-3), the attribute constrained (lines 4-6) has the same elements (line 7)
as the target of the dependencies starting at this class (clientDependency) with the stereotype
�constrains� (line 8-9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Confidentiality ’))->forAll(c |

2 c.oclAsType(Class).getValue(

3 c.oclAsType(Class).getAppliedStereotypes () ->select(s |

4 s.oclAsType(Stereotype).name ->includes(’Confidentiality ’)

5 )->asSequence() ->first(),’attacker ’

6 )->size() >=1

7 )

Listing C.59: A confidentiality stereotype refers to at least one attacker
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The confidentiality stereotype needs to consider an attacker.
All classes in the model with the stereotype �Confidentiality� are selected, and for all confi-

dentiality statements the following condition is checked (line 1). At least one element must exist
in the attribute attacker (lines 2-7).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Confidentiality ’))->forAll(c |

2 let stakeholders: Set(Class) =

3 c.oclAsType(Class).getValue(

4 c.oclAsType(Class).getAppliedStereotypes () ->select(s |

5 s.oclAsType(Stereotype).name ->includes(’Confidentiality ’)

6 )->asSequence() ->first(),’stakeholder ’

7 ).oclAsType(Class)->asSet()

8 in

9 let attackers: Set(Class) =

10 c.oclAsType(Class).getValue(

11 c.oclAsType(Class).getAppliedStereotypes () ->select(s |

12 s.oclAsType(Stereotype).name ->includes(’Confidentiality ’)

13 )->asSequence() ->first(),’attacker ’

14 ).oclAsType(Class)->asSet()

15 in

16 stakeholders ->size() >=1

17 and stakeholders ->forAll(sh |

18 not attackers ->includes(sh)

19 )

20 )

Listing C.60: A confidentiality stereotype refers to at least one biddable domain (stakeholder - not the
attacker)

A confidentiality statement also needs to refer to the data’s stakeholder. The Stakeholder is
referred to, because we want to allow the access only to Stakeholders with legitimate interest.
The instances of Stakeholder and Attacker must be disjoint. In the OCL expression in Listing C.60
for each confidentiality statement (Line 1) the stakeholders are retrieved (lines 2-8), the attackers
are retrieved (lines 9-15), it is checked that at least one stakeholder is defined (line 16), and the
stakeholders are not in the set of attackers (lines 17-19).

C.11.3. Integrity

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().general.name -> includes(’Integrity ’)

3 and getAppliedStereotypes ().name -> includes(’Requirement ’)

4 )->forAll(ir |

5 ir.oclAsType(Class).clientDependency

6 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’refersTo ’))

7 .oclAsType(Dependency).target ->asSet() -> includesAll(

8 ir.oclAsType(Class).clientDependency

9 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’complements ’))

10 .oclAsType(Dependency).target.oclAsType(Class) .clientDependency

11 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

12 .oclAsType(Dependency).target ->asSet()

13 )

14 )

Listing C.61: Integrity requirements refer to constrained domains

An integrity requirement needs to refer to the domain constrained by the supplemented func-
tional requirement. To validate that integrity requirements refer to the domain constrained
in the functional statement, we check for all classes with the stereotypes �Integrity� and
�Requirement� (lines 1-4 of Listing C.61) that the set of all classes referred to includes (lines 5-
7) the set of all constrained classes (lines 11 and 12) of the supplemented functional requirements
(lines 8-10).



C.11. Dependability 271

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’Integrity ’))

3 ->size()=0

Listing C.62: No class with stereotype ’Integrity’

Checks that no classes with the stereotype �integrity� exists.

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Integrity_rnd ’) or getAppliedStereotypes ().name ->

includes(’Integrity_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(

4 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’refersTo ’))

5 .oclAsType(Dependency).target.getAppliedStereotypes () -> collect(

6 name ->includes(’CausalDomain ’) or

7 general.name ->includes(’CausalDomain ’) or

8 general.general.name ->includes(’CausalDomain ’)

9 )->count(true) >=1)

Listing C.63: Integrity requirements refer to causal domains

All classes in the model with the stereotypes �Integrity att� or �Integrity rnd� and also
�Statement� or �Requirement� are selected, and for all confidentiality statements the fol-
lowing condition is checked (lines 1-3). The dependencies starting at this class (clientDependency)
with the stereotype�refersTo� (line 4) are considered. The targets of the ’refersTo’ are checked
to have the stereotype �CausalDomain� or a subtype, and the boolean results are collected
(lines 5-8). It is checked by counting the positive results if there is at least one causal domain
(or a subtype) constrained (line 9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Integrity_rnd ’) or getAppliedStereotypes ().name ->

includes(’Integrity_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).general.name -> includes(’Integrity ’) )

6 ->asSequence()->first(),’constrainedByFunctional ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 c.clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’refersTo ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.64: ’constrainedByFunctional’ corresponds to ’refersTo’-references

For all classes in the model with the�Integrity att� or�Integrity rnd��Confidentiality� and
also �Statement� or �Requirement� (lines 1-3), the attribute influencedIfViolation (lines 4-
6) has the same elements (line 7) as the targets of the dependencies starting at this class
(clientDependency) with the stereotype �constrains� (line 8-9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Integrity_rnd ’) or getAppliedStereotypes ().name ->

includes(’Integrity_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(

4 clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

5 .oclAsType(Dependency).target.getAppliedStereotypes () -> collect(

6 name ->includes(’CausalDomain ’) or

7 general.name ->includes(’CausalDomain ’) or

8 general.general.name ->includes(’CausalDomain ’)
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9 )->count(true) >=1)

Listing C.65: Integrity requirements constrain causal domains

All classes in the model with the stereotypes �Integrity att� or �Integrity rnd� and also
�Statement� or �Requirement� are selected, and for all confidentiality statements the fol-
lowing condition is checked (lines 1-3). The dependencies starting at this class (clientDependency)
with the stereotype �constrains� (line 4) are considered. The targets of the ’constrains’ are
checked to have the stereotype �CausalDomain� or a subtype, and the boolean results are
collected (lines 5-8). It is checked by counting the positive results if there is at least one causal
domain (or a subtype) constrained (line 9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name -> includes(’Integrity ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).general.name -> includes(’Integrity ’) )

6 ->asSequence()->first(),’influencedIfViolation ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 and

11 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

12 s.oclAsType(Stereotype).general.name -> includes(’Integrity ’) )

13 ->asSequence()->first(),’actionIfViolation ’) .oclAsType(String)->asSet()

14 =

15 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

16 .oclAsType(Dependency).name ->asSet()

17 )

Listing C.66: ’influencedIfViolation’ and ’actionIfViolation’ correspond to constraining references

For all classes in the model with the�Integrity att� or�Integrity rnd��Confidentiality� and
also �Statement� or �Requirement� (lines 1-3), the attribute influencedIfViolation (lines 4-
6) has the same elements (line 7) as the targets of the dependencies starting at this class
(clientDependency) with the stereotype �constrains� (line 8-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’Integrity_rnd ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () ->

select(s |

5 s.oclAsType(Stereotype).name -> includes(’Integrity_rnd ’) )

6 ->asSequence()->first(),’probability ’) <> null )

Listing C.67: Integrity statements considering random faults contain probabilities

For all integrity statements (lines 1-3), probability is relevant (and should be set, lines 4-6).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’Integrity_att ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () ->

select(s |

5 s.oclAsType(Stereotype).name -> includes(’Integrity_att ’) )

6 ->asSequence()->first(),’attacker ’) ->size() >0

7 )

Listing C.68: Integrity statements considering an attacker refer to an attacker

For an integrity statement (lines 1-3) attacker is relevant (and shall be set, lines 4-6).
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C.11.4. Availability

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’Availability ’))

3 ->size()=0

Listing C.69: No class with stereotype ’Availability’

Checks that no classes with the stereotype �Availability� exists.

