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Abstract. Recently, there has been an increase of reported privacy threats hitting
large software systems. These threats can originate from stakeholders that are part
of the system. Thus, it is crucial for software engineers to identify these privacy
threats, refine these into privacy requirements, and design solutions that mitigate
the threats.

In this paper, we introduce our methodology named Problem-Based Privacy Anal-
ysis (ProPAn). The ProPAn method is an approach for identifying privacy threats
during the requirements analysis of software systems using problem frame mod-
els. Our approach does not rely entirely on the privacy analyst to detect privacy
threats, but allows a computer aided privacy threat identification that is derived
from the relations between stakeholders, technology, and personal information in
the system-to-be.

To capture the environment of the system, e.g., stakeholders and other IT systems,
we use problem frames, a requirements engineering approach founded on the
modeling of a machine (system-to-be) in its environment (e.g. stakeholders, other
software). We define a UML profile for privacy requirements and a reasoning
technique that identifies stakeholders, whose personal information are stored or
transmitted in the system-to-be and stakeholders from whom we have to protect
this personal information. We illustrate our approach using an eHealth scenario
provided by the industrial partners of the EU project NESSoS.
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1 Introduction

Identifying privacy threats to a software system is difficult, because of a lack of struc-
tured approaches for identifying stakeholders that have privacy requirements in a sys-
tem. In addition, finding methods to fulfill these requirements, and fulfilling the func-
tional requirements of the system-to-be at the same time, is even more challenging.
Westin defines privacy as “the claim of individuals, groups, or institutions to deter-
mine for themselves when, how, and to what extent information about them is commu-
nicated to others” [23]. The privacy specification in the ISO 15408 standard - Common
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Criteria for Information Technology Security Evaluation (or short CC) [16] defines four
privacy goals. These goals can be refined into privacy requirements for a given software
system. Anonymity means that a subject is not identifiable within a set of subjects, the
anonymity set. Unlinkability of two or more items of interest (IOI) means that within
a system the attacker cannot sufficiently distinguish whether these IOIs are related or
not. Unobservability of an IOI means that an IOI is not detectable by any subject unin-
volved in it and anonymity of the subject(s) involved in the IOI even against the other
subject(s) involved in that IOI. A pseudonym is an identifier of a subject other than one
of the subject’s real names. Using pseudonyms means pseudonymity.

In this paper, we introduce our methodology named Problem-Based Privacy Analy-
sis (ProPAn). The ProPAn method provides assistance for the initial steps of any given
privacy analysis, which is to figure out those parts of the system, where personal in-
formation, we have to protect, can be disclosed by counterstakeholders. We use the
problem frame [17] requirements engineering approach to model the machine (system-
to-be) in its environment (e.g. stakeholders, other software). We extend the UMLAPF
framework [5] with a UML profile for privacy requirements and a reasoning technique.
This reasoning technique identifies the domains, in which personal information is stored
or to which personal information is transmitted. Additionally, our technique identifies
the domains, to which counterstakeholders have access. From these identified domains,
our technique derives the possible privacy threats of the system-to-be. We illustrate our
approach using an eHealth scenario provided by the industrial partners of the EU project
Network of Excellence (NoE) on Engineering Secure Future Internet Software Services
and Systems (NESSoS)".

A number of guidelines for privacy are available. The Fair Information Practice
Principles (— or short FIPs) [20] — are widely accepted. They state that a person’s in-
formed consent is required for the data that is collected, collection should be limited for
the task it is required for and erased as soon as this is not the case anymore. The collec-
tor of the data shall keep the data secure and shall be held accountable for any violation
of these principles. The FIPs were also adapted in the Personal Information Protection
and Electronic Documents Act in Canada’s private-sector privacy law. In the European
Union, the EU Data Protection Directive, Directive 95/46/EC does not permit process-
ing personal data at all, except when a specific legal basis explicitly allows it or when
the individuals concerned consented prior to the data processing [10]. The U.S. have no
central data protection law, but separate privacy laws, e.g., the Gramm-Leach-Bliley Act
for financial information, the Health Insurance Portability and Accountability Act for
medical information, and the Children’s Online Privacy Protection Act for data related
to children [12]. These legal guidelines must be implemented by any given software sys-
tem for which the guidelines apply. Our work supports privacy threat analysis, which
has to be performed in order to comply with any of these regulations.

