
Supporting Quality-Driven Design Decisions
by Modeling Variability ∗

Azadeh Alebrahim
azadeh.alebrahim@paluno.uni-due.de

Maritta Heisel
maritta.heisel@paluno.uni-due.de

paluno – The Ruhr Institute for Software Technology
University of Duisburg-Essen, Germany

ABSTRACT
Design decisions should take quality characteristics into ac-
count. To support such decisions, we capture various so-
lution artifacts with different levels of satisfying quality re-
quirements as variabilities in the solution space and provide
them with rationales for selecting suitable variants. We
present a UML-based approach to modeling variability in
the problem and the solution space by adopting the notion
of feature modeling. It provides a mapping of requirements
variability to design solution variability to be used as a part
of a general process for generating design alternatives. Our
approach supports the software engineer in the process of
decision-making for selecting suitable solution variants, re-
flecting quality concerns, and reasoning about it.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions

General Terms
Design

Keywords
Quality requirements, design alternatives, variability mod-
eling, feature modeling, decision-making

1. INTRODUCTION
Functional requirements capture the functionality of the

system-to-be, while quality (non-functional) requirements
represent quality issues of software systems. They have no
clear-cut satisfaction criterion and can only be satisfied to a
certain degree [4]. This leads to variability in the solution
space. Quality requirements can therefore be considered as

∗Part of this work is funded by the German Research Foun-
dation (Deutsche Forschungsgemeinschaft - DFG) under
grant number HE3322/4-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA’12, June 25–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1346-9/12/06 ...$10.00.

drivers in the problem space that contribute to variability
in the solution space.

The general research objective in our ongoing project1 is
to derive design alternatives from quality requirements. We
investigate how different user preferences and needs regard-
ing security and performance can influence the design of
software. In previous work, we developed a process to de-
rive software architectures from quality requirements in a
systematic way [1]. We also discussed the derivation of de-
sign alternatives based on quality requirements. However,
this issue is not treated in depth.

This paper is concerned with supporting decisions to be
taken to select suitable design solutions. In particular, we
provide an appropriate view to capture the variability in the
solution space systematically and to represent it explicitly.
This enables the software engineer to select appropriate so-
lution variants and to derive design alternatives based on
quality requirements.

Our proposed process to derive design alternatives from
(quality) requirements relies on problem frames [12]. It is
important that the results of the requirements analysis with
problem frames can be easily re-used in later phases of the
development process. Since UML2 is a widely used notation
to express analysis and design artifacts, we have carried over
problem frames to UML by defining a specific UML pro-
file [10] for problem frames.

Software Product Line Engineering (SPLE) deals with
“the commonalities and differences in the applications in
terms of requirements, architecture, components, and test
artifacts” [16]. In SPLE, the common and variable parts are
modeled as feature diagrams [6, 13, 14]. Using the notion
of feature modeling, we develop a problem-solution feature
model that accommodates possible solution variants.

Each design alternative represents a valid instance of the
software architecture composed of a set of solutions satis-
fying functional requirements (commonalities) and a valid
set of solution variants satisfying quality requirements to a
certain degree (variabilities). The set of functional solutions
represents the architecture skeleton. The problem-solution
feature model as one design view represents functional solu-
tions as commonalities and quality solutions as variabilities
provided with rationales. It therefore supports the process
of decision-making for selecting suitable design variants from
the space of quality solution variants by providing a map-
ping of requirement artifacts to design solution artifacts.

1GenEDA (Generation and Evaluation of Design Alter-
natives for Software Architectures), www.geneda.org

2http://www.omg.org/spec/UML/2.3/Superstructure/PDF

The problem frame approach is only suited for the re-
quirements analysis of single systems and fails to support
variability at the requirement level. Also UML is not per se
appropriate to model variability. However, it allows us to
extend it with variability modeling by using the standard-
ized extension mechanisms. We address this lack by incor-
porating an intermediate step into the proposed process to
derive design alternatives. This step deals with variability
by adopting the notion of feature modeling. We extend the
UML meta-model to model variability at the requirements
and the design level and to provide a mapping between vari-
ability at different levels. This makes the approach usable
with conventional UML tools.