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().general.name -> includes(’Availability ’)

3 and getAppliedStereotypes ().name -> includes(’Requirement ’)

4 ) ->forAll(ar |

5 ar.oclAsType(Class).clientDependency

6 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

7 .oclAsType(Dependency).target ->asSet() ->includesAll(

8 ar.oclAsType(Class).clientDependency

9 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’complements ’))

10 .oclAsType(Dependency).target.oclAsType(Class) .clientDependency

11 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

12 .oclAsType(Dependency).target ->asSet()

13 )

14 )

Listing C.70: Availability requirements constrain constrained domains

For all classes with the stereotypes �Availability rnd� or �Availability add� and �Require-
ment� (lines 1-4 of Listing C.70), the set of its constrained classes includes (lines 5-7) the set
of all constrained classes (lines 11 and 12) of the complemented functional requirements (lines
8-10).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Availability_rnd ’) or getAppliedStereotypes ().name ->

includes(’Availability_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(

4 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

5 .oclAsType(Dependency).target.getAppliedStereotypes () -> collect(

6 name ->includes(’CausalDomain ’) or

7 general.name ->includes(’CausalDomain ’) or

8 general.general.name ->includes(’CausalDomain ’)

9 )->count(true) >=1)

Listing C.71: Availability requirements constrain causal domains

All classes in the model with the stereotypes�Availability att� or�Availability rnd� and also
�Statement� or �Requirement� are selected, and for all availability statements the following
condition is checked (lines 1-3). The dependencies starting at this class (clientDependency) with
the stereotype �constrains� (line 4) are considered. The targets of the ’constrains’-dependency
are checked to have the stereotype �CausalDomain� or a subtype, and the boolean results are
collected (lines 5-8). It is checked by counting the positive results if there is at least one causal
domain (or a subtype) constrained (line 9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Availability_rnd ’) or getAppliedStereotypes ().name ->

includes(’Availability_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).general.name -> includes(’Availability ’) )
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6 ->asSequence()->first(),’constrained ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 c.clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’constrained ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.72: ’constrained’ corresponds to constraining references

For all classes in the model with the�Availability att� or�Availability rnd� and also�State-
ment� or�Requirement� (lines 1-3), the attribute constrained (lines 4-6) has the same elements
(line 7) as the targets of the dependencies starting at this class (clientDependency) with the
stereotype �constrains� (line 8-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name ->

includes(’Availability_att ’))

3 ->forAll(c |

4 (c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes ()

-> select(s |

5 s.oclAsType(Stereotype).name -> includes(’Availability_att ’) )

6 ->asSequence()->first(),’attacker ’) ->size() >0)

7 and (c.oclAsType(Class).getValue(c.oclAsType(Class)

.getAppliedStereotypes () -> select(s |

8 s.oclAsType(Stereotype).name -> includes(’Availability_att ’) )

9 ->asSequence()->first(),’forGroup ’) ->size() >0)

10 )

Listing C.73: Availability statements considering an attacker refer to attackers and stakeholders

For available requirements considering an attacker the stereotype attributes forGroup and at-
tacker must be specified, as required by the OCL expression in Listing C.73. For all availability
statements (Lines 1-3) is checked that values forGroup and attacker are set (Lines 4-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name ->

includes(’Availability_rnd ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes ()

-> select(s |

5 s.oclAsType(Stereotype).name -> includes(’Availability_rnd ’) )

6 ->asSequence()->first(),’probability ’) <> null )

Listing C.74: Availability statements considering random faults contain probabilities

For all availability statements considering random faults (lines 1-3), the probability is relevant
(and should be set, lines 4-6).

C.11.5. Reliability

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’Reliability ’))

3 ->size()=0

Listing C.75: No class with stereotype ’Reliability’

Checks that no classes with the stereotype �Reliability� exists.

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().general.name -> includes(’Reliability ’)

3 and getAppliedStereotypes ().name -> includes(’Requirement ’)

4 ) ->forAll(ar |

5 ar.oclAsType(Class).clientDependency

6 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))
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7 .oclAsType(Dependency).target ->asSet() ->includesAll(

8 ar.oclAsType(Class).clientDependency

9 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’complements ’))

10 .oclAsType(Dependency).target.oclAsType(Class) .clientDependency

11 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

12 .oclAsType(Dependency).target ->asSet()

13 )

14 )

Listing C.76: Reliability requirements constrain constrained domains

Reliability requirements constrain (lines 1-6) the domain constrained by the complemented func-
tional requirement (lines 7-12).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Reliability_rnd ’) or getAppliedStereotypes ().name ->

includes(’Reliability_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(

4 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

5 .oclAsType(Dependency).target.getAppliedStereotypes () -> collect(

6 name ->includes(’CausalDomain ’) or

7 general.name ->includes(’CausalDomain ’) or

8 general.general.name ->includes(’CausalDomain ’)

9 )->count(true) >=1)

Listing C.77: Reliability requirements constrain causal domains

All classes in the model with the stereotypes �Reliability att� or �Reliability rnd� and also
�Statement� or �Requirement� are selected, and for all availability statements the following
condition is checked (lines 1-3). The dependencies starting at this class (clientDependency) with
the stereotype �constrains� (line 4) are considered. The targets of the ’constrains’-dependency
are checked to have the stereotype �CausalDomain� or a subtype, and the boolean results are
collected (lines 5-8). It is checked by counting the positive results if there is at least one causal
domain (or a subtype) constrained (line 9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’Reliability_rnd ’) or getAppliedStereotypes ().name ->

includes(’Reliability_att ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll( c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).general.name -> includes(’Reliability ’) )

6 ->asSequence()->first(),’constrained ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 c.clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.78: ’constrained’ corresponds to constraining references

For all classes in the model with the �Reliability att� or �Reliability rnd� and also �State-
ment� or�Requirement� (lines 1-3), the attribute constrained (lines 4-6) has the same elements
(line 7) as the targets of the dependencies starting at this class (clientDependency) with the
stereotype �constrains� (line 8-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name ->

includes(’Reliability_att ’))

3 ->forAll(c |
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4 (c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes ()

-> select(s |

5 s.oclAsType(Stereotype).name -> includes(’Reliability_att ’) )

6 ->asSequence()->first(),’attacker ’) ->size() >0)

7 and (c.oclAsType(Class).getValue(c.oclAsType(Class)

.getAppliedStereotypes () -> select(s |

8 s.oclAsType(Stereotype).name -> includes(’Reliability_att ’) )

9 ->asSequence()->first(),’forGroup ’) ->size() >0)

10 )

Listing C.79: Reliability statements considering an attacker refer to attacker and forGroup

For all reliability statement considering an attacker (lines 1-3), attacker and forGroup are relevant
(and shall be set, lines 4-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name ->

includes(’Reliability_rnd ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes ()

-> select(s |

5 s.oclAsType(Stereotype).name -> includes(’Reliability_rnd ’) )

6 ->asSequence()->first(),’probability ’) <> null )

Listing C.80: Reliability statements considering random fault contain probabilities

For all relibility statement considering random faults (lines 1-3) the probability is relevant (and
should be set, lines 4-6).

C.11.6. Authenticity

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().name -> includes(’Authentication ’)

3 ) ->forAll(ar |

4 ar.oclAsType(Class).clientDependency

5 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

6 .oclAsType(Dependency).target ->asSet()

7 ->forAll(

8 getAppliedStereotypes ().name -> includes(’CausalDomain ’)

9 or getAppliedStereotypes ().general.name -> includes(’CausalDomain ’)

10 or getAppliedStereotypes ().general.general.name -> includes(’CausalDomain ’)

11 )

12 )

Listing C.81: Each authentication statement constrains a causal domain

Each authentication statement (lines 1-3) constrains (lines 4-6) a causal domain or a subtype
(lines 7-10).

1 Class.allInstances ()->select(getAppliedStereotypes ().name -> includes(’Authenticity ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’Authenticity ’) )

6 ->asSequence()->first(),’influenced ’)

.oclAsType(ProblemFrames :: CausalDomain).base_Class ->asSet()

7 =

8 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.82: ’constrained’ corresponds to constraining references
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For all classes in the model with the�Authenticity� and also�Statement� or�Requirement�
(lines 1-3), the attribute constrained (lines 4-6) has the same elements (line 7) as the targets
of the dependencies starting at this class (clientDependency) with the stereotype �constrains�
(line 8-9).

1 Class.allInstances ()->select(getAppliedStereotypes ().name -> includes(’Authenticity ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’Authenticity ’) )

6 ->asSequence()->first(),’known’)

.oclAsType(ProblemFrames :: Domain).base_Class ->asSet()

7 =

8 c.clientDependency -> select(r |

9 r.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’refersTo ’)

10 and r.name=’known ’

11 ).oclAsType(Dependency).target.oclAsType(Class)->asSet()

12 )

Listing C.83: ’known’ corresponds to referenced domain with dependency name ’known’

For all classes in the model with the�Authenticity� and also�Statement� or�Requirement�
(lines 1-3), the attribute known (lines 4-6) has the same elements (line 7) as the targets of the
dependencies starting at this class (clientDependency) with the stereotype �refersTo� and the
name known (line 8-11).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’Authenticity ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’Authenticity ’) )

6 ->asSequence()->first(),’known’) ->size() >0

7 )

Listing C.84: Each authentication statement knows at least one domain being allowed to access

In each authenticity statement (lines 1-3), the set known contains at least one domain (lines
4-6).

