
Enterprise Applications: from Requirements to
Design

Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

1 Introduction

We provide a method to systematically develop enterprise application architectures
from problem descriptions. The problem descriptions are based on Jackson’s prob-
lem frame approach (Jackson, 2001). For enterprise applications, we have developed
a specialized problem frame that takes the specifics of such applications into ac-
count (Choppy & Reggio, 2006). In particular, new domain types – such as business
worker and business object – are introduced. We describe the requirements through
problem diagrams that are instances of the enterprise application frame and of other
problem frames.

In addition to Jackson’s problem frame approach, we represent the business
model underlying the business application by a domain knowledge diagram. Such a
diagram identifies the domains relevant for the business process to be automated and
states how they are related. It serves to analyze the business process to be automated
and helps to construct the appropriate instances of the enterprise application frame,
thus obtaining the problem diagrams.

From the problem diagrams, we derive two kinds of specifications: a behavioral
specification describes how the automated business process is carried out. It can be
expressed using activity or sequence diagrams. A structural specification describes
the classes to be implemented and the operations they provide. This specification is
expressed as a class diagram, where all operations are specified in OCL.

With these different models, we have described the software development prob-
lem in a detailed way, taking into account the specifics of business applications. This
makes it possible to develop a suitable software architecture in a systematic way. We
proceed similarly as described in earlier work (Choppy, Hatebur, & Heisel, 2011),
where we derive software architectures from problem descriptions for arbitrary soft-
ware. In this work, we make use of the fact that the software developement problem

C. Choppy
LIPN, University Paris 13, e-mail: Christine.Choppy@lipn.univ-paris13.fr

D. Hatebur
University Duisburg-Essen e-mail: Denis.Hatebur@uni-duisburg-essen.de

M. Heisel
University Duisburg-Essen e-mail: Maritta.Heisel@uni-duisburg-essen.de

G. Reggio
Universita di Genova e-mail: Gianna.Reggio@disi.unige.it

1

2 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

is decomposed in subproblems that fit to the enterprise application frame. Taking
into account the identified business objects, we focus on how these objects can best
be stored and accessed. In this context, questions of distributing the software to be
developed and the information to be stored are addressed, too.

In a first step, we create an initial architecture. To obtain that architecture, we
first have to decide on the responsibilities of the software to be developed (which
is called machine in the problem frames approach). We have to inspect all domains
occurring in the problem diagrams and decide if they will be part of the machine or
not. Some domains may reside in the environment but still need to have an internal
representation in the machine. The rules given in (Choppy & Reggio, 2006) support
this task. Moreover, the initial architecture reflects the problem decomposition that
was obtained by applying the problem frame approach. Each subproblem machine
becomes a component in the initial architecture.

The initial architecture need not be implementable, because the interaction be-
tween the different components has not yet been taken into account. Therefore, we
transform the initial architecture into an implementable architecture. To create the
implementable architecture we have to consider technical requirements, for exam-
ple that some functionality should be implemented on another computer. In business
applications, there is usually a database, which may be located on a different com-
puter than the machine we are building. In that case, we have to split the problem
diagrams and create corresponding subproblem diagrams that separate the different
machines accordingly. Conversely, in many cases, only one database is used to store
different kinds of information, such that the components representing the different
domains have to be merged into the database component. Moreover, we introduce
coordinator components, considering the formal descriptions of the business model,
and facade components. Finally, we allocate all machines that solve the different
problems or subproblems and the considered domains to physical components of
the machine to be built.

The implementable architecture that is obtained in this way does not follow a
particular architectural style. If, for example, a layered architecture is wished for,
the implementable architecture can further be transformed into a layered one, as is
described in (Choppy et al., 2011).

All the diagrams that we present in this chapter are expressed in UML instead
of the original notation used by Jackson (Jackson, 2001). This makes it possible
to exploit the additional expressive power provided by UML class diagrams and
also to represent software architectures and problem descriptions in the same nota-
tional framework. Carrying over the problem-frame approach to UML is achieved
by defining a UML profile for problem frames (Hatebur & Heisel, 2010). That pro-
file forms the basis for a tool called UML4PF, which is currently under development
at the University of Duisburg-Essen. UML4PF1 supports requirements analysis us-
ing problem frames and deriving software architectures from problem descriptions.
It is based on the Eclipse development environment, extended by an EMF-based
UML tool. Using UML4PF, users not only can set up diagrams in UML notation

1 Available at http://uml4pf.org

Enterprise Applications: from Requirements to Design 3

that are translations of the original problem frame notation. Most notably, UML4PF
can be used to check semantic validation conditions expressed in OCL. Such condi-
tions concern on the one hand the semantic integrity of single models. One the other
hand, also the coherence between different models can be checked.

The work presented here builds on and enhances previous work. The method
for deriving architectures from problem descriptions (Choppy et al., 2011)is now
tailored and elaborated, taking the specifics of developing enterprise architectures
into account and integrating the business frame presented in (Choppy & Reggio,
2006).

The rest of the chapter is organized as follows. In Section 2, we introduce the
basic concepts and notations we use in our work. Section 3 is devoted to the re-
quirements analysis phase that we carry out using the enterprise application frame.
As an example, we consider an online shop. Section 4 describes how we derive the
architecture of the business application from the problem descriptions set up in the
requirements analysis phase. Related work is discussed in Section 5, and we con-
clude in Section 6.

2 Background, Concepts, and Notations

In this section, we introduce the basic concepts we use in this work, problem frames
that we represent using UML tools, and various diagrams (context diagrams, prob-
lem diagrams, domain knowledge diagrams, and composite diagrams), and we ex-
press properties using OCL constraints.

