
Designing Architectures from Problem Descriptions by
Interactive Model Transformation

Azadeh Alebrahim,
Isabelle Côté,
Maritta Heisel

Universität Duisburg-Essen,
Germany

Christine Choppy
LIPN, UMR CNRS 7030,

Université Paris 13,
France

Denis Hatebur
Institut für technische

Systeme GmbH,
Germany

ABSTRACT
We present a structured approach to systematically derive a soft-
ware architecture from a given problem description based on prob-
lem frames and a description of the environment. Our aim is to
re-use the elements of the problem descriptions in creating the ar-
chitecture. The derivation is performed by transforming the prob-
lem description into an initial architecture, where each subproblem
corresponds to a component. The transformation is supported by
model transformation rules, formally specified as operations with
pre- and postconditions. This specification serves as a blueprint for
a tool supporting the architectural design. We illustrate our method
by the example of a patient care system.

Keywords
Requirements analysis, architectural design, model transformation,
UML, problem frames

1. INTRODUCTION
Model-based development is a promising approach to develop

high-quality software. Its basic idea is to construct a sequence of
models that are of an increasing level of detail and cover different
aspects of the software development problem and its solution. We
use UML diagrams to set up models for the different phases of
the software development, and to express validation conditions and
specifications of model transformations.

Our methodology provides detailed procedures for problem-based
requirements analysis and architectural design. The requirements
analysis process is based on patterns called problem frames [1].
The process for architectural design (see Sect. 4) describes a struc-
tured approach to create software architectures starting with prob-
lem descriptions derived by problem-based requirements analysis.
Since we use UML to express problem as well as architectural de-
scriptions, we achieve a seamless transition between the two phases.

We have implemented a tool called UML4PF that supports de-
velopers in performing requirements analysis using problem frames
and in deriving software architectures from problem descriptions.
The tool is based on the Eclipse framework and uses the plugins
Eclipse Modeling Framework (EMF) and OCL. We defined two
profiles extending the UML meta-model. The first UML profile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 26-30, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

allows us to express the different models occurring in the prob-
lem frame approach using UML diagrams. The second one allows
us to annotate composite structure diagrams with information on
components and connectors. In order to automatically validate the
integrity and coherence of the different models, we have defined a
number of integrity conditions expressed as OCL conditions. For
more details on the tool, see [2].

This paper elaborates on an earlier work [3], which informally
describes a general method for the systematic development of ar-
chitectures from problem descriptions. There, the corresponding
validation conditions are discussed in detail. In this paper, we de-
fine an interactive model transformation operator that allows us to
transform a set of problem descriptions into an initial architecture.
Such an operator is defined by pre- and postconditions expressed in
OCL. Necessary user interaction corresponds to input parameters.
This approach has the advantage that it can be automated gradually.
The transformations are performed on the model level. In addition
to the model information, a graphical representation of the model
exists. In contrast to the model transformation, we do not present
concrete rules for transforming the graphical representation.
The paper is structured as follows: The case study of a patient care
system (PCS) is sketched in Sect. 2. Architectural descriptions and
the corresponding UML profile are described in Sect. 3. In Sect. 4,
we describe the process to derive software architectures from prob-
lem descriptions. Related work is discussed in Sect. 5, and we
conclude in Sect. 6.

2. CASE STUDY
As a running example, we consider a patient care system, which

displays the vital signs of patients to physicians and nurses, and
controls an infusion flow according to previously configured rules.
Table 1 lists the functional requirements of the PCS case study.
The environment in which the software to be built (called machine)
will operate is represented by a context diagram. The context dia-
gram for the patient care system contains the biddable domains Pa-
tient and PhysiciansAndNurses, and causal domains for O2Sensor,
HeartbeatSensor, InfusionPump, and Terminal. Figure. 1 shows the
problem diagram for the requirement R_Config. R_Config con-
strains the domain PatientSettings since physicians and nurses can
change the configuration of PatientSettings. The machine Patient-
CareSystem is stereotyped �machine�.

For more information on the problem frame approach and our
UML version of it, see [1, 3].

3. ARCHITECTURAL DESCRIPTIONS
Each context diagram contains a machine domain, representing

the software to be developed. For this machine domain, we design
an architecture that is described using composite structure diagrams
[4]. In such a diagram, the components with their ports and the con-

Requirement �refersTo� �constrains�
R_WarnShow: The vital signs should be displayed, and an alarm should be raised if the vital
signs exceed the limits.

Patient, PatientSet-
tings

Terminal

R_Config: Physicians and nurses can change the configuration. PhysiciansAndNurses PatientSettings
R_Ctrl: The infusion flow is controlled according to the configured doses for the current vital
signs.

Patient, PatientSet-
tings

InfusionPump

Table 1: Requirements of Patient Care System
nectors between the ports are given. The components are another
representation of UML classes. The ports are typed by a class that
uses and realizes interfaces. The ports (with this class as their type)
provide the implemented interfaces (depicted as lollipops) and re-
quire the used interfaces (depicted as sockets), see Figure 2.