1 Class.allInstances ()->select(getAppliedStereotypes ().name -> includes(’Authenticity ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’Authenticity ’) )

6 ->asSequence()->first(),’unknown ’)

.oclAsType(ProblemFrames :: Domain).base_Class ->asSet()

7 =

8 c.clientDependency -> select(r |

9 r.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’refersTo ’)

10 and r.name=’unknown ’

11 ).oclAsType(Dependency).target.oclAsType(Class)->asSet()

12 )

Listing C.85: ’unknown’ corresponds to referenced domain with dependency name ’unknown’

For all classes in the model with the�Authenticity� and also�Statement� or�Requirement�
(lines 1-3), the attribute unknown (lines 4-6) has the same elements (line 7) as the targets of the
dependencies starting at this class (clientDependency) with the stereotype �refersTo� and the
name unknown (line 8-11).

C.11.7. Security management
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1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’SecurityManagement ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’SecurityManagement ’) )

6 ->asSequence()->first(),’securityData ’)

.oclAsType(ProblemFrames :: LexicalDomain).base_Class ->asSet()

7 =

8 clientDependency -> select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name

-> includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.86: ’constrained’ corresponds to constraining references

For all classes in the model with the �SecurityManagement� and also �Statement� or �Re-
quirement� (lines 1-3), the attribute constrained (lines 4-6) has the same elements (line 7) as
the targets of the dependencies starting at this class (clientDependency) with the stereotype
�constrains� (line 8-9).

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().name -> includes(’SecurityManagement ’)

3 ) ->forAll(ar |

4 ar.oclAsType(Class).clientDependency

5 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

6 .oclAsType(Dependency).target ->asSet()

7 ->forAll(

8 getAppliedStereotypes ().name -> includes(’LexicalDomain ’)

9 )

10 )

Listing C.87: Each management statement constrains a CausalDomain

Each security management statement (lines 1-3) constrains (lines 4-6) a lexical domain (lines
7-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’SecurityManagement ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’SecurityManagement ’) )

6 ->asSequence()->first(),’validClient ’) ->size() >0

7 and

8 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

9 s.oclAsType(Stereotype).name -> includes(’SecurityManagement ’) )

10 ->asSequence()->first(),’attacker ’) ->size() >0

11 )

Listing C.88: Each management statement contains a valid client and an attacker

In each security management statement (lines 1-3), the set validClient contains at least one
domain (lines 4-6) and at least one attacker is specified (lines 8-10).

C.11.8. Secret Distribution

1 Class.allInstances ()->select(getAppliedStereotypes ().name ->

includes(’SecretDistribution ’))

2 ->select(getAppliedStereotypes ().name -> includes(’Statement ’) or

3 getAppliedStereotypes ().name -> includes(’Requirement ’))->forAll(c|

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|
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5 s.oclAsType(Stereotype).name -> includes(’SecretDistribution ’) )

6 ->asSequence()->first(),’secret ’)

.oclAsType(ProblemFrames :: LexicalDomain).base_Class ->asSet()

7 =

8 c.clientDependency -> select(r |

r.oclAsType(Dependency).getAppliedStereotypes ().name -> includes(’constrains ’))

9 .oclAsType(Dependency).target.oclAsType(Class)->asSet()

10 )

Listing C.89: ’constrained’ corresponds to constraining references

For all classes in the model with the�SecretDistribution� and also�Statement� or�Require-
ment� (lines 1-3), the attribute constrained (lines 4-6) has the same elements (line 7) as
the targets of the dependencies starting at this class (clientDependency) with the stereotype
�constrains� (line 8-9).

1 Class.allInstances () ->select(

2 getAppliedStereotypes ().name -> includes(’SecretDistribution ’)

3 ) ->forAll(ar |

4 ar.oclAsType(Class).clientDependency

5 ->select(r | r.oclAsType(Dependency).getAppliedStereotypes ().name ->

includes(’constrains ’))

6 .oclAsType(Dependency).target ->asSet()

7 ->forAll(

8 getAppliedStereotypes ().name -> includes(’LexicalDomain ’)

9 )

10 )

Listing C.90: Each secret distribution statement constrains a causal domain

Each secret distribution statement (lines 1-3) constrains (lines 4-6) a lexical domain (lines 7-9).

1 Class.allInstances ()->select(oe |

2 oe.oclAsType(Class).getAppliedStereotypes ().name -> includes(’SecretDistribution ’))

3 ->forAll(c |

4 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

5 s.oclAsType(Stereotype).name -> includes(’SecretDistribution ’) )

6 ->asSequence()->first(),’validClient ’) ->size() >0

7 and

8 c.oclAsType(Class).getValue(c.oclAsType(Class) .getAppliedStereotypes () -> select(s

|

9 s.oclAsType(Stereotype).name -> includes(’SecretDistribution ’) )

10 ->asSequence()->first(),’attacker ’) ->size() >0

11 )

Listing C.91: Each secret distribution statement contains a valid client and an attacker

In each secret distribution statement (lines 1-3), the set validClient contains at least one domain
(lines 4-6) and at least one attacker is specified (lines 8-10).

C.12. Constraints related to the consistency between technical
context diagram and software architectures

Listing C.92: Machine interfaces in technical context diagrams are covered by machine port interfaces

1 let tcd_ifs: Set(Interface) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

4 ->select(oclIsTypeOf(Interface)).oclAsType(Interface)->asSet()

5 in

6 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

7 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target
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8 ->select(getAppliedStereotypes ().name ->includes(’Machine ’)).oclAsType(Class)

9 ->forAll(tcd_machine |

10 let tcd_machine_ifs: Set(Interface) =

11 tcd_machine.clientDependency

12 ->select(

13 getAppliedStereotypes ().name ->includes(’observes ’) or

14 getAppliedStereotypes ().name ->includes(’controls ’))

15 .target.oclAsType(Interface)->select(mif | tcd_ifs ->includes(mif))

16 ->asSet()

17 in

18 let tcd_machine_port_ifs: Set(Interface) =

19 tcd_machine.member ->select(oclIsTypeOf(Port)).oclAsType(Port).required ->union(

20 tcd_machine.member ->select(oclIsTypeOf(Port)).oclAsType(Port).provided)

21 ->asSet()

22 in

23 let tcd_mp_contained_ifs: Set(Interface) =

24 tcd_machine_port_ifs.member

25 ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

26 ->select(oclIsTypeOf(Interface)) .oclAsType(Interface) ->asSet()

27 in

28 let tcd_mp_combined_ifs: Set(Interface) =

29 Interface.allInstances ()->select(

30 let comb_elem: Set(Interface) =

31 member ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

32 ->select(oclIsTypeOf(Interface)) .oclAsType(Interface) ->asSet()

33 in

34 comb_elem ->size() >0 and

35 tcd_machine_port_ifs ->includesAll(comb_elem)

36 )

37 in

38 let tcd_mp_concr_ifs: Set(Interface) =

39 tcd_machine_port_ifs.clientDependency ->select(

40 getAppliedStereotypes ().name ->includes(’concretizes ’) or

41 getAppliedStereotypes ().name ->includes(’refines ’)

42 ).target

43 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

44 in

45 let tcd_mp_abstr_ifs: Set(Interface) =

46 Interface.allInstances ()->select(

47 let abstr_ifs: Set(Interface) =

48 clientDependency ->select(

49 getAppliedStereotypes ().name ->includes(’concretizes ’) or

50 getAppliedStereotypes ().name ->includes(’refines ’)

51 ).target

52 ->select(oclIsTypeOf(Interface)).oclAsType(Interface) ->asSet()

53 in

54 tcd_machine_port_ifs ->exists(ti | abstr_ifs ->includes(ti))

55 )

56 in

57 tcd_machine_ifs ->forAll( tmi|

58 tcd_machine_port_ifs ->includes(tmi) or

59 tcd_mp_contained_ifs ->includes(tmi) or

60 tcd_mp_combined_ifs ->includes(tmi) or

61 tcd_mp_concr_ifs ->includes(tmi) or

62 tcd_mp_abstr_ifs ->includes(tmi)

63 )

64 )

The condition checks that for each observed or controlled interface of each machine in the
technical context diagram, the corresponding machine component of the architecture has ports
providing or requiring the corresponding interfaces. The OCL expression in Listing C.92 on the
preceding page checks that for each observed or controlled interface (line 6) of each machine in
technical context diagrams (lines 1-5) the machine has ports providing or requiring

• exactly the observed or controlled interface,

• interfaces combined from observed or controlled interface,

• interfaces contained in observed or controlled interface,
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• interfaces being refined or concretized by observed or controlled interface, or

• interfaces refining or concretizing observed or controlled interface.