2.1 Context Diagrams

The different diagram types make use of the same basic notational elements. As a re-
sult, it is necessary to explicitly state the type of diagram by appropriate stereotypes.
In our case, the stereotypes are <<ContextDiagram>>, <<ProblemDiagram>>,
<<ProblemFrame>>, and <<TechnicalContextDiagram>>. These stereotypes
extend (some of them indirectly) the meta-class Package in the UML meta-model.

According to the UML superstructure specification (”UML Revision Task Force”,
2009), it is not possible that one UML element is part of several packages. For ex-
ample a class Client should be in the context diagram package and also in some
problem diagrams packages.2 Nevertheless, several UML tools allow one to put
the same UML element into several packages within graphical representations. We
want to make use of this information from graphical representations and add it to
the model (using stereotypes of the profile). Thus, we have to relate the elements
inside a package explicitly to the package. This can be achieved with a dependency

2 Alternatively, we could create several Client classes, but these would have to have different
names.

4 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

Fig. 1 Simple Workpieces problem frame

stereotype <<isPart>> from the package to all included elements (e.g., classes,
interfaces, comments, dependencies, associations).

The context diagram (see e.g., Figure 4) contains the machine domain(s), the
relevant domains in the environment, and the interfaces between them. Domains
are represented by classes with the stereotype <<Domain>>, and the machine
is marked by the stereotype <<Machine>>. Instead of <<Domain>>, more
specific stereotypes such as <<BiddableDomain>> , <<LexicalDomain>> or
<<CausalDomain>> can be used. Since some of the domain types are not dis-
joint, more than one stereotype can be applied on one class.

2.2 Problem Frames

Problem frames are a means to describe software development problems. They were
proposed by Michael Jackson (Jackson, 2001), who describes them as follows: “A
problem frame is a kind of pattern. It defines an intuitively identifiable problem class
in terms of its context and the characteristics of its domains, interfaces and require-
ment.” Problem frames are described by frame diagrams, which basically consist of
rectangles, a dashed oval, and different links between them, see Figure 1). The task
is to construct a machine that establishes the desired behaviour of the environment
(in which it is integrated) in accordance with the requirements.

Rectangles with a domain stereotype denote domains that already exist in the ap-
plication environment. Jackson (Jackson, 2001, p. 83f) considers three main domain
types:

• “A biddable domain usually consists of people. The most important character-
istic of a biddable domain is that it is physical but lacks positive predictable
internal causality. That is, in most situations it is impossible to compel a per-
son to initiate an event: the most that can be done is to issue instructions to be
followed.”

Enterprise Applications: from Requirements to Design 5

Biddable domains are indicated by B (e.g., User in Figure 1).
• “A causal domain is one whose properties include predictable causal relation-

ships among its causal phenomena.”
Often, causal domains are mechanical or electrical equipment. They are indicated
with a C in frame diagrams. Their actions and reactions are predictable. Thus,
they can be controlled by other domains.

• “A lexical domain is a physical representation of data – that is, of symbolic
phenomena. It combines causal and symbolic phenomena in a special way. The
causal properties allow the data to be written and read.”
Lexical domains are indicated by X(e.g., Workpieces in Figure 1).

A rectangle with a double vertical stripe denotes the machine to be developed,
and requirements are denoted with a dashed oval. The connecting lines between
domains represent interfaces that consist of shared phenomena. Shared phenomena
may be events, operation calls, messages, and the like. They are observable by at
least two domains, but controlled by only one domain, as indicated by an exclama-
tion mark. For example, in Figure 1 the notation U!E3 means that the phenomena in
the set U!E3 are controlled by the domain User and observed by the EditingTool.

To describe the problem context, a connection domain between two other do-
mains may be necessary. Connection domains establish a connection between other
domains by means of technical devices. Connection domains are, e.g., video cam-
eras, sensors, or networks.

A dashed line represents a requirement reference, and an arrow indicates that the
requirement constrains a domain.3 If a domain is constrained by the requirement,
we must develop a machine, which controls this domain accordingly. In Figure 1,
the Workpieces domain is constrained, because the EditingTool changes it on behalf
of user commands to satisfy the required Command effects.

Jackson (Jackson, 2001) introduces five basic problem frames (Transformation,
Simple Workpieces, Information Display, Commanded Behaviour and Required Be-
haviour) that can be combined and/or adapted to fit the problem studied. Research
on problem frames led to define more complex problem frames corresponding to
large classes of applications (e.g. geographic problem frames (Nelson, Cowan, &
Alencar, 2001) for geographic information systems). In previous work, we presented
a problem frame for enterprise/business applications (Choppy & Reggio, 2006), and
here, we will show how we can use it to develop the system architecture.

Software development with problem frames proceeds as follows: first, the envi-
ronment in which the machine will operate is represented by a context diagram. Like
a frame diagram, a context diagram consists of domains and interfaces. However, a
context diagram contains no requirements. Then, the problem is decomposed into
subproblems. Whenever possible, the decomposition is done in such a way that the
subproblems fit to given problem frames. To fit a subproblem to a problem frame,

3 In the following, since we use UML tools to draw problem frame diagrams, all requirement
references will be represented by dashed lines with arrows and stereotypes <<refersTo>>, or
<<constrains>> when it is constraining reference.

6 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

one must instantiate its frame diagram, i.e., provide instances for its domains, inter-
faces, and requirement. The instantiated frame diagram is called a problem diagram.

