
A Pattern-Based Method for
Identifying and Analyzing Laws?

×Kristian Beckers, ×Stephan Faßbender,
∗Jan-Christoph Küster, and ×Holger Schmidt

×paluno - The Ruhr Institute for Software Technology – University of Duisburg-Essen
{firstname.lastname}@paluno.uni-due.de

∗Australian National University, Canberra, Australia
Jan-Christoph.Kuester@anu.edu.au

Abstract. This paper presents a novel method for identifying and analyzing laws.
The method makes use of different kinds of law analysis patterns that allow legal
experts and software and system developers to understand and elicit relevant laws
for the given development problem. Our approach also helps to detect dependent
laws. We illustrate our method using an online-banking cloud scenario.

1 Introduction

Identifying relevant compliance regulations for a software system and aligning it to be
compliant is a challenging task.The construction of software systems that meet com-
pliance regulations, such as laws, is considered to be difficult, because it is a cross-
disciplinary task in laws and software and systems engineering [1]. Otto and Antón [2]
conclude in their survey about research on laws in requirements engineering that there
is a need for techniques to identify and analyze laws, and to derive requirements from
laws.

We present a pattern-based method for identifying and analyzing laws. We intro-
duce law analysis patterns that allow legal experts and software developers to under-
stand and elicit laws that are relevant for a given development problem.

In this paper, we consider compliance in the field of cloud computing systems (or
short clouds) as an example domain, because using clouds to store and manage critical
data and to support sensitive IT processes harbors several problems with respect to
compliance. We illustrate our approach using the example of a bank offering an online-
banking service for their customers. Customer data such as account number, balance,
and transaction history are stored in the cloud, and transactions like credit transfer are
processed in the cloud. The bank authorizes the software department to design and
build the cloud-specific software according to the interface and platform specification
of the cloud provider.For simplicity’s sake, we focus in our running example on relevant
compliance regulations for privacy. In 1995, the European Union (EU) adopted the
Directive 95/46/EC on the processing of personal data that represents the minimum
? This research was partially supported by the EU project Network of Excellence on Engineering

Secure Future Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy
ICT, Grant No. 256980).



2 Authors Suppressed Due to Excessive Length

privacy standards that have to be included in every national law. Germany implements
the European Privacy Directive in the Federal Data Protection Act (BDSG).

The rest of the paper is organized as follows: We present patterns to deal with laws
in requirements engineering in Sect. 2. Then, in Sect. 3, we discuss related work. In
Sect. 4, we give a summary and directions for future research.

2 Pattern-Based Law Analysis

Commonly, laws are not adequately considered during requirements engineering. There-
fore, they are not covered in the subsequent system development phases. One funda-
mental reason for this is that the involved engineers are typically not cross-disciplinary
experts in law and software and systems engineering. Hence, we present in this section
a pattern-based approach to systematically consider laws in the requirements engineer-
ing process. For our method we chose the German law as the binding law. However, we
believe that our law identification and analysis method is also valid for laws of other
nations.

2.1 Structure of Laws, Sections and Dictates of Justice

The German law is a statute law in the tradition of the Roman jurisdiction. Statute
laws are specified by the legislator and written down in legal documents. Hence, every
judgment of a court is based exclusively on the analysis of the legal documents relevant
for the judged case [3, p. 41]. We analyzed, how judges and lawyers are supposed
to analyze a law, based upon legal literature research. These insights lead to a basic
structure of laws which we used to create law patterns. We describe the results of this
analysis in the following.

First of all a law is a textual document. This law document is structured into sec-
tions. Each section defines a legal aspect of the law and contains several statements.
These statements are dictates of justice, so-called legal rules [4, p. 240]. There are dif-
ferent types of dictates of justice. Complete and self-containing dictates of justice are
one type. This type is the fundamental building block of every law [4, p. 241]. We de-
rived the following structure of complete and self-containing dictates of justice. A *
next to an element of the structure means the element is optional.