Listing C.93: Each association stereotype corresponds to a connection stereotype

1 let tcd_domains: Set(Class) =

2 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

4 ->select(oclIsTypeOf(Class)).oclAsType(Class)->asSet()

5 in

6 Package.allInstances () ->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

7 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

8 ->select(getAppliedStereotypes ().name ->includes(’Machine ’)).oclAsType(Class)

9 ->forAll(tcd_machine |

10 let machine_associations: Set(Association) =

11 Association.allInstances ()

12 ->select(endType ->select(oclIsTypeOf(Class))

.oclAsType(Class)->includes(tcd_machine))

13 ->select(endType ->select(oclIsTypeOf(Class)) .oclAsType(Class)->forAll(ae |

tcd_domains ->includes(ae)))

14 ->asSet()

15 in

16 let tcd_machine_ports: Set(Port) =

17 tcd_machine.member ->select(oclIsTypeOf(Port)).oclAsType(Port)

18 ->asSet()

19 in

20 let m_connection: Set(Connector)=

21 Connector.allInstances ()

22 ->select(

23 end ->exists(e | tcd_machine_ports.end ->includes(e))

24 )

25 in

26 machine_associations.getAppliedStereotypes ().name ->forAll(masn |

27 m_connection.getAppliedStereotypes () .name ->includes(masn) or

28 m_connection.getAppliedStereotypes () .general.name ->includes(masn) or

29 m_connection.getAppliedStereotypes ()

.general.general.name ->includes(masn) or

30 m_connection.getAppliedStereotypes ()

.general.general.general.name ->includes(masn)

31 )

32 )

This condition checks for each machine in the technical context diagram (lines 6-9) that the
stereotype names of all associations related to the machine (line 27) is included in the set of
stereotype names of the connectors from internal components to external interfaces inside the
machine (line 16-26). We also consider specializations of the stereotypes (lines 11-15 and 28-31).

Listing C.94: Each connection stereotype corresponds to an association stereotype

1 let tcd_domains: Set(Class) =

2 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

3 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

4 ->select(oclIsTypeOf(Class)).oclAsType(Class)->asSet()

5 in

6 Package.allInstances ()->select(getAppliedStereotypes ().name

->includes(’TechnicalContextDiagram ’))

7 .clientDependency ->select(getAppliedStereotypes ().name ->includes(’isPart ’)).target

8 ->select(getAppliedStereotypes ().name ->includes(’Machine ’)).oclAsType(Class)

9 ->forAll(tcd_machine |

10 let machine_associations: Set(Association) =

11 Association.allInstances ()

12 ->select(endType ->select(oclIsTypeOf(Class))

.oclAsType(Class)->includes(tcd_machine))

13 ->select(endType ->select(oclIsTypeOf(Class)) .oclAsType(Class)->forAll(ae |

tcd_domains ->includes(ae)))
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14 ->asSet()

15 in

16 let tcd_machine_ports: Set(Port) =

17 tcd_machine.member ->select(oclIsTypeOf(Port)) .oclAsType(Port)->asSet()

18 in

19 let m_connection: Set(Connector)=

20 Connector.allInstances ()

21 ->select(

22 end ->exists(e | tcd_machine_ports.end ->includes(e))

23 )

24 in

25 m_connection.getAppliedStereotypes ()->forAll(mcs |

26 machine_associations.getAppliedStereotypes ().name ->includes(mcs.name

->asSequence()->first()) or

27 machine_associations.getAppliedStereotypes ().name

->includes(mcs.general.name ->asSequence()->first()) or

28 machine_associations.getAppliedStereotypes ().name

->includes(mcs.general.general.name ->asSequence()->first()) or

29 machine_associations.getAppliedStereotypes ().name

->includes(mcs.general.general.general.name

->asSequence()->first()) or

30 machine_associations.getAppliedStereotypes ().name

->includes(mcs.general.general .general.general.name

->asSequence()->first())

31 )

32 )

The condition checks that each stereotype name of the connectors from components to external
interfaces inside the machine must be included in the set of associations (or their specialization)
to the machine in the technical context diagram.

C.13. Constraints related to the consistency between the different
software architectures

Listing C.95: Machines in problem diagrams must be components

1 let contained_classes_in_machines_and_components: Set(Class) =

2 Class.allInstances ()

3 ->select(getAppliedStereotypes ().name ->includes(’Component ’) or

getAppliedStereotypes ().name ->includes(’Machine ’))

4 .member ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

->select(oclIsTypeOf(Class)) .oclAsType(Class)->asSet()

5 in

6 Class.allInstances ()

7 ->select(getAppliedStereotypes ().name ->includes(’Component ’) or

getAppliedStereotypes ().name ->includes(’ReusedComponent ’))->asSet()

8 ->forAll(component | contained_classes_in_machines_and_components

->includes(component))

This condition checks that all components must either be combined into the machine or into an-
other component. The OCL expression in Listing C.95, defines the set contained classes in mach-
ines and components by selecting all classes in machines or components (lines 1-5). We then
check that all components (lines 6 and 7) only contain classes of contained classes in mach-
ines and components (line 8).

Listing C.96: Operations in required interfaces are provided

1 Class.allInstances ()->select(

2 getAppliedStereotypes ().name ->includes(’Machine ’) or

3 getAppliedStereotypes ().name ->includes(’Component ’)

4 )->forAll(mc |

5 let mc_comps: Set(Class) =

6 mc.member ->select(oclIsTypeOf(Property)) .oclAsType(Property).type



C.13. Constraints related to the consistency between the different software architectures 283

7 ->select(oclIsTypeOf(Class))

->select(getAppliedStereotypes ().name ->includes(’Component ’))

8 .oclAsType(Class) ->asSet()

9 in

10 mc_comps.oclAsType(Class).ownedPort ->forAll( mcc_p |

11 let mcc_p_conn_p: Set(Port) =

12 mc_comps.ownedPort ->select(mc_comps_p |

13 Connector.allInstances ()->exists( conne |

14 let ce_mc_comps_p: Set(ConnectorEnd) =

15 conne.end ->select(ce | mc_comps_p.end ->includes(ce))

16 in

17 ce_mc_comps_p ->size()=1 and

18 conne.end ->exists(ce | mcc_p.end ->includes(ce) and not

ce_mc_comps_p ->includes(ce))

19 )

20 )->asSet()

21 in

22 mcc_p.oclAsType(Port).required.ownedOperation.name ->forAll(opn |

23 mcc_p_conn_p.provided.ownedOperation.name ->includes(opn)

24 or mcc_p_conn_p ->size()=0

25 )

26 )

27 )

The condition checks that for each operation in a required interface of a port of a component
there exists a connector to a port providing an interface with this operation.

Listing C.97: Each operation in external interfaces of the machine corresponds to an internal one

1 Class.allInstances ()->select(

2 getAppliedStereotypes ().name ->includes(’Machine ’) or

3 getAppliedStereotypes ().name ->includes(’Component ’)

4 )->forAll(mc |

5 let mc_comps: Set(Class) =

6 mc.member ->select(oclIsTypeOf(Property)) .oclAsType(Property).type

7 ->select(getAppliedStereotypes ().name ->includes(’Component ’))

8 .oclAsType(Class) ->asSet()

9 in

10 mc.oclAsType(Class).ownedPort ->forAll( mc_p |

11 let mc_p_conn_p: Set(Port) =

12 mc_comps.ownedPort ->select(mc_comps_p |

13 Connector.allInstances ()->exists( conne |

14 conne.end ->exists(ce | mc_comps_p.end ->includes(ce)) and

15 conne.end ->exists(ce | mc_p.end ->includes(ce))

16 )

17 )->asSet()

18 in

19 (mc_p.oclAsType(Port).provided.ownedOperation.name ->forAll(opn |

20 mc_p_conn_p.provided.ownedOperation.name ->includes(opn)

21 ) and

22 mc_p.oclAsType(Port).required.ownedOperation.name ->forAll(opn |

23 mc_p_conn_p.required.ownedOperation.name ->includes(opn)

24 )) or mc_p_conn_p ->size()=0

25 ) )

This condition checks that the component’s interfaces must fit to the connected interfaces of the
machine, i.e., each operation in a required interface of a port must correspond to an operation
of a provided interface of the connected port.

Listing C.98: Active classes only contain active classes

1 Class.allInstances () ->forAll(c |

2 c.member ->select(oclIsTypeOf(Property) and

oclAsType(Property).type.oclIsTypeOf(Class)) .oclAsType(Property)

3 ->forAll(type.oclAsType(Class).isActive implies c.isActive))

The condition checks that passive components cannot contain any active components: The OCL
expression in Listing C.98, checks for all classes c (line 1) that if they contain other classes (line
2) that these classes must also be active (line 3).
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Listing C.99: Allowed stereotypes for machines

1 Class.allInstances () ->forAll(c |

2 not Package.allInstances () ->select(getAppliedStereotypes ().name

3 ->includes(’ProblemFrame ’)).clientDependency.target

4 ->select(getAppliedStereotypes ().name ->includes(’Machine ’))

.oclAsType(Class)->includes(c)

5 and

6 c.getAppliedStereotypes ().name ->includes(’Machine ’)

7 implies (

8 c.getAppliedStereotypes ().name ->includes(’Component ’) or

9 c.getAppliedStereotypes ().name ->includes(’ReusedComponent ’) or

10 c.getAppliedStereotypes ().name ->includes(’Task’) or

11 c.getAppliedStereotypes ().name ->includes(’Process ’) or

12 c.getAppliedStereotypes ().name ->includes(’Local’) or

13 c.getAppliedStereotypes ().name ->includes(’Distributed ’)

14 )

15 )

This condition checks that classes with the stereotype �machine� must either have the stereo-
type�Distributed�,�Local�,�Process�,�Task�,�Component� or�ReusedComponent�
assigned.