In our UML profile we introduced stereotypes to indicate which
classes are components. The stereotype �Component� extends
the UML meta-class Class. For re-used components we use the
stereotype �ReusedComponent�, which is a specialization of the
stereotype �Component�. This must be recorded in case such a
component is changed. Reused components may also be used in
other projects.

A machine domain may represent completely different things. It
can either be a distributed system (e.g., a network consisting of sev-
eral computers), a local system (e.g., a single computer), a process
running on a certain platform, or just a single task within a process
(e.g., a clock as part of a graphical user interface). For the architec-
tural connectors, we allow the same stereotypes as for connections
in context and problem diagrams, e.g. �ui� or �tcp�. However,
these stereotypes extend the UML meta-class Connector (instead of
the meta-class Association).

4. DERIVING ARCHITECTURES INTER-
ACTIVELY FROM PROBLEM DESCRIP-
TIONS

We now present the model transformations that serve to derive
software architectures from problem descriptions: we derive an
initial architecture. It contains one component for each subprob-
lem. The purpose of this step is to collect the necessary information
for the architectural design from the requirements analysis phase.
The machines from the subproblem descriptions and domains be-
ing part of the machine in the context diagram become components
in the initial architecture. This initial architecture is used to show
the interrelation between the above-mentioned components. At this
stage, the submachine components are not yet coordinated.

Based on the problem descriptions and the context diagram, the
initial architecture can be created, using the model transformation
operator createInitialArchitecture (see Listing 1), which takes the
name of a machine domain as its input. The initial architecture
consists of a composite structure diagram for the machine in the
context diagram. In our example, the context diagram contains the
machine domain, PatientCareSystem.

Figure 1: Problem Diagram “ConfigSettings” of Patient Care
System

The following preconditions have to be fulfilled:

1. The machine domain with the name (<nameOfMachineIn-
CD>) exists in the context diagram (see line 3 in Listing 1),
e.g., machine ’PatientCareSystem’ exists as machine domain
in the context diagram.

2. Each problem diagram contains exactly one machine domain
(line 4). A machine in a problem diagram (a so-called sub-
machine) represents a fraction of the functionality the overall
machine has to fulfill.
In our example, Fig. 1 shows the machine domain PCS_Con-
figSettings. The other components of the initial architecture
shown in Fig. 2 correspond to the other subproblems given
in Tab. 1.

3. The machine in the context diagram (<nameOfMachineIn-
CD>) is composed of the machines in the problem diagrams
(line 5), e.g., machine domain PCS_ConfigSettings is part of
the machine domain in the context diagram.

4. The problem diagrams and the context diagram are consis-
tent (line 6) (i.e., all domains and interfaces of the problem
diagrams are related to elements in the context diagram). In
our example, the problem diagram is consistent with the con-
text diagram.

After the operation is executed, the resulting composite structure
diagram fulfills the following postconditions:

1. External ports for each direct connection from the machine
to another domain in the context diagram – not being part
of the machine domain – as well as required and provided
interfaces exist (see line 8 in Listing 1). Machine Patient-
CareSystem in our example has four external ports. Provided
and required interfaces exist according to the observed and
controlled interfaces in the context diagram. For example, a
required interface PCS!{InfusionFlow} exists (see Fig. 2).

2. For each submachine related to the machine in the context
diagram as well as for lexical domains being part of the ma-
chine (lines 9 - 12) (internal) components exist (line 13).
These components are equipped with ports (line 14 and cor-
responding required (line 15) and provided interfaces (line
16) based on the controlled and observed interfaces in the
problem diagrams and the domain types exist. We distin-
guish between lexical and non-lexical domain types.

Figure 2: Initial architecture for the patient care system

The ports of these components are connected to the external
ports according to the interfaces in the problem diagrams.
The connectors have the same stereotype as their correspond-
ing associations in the context diagram (line 17).

1 c r e a t e I n t i a l A r c h i t e c t u r e (nameOfMachineInCD : S t r i n g)
2 PRE :
3 isMachineDomainInCD (nameOfMachineInCD) = t r u e and
4 problemDiagramsHaveOneMachine () = t r u e and
5 tcdMachineIsComposedOfPDMachine () = t r u e and
6 p d s C o n s i s t e n t T o T c d () = t r u e
7 POST :
8 e x t e r n a l P o r t s E x i s t (nameOfMachineInCD)
9 l e t m a c h i n e _ p a r t s : S e t (C l a s s) =