The rest of the paper is organized as follows. Section 2 presents the problem frame
approach and our support tool, and Sect. 3 presents the eHealth case study. We introduce
our method in Sect. 4, and illustrate its application to the case study in Sect. 5. Section 6
contains related work, and Sect. 7 concludes.

"http://www.nessos-project.eu/
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2 Background

We use the problem frames approach to build our privacy threat identification on, be-
cause problem frames are an appropriate means to analyze not only functional, but also
dependability and other quality requirements [13,1].

Problem frames are a means to describe software development problems. They were
proposed by Jackson [17], who describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.”. It is described by a frame
diagram, which consists of domains, interfaces between them, and a requirement. We
describe problem frames using class diagrams extended by stereotypes as proposed by
Hatebur and Heisel [14]. All elements of a problem frame diagram act as placeholders,
which must be instantiated to represent concrete problems. Doing so, one obtains a
problem description that belongs to a specific class of problems.

Figure 1 shows an example of a problem frame. The class with the stereotype
<machine>> represents the thing to be developed (e.g., the software). The classes
with some domain stereotypes, e.g., <causalDomain>> or <biddableDomain>> repre-
sent problem domains that already exist in the application environment. Jackson distin-
guishes the domain types causal domains that comply with some physical laws, lexical
domains that are data representations, and biddable domains that are usually people.
We use the formal meta model [14] shown in Fig. 2 to annotate domains with their
corresponding stereotype.

Domains are connected by interfaces consisting of shared phenomena. Shared phe-
nomena may be events, operation calls, messages, and the like. They are observable
by at least two domains, but controlled by only one domain, as indicated by an excla-
mation mark. For example, in Fig. 1 the notation O/E4 means that the phenomena in
the set E4 are controlled by the domain Operator. These interfaces are represented as
associations, and the name of the associations contain the phenomena and the domains
controlling the phenomena.

In Fig. 1, the ControlledDomain domain is constrained and the Operator is re-
ferred, because the ControlMachine has the role to change the ControlledDomain
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on behalf of the Operator’s commands for achieving the required Commanded Be-
haviour. These relationships are modeled using dependencies that are annotated with
the corresponding stereotypes.

Problem frames support developers in analyzing problems to be solved. They show
what domains have to be considered, and what knowledge must be described and rea-
soned about when analyzing the problem in depth. Other problem frames besides the
commanded behavior frame shown in Fig. 1 are required behaviour, simple workpieces,
information display, and transformation [17].

Software development with problem frames proceeds as follows: first, the envi-
ronment in which the machine will operate is represented by a context diagram. Like
a frame diagram, a context diagram consists of domains and interfaces. However, a
context diagram contains no requirements. An example is given in Fig. 3. Then, the
problem is decomposed into subproblems. If ever possible, the decomposition is done
in such a way that the subproblems fit to given problem frames. To fit a subproblem to a
problem frame, one must instantiate its frame diagram, i.e., provide instances for its do-
mains, phenomena, and interfaces. The instantiated frame diagram is called a problem
diagram. Examples are given in Fig. 4, 5, and 6.

Since the requirements refer to the environment in which the machine must operate,
the next step consists in deriving a specification for the machine (see [18] for details).
The specification describes the machine and is the starting point for its construction.

The UMLA4PF framework provides tool support for this approach. A more detailed
description can be found in [5].