Listing C.100: Allowed sub-stereotypes for �Task�, �Process�, and �Local�
1 Class.allInstances () ->forAll(c |

2 c.member ->select(oclIsTypeOf(Property) and

oclAsType(Property).type.oclIsTypeOf(Class)) .oclAsType(Property)

3 ->forAll(

4 (

5 c.getAppliedStereotypes ().name ->includes(’Task’) implies (

6 not type.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Process ’) and

7 not type.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Local’) and

8 not type.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Distributed ’))

9 ) and

10 (

11 c.getAppliedStereotypes ().name ->includes(’Process ’) implies (

12 not type.oclAsType(Class).getAppliedStereotypes ().name ->includes(’Local’) and

13 not type.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Distributed ’))

14 ) and

15 (

16 c.getAppliedStereotypes ().name ->includes(’Local’) implies (

17 not type.oclAsType(Class).getAppliedStereotypes ().name

->includes(’Distributed ’))

18 )

19 )

20 )

The condition checks that a class with the stereotype �Task� cannot contain classes with the
stereotype �Process�, �Local�, or �Distributed�. Furthermore, it checks that a class with
the stereotype�Process� cannot contain classes with the stereotype�Local� or�Distributed�.
Finally, it checks that a class with the stereotype �Local� cannot contain classes with the
stereotype �Distributed�.

Listing C.101: The connector types are the same

1 Class.allInstances ()->select(

2 getAppliedStereotypes ().name ->includes(’intermediate_architecture ’) or

3 getAppliedStereotypes ().name ->includes(’layered_architecture ’)

4 )->forAll(ila |

5 Connector.allInstances ()->select( con |

6 con.end ->exists( ce |

7 ila.general.oclAsType(Class).ownedPort.end ->includes(ce)

8 )

9 ).getAppliedStereotypes ().name ->asSet()

10 =
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11 Connector.allInstances ()->select( con |

12 con.end ->exists( ce |

13 ila.ownedPort.end ->includes(ce)

14 )

15 ).getAppliedStereotypes ().name ->asSet()

16 )

With this expression we check the following: For all implementable/layered architectures (lines
1-4) the connectors with a connection to a port of the more general architecture are selected
(lines 5-7) and their stereotypes must be the same (lines 8 and 9) as the stereotypes of the
connectors to ports of the specialized architecture (lines 10-15).

Listing C.102: The stereotypes �Physical� and �ui� and their subtypes are not between components

1 let components: Set(Class) =

2 Class.allInstances ()->select(not getAppliedStereotypes ().name

->includes(’Distributed ’)).ownedAttribute.type

3 ->select(oclIsTypeOf(Class)).oclAsType(Class) ->select(getAppliedStereotypes ().name

->includes(’Component ’))->asSet()

4 in

5 let component_ports: Set(Port) =

6 components.oclAsType(Class).ownedPort ->asSet()

7 in

8 Connector.allInstances ()->select( c |

9 c.end ->select(connector_end |

10 component_ports.end ->includes(connector_end)

11 )->size()=2

12 )->select( c |

13 c.getAppliedStereotypes ().name ->includes(’ui’) or

14 c.getAppliedStereotypes ().name ->includes(’physical ’) or

15 c.getAppliedStereotypes ().general.name ->includes(’ui’) or

16 c.getAppliedStereotypes ().general.name ->includes(’physical ’) or

17 c.getAppliedStereotypes ().general.general.name ->includes(’ui’) or

18 c.getAppliedStereotypes ().general.general.name ->includes(’physical ’)

19 )->select( c |

20 Port.allInstances ()->select(p |

21 p.end ->exists(pe | c.end ->includes(pe)) and

22 Connector.allInstances ()->select(getAppliedStereotypes () =

c.getAppliedStereotypes ()).end ->exists(ce | p.end ->includes(ce))

23 )->size() <>2

24 )->size()=0

This expression checks that the stereotypes �physical� and �ui� as well as their sub-types
are not used between two components of a class with stereotype �Local�, �Process�, or
�Task�. This is achieved as follows: The set components is defined to be all classes being
not in classes with the stereotype �Distributed� with the stereotype component (lines 1-4),
the set component ports is defined to be all ports of these components (line 5-7). In line 8-11
all connectors connecting component ports are selected. In line 12-18 the connectors with the
stereotypes�physical� and�ui� as well as their sub-types are selected. The returned set must
be empty (line 24). To allow that connectors with these stereotypes are allowed within internal
components connected to external ports, we ignore the connectors where a second connector
with the same stereotype is connected to the port (lines 19-23).

Listing C.103: Implementable/layered architecture: ports connected to external ports have the same type

1 Class.allInstances ()->select(

2 getAppliedStereotypes ().name ->includes(’implementable_architecture ’) or

3 getAppliedStereotypes ().name ->includes(’layered_architecture ’)

4 )->forAll(ila |

5 let a_ports: Set(Port) =

6 ila.oclAsType(Class).ownedPort ->asSet()

7 in

8 let a_parts: Set(Class) =

9 ila.ownedElement ->select(oclIsTypeOf(Property)).oclAsType(Property)

10 .type ->select(oclIsTypeOf(Class)).oclAsType(Class)->asSet()
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11 in

12 let a_part_ports: Set(Port) =

13 a_parts.oclAsType(Class).ownedPort ->asSet()

14 in

15 a_ports ->forAll(ap |

16 let ap_connected_ports: Set(Port) =

17 a_part_ports ->select( app |

18 Connector.allInstances ()->exists( c |

19 c.end ->exists(connector_end |

20 ap.end ->includes(connector_end)

21 ) and

22 c.end ->exists(connector_end |

23 app.end ->includes(connector_end)

24 )

25 )

26 )->asSet()

27 in

28 ap_connected_ports ->size()=1 and

29 ap_connected_ports.type ->asSequence()->first()=ap.type

30 )

31 )

The condition checks that ports of components of implementable/layered architectures connected
to external ports require and provide the same interfaces. This is achieved as follows: For all
implementable and layered architectures (lines 1-4)

• The owned ports of the architecture are determined (variable ap port, lines 5-7).

• The contained classes are determined (variable a parts, lines 8-11).

• The ports of contained classes are determined (variable a part ports, lines 12-14).

For all ports (variable ap) of all implementable and layered architectures (line 15) the ports
connected to them (variable ap connected ports) are determined by checking if a connector
exists (line 18)

• with a connector end being also a connector end of the port ap (lines 19-21) and

• with a connector end being also a connector end of the ports of the contained elements
app (lines 23-25).

For each port (ap) of all implementable and layered architectures (line 15) it is then checked
that it has only one connector to an internal component (line 28) and the type of the connected
port app is of the same type as ap and they therefore require and provide the same interfaces
(line 29).

Listing C.104: The stereotypes �Shared memory�, �unix pipe� as well as their sub-types and
�call and return� are not allowed between classes with the stereotypes �Local� or �Distributed�
1 let local_dist_ports: Set(Port) =

2 Class.allInstances ()->select(

3 getAppliedStereotypes ().name ->includes(’Local’) or

4 getAppliedStereotypes ().name ->includes(’Distributed ’)

5 ).ownedPort ->asSet()

6 in

7 Connector.allInstances ()->select( c |

8 c.end ->select(connector_end |

9 local_dist_ports.end ->includes(connector_end)

10 )->size()=2

11 )->select( c |

12 c.getAppliedStereotypes ().name ->includes(’shared_memory ’) or

13 c.getAppliedStereotypes ().name ->includes(’unix_pipe ’) or

14 c.getAppliedStereotypes ().name ->includes(’call_return ’) or

15 c.getAppliedStereotypes ().general.name ->includes(’shared_memory ’) or

16 c.getAppliedStereotypes ().general.name ->includes(’unix_pipe ’) or

17 c.getAppliedStereotypes ().general.name ->includes(’call_return ’) or

18 c.getAppliedStereotypes ().general.general.name ->includes(’shared_memory ’) or
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19 c.getAppliedStereotypes ().general.general.name ->includes(’unix_pipe ’) or

20 c.getAppliedStereotypes ().general.general.name ->includes(’call_return ’)

21 )->size()=0

This expression checks that connectors with the stereotypes�shared memory�,�unix pipe�,
�call return�, or their sub-types do not connect classes with the stereotype �Local� or
�Distributed� assigned.