10 c o l l e c t S u b m a c h i n e s (nameOfMachineInCD) −>
un ion (c o l l e c t R e l e v a n t L e x D o m a i n s (

nameOfMachineInCD))
11 in
12 m a c h i n e _ p a r t s −> f o r A l l (m_component |
13 Componen tEx i s t s (m_component) and
14 P o r t s E x i s t (m_component , nameOfMachineInCD) and
15 R e q u i r e d I n t e r f a c e s E x i s t (m_component ,

nameOfMachineInCD) and
16 P r o v i d e d I n t e r f a c e s E x i s t (m_component ,

nameOfMachineInCD) and
17 C o n n e c t o r s T o E x t e r n a l P o r t s E x i s t (m_component ,

nameOfMachineInCD)) and
18 C o n n e c t o r s B e t w e e n I n t e r n a l P o r t s E x i s t (m_component)

Listing 1: Specification of operation createInitialArchitecture

3. Connectors between the internal components exist (line 18).
They are connected based on their counterpart associations in
the context diagram. The connectors have the same stereo-
type as the associations in the context diagram.

Note that in order to keep the OCL expressions legible, we decided
to use auxiliary expressions (see Listing 1) in the pre- and postcon-
ditions we present in this paper. For all such auxiliary expressions,
we have defined corresponding OCL expressions.

5. RELATED WORK
Fujaba is a tool-suite for model-based software engineering and

re-engineering. It is conceived as round-trip engineering tool for
UML and Java [5]. Fujaba has several plug-ins, one of these is
the plugin MoTE/MoRTEn. It is used for model-to-model trans-
formations and synchronization. The transformations are based on
triple graph grammars [6]. The transformations are modeled graph-
ically. However, some constraints are not expressed graphically.
Instead, Java-dependent expressions are used. Stölzel et al. [7] use
the Dresden OCL Toolkit [8] to provide an independent constraint
language for checking Fujaba’s model transformations. We use the
OCL implementation of EMF for both, consistency checks as well
as transformation specifications. Therefore, we do not use graphi-
cal representations of the transformations but specify them through
preconditions describing the state of the model before the transfor-
mation takes place and postconditions describing the state after the
transformation is executed.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown how software architectures can be

derived from problem descriptions in a systematic way. This sys-
tematic derivation takes place in the context of a requirements engi-
neering process based on problem frames. The derivation method is
described by transformation operations specified by pre- and post-
conditions. The operations are parameterized to express necessary
design decisions.

Our tool is easily extensible with new transformation rules, for
example, rules for pattern application or for taking non-functional
aspects into account.

In summary, our contributions are the following:

• We have developed a detailed method to interactively derive
software architectures from problem descriptions.

• We have defined UML profiles that make it possible to ex-
press problem descriptions as well as architectural designs
as UML models. This allows a seamless integration of the
requirements analysis and architectural design phases.

• We have provided formally specified transformation opera-
tions that allow software engineers to achieve the transition
from problem descriptions to architectural designs. So far,
the transformations have to be performed manually. How-
ever, the result can be checked by our tool.

We are currently working on extending our approach to be able to
derive implementable architectures. The purpose of such an im-
plementable architecture is to introduce coordination mechanisms
between the different submachine components of the initial archi-
tecture and its external interfaces. In the future, we intend to imple-
ment all model transformations presented in this paper, so that they
can be applied automatically. We plan to integrate the use of ar-
chitectural patterns in our transformations. Furthermore, we want
to extend our approach to support the development of design alter-
natives according to quality requirements, such as performance or
security, and to support software evolution.

7. REFERENCES
[1] M. Jackson, Problem Frames. Analyzing and structuring

software development problems. Addison-Wesley, 2001.
[2] I. Côté, D. Hatebur, M. Heisel, and H. Schmidt, “UML4PF – a

tool for problem-oriented requirements analysis,” in Proc. Int.
Conf. on Requirements Engineering (RE). IEEE, 2011.

[3] C. Choppy, D. Hatebur, and M. Heisel, “Systematic
architectural design based on problem patterns,” in Relating
Software Requirements and Architectures, P. Avgeriou,
J. Grundy, J. Hall, P. Lago, and I. Mistrik, Eds. Springer,
2011, ch. 9, pp. 133–159.

[4] "UML Revision Task Force", OMG Unified Modeling
Language: Superstructure, February 2009, available at
http://www.omg.org/docs/formal/09-02-02.pdf.

[5] T. Klein, U. A. Nickel, J. Niere, and A. Zündorf, “From UML
to Java and back again,” University of Paderborn, Tech. Rep.,
1999.

[6] A. Schürr, “Specification of graph translators with triple graph
grammars,” in Proc. of the 20th Int. Workshop on
Graph-Theoretic Concepts in Computer Science (WG ‘94).
Springer, 1995.

[7] M. Stölzel, S. Zschaler, and L. Geiger, “Integrating OCL and
model transformations in Fujaba,” 2006.

[8] Dresden OCL, “Dresden OCL Toolkit,” 2011,
www.dresden-ocl.org.

www.dresden-ocl.org

	Introduction
	Case Study
	Architectural Descriptions
	Deriving Architectures Inter-actively from Problem Descriptions
	Related Work
	Conclusions and Future Work
	References