3 Case Study

To illustrate our approach for identifying privacy threats, we use a scenario taken from
the health care domain. It concerns managing Electronic Health Records (EHR)s and
is provided by the industrial partners of the EU project NESSoS. EHRs contain any
information created by health care professionals in the context of the care of a patient.
Examples are laboratory reports, X-ray images, and data from monitoring equipment.
The information stored in the EHR shall only be accessed with the consent of the pa-
tient. The only exception is a medical emergency, in which case the patient’s physical
status may prevent her from giving the consent. In addition, the information in the EHR
supports clinical research.

In Fig. 3 we present a context diagram of the electronic health system (EHS). The
EHS is the machine to be built and the lexical domain EHR is directly connected to
it. The EHS is also connected to the Patient using the Browser Patient, a Mobile De-
vice, which is further connected to Sensors that are in turn attached to the Patient. A
Monitor or the Browser Care Providers connects the machine to the health care pro-
fessionals Nurse and Doctor. The Researcher uses the Browser Researcher to access
the Research Database Application, which is in turn connected to the EHS.

We identified 19 preliminary functional requirements for the EHS, which were re-
fined into 34 functional requirements and corresponding problem diagrams. For reasons
of space, we focus on the following requirements for the remainder of the paper, which
define the basic functionality of a EHS and include a potential privacy threat:
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RQ1.1 Store EHR, which are created by care providers.

RQ1.2 Display EHR to care providers as needed

RQ15.1 Send alarms, appointments or instructions using EHR from Doctor to Patient
RQ15.2 Send automated alarms or instructions based on EHR analysis to Patient
RQ16 Release medical data to Researchers

The problem diagram for RQ1.1 describes creating and storing of EHRs (depicted
in Fig. 4). The Patient is connected to a Sensor that reports the Patient’s vital signs
to the EHR Create & Store Machine using a Mobile Device. The machine stores the
EHR. In addition, the Patient can use the Browser Patient to create an EHR. Doctors
and Nurses can use the Browser Care Providers to command the machine to create
EHRs.

The problem diagram for RQ1.2 shown in Fig. 5 describes how care providers can
access the EHR. Doctors and Nurses can either use the Monitor or the Browser Care
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Providers to request EHRs from the EHR Load Machine. The machine can access the
EHR and display it on either the Monitor or the Browser Care Providers to the Doctors
and Nurses.

The release of medical information to researches described in RQ16 and depicted
in the problem diagram in Fig. 6. Researchers can use the Browser Researcher to re-
quest medical data from the Research Database Application. This application requests
the data in turn from the ReleaseMedicalDataMachine, which releases it the Research
Database Application. The application sends the information to the browser, where it
is shown to the Researchers.

The problem diagrams for RQ15.1 and RQ15.2 are drawn in a similar manner.

4 Method

An overview of the ProPAn method is shown in Fig. 7. It consists of four steps Draw
context diagram and problem diagrams, Add privacy requirements to model, Generate
privacy threat graphs, and Analyze privacy threat graphs that will be explained in detail
in the following.
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4.1 Creation of the Model

The first step of the ProPAn method is to Draw context diagram and problem diagrams
for the given Set of functional requirements. For this purpose, we use the UMLAPF tool.
The result of this step is a Model containing context diagram and problem diagrams.
This step follows the basic principles of requirements engineering using the problem
frames approach as explained in Sect. 2.

4.2 Privacy Requirements

As a second step we consider the Set of privacy requirements the system-to-be shall en-
force. To Add privacy requirements to model we introduce a new stereotype. In Fig. 8 on
the left hand side the UML profile is shown. We derived this stereotype from the CC’s
privacy specification. All privacy specifications follow the pattern that they describe
whose privacy shall be protected from whom. For our privacy threat identification it
is not necessary to distinguish between the different privacy goals, such as anonymity,
unlinkability, unobservability, and pseudonymity (see Sect. 2), but the profile offers the
opportunity to easily refine our general privacy stereotype. The general privacy stereo-
type has three attributes. The attribute stakeholder is the biddable domain whose privacy
shall be protected against the domain given in the attribute counterStakeholder. In the
attribute Description a more detailed textual description of the privacy requirement can
be given. Our threat identification focuses on internal counterstakeholders, i.e. domains
that occur in a problem diagram. In contrast to the term “attacker” a “counterstake-
holder” may obtain sensitive data about the stakeholder involuntarily.