The remainder of the paper is organized as follows. In
Sect. 2, we describe the background of this work by giving
an overview of problem frames as well as feature modeling
and variability. An example is introduced in Sect. 3. We
describe our approach in Sect. 4. Related work is discussed
in Sect. 5. We conclude and give hints to future work in
Sect. 6.

2. BACKGROUND
In this section, we give an overview on two techniques our

work relies on.

2.1 Problem-Oriented Requirements Engineer-
ing

Problem frames are a means to describe and classify soft-
ware development problems. A problem frame represents a
class of software problems. It is described by a frame dia-
gram, which consists of domains, interfaces between them,
and a requirement. Domains describe entities in the environ-
ment. Jackson distinguishes the domain types biddable do-
mains that are usually people, causal domains that comply
with some physical laws, and lexical domains that are data
representations. Interfaces connect domains, and they con-
tain shared phenomena. Shared phenomena may be events,
operation calls, messages, and the like. They are observable
by at least two domains, but controlled by only one domain
(indicated by an exclamation mark).

The objective is to construct a machine (i.e., software)
that controls the behavior of the environment (in which it is
integrated) in accordance with the requirements. Require-
ments analysis with problem frames proceeds with a decom-
position of the overall problem into subproblems, which are
represented by problem diagrams. The environment in which
the machine will operate is represented by a context diagram.

To use the advantages of UML for modeling software sys-
tems and provide tool support for problem frames, we have
carried over problem frames to UML by defining a specific
UML profile [10]. To address quality requirements, we ex-
tended our UML profile for problem frames to complement
functional requirements with quality requirements [1].

We have developed a tool called UML4PF3. It is conceived
as an Eclipse plug-in and includes the UML profile for prob-
lem frames. In conjunction with the Eclipse development
environment4 and Papyrus5, it can be used to create and
validate the context and problem diagrams.

3available under http://www.uml4pf.org
4http://www.eclipse.org/
5http://www.papyrusuml.org/

Figure 1: Problem diagram for the requirement

Communicate using UML profile for problem frames

2.2 Feature Modeling and Variability
Feature modeling, first proposed in feature-oriented do-

main analysis (FODA) [13], is a domain analysis technique
and notation to describe the requirements space. A feature
model captures and models the variability of features in a
system family.

Four types of features are distinguished [6]: mandatory,
optional, alternative, and OR features. A mandatory fea-
ture should exist in every product of a product line if its
parent feature exists, while an optional feature may exist
if its parent exists. One feature from a set of alternative
features must be selected if a parent feature is selected. At
least one feature from the set of OR features must be se-
lected if a parent feature is selected. The feature modeling
notation has been extended by Czarnecki et al. [7] with con-
cepts such as feature and group cardinalities. The semantics
of feature diagrams proposed in FODA has been enriched in
FORM [14] by introducing different perspectives.

The feature model encompasses a graphical hierarchy of
features known as a feature diagram, composition rules, which
are constraints for the use of features, and issues and deci-
sions that provide the rationale for selecting among alterna-
tives.

3. EXAMPLE
We illustrate our approach by a chat application, which

supports text-message-based communication via private I/O
devices. Users should be able to communicate with other
chat participants in the same chat room. The functional re-
quirement Communicate is as follows: “Users can send text
messages to a chat room, which should be shown to the users
in that chat room in the current chat session in the correct
temporal order on their displays”. We complement the func-
tional requirement Communicate with corresponding qual-
ity requirements such as Response Time with the description
“The sent text message should be shown on the receiver’s dis-
play in 1500 ms maximum”and Confidentiality with the de-
scription“Text messages should be transmitted in a confiden-

Figure 2: Overview of the process to generate design alternatives including decision support

tial way” as performance6 and security requirements. The
user should also be able to register, log in, log out, phrase
text messages and store the current chat session. Figure 1
describes the requirement Communicate. It states that the
machine CA communicate can show to the User the Cur-
rentChatSession on its Display (CAC!{displayCCS}). The
stereotype≪requirement≫ represents a requirement. When
we state a requirement we want to change something in the
world with the machine to be developed. Therefore, each re-
quirement constrains at least one domain. This is expressed
by a dependency from the requirement to a domain with the
stereotype ≪constrains≫.

