Pattern-based Context Establishment for
Service-Oriented Architectures *

Kristian Beckers, Stephan Falbender, Maritta Heisel, and Rene Meis

paluno - The Ruhr Institute for Software Technology -
University of Duisburg-Essen, Germany
{firstname.lastname}@paluno.uni-due.de

Abstract. A context description of a software system and its environ-
ment is essential for any given software engineering process. Require-
ments define statements about the environment (according to Jackson’s
terminology). The context description of a Service-Oriented Architec-
ture is difficult to provide, because of the variety of technical systems
and stakeholders involved. We present two patterns for SOA systems
and support their instantiation with a structured method that guides
that instantiation. In addition, we show how the pattern can be used in
a secure service development life-cycle (SSDLC).

Key words: SOA, requirements engineering, secure software develop-
ment

1 Introduction

Nowadays Service-Oriented Architectures (SOA) as part of Service-Oriented
Computing (SOC) is a well known paradigm with raising importance [?,?]. The
subject of SOC is vast and enormously complex, and SOC is based on many con-
cepts which have their origin in diverse disciplines. SOA and software engineering
(SE) for SOA are among the most important research fields for SOC [?].

Still, there are some open issues when dealing with SOA. One of them is se-
curity [?,?]. Assurance of security of a SOA is much more complicated than for
other architectural styles. Since the single services used are normally distributed
and loosely coupled over the Internet, standardized protocols for link-up are
needed [?]. Another field for security issues is the fact that in common SOA
scenarios, not a single person or company controls all infrastructure and ser-
vices that are orchestrated [?,?]. Hence, when dealing with security for SOA, we
not only have to face the usual security problems as in other IT systems, but
additionally multilateral settings with many stakeholders in a distributed envi-
ronment have to be considered, which even more complicates finding a solution.

*This research was partially supported by the EU project Network of Excellence
on Engineering Secure Future Internet Software Services and Systems (NESSoS, ICT-
2009.1.4 Trustworthy ICT, Grant No. 256980).

2 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

The big number of very heterogeneous stakeholders also complicates the ful-
fillment other objectives, such as compliance, performance, or usability. For ex-
ample, when considering compliance, each stakeholder may introduce new regu-
lations to be met by the SOA. Such a relation can be a law, which protects this
stakeholder, or requires the stakeholder to ensure a certain functionality. Ad-
ditionally, most of the stakeholders, like a service provider, have a contractual
relationship to the SOA to be developed.In a previous paper [?], we have argued
that for legal requirements engineering , it is crucial to capture the stakeholders
and the entire context of an IT system.

To sum up, from a software engineer’s perspective, there is a need for a
continuous and integrated method to consider multiple stakeholders and their
different objectives in a SOA development life cycle. This method should be
transparent in means of documentation and traceability to make it possible,
for example, to trace a compliance regulation down to the measures taken to
accomplish it.

This requirement sounds simple, but when looking at standard SE life cycles,
such as Microsoft SDL [?] or CLASP [?], we see that there are so many steps
with dependent in- and outputs to be performed, that achieving this requirement
is very challenging.

Achieving transparency between requirements of a stakeholder, measures and
proof that the measures have been implemented, means using methods that are
aware of traceability for each activity or transformation or refinement. For some
steps and some parts of, for example, security, such methods already exist, but
missing an appropriate approach at one point brakes the whole trace. Hence,
it is an important goal to analyze the whole SE life cycle, find the gaps and
propose possibilities to bridge those gaps. It is surprising, that in most cases
the description of the very first steps of such a life cycle is deficient. How to
capture and describe the setting of a problem and to structure the context of
the system-to-be is often missing. But this information is of crucial importance
for understanding the problem and performing requirements engineering.

Hence, in this paper, we focus on establishing the context of a SOA applica-
tion, which forms the basis for all later development steps, especially considering
security.

The rest of the paper is organized as follows. Sect. 2 describes a small use case
in the field of media publishing, which we use to illustrate our ideas in this paper.
In Sect. 3 we give a brief background about SOA and its layers. Two patterns and
the corresponding textual templates are introduced in Sect. 4. The patterns and
templates help to establish the context of a SOA. Sect. 5 introduces a method
to instantiate the patterns and templates. A short overview of the application
of our method to our case study is presented in Sec. 6. Finally, we outline the
use of our method in the context of Microsoft SDL [?] and CLASP [?] in Sect. 7,
and we give a short conclusion in Sect. 8.