The Model containing context diagram and problem diagrams is updated to obtain
the Model updated with privacy requirements. For our example, we add the privacy re-
quirement Preserve anonymity with the stakeholder Patient and the counterstakeholder
Researcher (see Fig. 8 on the right-hand side).

4.3 Graph Generation

All graphs (V, £) that we use for our threat identification in the ProPAn method are la-
beled and directed. The set of vertexes is a subset of the domains occurring in the model,
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formally V C Domain. The edges are annotated with problem diagrams and point from
one domain to another, formally £ C Domain x ProblemDiagram x Domain. In the
following we describe a graph (V, ) only by its edges €.

Global Information Flow Graph To Generate privacy threat graphs we use the Model
updated with privacy requirements as an input. From this static model we create the
global information flow graph G, which is an over-approximation of the information
flow occurring in the system-to-be. An edge (dy, p, dz) is in G, iff the domains d;
and dy are not equal, are both part of the problem diagram p, and the domain ds is
constrained in p. This is expressed using the following formula.

G = {(d1, p, d2) : Domain x ProblemDiagram x Domain |
dy # dy N dy,dy € p A constr(de,p)}

Because of the annotation of the edge we keep the information which problem diagram
causes the information flow. Thus, our information flow graph contains traceability links
that are used in our further analysis. The semantics of an edge (dy, p, d2) € G is that in
problem diagram p there is possibly an information flow from domain d; to domain ds.

Stakeholder Information Flow Graph We now want to determine where data of the
stakeholder s, whose privacy shall be protected against the counterstakeholder c, is pos-
sibly processed or stored. Using the global information flow graph G, we can compute
the stakeholder information flow graph S; C G. The algorithm for the computation of
S, is given in Listing 1.1.

The algorithm operates on four sets. During the algorithm the set D contains all do-
mains from whom possibly an additional information flow can occur. D is initialized as
the singleton set containing the stakeholder s. The domains, which have already been
used by the algorithm, are collected in the set U, which is initially empty. The set P
consists of all problem diagrams, which are not yet part of an information flow in the
stakeholder information flow graph. The set P is initialized as the set of all problem
diagrams. The set E is used to temporally store the edges, which will be added to the
stakeholder information flow graph at the end of each iteration. The set S, is the re-
sulting stakeholder information flow graph and is initialized as the empty set of edges.
Inside the repeat loop, we firstly initialize the set of new edges E as empty (line 5). We
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1| var D, U : Set[Domain]; P : Set[ProblemDiagram];

2| var E, S; : Set[Domain x ProblemDiagram x Domain];
3| D:={s}; U:=@; P:={p: ProblemDiagram}; S, = ;
4| repeat

s| E:=o;
¢/ foreach de Ddo

7 foreach p € Pdo

8 E:=Eu{d’:Domain|(d,p,d’)e Ge(d p, d’)}

9 endforeach

10| endforeach;

n U=UUD;

12|  D:={d:Domain|d¢ UA 3d’: Domain; p : ProblemDiagram e (d’, p, d)€ E};
13| P:= P\ {p: ProblemDiagram | 3d, d’ : Domain e (d,p,d’) € E};

ul Ss=S;UE

is|until D= @ v P= 2 endrepeat

Listing 1.1. Algorithm for the computation of the stakeholder information flow graph

then iterate all domains of D (line 6) and all problem diagrams of P (line 7). All edges
from G, which start from a domain in D and are annotated with a problem diagram in
P, are added to E (line 8). After the iteration of D and P, all domains from D are added
to the used Domains U (line 11). Then the set of domains D is updated to the set of
domains, which are reachable from the new edges E, but are not in U, i.e., they have not
yet been used (line 12). The set of problem diagrams P is reduced by the set of problem
diagrams that occur as annotations in the set of new edges E (line 13). At last, the new
edges E are added to the stakeholder information flow graph S, (line 14). The algorithm
terminates when one of the sets D or Pis empty (line 15). This is ensured, because each
domain and each problem diagram is considered for at most one execution of the repeat
loop.