A requirement may refer to several domains in the en-
vironment of the machine. This is expressed by a depen-
dency from the requirement to a domain with the stereotype
≪refersTo≫. The requirement Communicate constrains
the CurrentChatSession of the User and its Display and
refers to the users and the text messages. The quality re-
quirements Communicate RT and Communicate Conf com-
plement their corresponding functional requirement, which
is expressed by the stereotype ≪complements≫.

Throughout the paper we will refer to this example to
describe the proposed process.

4. DECISION SUPPORT FOR ARCHITEC-
TURAL DESIGN

We first describe our current process [1] to derive soft-
ware architectures from quality requirements that consists of
two main steps Problem-Oriented Requirements Engineering
and Generation of Design Alternatives. Second, we define
a UML profile to be applied in the process to support vari-
ability with UML. Third, we introduce the problem-solution
feature model as an intermediate step in our current process
that assists the software engineer in the process of decision-
making for selecting proper solution variants. Figure 2 gives

6We use the MARTE profile [17] to specify performance
requirements.

an overview of the complete process. Finally, we define a
number of integrity conditions to check the consistency be-
tween the problem-solution feature model and other model
artifacts.

4.1 Process Overview
In the first main step of our process (Problem-Oriented Re-

quirements Engineering), we decompose the overall problem
into subproblems, represented as problem diagrams. Each
subproblem contains one submachine to satisfy the corre-
sponding functional requirement (e.g., submachine CA Co-
mmunicate should satisfy the functional requirement Com-
municate in Fig. 1). We then enrich the subproblems with
related quality requirements. Quality requirements are ex-
pressed as complements of functional requirements. Vari-
ous degrees of satisfaction cause variabilities in the prob-
lem space that contribute to the variability in the solution
space. Each subproblem is related to at least one functional
requirement and possibly one or more quality requirements.

To fulfill quality requirements, we enrich the subproblems
by incorporating solution approaches in terms of mecha-
nisms and patterns reflecting quality concerns. We propose
alternative solution approaches that vary in the degree of
satisfaction according to the problem context.

In the next main step (Generation of Design Alterna-
tives), we derive a software architecture that achieves the
necessary, but varied satisfaction levels of quality require-
ments. To this end, we make use of the solution approaches
we integrated in the subproblems. Submachines in the sub-
problems are mapped to components of the software archi-
tecture (on the lower left-hand side of Fig. 2). The soft-
ware architecture is represented as a composite structure
diagram. Mapping solution approaches to components of
the software architecture is feasible, as long as we do not
consider various solution approaches for one quality require-
ment, which leads to design alternatives. To generate design
alternatives systematically, we need an intermediate step to
capture and explicitly represent the variability discovered
in the problem space and to transform it into the design

Figure 3: Problem-Solution Feature Model

space. We therefore enrich the current process with feature
models representing variability by introducing the problem-
solution feature model (on the right-hand side of Fig. 2).
It provides a mapping of the requirements in the problem
description (functional and quality requirements) to their
corresponding machines (functional and quality solutions).
We provide the solution variants with rationales to support
the selection process among them. Modeling variability at
the requirements level facilitates the identification of vari-
ations in the solution space. The intermediate step links
the variability in the problem space to the variability in the
solution space. Figure 2 depicts an overview of the current
process including problem and solution descriptions with its
extension problem-solution feature model.

4.2 UML Extension for Feature Modeling
In order to support variability modeling with UML in our

approach, we define a UML profile that extends the UML
meta-model by defining stereotypes and tagged values. This
profile can be easily incorporated into our tool UML4PF.

To express variability, we define stereotypes for depen-
dencies and classes. We introduce stereotypes ≪variant≫
and ≪mandatory≫ as dependencies between a feature class
and its subfeature class. A ≪variant≫ dependency points
to a variant feature. Feature classes representing variabil-
ity are expressed with the stereotypes ≪Alternative≫,
≪Optional≫, and ≪Or≫ as specializations of the class
with the stereotype ≪Feature≫. These features can be
annotated with a rationale to select them [6]. Therefore, we
define rationale as an attribute for a feature class to capture
the reasoning about its selection.