Besides problem frames, there are other elaborate methods to perform require-
ments engineering, such as i* (Yu, 1997), Tropos (Bresciani, Perini, Giorgini,
Giunchiglia, & Mylopoulos, 2004), and KAOS (Bertrand, Darimont, Delor, Mas-
sonet, & Lamsweerde, 1998). These methods are goal-oriented. Each requirement
is elaborated by setting up a goal structure. Such a goal structure refines the goal
into subgoals and assigns responsibilities to actors for achieving the goal. We have
chosen problem frames and not one of the goal-oriented requirements engineering
methods to derive architectures, because the elements of problem frames, namely
domains, may be mapped to components of an architecture in a fairly straightfor-
ward way.

2.3 Problem Diagrams

In a problem diagram (see e.g., Figure 7), the knowledge about a sub-problem
described by a set of requirements is represented. A problem diagram consists of
sub-machines of the machines given in the context diagram, the relevant domains,
the connections between these domains and a requirement (possibly composed of
several related requirements), as well as of the relation between the requirement
and the involved domains. A requirement refers to some domains and constrains
at least one domain. This is expressed using the stereotypes <<refersTo>> and
<<constrains>>. They extend the UML meta-class Dependency. Domain knowl-
edge and requirements are special statements. Furthermore, any domain knowledge
is either a fact (e.g., physical law) or an assumption (usually about a user’s be-
haviour).

2.4 Domain Knowledge Diagrams

The problem frame approach substantially supports developers in analyzing prob-
lems to be solved. It points out what domains have to be considered, and what
knowledge must be described and reasoned about when analyzing a problem in
depth. Developers must elicit, examine, and describe the relevant properties of each
domain. These descriptions form the domain knowledge, which is represented by
domain knowledge diagrams. Domain knowledge consists of assumptions and facts.
Assumptions usually describe required user behavior, whereas facts describe proper-
ties of the problem environment, regardless of how the machine is built. To express
mandatory behaviour of domains in the environment we have introduced domain
knowledge diagrams (see e.g., Figure 3).

Enterprise Applications: from Requirements to Design 7

2.5 Composite Diagrams

Composite structure diagrams (”UML Revision Task Force”, 2009) are a means
to describe architectures (see e.g., Fig. 14). They contain named rectangles, called
parts. Theses parts are components of the software. In an object-oriented imple-
mentation components are instantiated classes. Each component may contain other
(sub-) components. Atomic components can be described by state machines and op-
erations for accessing internal data. In our architectures, components for data stor-
age are only included if the data is stored persistently. Otherwise they are assumed
to be part of some other component. Parts may have ports, denoted by small rectan-
gles. Ports may have interfaces associated to them. Provided interfaces are denoted
using the “lollipop” notation, and required interfaces using the “socket” notation.
Figure 2 shows how interfaces in problem diagrams are transformed into interfaces
in composite structure diagrams. The partial problem diagram shown on the left-

P1: {phen1, phen2}

Machine

Domain
M!P1

Machine

Part

Domain (P1)

<<interface>>
P1_if

phen1()
phen2()

Machine

Part

P1_if

=̂

Domain (P1)
P1_if

Fig. 2 Notation for Architectures

hand side of Figure 2 states that the phenomena phen1 and phen2 shared between
the machine and a domain are controlled by the machine. In the composite structure
diagram (with associated interface class) shown in the middle of Figure 2, this is ex-
pressed by a required interface P1 if of the part component of the machine, which
is the same as for the whole machine. Shared phenomena controlled by a domain
correspond to provided instead of required interfaces of the part and the machine,
respectively. Because of this direct correspondence, we do not use the socket and
lollipop notation in the following, but use connectors between ports as shown on
the right-hand side of Figure 2. These connectors can be implemented e.g. as data
streams, function calls, asynchronous messages or hardware access.

The architecture of software is multi-faceted: there exists a structural view,
a process-oriented view, a function-oriented view, an object-oriented view with
classes and relations, and a data flow view on a given software architecture. We
use the structural view from UML 2.0 that describes the structure of the software at
runtime. After that structure is fixed the interfaces need to be refined using sockets,
lollipops and interface classes to describe the possible data flow. Then the corre-
sponding active or passive class with its data and operations can be added for each
component. Thereby the process-oriented and object-oriented views can be inte-

8 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

grated seamlessly into the structural view. That approach and the corresponding
process are described in (Heisel & Hatebur, 2005).

2.6 OCL

The Object Constraint Language (OCL) (UML Revision Task Force, 2010; Warmer
& Kleppe, 2003) is part of UML (”UML Revision Task Force”, 2009). It is a nota-
tion to describe constraints on object-oriented modeling artifacts such as class dia-
grams and sequence diagrams. A constraint is a restriction on one or more elements
of an object-oriented model.

OCL constraints are denoted in the UML model they belong to or in a separate
document. We only use the constraint type class invariant, which is a constraint that
must hold before and after execution of a method, but can be violated during method
execution. The basic format of an OCL class invariant is as follows:

context identi f ier inv : boolean expression

where context is a keyword to mark the relative model element indicated by
identi f ier from which other model elements can be referenced. The keyword self
can be used within boolean expression to access the context. identi f ier is a class,
attribute name, association name, operation name, or the like. The keyword inv de-
scribes that this constraint is an invariant and boolean expression is some boolean
expression, often an equation.

As types we mostly use classifiers from the UML model the context refers to.
We commonly use navigation paths (aka association ends or role names). Often
associations are one-to-many or many-to-many, which means that constraints on a
collection of objects are necessary. OCL expressions either state a fact about all
objects in the collection using quantification or facts about the collection itself.

3 Enterprise Business Modelling: an approach à la problem
frame

In this section we introduce the Business Frame for enterprises and the associ-
ated (UML) Business Model, illustrating both with an application to the Electronic
Commerce case study.