It is sufficient to consider each problem diagram for at most one execution of the
repeat loop, because all information flows that would be added later, are redundant to
the existing information flows.

Counterstakeholder Graph To determine which information the system-to-be pro-
vides to the counterstakeholder ¢, we generate the counterstakeholder graph C.. An
edge (¢, p, d) is in C, iff the counterstakeholder ¢ and the domain d both occur in the
problem diagram p. We express this using the following formula.

C. ={(d1,p, d2) : Domain x ProblemDiagram x Domain | dy = ¢ A dy, ds € p}

Please note that the counterstakeholder graph C. is not a subgraph of the global infor-
mation flow graph G. The semantics of an edge (¢, p, d) € C. is that the counterstake-
holder ¢ may gain information from the domain d in the problem diagram p, which
differs from the semantics of an edge in G.



10 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

Privacy Threat Graph Finally, we automatically generate the privacy threat graph
7T, for the stakeholder s and the counterstakeholder c. This graph connects the stake-
holder information flow graph S, with the counterstakeholder graph C.. From C. the
privacy threat graph 7, . contains only the edges from C,, which point to domains,
which possibly provide information about the stakeholder s. We call this counterstake-
holder subgraph C. s C C.. The privacy threat graph 7 . contains only the edges from
S, which are part of a path from the stakeholder s to a domain that possibly provides
information to the counterstakeholder c. We call this stakeholder information flow sub-
graph S; . C S;. T; . is then the union of S . and C, 5. Formally we have:

Ss.c ={(d,p,d"): Ss | e, p'€) : Ce; (di,p1,d2), ..., (dn-1,Pn—1,dpn) : Ss®
& = d Ady =€)

Ces ={(e,p,€'):Cc|3d,p',d"):Ssee =d'}

Ts,c =Ss,c UCes

Thus we generate in the Phase Generate privacy threat graphs one Privacy Threat
Graph for each privacy requirement, which is part of the Model updated with privacy re-
quirements. All graph generations are performed automatically using OCL expressions.
The details of the automatic graph generation are described in Sect. 4.5.

4.4 Analysis

For the Analyze privacy threat graphs we have to note that in the Privacy threat graphs
we can distinguish two kinds of edges:

1. Edges (¢, p, d) have the semantics that the counterstakeholder ¢ may gain informa-
tion from the domain d in problem diagram p.

2. Alledges (dy, p, do) with d; # c, i.e. the edges do not start from the counterstake-
holder c, have the semantics that information is possibly transferred from domain
dy to ds in problem diagram p.

In the analysis we have to take a closer look at all domains d for which a problem
diagram p exists such that (¢, p, d) € Ts . For each such domain d, we may have
found a privacy threat against the stakeholder s from the counterstakeholder c. The
threat graph 7 . provides us two different kinds of information according to the two
different kinds of edges in the graph as mentioned above.

1. We provide the information which requirements may allow the counterstakeholder
¢ to gain information from the domain d about the stakeholder s. These require-
ments are contained in the problem diagrams p with (¢, p, d) € T ..

2. How the information about the stakeholder s got to the domain d is described
through the path (s, p1, d1), ..., (dn—1, Pn, d) where the requirements in the prob-
lem diagrams p; should explain which information is transferred to which domain.

Since our approach is an over-approximation of the system’s actual information
flow, there can be edges that actually do not represent an information flow in the sys-
tem. These edges can be identified manually by studying the problem diagram and the
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requirement expressed in it. Edges that after the removal of the above-mentioned edges
are no longer part of a path starting from the stakeholder, can be removed. To solve the
threats in the refined threat graph 7/ . there are again two possibilities, which also can
be used in combination.