Secure Service Engineering 3

~o BI
<87 He n
~ 29I nte
Qsﬁer i er
P
\'/‘?0/&, , ,”
3 S’/- R
~
Q’/’s,/ ‘
7’
;\@4’ "‘\
A %,
(% N hPayment
4 ateway(s)
weve - W
e“\e 2
A £
AW
e Commerce Establishment IContent Aggregator Establishment

Fig. 1: SOA Scenario

A=Business Case,B=Content Provider Integration,C=Payment Gateway Integration

2 Running Example

For our running example, we have chosen a media publishing setting. In this
setting, there are customers, who want to retrieve certain media. For example,
this media can be a piece of software, a video or movie, a song, or an e-book. On
the other side, we have various content providers. A small content provider may
offer only one media type and only a small selection of media to choose from.
In contrast a big publisher usually offers all media types and a big selection of
media.

The main problem in the relationship between customers and content providers
is that on one hand the customers prefer a uniform search and access interface
and do not want browse a big number of different shops, with different access
technologies, credentials, and so on. A second problem for customers is to oversee
the whole market. Customers might not even know the right content provider
for very special media. On the other hand, not all content providers are able or
willing to set up and maintain a shop infrastructure with essential functionality
such as billing.

The business idea of our example is to introduce a content aggregator as a
mediator between these two sides. The aggregator collects the offers of different
content providers. These joined offers are then made available to the customers.

The content aggregator decides to choose a SOA to realize its business, be-
cause of the dynamics in this setting. There is huge number of providers. The
aggregator wants to be able to find and integrate these providers at run-time.
Moreover, the access for the content providers to the content aggregator should
be as simple as possible. Therefore, services are reasonable. Services enable the
providers to wrap their existing technologies and use standard protocols.

4 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

A second reason for using services is the fact that the content provider has
no direct access to the devices the customer use to search for media. A device
in this case can be, for example, a smartphone, a settop box, or a tablet PC.
So the content aggregator has to ensure that customer can find the solution
the aggregator provides. And the content aggregator has to ensure that the
technology used for providing the solution can be easily adapted for each device.
Services are a good choice to achieve both goals. In Sect. 3 we shall provide
detailed arguments supporting this claim.

A last reason for using services would be the large number of different banks
and online payment systems, which have to be integrated to fulfill the payment
needs. But this requirement is already addressed by so-called payment gateways,
which aggregate all banks and make payment functionalities available at a single
point. These payment gateways offer their functionality also by services. At this
point, we use the best practice already established in the market.

The resulting scenario is shown in Fig. 1. The figure shows the common ser-
vice look up and invocation process. There are three different instances (A, B, C)
of the Register, Look Up & Retrieve, and Invoke & Retrieve sequences in our sce-
nario. The content aggregator queries a service broker to find content providers
(Arrow B2 in Fig. 1) and payment gateways (C2) to establish its business. Con-
tent providers (B1) and payment gateways (C1) registered themselves at the
service brokers before. At run time, the content aggregator invokes the services
of the providers (B3) and gateways (C3). Note that the set of gateways will be
very static and slowly evolving as there are not that many payment gateways,
and establishing the needed service-level agreements (SLAs) and trust cannot be
achieved on the fly. In contrast, the set of content providers can be different for
each business process invocation. The market of providers is changing fast, and
standard SLAs can be used, so service invocation can be done automatically. To
realize the business case, content aggregators register their service at a service
broker (A1). The customers are now able to find the aggregators (A2) and search
for and retrieve (A3) the desired content.

3 Background

In this section, we give a definition of our notion of SOA and how a SOA is
structured.

3.1 SOA Definition

Various definitions of SOA exist, because the SOA concept spans a wide field
of research areas and technologies. However, there is a common understanding
about some core characteristics of SOA. First, a SOA is modular with a high
autonomy of its parts, not only in the sense of interaction within the architec-
ture, but also in the sense of e.g. autonomous stakeholders and development
teams [?,?,?]. Second, services have a coarse granularity, encapsulating more
or less complex tasks. As a result, a single service is a complex product [?].

Secure Service Engineering 5

Third, SOA is process-driven [?]. In most cases, a service performs one activity
of a business process [?]. Hence, a SOA has to be designed to fulfill business
requirements and goals [?]. Fourth, the services of a SOA have to be loosely cou-
pled [?]. The business processes to be supported by a SOA change frequently.
In consequence, a SOA has to evolve dynamically [?]. Hence, the services are
loosely coupled to enable dynamic (re)assembly. Fifth, the re-usability of ser-
vices is high [?,7,?]. The re-usability is a result of the autonomy of services and
the loose coupling between them. Sixth, a SOA is a distributed system [?,7?].
The reasons are that business processes cross the border of one enterprise [?]
and that services can be offered by third-party service providers [?]. Seventh,
SOA is technology-independent [?,?]. SOA is meant to integrate highly het-
erogeneous services, which means that the used technologies to implement the
services can differ. Summarizing, SOA can be characterized as a process driven,
modular, technology-independent, dynamic and distributed system, which relies
on reusable, autonomous, loosely coupled and coarse-grained services.