Addressee(s) describe(s) actions that an addressee has to follow or avoid to be com-
pliant

Facts of the case
Activity(ies) describe(s) actions that an addressee has to follow or avoid to be

compliant.
Target subject(s)* describes impersonal subjects that are objectives of the activ-

ity(ies).Subjects can be material, such as a product, or immaterial, such as in-
formation.

Target person(s)* are directly influenced by the activity(ies) of an addressee, or
have a relation to the target subject(s).

Legal consequence defines the consequence for an addressee, e.g. the punishment
when violating the section.



Identifying and Analyzing Laws 3

A dictate of justice is divided into the facts of the case, the setting which is regulated,
and the legal consequence, the resulting implications of the setting [5, p. 7]. Further-
more, a dictate of justice has also an addressee(s). The reason is that every complete
dictate of justice is an imperative, or can be transformed into an imperative [4, p. 243-
44], and an imperative has to be directed towards an addressee(s) [3, p. 3-4].

The facts of the case need to be further refined to be useful for a pattern. The legal
method called subsumption contains a further refinement of the facts of the case [4, p.
260-64]. This refinement results in the basic elements activities, target subjects, and
target persons [5, p. 23-31]. Lawyers use the subsumption to analyze if a dictate of jus-
tice is applicable to a specific case. The case is described in terms and notions. Lawyers
map these to the notions and terms describing the basic elements [3, p. 52-53]. If not all
terms and notions of the case can be mapped to basic elements, the dictate of justice is
not relevant for the case.

However, a mapping between all terms and notions of the case and the basic el-
ements is not sufficient to prove the relevance of a dictate of justice for a case. The
reason is that the facts of the case of the dictate of justice can contain an element that
has no mapping to a term or notion of the specific case. The subsumption solely con-
siders a mapping from the term or notion of the specific case to the dictate of justice.
The other direction is not considered. Moreover, such an element has the potential to
prove that the law is not relevant for the specific case. The subsumption provides this
gap intentionally, because the mapping of specific cases to laws is based upon human
interpretation.

Besides the complete, self-containing dictates there are [4, p. 247-251] definition
dictates that describe and refine terms and other basic elements, restricting dictates,
which add exceptions to a complete dictate, directing dictates, which reference one or
more other dictates, and fiction dictates, which equate different facts of the case.

These dictates cannot be analyzed in isolation. All of them have relations to other
dictates (or even laws). The types of relation between these dictates are refinement,
addition, and constraint. This implies that all of resulting dictates and laws, and the
relations between them, have to be considered when analyzing laws. A regulation is the
set of rules applicable to a specific case [4, p. 254].

Thus, relations between laws, sections and dictates of justice are of fundamental
importance. They are arranged in a hierarchy, which is not always free of conflicts [4,
p. 255]. A special part of these relations is the terminology used within a jurisdiction.
This terminology is organized as hierarchical tree where the terms and notions of the
more general dictates of justices are refined by subsequent dictates of justice.

2.2 A Process for Identifying relevant Laws

Our general process for identifying relevant laws consists of five steps. For this process
law experts and software engineers have to work together for the necessary knowledge
transfer. Step one can be done alone by legal experts and for step two only software
engineers are needed. But in step three and four both groups are needed to bridge the
gap between legal and technical world. The last step can be accomplished alone by legal
experts.



4 Authors Suppressed Due to Excessive Length

Step 1: Law Pattern Based on the previously discussed structure of laws, we define
a law pattern shown on the upper left-hand side of Fig. 1. The pattern consists of three
parts: the dark grey part represents the Law Structure, the light gray part depicts the
Classification to consider the specialization of the elements contained in the Law Struc-
ture in related laws or sections, and the white part considers the Context. We organize
the mentioned hierarchies by Person Classifier, Activity Classifier, and Subject Classifier
using hierarchies. Figure 2 shows example instances for all three hierarchies according
to BDSG. The Context part of the law pattern contains the Legislator(s) defining the
jurisdiction, and the Domain(s) clarifying for which domain the law was established.