1. For an edge (¢,p,d) € T/, the requirement in the problem diagram p can be
modified or an additional réquirement can be added, expressing that the counter-
stakeholder c is not able to gain personal information of the stakeholder s via the
domain d.

2. Foranedge (di,p, d2) € T/ . with d; # c, the requirement in the problem diagram
p can be modified or an additional requirement can be added, expressing that no
personal information of the stakeholder s is processed or stored by the domain ds.

The outcome of our last step Analyze privacy threat graphs is the Model with ad-
ditional or updated requirements created from the Model updated with privacy require-
ments and the Privacy threat graphs.

4.5 Technical Realization

For the generation of the graphs explained in Sect. 4.3 we developed the ProPAn tool.
This tool generates the four kinds of graphs, namely the global information flow graph,
the stakeholder information flow graph, the counterstakeholder access graph, and the
privacy threat graph, from a UML model. This model has to contain problem diagrams
and has to be annotated with the stereotypes presented in Sects. 2 and 4.2. The graphs
are generated automatically without user interaction for all privacy requirements, stake-
holders, and counterstakeholders, respectively using OCL expressions.

The generation of the global information flow graph G is done by the OCL expres-
sion shown in Listing 1.2. This OCL expression first defines the sets of all domains
doms (lines 1-3) and all problem diagrams pds (lines (4-6) of the model. For the gener-
ation of G, the expression iterates the set of all problem diagrams pds (line 8). For each
domain p € pds the sets pdoms (lines 9-12) and pcdoms (lines 13-17) are generated.
The set pdoms consists of all domains that are part of the problem diagram p. The set
pcdoms includes all constrained domains of the problem diagram p. Then the elements
of pcdoms and pdoms are iterated (lines 18-19). For all ¢ € pcdoms and d € pdoms
with d # ¢ an edge (d, p, ¢) is added to the global information flow graph G (line 20).

For the generation of the global information flow graph G, we iterate all problem
diagrams and for each problem diagram, we iterate all domains that are part of it and all
constrained domains in it. Hence, G contains at most # ProblemDiagram - # Domain>
many edges. Thus, the asymptotic time complexity for the generation of all privacy
threat graphs is in O(# ProblemDiagram - # Domain?), because for the generation of
all other graphs, the global information flow graph is used.

For the generation the ProPAn tool uses the Eclipse Platform [7], the Acceleo model
to text framework [8] and the graph layout tool GraphViz [4]. Each generator is realized
as Acceleo template, which generates a dot file. An Acceleo template uses OCL to query

Zhttp://www.uni-due.de/swe/apfl2.shtml
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1| let doms: set(Class) =

2| ProblemFrames::Domain.allinstances().base_Class

3| in

4| let pds: set(Package) =

5| ProblemFrames::ProblemDiagram.allinstances().base_Package

6| in

7| let G: Set(Tuple(dl: Class, pd: Package,d2:Class)) =

8| pds—iterate(p; A: set(Tuple(dl:Class,pd:Package,d2:Class))=Set{} |

9 let pdoms: set(Class)=
10 p.member— select(ocllsTypeOf(associat ion)).member.type—asSet()
11 —intersection(doms)—asSet()
12 in
13 let pcdoms: set(Class)=
14 p.member— select(ocllsTypeOf(Dependency))
15 —sselect(getAppliedStereotypes().name—includes(’constrains’))
16 target—select(ocllsTypeOf(Class))—asSet()
17 in
18 A—union(pcdoms—iterate(c; B: Set(Tuple(dl: Class,pd: Package,d2:Class))=Set{} |
19 B—union(pdoms—iterate(d; C: Set(Tuple(dl: Class, pd: Package,d2: Class))=Set{} |
20 if d#c then C—including(Tuple{d1=d, pd=p, d2=c}) else C endif)))))
21/ing

Listing 1.2. OCL Expression for Global Information Flow Graph

==

Browser Care Providers

RQlSvl,RQIS.Z} | Researcher | | Research Database Application
~ —
{RQ1.1,RQ15.1,RQ15.2} {RQ15.1,RQ15.2} - {RQ16}

B Mobile Device

Fig. 9. Global Information Flow Graph

a model and transforms the query results in a file format defined by the template. In our
case it is the dot file format which can be read by Graphviz to generate different kinds of
graphical representations. These templates are exposed as plug-ins to the Eclipse Front-
End. So they directly integrate with modeling tools like Papyrus [3] and UMLAPF [5].