All in all, we perform the following steps in the requirements analysis phase of
business application systems:

1. Set up an enterprise business diagram (domain knowledge diagram).
2. Set up a context diagram.
3. Instantiate Enterprise Application Frame.
4. Derive behavioral specifications.

Enterprise Applications: from Requirements to Design 9

5. Derive structural specifications.
6. Set up software lifecycle.

We discuss these steps in the following sections.

3.1 Enterprise Business Diagram (Domain Knowledge Diagram)

Before starting the development of an enterprise application it is important to accu-
rately understand and model the business in which the application will operate. This
activity is called business modelling and will result in a so-called business model.

We assume that the business to be modelled consists of various interacting en-
tities (called business entities) that achieve the various business-specific goals by
means of dedicated cooperations called business processes.

We introduce a frame in the style of Jackson (cf. Sect. 2.2) to help to get ab-
stractly the structure of the business, before modelling it in UML. That frame is
shown in Fig. 5. Technically, the business frame is a frame with a domain for each
business entity, where the business processes are described in terms of composite
phenomena.

The business frame domains (examples can be found in Fig. 3), that are the busi-
ness entities, can be classified as:

• business objects, the entities which are subject to the business (e.g., a catalogue,
an insurance contract document), and are lexical domains. Business objects are
passive and cannot cause any events.

• business workers, the human entities acting in the business (e.g., a manager, a
clerk), and are biddable domains;

• systems, software systems or mechanical apparatus with a role in the business
(e.g., Payment System for handling the payments or a scanner for paper docu-
ments). The systems are causal domains.

The business entities may be further classified in internal and external w.r.t. the
business; the internal ones are those under the responsibility of the enterprise man-
aging the business. The rule for deciding whether an entity is internal or external
is the following: in case of a reorganization of the business by the managing en-
terprise, an internal entity may be modified, whereas an external one may not; thus
Payment System is external, whereas a stock or a clerk are internal (indeed the enter-
prise may change the stock organization or the way the clerk works, but not the way
the Payment System performs). This is displayed using the corresponding stereo-
types (e.g. <<businessObject>>, <<businessWorker>>, <<externalSystem>>,
etc. in Fig. 3). The external entities are marked with the corresponding stereotypes,
and their box is left uncoloured (e.g., in Fig. 3 Payment System is an external sys-
tem), while for simplicity the stereotypes for the internal ones do not include ”inter-
nal’ but their box is coloured.

10 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

Fig. 3 Electronic Commerce Domain Knowledge Diagram

The classification in internal and external entities is completely orthogonal to
the classification in business objects, workers and systems. All these domains are
considered as given, and this marking is implicitly assumed.

In a Business Frame the domains are connected by composite phenomena that
correspond to the business processes. The domains connected in a business process
are called the participants of the process. We consider a business process as a coop-
eration between business workers, business objects and systems (both internal and
external).

Electronic Commerce: Domain Knowledge Diagram

We illustrate our approach on the Electronic Commerce example from (Choppy
& Reggio, 2006, 2005), that is a system for selling products via the internet. We
consider the following requirements for this system:

R1 A Client can browse the offers in the Catalogue and check the availability.
R2 When a Client puts an order, if the product is available in the stock and the

debit request is granted, then the product is taken from the stock (reducing the
quantity) and delivered to the client; otherwise, an error message is returned.

R3 The ProductManager can update the Catalogue (add, remove, change entries).

Fig. 3 shows the Domain Knowledge Diagram for our Electronic Commerce
example. This frame exhibits internal business workers (e.g., Manager), internal
business objects (e.g., CAtalogue4), and external systems (e.g., Factory and Payment
System).

4 CAtalogue controls phenomena CA!{offers}, hence its name with a capital A.

Enterprise Applications: from Requirements to Design 11

The activity diagram in Fig. 9 shows the behavior of the business workers for the
selling process. For the description of the activity before any machine is developed,
we have no StockRepresentation but the Stock itself and the activity UpdateStock-
Representation is not necessary.

Fig. 4 Electronic Commerce context diagram

3.2 Context Diagram

Given the understanding provided in the domain knowledge diagram, the context
diagram is then established by introducing the enterprise application to be developed
represented by a machine (in Fig. 4, machine EC) and its corresponding interfaces to
handle the requirements. Note that now the machine EC is responsible to handle the
client order, which was previously under the responsibility of the OrderDepartment.

3.3 Enterprise Application problem frame

The Enterprise Application problem frame in Fig. 5 displays the various kinds of
domains to be taken into account (<<businessObject>>, <<businessWorker>>,
<<externalSystem>>) in an enterprise application. These domains are interfaced
with the requirements through a constraining reference and the relevant phenomena.
They are also interfaced with the EnterpriseApplication (that is the <<machine>>

12 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

Fig. 5 Enterprise Application Problem Frame (EA Frame)

to be developed), and the relevant multiplicity applies. Notice that internal business
objects are part of the enterprise application.

In the following, the Enterprise Application problem frame will be instantiated
into problem diagrams describing the various subproblems.

Electronic Commerce: Initial subproblem description and problem diagrams

At this stage, the initial subproblems are identified and described using problem
diagrams (instances of the Enterprise Application problem frame).

In our Electronic Commerce case study, the initial subproblems are EC browse
(Fig. 6), EC sell (Fig. 7), and EC upCat (update Catalogue) (Fig. 8).

Problem EC browse (cf. Fig. 6) refers to a causal Stock domain with which the
machine has no interface. Our approach is to introduce a lexical domain that is a
representation of the causal domain with an interface to the machine. We add an
assumption (or requirement) stating that the state of the lexical domain corresponds
to the state of the causal domain. The rationale is that our business software is not
embedded – therefore we do not introduce an interface between the machine and a
causal domain being not a computer. We also add new representation domains to the
context diagram, and a stereotype for dependency: <<represents>>.