As it is necessary to know in which context and relation a law is used, we introduce
Regulation(s), which are Related To the section at hand. Regulation(s), Legislator(s), and
Domain(s) can be ordered in hierarchies, similar to classifiers. For instance, Germany is
part of the EU and consists of several states.

We now describe the instantiation process for our law pattern using Section 4b
BDSG as an example. We explained the importance of this particular law in Sect. 1.
Section 4b BDSG regulates the abroad transfer of data. The resulting instance is shown
on the right-hand side of Fig. 1. Our process starts based on the first sections of the law
to be analyzed. These sections are self-contained, i.e. they define all necessary elements
of our Law Structure. Additionally, the Legislator(s) and Domain(s) can be instantiated
according to the considered law (e.g. Germany and General Public in the Context part).
Given a section of a law not yet captured by our law pattern, we identify and document
the related laws and sections referred to by the given section (e.g. BDSG Sec. 1 in the
Context part). Then, we search for the Law Structure directly defined in this section. In
Section 4b BDSG, we find Abroad Transfer, and we use it to instantiate Activity(ies). Ad-
dressee(s), Target Subject(s), and Target Person(s) are not defined in Section 4b BDSG.

Legislator(s)

Domain(s)

Target Person(s)Addressee(s)
Influence

Law

Target Subject(s)

Section

Law Structure

Subject Classifier

Person Classifier

Regulation(s)

Avoid /
Activity(ies) Influence

Accomplish

Law / Section

Law / Section Law / Section

Entitled To

Related To

Activity Classifier
Mentioned Or Defined InMentioned Or Defined In

Mentioned Or Defined In

ClassificationContext

Germany

Influence

Accomplish

Avoid /

Influence

Entitled To

BDSG

Abroad
Transfer Personal Data

Data

Individual

Natural

Sec. 4b

BDSG Sec. 1

Authority

General Public

PersonMentioned In

BDSG Sec. 3

Transfer

Law Structure

Private Bodies

Related To

Defined In

BDSG Sec. 1

ClassificationContext

Legislator(s)

Process(es)
Related

Domain(s)

Core Structure

Influence

Accomplish

Avoid /
Activity

Influence

Classified As

Requirement Activity

Asset(s)

Active Stakeholder(s) Passive Stakeholder(s)

Subject Classifier

Person Classifier

Law / Section
Defined Or Mentioned In

Activity Classifier

Entitled To

Classified As

Classified As

Defined Or Mentioned In

Defined Or Mentioned In
Classified As

Law / Section

Law / Section

Related To

Requirement(s)

ClassificationContext

Legislator
Germany

Legislator
EU

Legal Entity
Mentioned In
BDSG Sec. 2

Individual
Mentioned In
BDSG Sec. 2

Core Structure

Accomplish

Avoid /

Classified As

Classified As Classified As Classified As

Classified As

Related To

Data Storing
Offering

Personal Data
Defined in

Abroad Transfer

BDSG Sec. 3

Storage
Defined in

BDSG Sec. 3 BDSG Sec. 4b
Defined in

’Cloud API’

’Store Distributed’

Legislator
US

Hulda

Domain
Finance

ClassificationContext

’Scalable Data Storing’

Influence Entitled To
Customer Data

Bank Customer

Distributed
Store

Fig. 1. Law Pattern (upper left) and Instance (upper right), Law Identification Pattern (lower left)
and Instance (lower right)



Identifying and Analyzing Laws 5

Data

Personal Data
Introduced In
BDSG Sec. 3

Private Body
BDSG Sec. 1Introduced In

Natural Person
Introduced In BDSG Sec. 2

Individual
Introduced In BDSG Sec. 2

Legal Entity
Introduced In BDSG Sec. 2

Automated Processing

Transfer
Introduced In
BDSG Sec. 3

Storage
Defined in

BDSG Sec.3

Introduced In

Abroad Transfer

BDSG Sec. 4b

Fig. 2. Examples for Person (left), Subject (middle), and Activity (right) Hierarchies

Therefore, related sections defining these terms have to be discovered. In our example,
we find Private Bodies for the Addressee(s), Personal Data for the Target Subject(s),
and Individual for the Target Person(s) in Section 1 BDSG (according to BDSG Sec. 1 in
the Context part). We arrange these specializations in the appropriate parts of the hier-
archies in Fig. 2. The classifier is instantiated with the parent node of the corresponding
hierarchy, which is for instance Transfer, defined in Section 3 BDSG, for Abroad Trans-
fer.