3.2 SOA Layers

A SOA spans different layers, shown in Fig. 2. The first and top layer is the
Business Domain layer, which represents the real world. It consists of Organiza-
tions, their structure and actors, and their business relations to each other. The
second layer is the Business Process layer. To run the business, certain Processes
are executed. Organizations participate in these processes. A process can be exe-
cuted within one organization or across organizations’ borders. These processes
are supported by Business Services, which form the the Business Service layer. A
business service encapsulates a business function, which performs a process ac-
tivity within a business process. Besides atomic business services, there are also
composite business services, which rely on other business services. These services
are built by composing other business services. All business services rely upon
Infrastructure Services, which form the fourth layer. The infrastructure services
offer the technical functions needed for the business services. These technical
functions are implemented especially for the SOA or expose interfaces from the
Operational Systems used in an organization. These operational systems, like
databases or legacy systems, are part of the last SOA layer at the bottom of the
SOA stack. Each of the presented layers in isolation is complex and a field for
research on its own. Combining these layers and devising a SE method to span
the layers is a great challenge in the field of SOA research [?].

4 Patterns for SOA

We now introduce two patterns, which help us to describe the setting of a SOA,
namely a SOA layer pattern, and a SOA stakeholder pattern. They are used to
structure the information about the problem at hand. The patterns are based
on the insights we gave in Sect. 3. In Sect. 4.1 we present a pattern, which uses
the SOA layers to structure the SOA itself. Based on this pattern, we present
an extended pattern in Sect. 4.2, which adds different kinds of stakeholders.

6 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

- -
- i_u_nn_"~/' 2P 4P
T30 ~ mols v A
' / by y
1 =
Organization

-

] [e

2| [Business Processes] -

ol

o

Ql

o

- N

Meet
in the
Midd

O |Component-based

—F |Service Realization Component

ch

C‘ -

C ‘ '
I T | Database | ppegacy
it CRM . | ERP R | | Packaged | 'Peications . 3
. D | | Applications !
_participates i performed by relies on exposes _ _business relation

Fig.2: SOA Layers (based on [?,?])

4.1 SOA Layer Pattern

The layers presented in Sect. 3.2 form a generic pattern to describe the essence
of a SOA. Three approaches for instantiating this pattern are possible, as shown
in Fig. 2. When building a SOA from scratch, a Top Down method should be
used. The existing information about the organizations and processes and the
related requirements can be refined to an architecture comprising business ser-
vices, infrastructure services, components and operational systems. Note that
for the early SE phases such as requirements engineering, not all layers are of
relevance. For example the operational systems are chosen in later phases. A
Bottom Up approach is of use when evolving existing systems. When the re-
description and the reuse of already productive systems is the focus, one would
collect the existing artifacts in the IT landscape, describe the existing processes
they support and elicit the involved organizations. For developing a new SOA
based on existing systems, a Meet in the Middle method is reasonable.

Secure Service Engineering 7

Indirect Environment O @) O O O @)
Legslator Domaln Asset Prowder Leglslator Domain
4
Do s
2>
= _rganlsahon_ e
e
1 B &= - Y
o
=] Process Actor A Process Actor B Process Actor C Process Actor D
g [Business Processes]| [U — =
- ' I .
i 18 :
& / !
el | LML T
5]
{8 | s— 0
@|e| | (CBusiness™y \ Sewvice J (“Business™ oo __._fo---oo -
Meet |5 | & ji
inthe|s | 2 Business Service
iddle|© |« ovid ~.
T e \
c
S| nfrastructure -, s Sewvice _STStooo--fio -

Infrastructure
,,,,,, a Service Provider

Component-based B O . - Legigmr
Service Realization E component | 0 componem | 77T RRE EEEER -
I//

Machine

us]

o

=

o

s e B |

c Component Provider

© Operational Systems | :
[; Legacy e fi . P
o ‘ Packagod |1 APPISAIONS |
: R ! Applications | el
77777777777777 oo Systems Provider

____nfluences ., partof .. participatesin . __provides _

Fig. 3: Stakeholder SOA Pattern

4.2 SOA Stakeholder Pattern

An IT System is not an end in itself. It interacts with its environment and
changes the environment. The way it changes the environment is based on the
requirements it has to meet. The source for most of these requirements are
stakeholders. There are direct stakeholders, who interact with the system, and
indirect stakeholders, who do not have a direct relation to the system but to one
or more direct stakeholders [?]. To know and consider all of these stakeholders
is crucial for software engineering.