AppendixD

OCL expressions for UMLsec

The following listing contains the specification for step 1 expressed in OCL:

1 createDeploymentDiagram(diagramName: String)

2 PRE -- package with name inDiagram does not exist

3 Package.allInstances () ->select(name=diagramName)

4 ->size()=0 and

5 -- exactly one context diagram exists

6 Package.allInstances () ->select(getAppliedStereotypes ()

7 .name ->includes(’ContextDiagram ’)) ->size()=1

8 POST -- package with name inDiagram exists

9 Package.allInstances () ->select(name=diagramName)

10 ->size()=1

Listing D.1: createDeploymentDiagram(diagramName: String)

The following listing contains the specification for step 2 expressed in OCL:

1 addSecureLinksStereotype(diagramName: String , adv: String)

2 PRE -- package with name diagramName exists

3 Package.allInstances () ->select(name=diagramName)

4 ->size()=1 and

5 (adv=’default ’ or adv=’insider ’)

6 POST Package.allInstances () ->select(name=diagramName)

7 .getAppliedStereotypes ().name ->includes(’secure links’) and

8 Package.allInstances () ->select(name=diagramName)

9 .getValue(Package.allInstances () ->select(name=diagramName)

10 .getAppliedStereotypes ()

11 ->select(s .oclAsType(Stereotype).name ->includes(’secure links’))

12 ->asSequence() ->first(),’adversary ’)

13 .oclAsType(String) ->includes(adv)

Listing D.2: addSecureLinksStereotype(inDiagram: String, adv: String)

The following listing contains the specification for step 3 expressed in OCL:

1 createNodes(inDiagram: String)

2 PRE: Package.allInstances () ->select(name=diagramName)

3 ->size()=1 and

4 Package.allInstances () ->select(getAppliedStereotypes ()

5 .name ->includes(’ContextDiagram ’)) ->size()=1

6 POST: Package.allInstances () ->select(name=inDiagram).ownedElement

7 ->select(oclIsTypeOf(Node)) .oclAsType(Node).name =

8 Package.allInstances () ->select(getAppliedStereotypes ()

9 .name ->includes(’ContextDiagram ’)) .clientDependency

10 .target ->select(oclIsTypeOf(Class) and

11 not getAppliedStereotypes ().name

12 ->includes(’BiddableDomain ’)) .oclAsType(Class).name and

13 not getAppliedStereotypes ().name

14 ->includes(’ConnectionDomain ’)) .oclAsType(Class).name and

Listing D.3: createNodes(inDiagram: String)

For step 4, either a nested node or a nested class can be generated. The following listing contains
the specification for step 4, generating a nested node:
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1 createNestedNodes(domainNames: String[])

2 PRE -- exactly on context diagram exists

3 Package.allInstances () ->select(getAppliedStereotypes ()

4 .name ->includes(’ContextDiagram ’)) ->size()=1 and

5 -- For all domainNames : A node exists that corresponds to the domain containing

the domain with domainName

6 domainNames ->forAll(dn |

7 let nodeName: String =

8 Package.allInstances () ->select(getAppliedStereotypes ()

9 .name ->includes(’ContextDiagram ’)) .clientDependency

10 .target ->select(oclIsTypeOf(Class) and

11 not getAppliedStereotypes ().name

12 ->includes(’BiddableDomain ’)) .oclAsType(Class)

13 ->select(member ->select(oclIsTypeOf(Property))

14 .oclAsType(Property).type ->select(oclIsTypeOf(Class))

15 .oclAsType(Class).name ->includes(dn)

16 ) ->asSequence() ->first().name

17 in

18 Node.allInstances ().name ->exists(nodeName) and

19 -- verify that the given domains are part of another domain

20 Package.allInstances () ->select(getAppliedStereotypes ()

21 .name ->includes(’ContextDiagram ’)) .clientDependency

22 .target ->select(oclIsTypeOf(Class) and

23 not getAppliedStereotypes ().name

24 ->includes(’BiddableDomain ’)) .oclAsType(Class)

25 .member ->select(oclIsTypeOf(Property))

26 .oclAsType(Property).type ->select(oclIsTypeOf(Class))

27 .oclAsType(Class).name ->includesAll(domainNames)

28 POST domainNames ->forAll(dn |

29 let nodeName: String =

30 Package.allInstances () ->select(getAppliedStereotypes ()

31 .name ->includes(’ContextDiagram ’)) .clientDependency

32 .target ->select(oclIsTypeOf(Class) and

33 not getAppliedStereotypes ().name

34 ->includes(’BiddableDomain ’)) .oclAsType(Class)

35 ->select(member ->select(oclIsTypeOf(Property))

36 .oclAsType(Property).type ->select(oclIsTypeOf(Class))

37 .oclAsType(Class).name ->includes(dn)

38 ) ->asSequence() ->first().name

39 in

40 Package.allInstances () ->select(name=inDiagram).ownedElement

41 ->select(oclIsTypeOf(Node)) .oclAsType(Node)

42 ->select(name=nodeName).ownedElement

43 ->select(oclIsTypeOf(Node)) .oclAsType(Node)

44 ->select(name=dn) ->size()=1

45 )

Listing D.4: createNestedNodes(domainNames: Set(String))

The following listing contains the specification for step 4, generating a nested class:

1 createNestedClasses(domainNames: String[])

2 PRE -- exactly on context diagram exists

3 Package.allInstances () ->select(getAppliedStereotypes ()

4 .name ->includes(’ContextDiagram ’)) ->size()=1 and

5 -- For all domainNames : A node exists that corresponds to the domain containing

the domain with domainName

6 domainNames ->forAll(dn |

7 let nodeName: String =

8 Package.allInstances () ->select(getAppliedStereotypes ()

9 .name ->includes(’ContextDiagram ’)) .clientDependency

10 .target ->select(oclIsTypeOf(Class) and

11 not getAppliedStereotypes ().name

12 ->includes(’BiddableDomain ’)) .oclAsType(Class)

13 ->select(member ->select(oclIsTypeOf(Property))

14 .oclAsType(Property).type ->select(oclIsTypeOf(Class))

15 .oclAsType(Class).name ->includes(dn)

16 ) ->asSequence() ->first().name

17 in

18 Node.allInstances ().name ->exists(nodeName) and

19 -- given domains are part of another domain
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20 Package.allInstances () ->select(getAppliedStereotypes ()

21 .name ->includes(’ContextDiagram ’)) .clientDependency

22 .target ->select(oclIsTypeOf(Class) and

23 not getAppliedStereotypes ().name

24 ->includes(’BiddableDomain ’)) .oclAsType(Class)

25 .member ->select(oclIsTypeOf(Property))

26 .oclAsType(Property).type ->select(oclIsTypeOf(Class))

27 .oclAsType(Class).name ->includesAll(domainNames)

28 POST domainNames ->forAll(dn |

29 let nodeName: String =

30 Package.allInstances () ->select(getAppliedStereotypes ()

31 .name ->includes(’ContextDiagram ’)) .clientDependency

32 .target ->select(oclIsTypeOf(Class) and

33 not getAppliedStereotypes ().name

34 ->includes(’BiddableDomain ’)) .oclAsType(Class)

35 ->select(member ->select(oclIsTypeOf(Property))

36 .oclAsType(Property).type ->select(oclIsTypeOf(Class))

37 .oclAsType(Class).name ->includes(dn)

38 ) ->asSequence() ->first().name

39 in

40 Package.allInstances () ->select(name=inDiagram).ownedElement

41 ->select(oclIsTypeOf(Node)) .oclAsType(Node)

42 ->select(name=nodeName).ownedElement

43 ->select(oclIsTypeOf(Class)) .oclAsType(Class) -- only difference

44 ->select(name=dn) ->size()=1

45 )

Listing D.5: createNestedClasses(domainNames: Set(String))

The following listing contains the specification for step 5, generating the communication paths
and stereotypes for those associations that can be derived directly:

1 createCommunicationPaths(inDiagram: String)

2 PRE -- package with name inDiagram exists

3 Package.allInstances () ->select(name=diagramName)

4 ->size()=1 and

5 -- exactly one context diagram exists

6 Package.allInstances () ->select(getAppliedStereotypes ()

7 .name ->includes(’ContextDiagram ’)) ->size()=1 and

8 -- associations between transformed domains do not

9 -- contain <<ui >>, <<event >>, ... and subtypes

10 Package.allInstances () ->select(getAppliedStereotypes ()

11 .name ->includes(’ContextDiagram ’)) .clientDependency

12 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

13 ->select(not endType.getAppliedStereotypes ().name

14 ->includes(’BiddableDomain ’)

15 ).getAppliedStereotypes () ->forAll(rel_ass_st|

16 not rel_ass_st.name ->includes(’ui’) and

17 not rel_ass_st.general.name ->includes(’ui’) and

18 not rel_ass_st.name ->includes(’event’) and

19 not rel_ass_st.general.name ->includes(’event’) and

20 not rel_ass_st.name ->includes(’call_return ’) and

21 not rel_ass_st.general.name ->includes(’stream ’) and

22 not rel_ass_st.name ->includes(’stream ’) and

23 not rel_ass_st.general.name ->includes(’shared_memory ’) and

24 not rel_ass_st.name ->includes(’shared_memory ’)