The lower part of Fig. 6 contains mapping diagrams that show how the problem
diagram is related to the context diagram. Such mapping diagrams are needed to
automatically check the coherence between the different diagrams. The machine

Enterprise Applications: from Requirements to Design 13

Fig. 6 Problem Diagram for EC browse

EC browse is a part of the machine EC, and the ClientDisplay is a display domain
used to concretize interface between the Client and the machine. Furthermore, the
suproblem EC browse uses only a part of the interface between the Client and the
machine.

For problem EC sell (cf. Fig. 7), let us note that we again – as in EC browse –
distinguish between the stock, that is a causal domain, and the stock representation
that is an internal business object (with the dependency relation <<represents>>).
We also show shared phenomena between problem domains, such as deliver be-
tween the DeliveryDepartment and the Client.

The problem diagram for EC upCat is an instance of the simple workpieces prob-
lem frame (Jackson, 2001). The ProductManager should be able to add, remove, or
change products in the CAtalogue. Therefore, the CAtalogue is constrained and the
requirement refers to the ProductManager.

14 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

Fig. 7 Problem Diagram for EC sell

Fig. 8 Problem Diagram for EC upCat

3.4 Derive Behaviour Specifications

Until now, we only have considered requirements. According to the problem frame
approach, requirements refer to problem domains. Descriptions describing the be-
haviour of the machine are called specifications. Specifications are implementable
requirements. They are derived from requirements by using domain knowledge.
Specifications treat the machine as a black box and describe how the machine re-
acts to external stimuli and how it behaves in order to achieve the requirements. For
more details, see (Jackson & Zave, 1995).

The behaviour of the machine can be specified using either activity diagrams
or sequence diagrams. Here we present an activity diagram for problem EC sell
in Fig. 9. Swimlanes are used to structure the diagram with respect to the various

Enterprise Applications: from Requirements to Design 15

actors. As already stated in Section 3.2, the machine EC Sell takes the roles of the
OrderDepartment and FinancialManager. Therefore, the swimlanes of the activity
diagram given in Fig. 9 annotated with OrderDepartment and FinancialManager
represent the behaviour of the machine in interacting with its environment.

checkOrder

putOrder

Order

Catalog

pay

msg(unknProd)

Client

DeliveryDepartment

OrderDepartment

FinancialManager

Stock

checkAvailability

UpdateStock

msg(notAvail)

checkPayment

msg(wrongAmount)

DeliveryOrder

deliver

Representation Representation

Fig. 9 Activity diagram

3.5 Structural Specification / Business class model and formal
requirements

The next step is to set up the business class model together with OCL contracts that
will be a formal expression of the requirements (pre and post) with the initial class
diagram. We need to specify the operation provided by the machines in the sub-
problems. For our example, the class diagram associated with subproblem EC sell
is given in Fig. 10. The classes represent the data to be implemented by the machine
in order to be able to exhibit the behavior specified in the behavioural specification.

The OCL contract for the operation putOrderPay of the machine EC Sell is given
below. The precondition states that all input data are valid. The postcondition says
that the (private) operations putOrder and pay are called.

1 putOrderPay(product: String [*], clientData: ClientData, accountData:
String)

2 PRE:
3 Product.allInstances().id->includesAll(product) and
4 clientData.name<>’’ and clientData.address<>’’
5 POST:

16 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

Fig. 10 Business class model of EC sell

6 let otpid: Integer =
7 putOrder(product,clientData)
8 in
9 selfˆpay(accountData,

10 orderToPay->select(o| o.id =
otpid)->asSequence()->first().getSum(),

11 otpid)

The operations putOrder and pay are defined as follows. The postcondition of
putOrder expresses that the client receives a message that the product is not avail-
able if the quantity stored in the stock representation is not strictly greater than 0.
Otherwise a new order is created and the stock representation is updated by deduc-
ing the ordered quantity.

1 putOrder(product: String [*], clientData: ClientData): Integer
2 PRE:
3 Product.allInstances().id->includesAll(product)
4 and clientData.name<>’’ and clientData.address<>’’
5

6 POST:
7 not product->forAll(p |
8 stockRepresentation.getAvailableQuantity(p)>0
9) implies

10 clientDisplayˆmsg(’product not available’)
11 and
12 product->forAll(p |
13 stockRepresentation.getAvailableQuantity(p)>0
14)
15 and
16 result = orderToPay.createOrder(product,clientData)

->asSequence()->first()

Enterprise Applications: from Requirements to Design 17

17 and
18 product->forAll(p |
19 stockRepresentationˆreduceQuantity(p)
20)
21 and
22 orderToPay->size()=orderToPay@pre->size()+1

The operation pay yields an error message if the external payment systems de-
clines payment. Otherwise, the payment is executed.

1 pay(accountData: String, sum: Integer, orderID: Integer)
2 PRE:
3 true
4 POST:
5 not (paymentSystem.debitRequest(accountData,sum)=’grant’)
6 implies
7 clientDisplay.msg(’Cannot debit amount’)
8 POST:
9 paymentSystem.debitRequest(accountData,sum)=’grant’

10 implies
11 selfˆpaid(orderID)

3.6 Life cycle

The last step of the requirements analysis phase consists of defining a life-cycle
model for the machine, which describes the relations between the different sub-
problems.

We specify the possible activities from the viewpoints of the main actors in terms
of the identified subproblems. In our case study, the client can browse the catalogue
several times before buying some product, which we express by C = Browse∗;Sell.
The managers update the catalogue, as expressed by M = upCat. Clients and man-
agers can act in parallel: System =C||M.