Step 2: Law Identification Pattern Identifying relevant laws based on functional re-
quirements is difficult, because functional requirements are usually too imprecise, they
contain important information only implicitly and use a different wording than in laws.
To bridge between gap of the wording and to facilitate the discussion between require-
ments engineers and legal experts, we define a law identification pattern to support
identifying relevant laws

Figure 1 shows on the lower left-hand side our law identification pattern. The struc-
ture is similar to the law pattern on the upper left side of Fig. 1 to allow a matching of
instances of both patterns. In contrast to the legal vocabulary used in the Law Structure
of our law pattern, the wording for the elements in the dark gray colored Core Structure
of our law identification pattern is based on terms known from requirements engineer-
ing. For example, the element Asset(s) in our law identification pattern represents the
element Target Subject(s) in our law pattern.

Our law identification pattern takes into account that requirements are often inter-
dependent (Requirement(s) in the Context part). Given a law relevant to a requirement,
the same law might be relevant to the dependent requirements, too. Furthermore, the
pattern helps to document similar dependencies for a given Activity using the Related
Process(es) in the Context part.

As our example on the lower right-hand side of Fig. 1 shows, we select Hulda as the
cloud provider, then we choose the functional requirement Scalable Data Storing. One
of the activities associated with this requirement is the activity Store Distributed , which
refers to the asset Customer Data of the Bank Customer. Moreover, we instantiate the
elements Legislator(s) and Domain(s). In our example on the lower right side of Fig. 1,
we include the legislators Germany, US, EU, and the domain Finance. In addition, we
discover the related requirement Cloud API and the process Offering Data Storing, and
document them in the instance of our law identification pattern.

Step 3: Establishing the Relation between Laws and Requirements To instantiate the
Classification part, legal expertise is necessary. According to the Core Structure of the
instance of our law identification pattern and the hierarchies built when instantiating our
law pattern, legal experts classify the elements of the Core Structure. For example, the



6 Authors Suppressed Due to Excessive Length

activity Store Distributed is classified as Abroad Transfer based on a discussion between
the legal experts and software engineers.

Step 4: Deriving relevant Laws The identification of relevant laws is based on
matching the classification part of the law identification pattern instance (light gray
part) with the law structure and classification part of the law pattern instance (light and
dark gray parts), and thereby considering the previously documented hierarchies. If all
elements match, the law is identified as relevant. For example, we find direct matches in
the law pattern instance depicted on right side of Fig. 1 for the elements Abroad Trans-
fer, Personal Data, and Individual contained in the law identification pattern instance
shown on the lower right side of Fig. 1. Hulda is classified as Legal Entity and the only
element that does not directly match with Private Bodies in the law structure of Sec-
tion 4b BDSG. In this case, the hierarchy in Fig. 2 helps to identify that Legal Entity is
a specialization of Private Bodies, and thus, we identify Section 4b BDSG as relevant.

Finally, we check for all laws identified to be relevant if Legislator(s) and Domain(s)
are mutually exclusive. In our example, the legislator Germany contained in Context of
the law pattern instance depicted on lower right side of Fig. 1 can be found in Context
of the law identification pattern instance shown on the lower right side of Fig. 1. The
domain General Public in the law pattern instance can be considered as a generalization
of the domain Finance in the law identification pattern instance. The resulting set of
laws relevant for the given development problem serves as an input for the next step.

Step 5: This last step covers the identification and specification of requirements
based on laws identified to be relevant by our approach, e.g. using existing approaches
such as the one from Breaux et al. [6].