25 )

26 POST -- Names of nodes connected by each communication path are the same

27 -- as the names of domains connected by an association in the

28 -- context diagram

29 Package.allInstances () ->select(name=inDiagram).ownedElement

30 ->select(oclIsTypeOf(CommunicationPath)) .oclAsType(CommunicationPath

31 .endType.name =

32 Package.allInstances () ->select(getAppliedStereotypes ()

33 .name ->includes(’ContextDiagram ’)) .clientDependency

34 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

35 ->select(not endType.getAppliedStereotypes ().name

36 ->includes(’BiddableDomain ’)).endType.name and

37 -- for each relevant association exists a communication path

38 -- - with same name

39 -- - connecting domains/nodes with same names
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40 -- - with stereotype <<wire >> if the corresponding association

41 -- stereotype is <<physical >> or a subtype

42 Package.allInstances () ->select(getAppliedStereotypes ()

43 .name ->includes(’ContextDiagram ’)) .clientDependency

44 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

45 ->select(not endType.getAppliedStereotypes ().name

46 ->includes(’BiddableDomain ’)) ->forAll(rel_ass|

47 Package.allInstances () ->select(name=inDiagram).ownedElement

48 ->select(oclIsTypeOf(CommunicationPath)) .oclAsType(CommunicationPath)

49 ->exists(cp |

50 cp.name = rel_ass.name and

51 cp.endType.name = rel_ass.endType.name and

52 ( cp.getAppliedStereotypes ().name ->includes(’physical ’) implies

53 rel_ass.getAppliedStereotypes ().name ->includes(’wire’)) and

54 ( cp.getAppliedStereotypes ().general.name ->includes(’physical ’) implies

55 rel_ass.getAppliedStereotypes ().name ->includes(’wire’))

56 )

57 )

Listing D.6: createCommunicationPaths(inDiagram: String)

The following listing contains the specification for step 5, retrieving the relevant network con-
nections:

1 getNetworkConnections (): String[]

2 PRE Package.allInstances () ->select(getAppliedStereotypes ()

3 .name ->includes(’ContextDiagram ’)) ->size()=1

4 POST result = Package.allInstances () ->select(getAppliedStereotypes ()

5 .name ->includes(’ContextDiagram ’)) .clientDependency

6 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

7 ->select(getAppliedStereotypes ().name ->includes(’network_connection ’) or

8 getAppliedStereotypes ().general.name ->includes(’network_connection ’) or

9 getAppliedStereotypes ().name ->includes(’remote_call ’)).name

Listing D.7: getNetworkConnections(): Set(String)

The following listing contains the specification for step 5, setting the type of network connections:

1 setCommunicationPathType(inDiagram: String , assName: String , type: String)

2 PRE -- inDiagram exists once

3 Package.allInstances () ->select(name=diagramName)

4 ->size()=1 and

5 -- association with assName exists

6 Package.allInstances () ->select(getAppliedStereotypes ()

7 .name ->includes(’ContextDiagram ’)) .clientDependency

8 .target ->select(oclIsTypeOf(Association)) .oclAsType(Association)

9 ->select(not endType.getAppliedStereotypes ().name

10 ->includes(’BiddableDomain ’)).name

11 ->includes(assName)

12 and Association.allInstances () ->select(name=assName

13 and oclIsTypeOf(Association) ->forAll(

14 getAppliedStereotypes ().name ->includes(’network_connection ’) or

15 getAppliedStereotypes ().general.name ->includes(’network_connection ’) or

16 getAppliedStereotypes ().general.general.name ->includes(’network_connection ’)

or

17 getAppliedStereotypes ().name ->includes(’remote_call ’))

18 -- type is connect

19 and (type=’Internet ’ or type=’LAN’or type=’encrypted ’)

20 POST -- in package inDiagram a communication path exists that

21 -- - connect domains/nodes with same names as association with assName

22 -- - have the stereotype given in type

23 Package.allInstances () ->select(name=inDiagram).ownedElement

24 ->select(oclIsTypeOf(CommunicationPath)) .oclAsType(CommunicationPath)

25 ->exists(cp |

26 cp.endType.name ->asSet() = Association.allInstances ()

27 ->select(name=assName and oclIsTypeOf(Association)).endType.name ->asSet()

and

28 cp.getAppliedStereotypes ().name ->includes(type)

29 )

Listing D.8: setCommunicationPathType(inDiagram: String, assName: String, type: String)
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The following listing contains the specification for step 5b, expressed in OCL:

1 createDependencies(inDiagram: String)

2 PRE -- package with name inDiagram exists

3 Package.allInstances () ->select(name=diagramName)

4 ->size()=1 and

5 -- exactly one context diagram exists

6 Package.allInstances () ->select(getAppliedStereotypes ()

7 .name ->includes(’ContextDiagram ’)) ->size()=1 and

8 -- At least one interface exists exists that is

9 -- observed by a of the classes corresponding to the connected nodes and

10 -- controlled by a of the classes corresponding to the connected nodes

11 Package.allInstances () ->select(name=diagramName) ->asSequence() ->first()

12 .ownedElement ->select(oclIsTypeOf(CommunicationPath)) ->forAll(cp |

13 Interface.allInstances ()

14 ->exists(interf |

15 cp .oclAsType(CommunicationPath).endType.name ->collect(cpn |

16 Class.allInstances () ->select(name=cpn and not oclIsTypeOf(Node))

17 ->asSequence() ->first ()

18 ) .clientDependency ->select(

19 target ->select(oclIsTypeOf(Interface))

20 .oclAsType(Interface) ->includes(interf)

21 ).getAppliedStereotypes ().name ->includes(’controls ’)

22 and

23 cp .oclAsType(CommunicationPath).endType.name ->collect(cpn |

24 Class.allInstances () ->select(name=cpn and not oclIsTypeOf(Node))

25 ->asSequence() ->first ()

26 ) .clientDependency ->select(

27 target ->select(oclIsTypeOf(Interface))

28 .oclAsType(Interface) ->includes(interf)

29 ).getAppliedStereotypes ().name ->includes(’observes ’)

30 )

31 )

32 POST -- For each relevant communication path

33 Package.allInstances () ->select(name=diagramName) ->asSequence() ->first()

34 .ownedElement ->select(oclIsTypeOf(CommunicationPath)) ->forAll(cp |

35 -- determine corresponding interfaces

36 let cpifs: Set(Interface) =

37 Interface.allInstances ()

38 ->select(interf |

39 cp .oclAsType(CommunicationPath).endType.name ->collect(cpn |

40 Class.allInstances () ->select(name=cpn and not oclIsTypeOf(Node))

41 ->asSequence() ->first()

42 ) .clientDependency ->select(

43 target ->select(oclIsTypeOf(Interface))

44 .oclAsType(Interface) ->includes(interf)

45 ).getAppliedStereotypes ().name ->includes(’controls ’)

46 and

47 cp .oclAsType(CommunicationPath).endType.name ->collect(cpn |

48 Class.allInstances () ->select(name=cpn and not oclIsTypeOf(Node))

49 ->asSequence() ->first()

50 ) .clientDependency ->select(

51 target ->select(oclIsTypeOf(Interface))

52 .oclAsType(Interface) ->includes(interf)

53 ).getAppliedStereotypes ().name ->includes(’observes ’)

54 )

55 in

56 -- For each interface

57 cpifs ->forAll(cpif |

58 let contrDomainNames: Bag(String) =

59 Class.allInstances ()

60 ->select( clientDependency ->exists(

61 getAppliedStereotypes ().name ->includes(’controls ’) and

62 target ->select(oclIsTypeOf(Interface)) .oclAsType(Interface)

->includes(cpif)

63 )).name

64 in

65 let observDomainNames: Bag(String) =

66 Class.allInstances ()

67 ->select( clientDependency ->exists(

68 getAppliedStereotypes ().name ->includes(’observes ’) and
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69 target ->select(oclIsTypeOf(Interface)) .oclAsType(Interface)

->includes(cpif)

70 )).name

71 in

72 -- If a confidentiality statement constrains a class refining or

concretizing the interface

73 Class.allInstances () ->exists(

74 getAppliedStereotypes ().name ->includes(’Confidentiality ’) and

75 clientDependency ->select(

76 getAppliedStereotypes ().name ->includes(’constrains ’)

77 ).target ->select(oclIsTypeOf(Class)) .oclAsType(Class)

78 .clientDependency ->select(

79 getAppliedStereotypes ().name ->includes(’refines ’) or

80 getAppliedStereotypes ().name ->includes(’concretizes ’)