S Application on the Case Study

In this section, we will apply our method described in Sect. 4 on the NESSoS EHS case
study introduced in Sect. 3.

5.1 Graph Generation

Figure 9 shows the global information flow graph, which the ProPAn tool generated
from the problem diagrams of the 5 requirements mentioned in Sect. 3. For a better read-
ability, we joined the edges starting from and ending at the same domain and annotate
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RQ1.1, RQ15.1, RQ15.2}

Patient

{RQ16}

Browser Researcher

Fig. 10. Threat Graph for Stakeholder Patient and Counterstakeholder Researcher

{RQ16}

Researcher

the resulting edge with the set of problem diagrams, the joined edges were annotated
with.

To analyze if researchers may gain information about patients in the EHS, we added
a privacy requirement, which is shown in Fig. 8 in Sect. 4.2 on the right hand side.
Figure 10 shows the threat graph for the stakeholder patient and the counterstakeholder
researcher, which the ProPAn tool generated from the global information flow graph and
the privacy requirement. The red part with bold edges and white arrowheads depicts the
counterstakeholder graph, and the green parts depict the stakeholder graph. To improve
readability, we again aggregated all edges that start from the same domain and also end
at the same to domain to one edge, annotated with the set of problem diagrams of the
aggregated edges.

5.2 Analysis of the Threat Graph

As mentioned in Sect. 4.4, we have two possibilities to solve the privacy threats that the
threat graph identifies. We can consider the edges starting from the counterstakeholder
and restrict the information the counterstakeholder can access or we consider the other
edges of the threat graph and restrict the information flow between the domains.

The threat graph Tpatient,Researcher il Fig. 10 has only two edges from the counter-
stakeholder Researcher to the other domains. From these red, bold edges with white
arrowheads, we can see that in the problem diagram for requirement RQ16 (see Fig. 6)
the researcher may gain information from the lexical domain EHR and the connection
domain Browser Researcher. One possibility to resolve this threat would be to modify
requirement RQ16 in such a way that the medical data released to researchers has to be
anonymized or pseudonymized.

The other possibility to resolve the privacy threat would be to update all require-
ments that lead from the Patient to the lexical domain EHR in such a way that they
forbid to write personal information about the patient into it. Which problem diagrams
have to be considered for this, is shown by the annotations of the green edges that are
part of a path from the Patient to the EHR. In Fig. 10, there is only one path from
the Patient to the EHR, which is annotated with the requirements RQ1.1, RQ15.1, and
RQ15.2. To solve the privacy threat we could update those requirements such that the
medical data of the patient is stored in an anonymized or pseudonymized way in the
electronic health record.

However, since the electronic health record of a patient has to contain personal
information, we restrict the information the Researcher gets in requirement RQ16. We
change requirement RQ16 to: “Release medical data pseudonymized to researchers.”
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6 Related Work

Deng et al. [6] present a threat tree for privacy based upon the threat categories: linka-
bility, identifiablitiy, non-repudiation, detectability, information disclosure, content un-
awareness, and policy/consent noncompliance. These threats are modeled for the el-
ements of an information flow model, which has data flow, data store, processes and
entities as components. Privacy threats are described for each of these components.
Hence, privacy threat identification for an existing data flow model is simplified, be-
cause for each data flow element in a model only the threats shown in the tree need to
be considered. The work differs from our own, because the privacy threat identification
has to be carried out manually.