3 Related Work

Breaux et al. [6] present a framework that covers analyzing the structure of laws using a
natural language pattern. This pattern helps to translate laws into a more structured The
approach has some drawbacks of formal logic analysis of laws we will discuss later in
this section.

Siena et al. [7] describe the differences between legal concepts and requirements.
The resulting process to align legal concepts to requirements and the given concepts are
quite high level and cannot directly be applied to a scenario. In contrast to our approach
they do not identify relevant laws and do not intertwine compliance regulations with
already elicited requirements.

Álvarez et al. [8] describe reusable legal requirements in natural language. We be-
lieve that the work by Álvarez et al. complements our work, i.e., applying our law
identification method can precede using their security requirements templates.

Bench-Capon et al. [9] make use of first order logic to model regulations. In contrast
to our work, the authors assume that the relevant laws are already known.

4 Conclusions

We presented a pattern-based method for identifying and analyzing laws, which can be
embedded in common system and software development processes. The novelty about



Identifying and Analyzing Laws 7

our approach is that we analyzed common methods lawyers use to identify and analyze
laws. We captured this knowledge in patterns. We derived this pattern-based approach
from the subsumption method, while other approaches use formal logic to formalize and
analyze laws. Logic-based approaches seem to be more precise. However, legislators
formulate laws imprecise by design [4, 3, 5, p. 298-99, p. 36-39, p. 32-33]. Hence, we
decided to capture the modus operandi from lawyers in a pattern-based method. Biagioli
et al. investigated Italian law and derived also a structure of dictates of justice, which is
very similar to the structure presented in this work. [1, p. 247]. Thus, it is likely that
the pattern is also applicable to further laws in the tradition of the Roman jurisdiction.
The case law system, in the US or Great Britain, is another important legal system. We
plan to adapt our method for the case law system, via case patterns that extend law
patterns. We also aim to work on tool support for our approach, e.g. to store, load, and
search for laws once they have been fitted to our law patterns. The tool support will be
used for validation of our method. We are planning to use our approach on the entire
BDSG, which has 48 sections. We estimate around 4 patterns are required per section
on average, which will lead to a result of around 200 patterns for the entire law.

Acknowledgements

We thank Maritta Heisel and Christoph Sorge for their extensive and valuable feedback
on our work.

References

1. Biagioli, C., Mariani, P., Tiscornia, D.: Esplex: A rule and conceptual model for representing
statutes. In: Proceedings of the 1st international conference on Artificial intelligence and law.
ICAIL ’87, ACM (1987) 240–251

2. Otto, P.N., Antón, A.I.: Addressing legal requirements in requirements engineering. In: Pro-
ceedings of the International Conference on Requirements Engineering (RE), IEEE Computer
Society (2007) 5–14

3. Schwacke, P.: Juristische Methodik mit Technik der Fallbearbeitung. 4. edn. Kohlhammer
Deutscher Gemeindeverlag (2003)

4. Larenz, K.: Methodenlehre der Rechtswissenschaft. 5. edn. Springer (1983)
5. Beaucamp, G., Treder, L.: Methoden und Techniken der Rechtsanwendung. 2. edn. C.F.Müller

(2011)
6. Breaux, T.D., Antón, A.I.: Analyzing regulatory rules for privacy and security requirements.

IEEE Transactions on Software Engineering 34(1) (2008) 5–20
7. Siena, A., Perini, A., Susi, A.: From laws to requirements. In: Proceedings of the International

Workshop on Requirements Engineering and Law (RELAW), IEEE Computer Society (2008)
6–10

8. Álvarez, J.A.T., Olmos, A., Piattini, M.: Legal requirements reuse: A critical success factor
for requirements quality and personal data protection. In: Proceedings of the International
Conference on Requirements Engineering (RE), IEEE Computer Society (2002) 95–103

9. Bench-Capon, T., Robinson, G., Routen, T., Sergot, M.: Logic programming for large scale
applications in law: A formalization of supplementary benefit legislation. In: Proceedings of
the International Conference on Artificial Intelligence and Law (ICAIL), ACM (1987) 190–
198