The concept of layers in a feature model is introduced
in FODA [13] and FORM [14]. We define the stereotype
≪Layer≫ for packages to facilitate modeling of different
levels of abstraction. Decomposition relationships between
features and subfeatures are represented in FODA with a

consists-of relationship, in FORM with a composed-of re-
lationship, and by Fey et al. [9] with a refine relationship.
We define the stereotype ≪refinedBy≫ for a dependency
between a feature and its subfeature to enable refining of
features into more detailed subfeatures. FODA proposes
the concept of composition rules, which are dependency re-
lationships between features. We define two stereotypes
≪requires≫ and ≪conflict≫ to express the relation-
ships between two features and to select between them.

4.3 Problem-Solution Feature Model
The problem-solution feature model containing require-

ments and corresponding solution mechanisms forms a foun-
dation for representing design alternatives. This model,
comprising problem and solution spaces, captures common-
alities and variabilities in the requirements in the problem
space and commonalities and variabilities in the solutions
in the solution space explicitly. In the problem space, func-
tional requirements represent commonalities, and quality re-
quirements represent variabilities. The solution space en-
compasses functional machines as commonalities and solu-
tion mechanisms for quality requirements as variabilities. In
order to generate the feature model we set up a tree with
the system-to-be (machine in the problem frames terminol-
ogy) as the root node, all requirements needed to build the
machine (requirements in the problem diagrams) as feature
nodes in the problem space, and the corresponding func-
tional machines and solution mechanisms (submachines in
the problem diagrams) as feature nodes in the solution space.
Figure 3 shows a part of the problem-solution feature model
for the running example.

Chat application as the root node points to the func-
tional requirements representing commonalities via a de-
pendency with the stereotype ≪mandatory≫. Correspond-
ing quality requirements representing variabilities are high-
lighted in gray. Functional requirements are decomposed

into more refined functional requirements, expressed by a
dependency with the stereotype ≪refinedBy≫. The func-
tional requirement Communicate is refined into three func-
tional requirements Send, Forward, and Receive. Functional
and quality requirements are constituent parts of the prob-
lem space layer. The solution space layer encompasses the
solutions for the requirements in the problem space. Re-
quirements are linked to the solutions in the solution space.
Functional requirements point to the functional machines,
which serve as components (stereotype ≪component≫) in
the software architecture. A dependency with the stereo-
type≪mandatory≫ points to a component occurring in each
design alternative. These feature nodes represent the archi-
tectural skeleton. For reasons of clarity, in Fig. 3 we link
functional requirements instead of quality requirements to
the solution mechanisms (highlighted in gray). This is possi-
ble, because quality requirements are represented as comple-
ment to the functional requirements. A dependency with the
stereotype≪variant≫ points to the variant solutions of the
design alternatives with the stereotype ≪alternative≫.
These feature nodes fulfilling corresponding quality require-
ments in the problem space bound the scope of variations of
the architectural skeleton. An association with the stereo-
type ≪requires≫ between two solution variants supports
the selection of allowed combinations of alternatives. In
Fig. 3, the association between two solution variants Sym-
metric Encryption and Symmetric Decryption indicates that
both variants should be selected as components of one de-
sign alternative. The alternative features can be annotated
with the attribute rationale to capture the rationale behind
a decision and support the decision-making process. Thus,
traceability between requirements in the problem space and
architectural components in the solution space is achieved.

Hence, an instance of a design alternative is a subtree
containing all functional machines (architectural skeleton)
and a valid subset of solution mechanisms.

Applying the UML profile to model features with UML
facilitates the management of solution configurations. Our
UML profile supports the representation of solution variants
and the selection of components (solutions) to obtain a con-
crete architecture configuration.

4.4 Integrity Conditions
We have identified a number of integrity conditions to

check the consistency between problem diagrams and the
problem-solution feature model. These conditions are ex-
pressed as OCL7 constraints. The following list shows ex-
amples of such validation conditions in natural language. It
is easily possible to identify further conditions and incorpo-
rate them into UML4PF.

• All requirements in the problem space must occur in
the problem diagrams and vice versa. Listing 1 depicts
the corresponding OCL expression.

• All components in the solution space must be machines
in the problem diagrams and vice versa.

• The machine domain of the problem-solution feature
model must occur in the context diagram and vice
versa.