We need the life-cycle model later, when we have to decide if a coordinator
component should be introduced in the software architecture.

4 Architecture

We develop the software architecture for enterprise application systems in two steps.
First, we set up an initial architecture that is then transformed into an implementable
architecture.

18 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

4.1 Initial Architecture

In the initial architecture we collect information from the requirements analysis
phase. On the one hand, we decide which domains of the problem diagrams are
transformed into components of the software architecture. On the other hand, we
transform interfaces of the problem diagrams into ports and interfaces of the soft-
ware architecture.

Fig. 11 Initial architecture of Electronic Commerce

First, each machine domain of a problem diagram becomes a component in the
inital architecture, which has the same name as the machine domain in the context
diagram. Second, business objects become components, because they are lexical and
thus can exist only inside the machine. Business workers and external systems are
outside the machine and thus do not become components. Interfaces of the domains
that are mapped to components become interfaces to these components (represented
by ports). If an interface belongs to a component corresponding to a machine do-
main, its interfaces are also interfaces of the overall software architecture.

Figure 11 shows the inital architecture for the electronic commerce system,
which was set up according to the above rules. Note that we annotate the connec-
tions between the different components with appropriate stereotypes. The ports are
either component ports (CP) or just ports (P), and the second part of their name
refers to what they are connected to (e.g. P PM is a port to Product Manager). We
used the external ports (P) for the components if the components provide and re-
quired the same functionality as the external port. Moreover, we have to decide if

Enterprise Applications: from Requirements to Design 19

the software we are going to build will be distributed or not. We decide that the
electronic commerce system will be a distributed system.

4.2 Implementable Architecture

Fig. 12 Problem diagram for EC order

Fig. 13 Problem diagram for EC pay

20 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

In the second step of the architectural design, we transform the initial architec-
ture into an implementable architecture. If the initial architecture is annotated as
distributed, it must be decided how the distribution will be achieved. Moreover, if
a component is connected to several external ports, a facade component will be
introduced. If from the life-cycle model it follows that some interactions have to
take place before other interactions can be performed, a coordinator component is
necessary.

In our example, we do not need a coordinator component, because placing an
order (Sell) is possible without prior browsing. However, we decide that for se-
curity reasons the processing of orders and the processing of payments should be
performed on different computers. As a consequence, we split the problem diagram
EC sell into two new problem diagrams as shown in Figs. 12 and 13.

Fig. 14 Implementable architecture of Electronic Commerce

The machine EC Sell is split into EC Order and EC Pay. The requirement
R Sell is split into R Order and R Pay. The interface ECS!{msg} is concretized
by ECO!{orderID, err msg} and ECP!{status}. The interface C!{putOrderPay} is
concretized by C!{putOrder} and C!{pay}. For the other interfaces the controlling

Enterprise Applications: from Requirements to Design 21

domain needs to be EC Order instead of EC Sell. Therefore the interface names
change, e.g., from ECS!{reduceQuantity} to ECO!{reduceQuantity}.

From the new problem diagrams, we derive the implementable architecture
EC IMPL shown in Fig. 14, which is a specialization of the EC machine. We have
one component for the payment and one component for the other functionalities.
The two components are connected via newly defined ports.

To split the business model (OCL), the operation putOrderPay of EC sell is re-
moved. The operation putOrder of EC sell becomes a public operation of EC Order.
The operation pay of EC sell becomes a public operation of EC Pay. To allow the
payment system (EC Pay) informing the ordering system (EC Order) a new oper-
ation paid is added to EC Order. This operation triggers the product delivery with
ordersˆputtingOrder.

1 paid(orderID: Integer)
2 PRE:
3 orderToPay.id->includes(orderID)
4 POST:
5 let otpay: OrderToPay =
6 orderToPay->select(otp| otp.id=orderID)->asSequence()->first()
7 in
8 ordersˆputtingOrder(otpay.product.id->asSet(),otpay.clientData)

The software architecture given in Fig. 14 can be implemented as it is defined. If
wished for, it can further be transformed, for example into a layered architecture as
described in (Choppy et al., 2011).

Note that our architecture is not optimized in any way. Other architectures could
be developed, however, without support by our method. Our aim is to provide a
systematic way to develop a working architecture. Moreover, we focus on functional
requirements in this work. How quality requirements can be taken into account, too,
is discussed in (Alebrahim, Hatebur, & Heisel, 2011).

5 Related work

Hall, Rapanotti et al. (Hall, Jackson, Laney, Nuseibeh, & Rapanotti, 2002; Rapan-
otti, Hall, Jackson, & Nuseibeh, 2004) introduce architectural concepts into prob-
lem frames (introducing “AFrames”) so as to benefit from existing architectures.
In (Hall et al., 2002), the applicability of problem frames is extended to include
domains with existing architectural support, and to allow both for an annotated ma-
chine domain, and for annotations to discharge the frame concern. In (Rapanotti et
al., 2004), “AFrames” are presented corresponding to the architectural styles Pipe-
and-Filter and Model-View-Controller (MVC), and applied to transformation and
control problems. In contrast, we keep requirements and architectural documents
separate.

Barroca et al. (Barroca, Fiadeiro, Jackson, Laney, & Nuseibeh, 2004) extend the
problem frame approach with coordination concepts. This leads to a description of
coordination interfaces in terms of services and events (referred to respectively here

22 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

as actuators and sensors) together with required properties, and the use of coordi-
nation rules to describe the machine behavior. Our method is more concerned with
structure than with behavior.