81 ) ->size() >0

82 ) implies

83 -- From all nodes corresponding to observing domains

84 -- to all nodes corresonding to controlling domains

85 -- a dependencies with the sterotype <<secrecy >> exists

86 observDomainNames ->forAll(odn|

87 contrDomainNames ->forAll(cdn|

88 Node.allInstances () ->select(name=odn)

89 .clientDependency ->select(target ->select(oclIsTypeOf(Class))

90 .oclAsType(Class).name ->includes(cdn)) ->exists(

91 getAppliedStereotypes ().name ->includes(’secrecy ’)

92 )

93 )

94 ) and

95 -- If a integrity statement refersTo a class refining or concretizing

the interface

96 Class.allInstances () ->exists(

97 getAppliedStereotypes ().name ->includes(’Integrity ’) and

98 clientDependency ->select(

99 getAppliedStereotypes ().name ->includes(’refersTo ’)

100 ).target ->select(oclIsTypeOf(Class)) .oclAsType(Class)

101 .clientDependency ->select(

102 getAppliedStereotypes ().name ->includes(’refines ’) or

103 getAppliedStereotypes ().name ->includes(’concretizes ’)

104 ) ->size() >0

105 ) implies

106 -- From all nodes corresponding to observing domains

107 -- to all nodes corresonding to controlling domains

108 -- a dependencies with the sterotype <<integrity >> exists

109 observDomainNames ->forAll(odn|

110 contrDomainNames ->forAll(cdn|

111 Node.allInstances () ->select(name=odn)

112 .clientDependency ->select(target ->select(oclIsTypeOf(Class))

113 .oclAsType(Class).name ->includes(cdn)) ->exists(

114 getAppliedStereotypes ().name ->includes(’integrity ’)

115 )

116 )

117 )

118 )

119 )

Listing D.9: createDependencies(inDiagram: String)

The following listing contains the specification for creating a key exchange protocol, expressed
in OCL:

1 createKeyExchangeProtocol(initiatorNodeName: String , responderNodeName: String ,

newPackage: String);

2 PRE -- Node with initiatorNodeName exists once

3 -- Node with responderNodeName exists once

4 Node.allInstances () ->select(name=initiatorNodeName) ->size()=1 and

5 Node.allInstances () ->select(name=responderNodeName) ->size()=1 and

6 -- CommunicationPath has stereotype "encrypted ", "Internet", or "LAN"

7 let cp_types: Bag(String) =

8 CommunicationPath.allInstances ()->select( cp |

9 cp.endType ->includes(Node.allInstances ()

->select(name=initiatorNodeName)->asSequence()->first() ) and
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10 cp.endType ->includes(Node.allInstances ()

->select(name=responderNodeName)->asSequence()->first() )

11 ).getAppliedStereotypes ().name

12 in

13 cp_types ->includes(’encrypted ’) or cp_types ->includes(’Internet ’) or

cp_types ->includes(’LAN’) and

14 -- Package with name " newPackage " does not exist

15 Package.allInstances () ->select(name=newPackage) ->size()=0

16

17 POST -- Package with name " newPackage " exists

18 Package.allInstances () ->select(name=newPackage) ->size()=1 and

19

20 -- Stereotype with attributes exists

21 ...

22

23 -- Class with initiatorNodeName exists once

24 -- Class with responderNodeName exists once

25 Class.allInstances () ->select(name=initiatorNodeName)

->select(oclIsTypeOf(Class)) ->size()=1 and

26 Class.allInstances () ->select(name=responderNodeName)

->select(oclIsTypeOf(Class)) ->size()=1 and

27 -- create dependencies with secrecy and integrity between initiator and

responder (both direction )

28 ...

29

30 -- attributes for initiator and responder class exist

31 ...

32 Class.allInstances () ->select(name=initiatorNodeName)

->select(oclIsTypeOf(Class)).ownedAttribute

33 ->select(name=’inv(K_T)’).type ->select(name = ’Keys’) -> size() = 1 and

34 ...

35

36 -- methods and their parameters exist

37 Class.allInstances () ->select(name=initiatorNodeName)

->select(oclIsTypeOf(Class)).ownedOperation

38 ->select(name=’resp’)

39 ->select( member ->forAll(oclIsTypeOf(Parameter))) .member ->forAll( par |

40 par ->select( name ->includes(’shrd’)) ->one(

oclAsType(Parameter).type.name ->includes(’Data’)) xor

41 par ->select( name ->includes(’cert’)) ->one(

oclAsType(Parameter).type.name ->includes(’Data’))

42 ) and

43 ...

44

45 -- stereotype and tags for initiator and responder class exist

46 ...

47

48 -- lifeline for initiator and for responder exist

49 let intera : Bag(Interaction) =

50 Package.allInstances () ->select(name=newPackage) .ownedElement

->select(oclIsTypeOf(Collaboration))

51 .ownedElement ->select(oclIsTypeOf(Interaction)) .oclAsType(Interaction)

52 in

53 intera.ownedElement ->select(oclIsTypeOf(Lifeline)) .oclAsType(Lifeline).name

->includes(initiatorNodeName) and

54 intera.ownedElement ->select(oclIsTypeOf(Lifeline)) .oclAsType(Lifeline).name

->includes(responderNodeName) and

55

56 -- messages in sequence diagram exist

57 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’init(N_i ,K_T ,Sign(inv(K_T),T::K_T))’) and

58 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’resp({Sign(inv(K_P_i),k_j::N’::K’_T)}_K’_T,

Sign(inv(K_CA),P_i:: K_P_i))’) and

59 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’xchd({s_i}_k)’) and

60

61 -- conditions in sequence diagram exist

62 ...
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Listing D.10: createKeyExchangeProtocol(initiatorNodeName: String, responderNodeName: String,
newPackage: String)

The following listing contains the specification for creating a protocol for MAC secured trans-
mission, expressed in OCL:

1 createMACSecuredTransmission(senderNodeName: String , receiverNodeName: String ,

newPackage: String)

2 PRE Node.allInstances () ->select(name=senderNodeName) ->size()=1 and

3 Node.allInstances () ->select(name=receiverNodeName) ->size()=1 and

4 let cp_types: Bag(String) =

5 CommunicationPath.allInstances ()->select( cp |

6 cp.endType ->includes(Node.allInstances ()

->select(name=senderNodeName)->asSequence()->first() ) and

7 cp.endType ->includes(Node.allInstances ()

->select(name=receiverNodeName)->asSequence()->first() )

8 ).getAppliedStereotypes ().name

9 in

10 cp_types ->includes(’encrypted ’) or cp_types ->includes(’Internet ’) or

cp_types ->includes(’LAN’) and

11 Package.allInstances () ->select(name=newPackage) ->size()=0

12

13 POST Package.allInstances () ->select(name=newPackage) ->size()=1 and

14 -- ... Stereotype with attributes exists

15 Class.allInstances () ->select(name=senderNodeName) ->select(oclIsTypeOf(Class))

->size()=1 and

16 Class.allInstances () ->select(name=receiverNodeName)

->select(oclIsTypeOf(Class)) ->size()=1 and

17 -- ... dependencies with integrity between initiator and responder (both

direction ) created ...

18 Class.allInstances () ->select(name=senderNodeName)

->select(oclIsTypeOf(Class)).ownedAttribute

19 ->select(name=’inv(AuthKey)’).type ->select(name = ’Keys’) -> size() = 1 and

20 -- ... other attributes exist ...

21 Class.allInstances () ->select(name=receiverNodeName)

->select(oclIsTypeOf(Class)).ownedOperation

22 ->select(name=’resp’)

23 ->select( member ->forAll(oclIsTypeOf(Parameter))) .member ->forAll( par |

24 par ->select( name ->includes(’encrData ’)) ->one(

oclAsType(Parameter).type.name ->includes(’Data’))

25 ) and

26 -- ... other operations exist

27 -- ... stereotype and tags for initiator and responder class exist

28 let intera : Bag(Interaction) =

29 Package.allInstances () ->select(name=newPackage) .ownedElement

->select(oclIsTypeOf(Collaboration))

30 .ownedElement ->select(oclIsTypeOf(Interaction)) .oclAsType(Interaction)

31 in

32 intera.ownedElement ->select(oclIsTypeOf(Lifeline)) .oclAsType(Lifeline).name

->includes(senderNodeName) and

33 intera.ownedElement ->select(oclIsTypeOf(Lifeline)) .oclAsType(Lifeline).name

->includes(receiverNodeName) and

34 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’init(Encr(inv(AuthKey),SessionKey))’) and

35 intera.ownedElement ->select(oclIsTypeOf(Message)) .oclAsType(Message).name

->includes(’resp(Sign(snd(Dec(inv(AuthKey)),data))’) and

36 -- ... conditions in sequence diagram exist

Listing D.11: createMACSecuredTransmission(senderNodeName: String, receiverNodeName: String,
newPackage: String)
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