To check the first constraint (see Listing 1), we define“pd reqs”
to be all requirement classes in problem diagrams: we select
all classes with the stereotype ≪Requirement≫ from the

7http://www.omg.org/spec/OCL/2.0/PDF

packages with the stereotype ≪ProblemDiagram≫ (lines 1-
9). Then we define “fd reqs” to be all requirement classes
in the problem space. We select all classes with the stereo-
type ≪Requirement≫ from the packages with the stereo-
type ≪Layer≫ with the name ProblemSpace (lines 10-19).
We check if the requirements in the problem space are the
same as in the problem diagrams and vice versa (line 20).

1l e t
2pd reqs : Set (Class)=Package . a l l I n s t an c e s () −>

3s e l e c t (ge tApp l i edSte reotypes () . name−>
4in c l ude s (’ ProblemDiagram ’)) .
5c l ientDependency . t a rge t −>

6s e l e c t (ge tApp l i edSte reotypes () . name −>

7in c l ude s (’ Requirement ’)) . oclAsType (Class)
8−>asSet ()
9in
10l e t
11f d r e q s : Set (Class)=Package . a l l I n s t an c e s () −>

12s e l e c t (ge tApp l i edSte reotypes () . name −>

13in c l ude s (’ Layer ’))−> s e l e c t (name=’ProblemSpace ’) .
14c l ientDependency . t a rge t −>

15s e l e c t (oc l IsTypeOf (Class)) −>

16s e l e c t (ge tApp l i edSte reotypes () . name −>

17in c l ude s (’ Requirement ’)) . oclAsType (Class)
18−>asSet ()
19in
20f d r e q s=pd reqs

Listing 1: All requirements in the problem space

must occur in some problem diagram

5. RELATED WORK
One related research topic aims at adopting the notion

of feature modeling to generate software architectures. A
feature-based method similar to ours is proposed by Bruijn
and van Vliet [3] to generate software architectures with
respect to functional and non-functional requirements. In
contrast to our proposed process the authors treat functional
and non-functional requirements separately, constructing two
branches in the feature graph. Bruijn and van Vliet gener-
ate design alternatives by using Use Case Maps (UCM) as a
scenario-based architectural description language, which is
not model- and pattern-based.

To treat variability in the requirements analysis and con-
sequently generate a customizable software design, Hui et
al. [11] propose a framework for identifying requirements
(user goals, user skills, user preferences) from a user per-
spective. However, this work focuses on earlier stages of
requirements analysis by choosing goals to represent and
analyse variability.

There are a number of UML extensions to model vari-
ability of product lines. A UML profile is proposed by
Clauß [5]. This profile supports only the UML 1.4 and not
the current UML version. Ziadi et al. [19] model the rela-
tionships between features as constraints, while we model
such relationships as stereotypes, such as ≪requires≫ and
≪conflicts≫.

Another research topic is concerned with connecting prob-
lem frames with feature modeling. Zuo et al. [20] introduce
an extension of the problem frames notation that provides
support for product line engineering using the notion of fea-
ture analysis. While Ali et al. [2] propose a method to
treat the variability of context (conditions in the operat-
ing environment influencing the behaviour of the system)
in requirements, we take a step forward and connect func-
tional and quality requirements to commonality and vari-

ability in the solution space, expressed by alternative solu-
tions. An approach for integrating SPLE and the problem
frame concept considering domain concerns is proposed by
Dao et al. [8]. In this work a feature model is mapped to
a problem frames model. A goal model is adopted to rep-
resent various concerns and variable quality requirements.
The mapping between these different models is complicated
and time-consuming, hence requires a tool support.

There are approaches concerning the modeling of qual-
ity properties in the context of feature modeling. Yu et
al. [18] relate stakeholder goals including quality properties
captured as goal models to a feature model by introducing
a mapping between goals and features. Lee and Kang [15]
consider the usage context as the primary driver for feature
selection. The authors present three variability models for
the usage context, quality attributes, and the product and
three mappings between them to derive a product configu-
ration.

6. CONCLUSIONS AND FUTURE WORK
We have completed our previous work to derive design al-

ternatives by introducing the problem-solution feature model
as an intermediate step, which connects (quality) require-
ments with solutions variants. Quality requirements drive
the variability in the solution space and serve as selection cri-
teria. In addition, we annotated quality solutions in the so-
lution space with rationales for choosing among alternatives.
Thus, the problem-solution feature model represents a “de-
cision space” and provides a good starting point to identify
candidates for solution variants. From the problem-solution
feature model, design alternatives can be derived as views of
suitable solution candidates, represented as composite struc-
ture diagrams. Our proposed approach supports maintain-
ing traceability between model artifacts, namely between
problem descriptions, feature models, and architectural de-
scriptions.