Lavazza and Del Bianco (Lavazza & Bianco, 2006) also represent problem dia-
grams in a UML notation. They use component diagrams (and not stereotyped class
diagrams) to represent domains. Jacksons interfaces are directly transformed into
used/required classes (and not observe and control stereotypes that are translated
in the architectural phase). In a later paper, Del Bianco and Lavazza (Lavazza &
Bianco, 2008) suggest enhance problem frames with scenarios and timing, which
we do not consider in this paper.

Hofmeister et al. (Hofmeister, Nord, & Soni, 1999) describe software architec-
tures in four views (conceptual, module, execution, and code) with UML and stereo-
types. Five industrial architecture design methods are compared in (Hofmeister et
al., 2007), and a general approach is extracted where the design activities are the
architecture analysis, synthesis (i.e. the core of the design) and evaluation. We may
consider that, although our approach is quite different, it complies with these design
activities.

Bleistein et al. (Bleistein, Cox, & Verner, 2006) describe how to come from
strategic level business requirements to machine level requirements. They also use
problem diagrams, but combine them with VMOST (Sondhi, 1999). VMOST is
a technique for deconstructing business strategies into core components. The pre-
sented approach complements our procedure for deriving the specifications of the
components in the implementable architecture.

Attribute Driven Design (ADD) (Wojcik et al., 2006) is a method to design a
conceptual architecture. It focuses on the high-level design of an architecture, and
hence does not support detailed design.

Charfi et al. (Charfi, Gamatié, Honoré, Dekeyser, & Abid, 2008) use a mod-
elling framework, Gaspard2, to design high-performance embedded systems-on-
chip. They use model transformations to move from one level of abstraction to
the next. To validate that their transformations were performed correctly, they use
the OCL language to specify the properties that must be checked in order to be
considered as correct with respect to Gaspard2. We have been inspired by this ap-
proach. However, we do not focus on high-performance embedded systems-on-chip.
Instead, we target general software development challenges.

Choppy and Heisel give heuristics for the transition from problem frames to ar-
chitectural styles. In (Choppy & Heisel, 2003), they give criteria for choosing be-
tween architectural styles that could be associated with a given problem frame. In
(Choppy & Heisel, 2004), a proposal for the development of information systems
is given using update and query problem frames. A component-based architecture
reflecting the repository architectural style is used for the design and integration of
the different system parts.

In (Choppy, Hatebur, & Heisel, 2005), Choppy, Heisel and Hatebur propose ar-
chitectural patterns for each basic problem frame proposed by Jackson (Jackson,
2001). In a follow-up paper (Choppy, Hatebur, & Heisel, 2006), the authors show
how to merge the different sub-architectures obtained according to the patterns pre-

Enterprise Applications: from Requirements to Design 23

sented in (Choppy et al., 2005), based on the relationship between the subproblems.
Hatebur and Heisel (Hatebur & Heisel, 2009) show how interface descriptions for
layered architectures can be derived from problem descriptions.

In a more recent paper (Choppy et al., 2011), Choppy, Heisel and Hatebur de-
scribe how to derive software architectures from problem diagrams in a general
setting. This paper emphasizes the integrity conditions that have to hold for the dif-
ferent models that are set up in the process.

6 Conclusion and Perspectives

In this chapter, we have presented a method that supports the development of en-
terprise application systems. It covers the phases requirements analysis and archi-
tectural design. Requirements analysis is based on a specialization of the problem
frame approach to enterprise applications, in particular, a specific enterprise applica-
tion frame. The business processes to be automated are explicitly represented using
domain knowledge diagrams. The result of the requirements analysis phase are a set
of problem diagrams, each covering a relevant aspect of the software developement
problem. These diagrams form the basis of the architectural design phase, which
makes use of the information collected in the analyis phase. The architectural de-
sign takes into account the specifics of enterprise application systems, in particular
the business objects that have to be stored appropriately, often using databases.

Different diagrams expressed in UML are set up during requirements analysis as
well as architectural design.

In summary, the contributions of our work are the following:

• We provide a systematic development method for enterprise systems, based on
well-structured requirements documents.

• The specifics of enterprise systems are taken into account by specific domain
types and a specialized enterprise problem frame.

• From the problem description, most interfaces and the data specification can be
derived in a systematic way.

• The different artifacts developed with our method are linked; thus, traceability
and change propagation are supported.

• The method is tool-supported, which relieves developers of tedious modeling and
validation tasks.

Future work on this trend includes to adapt and extend the validation conditions
to take into account the enterprise problem frame and our approach that includes
domain knowledge diagrams and diagrams to describe the behaviour (here activ-
ity diagram). We also intend to semi-automatically generate the architectures for
enterprise systems.

24 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

References

Alebrahim, A., Hatebur, D., & Heisel, M. (2011). A method to derive software ar-
chitectures from quality requirements. In T. D. Thu & K. Leung (Eds.), Pro-
ceedings of the 18th asia-pacific software engineering conference (APSEC)
(pp. 322–330). IEEE Computer Society.

Barroca, L., Fiadeiro, J. L., Jackson, M., Laney, R. C., & Nuseibeh, B. (2004). Prob-
lem frames: A case for coordination. In Coordination models and languages,
proc. 6th international conference coordination (p. 5-19).

Bertrand, P., Darimont, R., Delor, E., Massonet, P., & Lamsweerde, A. van. (1998).
GRAIL/KAOS: an environment for goal drivent requirements engineering. In
Icse’98 - 20th international conference on software engineering.

Bleistein, S. J., Cox, K., & Verner, J. (2006, March). Validating strate-
gic alignment of organizational it requirements using goal modeling and
problem diagrams. J. Syst. Softw., 79(3), 362–378. Available from
http://dx.doi.org/10.1016/j.jss.2005.04.033

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004).
Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3), 203–236.