The PriS method [19] elicits privacy requirements in the software design phase. Pri-
vacy requirements are modeled as organizational goals. Furthermore, privacy process
patterns are used to identify system architectures, which support the privacy require-
ments. The PriS method starts with a conceptual model, which also considers enterprise
goals, stakeholders, privacy goals, and processes. It is based upon a goal-oriented re-
quirements engineering approach, while our work uses a problem-based approach as a
foundation. The difference is that our work focuses on a description of the environment
as a foundation for the privacy analysis, while the PriS method uses organizational goals
as a starting point. In addition, the PriS method has to be carried out manually.

Hafiz [11] describes four privacy design patterns for the network level of software
systems. These patterns solely focus on anonymity and unlinkability of senders and
receivers of network messages from protocols, e.g., http. The patterns are specified in
several categories. Among them are intent, motivation, context, problem and solution,
as well as forces, design issues and consequences. This work focuses on privacy issues
on the network layer and can complement our work in this area.

Asnar et al. [2] present a computer-aided approach to detect security threats based
upon SI* models. The authors present patterns that can be used to identify specific
areas in the models that present a security threat. The authors investigate access control
permissions and search for roles in the models that have more permissions than they
require to fulfill their goal. This analysis is carried out semi-automatically using graph
patterns. The difference to our work is that we focus on privacy threat detection and we
base our work upon the problem frames approach instead of SI*.

7 Conclusions

In this paper, we have presented the ProPAn method. The ProPAn is a problem-based
approach for semi-automatic identification of privacy threats during the requirements
analysis of software systems. The privacy threats are derived from potential access of
counterstakeholders to personal information that are part of the system-to-be. We have
extended the problem frames approach with the ProPAn tool?, which consist a UML
profile for privacy and a privacy threat graph generator.

The privacy threat graph helps to determine where personal information of a stake-
holder may be processed and stored across the boarders of the problem diagrams, which

Zhttp://www.uni-due.de/swe/apfl2.shtml
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correspond to subproblems of the overall development task. It also shows from which
domains the counterstakeholder may gain information about the stakeholder. In our ex-
ample the threat graph showed us that the requirement RQ16 contains a privacy threat
violating the privacy requirement Preserve Anonymity.

Our graphs have formal semantics, which are strongly related to the problem frames
approach. The generation of the threat graph for a privacy requirement, which is formu-
lated with our introduced stereotype. The generation is performed automatically by the
ProPAn tool from the problem diagrams, which represent the requirements the system-
to-be has to fulfill. Our privacy threat identification is independent of the actual privacy
goal, such as anonymity, unlinkability, unobservability, and pseudonymity, and gives
guidance to detect possible privacy threats as early as possible in the software engineer-
ing process.

In summary, the ProPAn method has the following advantages:

The privacy threat identification is re-usable for different projects.

The privacy threat graph are generated automatically using our proposed tool chain.
The identified privacy threats can be traced to a specific (sub-)problem of the
system-to-be.

The (sub-)problems can be enhanced with privacy requirements that constrain the
functional requirements. Thus, we provide guidance where to apply privacy en-
hancing technologies.

Since our approach relies on the information flow inside the system-to-be, it can
only detect those privacy threats that stem from an information flow starting from a
stakeholders to a counterstakeholders, who both are part of system-to-be.

In the future, we plan to elaborate more on the later phases of software develop-
ment. For example, we want to apply our approach to software components that were
developed with the ProPAn method. We aim to identify privacy threats for existing ar-
chitectures and propose solutions for these problems. The knowledge gathered during
the usage of the approach might lead to the discovery of privacy threat patterns. More-
over, we want to extend the ProPAn method to support counterstakeholders that are not
part of the system-to-be, but external attackers. We plan to provide extensions of the
ProPAn method and tool that allows one to model the capabilities of these attackers and
engineer a reasoning method for deciding if a privacy mechanism can protect a system
against a certain attacker.
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