Setting up problem descriptions and problem-solution fea-
ture models is supported by our UML4PF tool. It provides
the possibility to automatically check semantic integrity con-
ditions for individual model artifacts, as well as coherence
conditions between different models. Having UML models,
our approach facilitates model transformations. In the fu-
ture, we aim to automatically transform the problem de-
scriptions into the problem-solution feature model to reduce
the effort of manually modeling the problem-solution feature
model. Moreover, we will formalize the derivation of design
alternatives from the problem-solution feature model, using
UML model transformations. Eventually, we strive for an
evaluation of the approach in a larger scope.

Acknowledgments.
We would like to thank Stephan Faßbender, Rene Meis, and
Kristian Beckers for useful discussions.

7. REFERENCES
[1] A. Alebrahim, D. Hatebur, and M. Heisel. A method

to derive software architectures from quality
requirements. In APSEC’11, pages 322–330. IEEE
Computer Society, 2011.

[2] R. Ali, Y. Yu, R. Chitchyan, A. Nhlabatsi, and
P. Giorgini. Towards a Unified Framework for
Contextual Variability in Requirements. In
IWSPM’09, 2009.

[3] H. d. Bruijn and J. C. v. Vliet. Scenario-Based
Generation and Evaluation of Software Architectures.
In GCSE’01, pages 128–139. Springer Verlag, 2001.

[4] L. Chung, B. Nixon, and J. Mylopoulos.
Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, 2000.

[5] M. Clauß. Modeling variability with UML. In GCSE –
Young Researchers Workshop, 2001.

[6] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications:
Methods, Techniques and Applications.
Addison-Wesley, 2000.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker. Staged
configuration using feature models. In SPLC’4, pages
266–283. Springer Verlag, 2004.

[8] T. M. Dao, H. Lee, and K. C. Kang. Problem
frames-based approach to achieving quality attributes
in software product line engineering. In SPLC’11,
pages 175–180. IEEE, 2011.

[9] D. Fey, R. Fajta, and A. Boros. Feature Modeling: A
Meta-Model to Enhance Usability and Usefulness. In
SPLC’2, pages 198–216. Springer Verlag, 2002.

[10] D. Hatebur and M. Heisel. Making Pattern- and
Model-Based Software Development more Rigorous. In
ICFEM’10, pages 253–269. Springer Verlag, 2010.

[11] B. Hui, S. Liaskos, and J. Mylopoulos. Requirements
Analysis for Customizable Software: A
Goals-Skills-Preferences Framework. In RE’03, pages
117–126, 2003.

[12] M. Jackson. Problem Frames. Analyzing and
structuring software development problems.
Addison-Wesley, 2001.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report,
Carnegie-Mellon University Software Engineering
Institute, 1990.

[14] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and
E. Shin. FORM: A Feature-Oriented Reuse Method
with Domain-Specific Reference Architectures. Annals
of Software Engineering, 5:143–168, 1998.

[15] K. Lee and K. C. Kang. Usage Context as Key Driver
for Feature Selection. In SPLC’10: going beyond,
pages 32–46. Springer Verlag, 2010.

[16] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer Verlag, 2005.

[17] ”UML Revision Task Force”. UML Profile for
MARTE: Modeling and Analysis of Real-Time
Embedded Systems.
http://www.omg.org/spec/MARTE/1.0/PDF.

[18] Y. Yu, J. C. S. do Prado Leite, A. Lapouchnian, and
J. Mylopoulos. Configuring Features with Stakeholder
Goals. In SAC’08, pages 645–649. ACM, 2008.

[19] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a
UML Profile for Software Product Lines. In PFE’03,
pages 129–139. Springer Verlag, 2003.

[20] H. Zuo, M. Mannion, D. Sellier, and R. Foley. An
Extension of Problem Frame Notation for Software
Product Lines. In APSEC’5, pages 499–505. IEEE
Computer Society, 2005.