Charfi, A., Gamatié, A., Honoré, A., Dekeyser, J.-L., & Abid, M. (2008). Validation
de modèles dans un cadre d’IDM dédié à la conception de systèmes sur puce.
In 4èmes jounées sur l’ingénierie dirigée par les modèles (idm 08).

Choppy, C., Hatebur, D., & Heisel, M. (2005). Architectural patterns for prob-
lem frames. IEE Proceedings – Software, Special Issue on Relating Software
Requirements and Architectures, 152(4), 198–208.

Choppy, C., Hatebur, D., & Heisel, M. (2006). Component composition through
architectural patterns for problem frames. In Proc. xiii asia pacific software
engineering conference (apsec) (pp. 27–34). IEEE.

Choppy, C., Hatebur, D., & Heisel, M. (2011). Systematic architectural design
based on problem patterns. In P. Avgeriou, J. Grundy, J. Hall, P. Lago, &
I. Mistrik (Eds.), Relating software requirements and architectures (pp. 133–
159). Springer.

Choppy, C., & Heisel, M. (2003). Use of patterns in formal development: System-
atic transition from problems to architectural designs. In Recent Trends in
Algebraic Development Techniques, 16th WADT, Selected Papers (pp. 205–
220). Springer Verlag.

Choppy, C., & Heisel, M. (2004). Une approache à base de “patrons” pour la
spécification et le développement de systèmes d’information. In Proceed-
ings approches formelles dans l’assistance au développement de logiciels -
afadl’2004 (pp. 61–76).

Choppy, C., & Reggio, G. (2005). A UML-Based Approach for Problem Frame
Oriented Software Development. Journal of Information and Software Tech-
nology, 47, 929-954.

Choppy, C., & Reggio, G. (2006). Requirements capture and specification for
enterprise applications: a UML based attempt. In J. Han & M. Staples (Eds.),

References 25

Proc of the australian software engineering conference (aswec 2006), ieee
(p. 19-28).

Hall, J. G., Jackson, M., Laney, R. C., Nuseibeh, B., & Rapanotti, L. (2002, 9-13
September). Relating software requirements and architectures using prob-
lem frames. In Proceedings of ieee international requirements engineering
conference (re’02). Essen, Germany.

Hatebur, D., & Heisel, M. (2009). Deriving software architectures from problem
descriptions. In Software engineering 2009 - workshopband (pp. 383–302).
GI.

Hatebur, D., & Heisel, M. (2010). Making pattern- and model-based software
development more rigorous. In J. S. Dong & H. Zhu (Eds.), Proceedings
of international conference on formal engineering methods (ICFEM) (Vol.
LNCS 6447, pp. 253–269). Springer.

Heisel, M., & Hatebur, D. (2005). A model-based development process
for embedded systems. In T. Klein, B. Rumpe, & B. Schätz (Eds.),
Proc. workshop on model-based development of embedded systems. Tech-
nical University of Braunschweig. (Available at http://www.sse.cs.tu-
bs.de/publications/MBEES-Tagungsband.pdf)

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., & America, P.
(2007). A general model of software architecture design derived from five
industrial approaches. Journal of Systems and Software, 80(1), 106–126.

Hofmeister, C., Nord, R. L., & Soni, D. (1999). Describing software architecture
with UML. In Proceedings of the first working ifip conference on software
architecture (pp. 145–160). Kluwer Academic Publishers.

Jackson, M. (2001). Problem frames. analyzing and structuring software develop-
ment problems. Addison-Wesley.

Jackson, M., & Zave, P. (1995). Deriving specifications from requirements: an
example. In Proc. 17th int. conf. on software engineering (pp. 15–24). ACM
Press.

Lavazza, L., & Bianco, V. D. (2006). Combining Problem Frames and UML in the
Description of Software Requirements. Fundamental Approaches to Software
Engineering.

Lavazza, L., & Bianco, V. D. (2008, February). Enhancing Problem Frames with
Scenarios and Histories in UML-based software development. Expert Systems
- The Journal of Knowledge Engineering, 25(1).

Nelson, M., Cowan, D., & Alencar, P. (2001). Geographic problem frames. In Fifth
ieee international symposium on requirements engineering (pp. 306–307).

Rapanotti, L., Hall, J. G., Jackson, M., & Nuseibeh, B. (2004, 6-10 September).
Architecture driven problem decomposition. In Proceedings of 12th ieee in-
ternational requirements engineering conference (re’04). Kyoto, Japan.

Sondhi, R. (1999). Total strategy. Airworthy Publications International Ltd.
”UML Revision Task Force”. (2009, February). Omg unified model-

ing language: Superstructure [Computer software manual]. (available at
http://www.omg.org/docs/formal/09-02-02.pdf)

26 Christine Choppy, Denis Hatebur, Maritta Heisel and Gianna Reggio

UML Revision Task Force. (2010, February). Object Constraint Language
Specification [Computer software manual]. Retrieved 10-08-2011, from
http://www.omg.org/spec/OCL/

Warmer, J., & Kleppe, A. (2003). The object constraint language 2.0: Getting your
models ready for MDA (2nd ed.). Pearson Education.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord,
R., et al. (2006). Attribute-Driven Design (ADD) (Ver-
sion 2.0). Software Engineering Institute. Available from
ftp://ftp.sei.cmu.edu/pub/documents/06.reports/pdf/06tr023.pdf

Yu, E. (1997). Towards modelling and reasoning support for early-phase require-
ments engineering. In Proceedings of the 3rd ieee intern. symposium on re
(pp. 226 – 235).