For a SOA, the knowledge about the environment and the stakeholders is even
more a key to success than for other architectures. Conventional applications are
often built for a generic use case, which was obtained by generalizing a set of
usage scenarios. To use such an application, the environment has to be adapted
to a generic use case. Thus, it often happens that organizations are built around
their systems. Changing an organization is costly, and processes that are built
to meet IT requirements are often inefficient. In contrast, one major aim of
SOA is to enable organizations to build IT systems, which follow their business
processes. To reach this aim, it is necessary to be able to adapt a certain single
scenario and consider its peculiarities. Hence, the scenario for which a SOA is
built has to be described in detail.

8 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

Stakeholder Extension to the SOA Layer Pattern In Fig. 3, we adapted
problem-based methods, such as problem frames by Jackson [?], to enrich the
SOA layer pattern with its environmental context. According to Jackson’s ter-
minology, a system consists of a Machine and its environment. The white area in
Fig. 3 spans the SOA layers that form the machine. The business processes de-
scribe the behavior of the machine. The business services, infrastructure services,
components, and operational systems describe the structure of the machine. Note
that the business processes are not part of the machine altogether, as the pro-
cesses also include actors, which are not part of the machine. Thus, the processes
are the bridge between the SOA machine and its environment. The environment
is depicted by the gray parts of Fig. 3. Unlike Jackson, who only considers one
environment, we distinguish two kinds of environments. The light gray part spans
the Direct Environment, which includes all entities, which participate in the busi-
ness processes or provide a part, like a component, of the machine. An entity is
something that exits in the environment independently of the machine or other
entities. The direct environment reflects Jackson’s environment definition [?].
The dark gray part in Fig. 3 spans the Indirect Environment. It comprises all
entities not related to the machine but to the direct environment. The business
domain layer is one bridge between the direct and indirect environment. On the
one hand, some entities of the direct environment are part of organizations. On
the other hand, some entities of the indirect environment influence one or more
organizations. The machine and the direct environment form the Inner System,
while the Outer System also includes the indirect environment.

The entities we consider in this paper are stakeholders. Information assets,
for example, are put aside. There are two general classes of stakeholders [?]. The
direct stakeholders are part the direct environment, and the indirect stakeholders
are part of the indirect environment. We derived more specific stakeholders from
the direct and indirect stakeholders, because these two classes are very generic.
Process Actors and different kinds of Providers are part of the direct environment.
Legislators, Domains, Shareholders and Asset Providers are part of the indirect
environment. In Fig. 3, the resulting stakeholder classes are depicted as stick
figures.

Process actors are part of an organization. A process actor can represent an
entire organization, a role within this organization, or a specific person. This
depends on the usage of the pattern and the level of detail needed when used.
A process actor participates in one or more business processes. In some cases a
process actor does not only influence other actors through the process, but also
influences them directly. For example, one actor can be the supervisor of another
actor. This information should be elicited as it can impact the requirements one
actor has. In general, process actors are the source of most of the requirements
a machine has to fulfill.

In contrast, providers are stakeholders that are not directly involved in the
business process. However, they provide a part of one layer within the machine.
There are Business Service Providers, Infrastructure Service Providers, Component
Providers and Operational Systems Providers. A provider can be a representative

Secure Service Engineering 9

for a whole group of providers, or be a specific one. This also depends on the usage
scenario, as for the process actors. The requirements and goals of the providers
can be ignored for conventional applications. The reason is that the user of
a part a provider offers gains full control of this part in traditional scenarios.
For example, a development library once bought is a property of the buyers
afterwards. They can change it according to their needs and can be sure that
the provider has no influence on the library any longer. This scenario changes for
a SOA. Providers are selected at run-time, and in most cases the parts offered
by providers remain under their full control. In this scenario, the requirements,
goals and other properties of these providers have to be considered. Moreover, the
selection of providers can have an impact on other requirements. For example,
when a certain information has to remain within one country, all providers from
other countries will deny the fulfillment of this requirement. In general, providers
introduce only few new requirements, but they have a large influence on already
existing requirements.

Legislators represent the jurisdiction of an area. Areas can be very different in
size and significance. For example, there are states, like Hessen, there are nations,
like Germany, and there are unions like the European Union. The laws of such
areas can be interconnected. Then they build a hierarchy with defined scopes.
Or they are unrelated, and therefore they can be conflicting. The influence of a
legislator is a very strong one. No organization can disobey a law without facing
serious consequences. But to be compliant to laws is a complex goal. In general,
laws are formulated imprecisely, defining high-level goals. Thus, for every action
organizations take, they have to be aware of the relevant laws, and they have
to take these laws into account for the problem at hand. For a SOA, one has
to know which legislators are of relevance, which laws they enacted related to a
SOA, and how to transform these laws into requirements for the SOA.

Domains represent another part of the environment of organizations. The
term domain is used in the meaning of business domain. A domain comprises
organizations of similar structure, purpose and goals. Domains often introduce
specific regulations like standards. In some cases, these regulations are as bind-
ing as laws. Other regulations are more of a kind of best practice collections.
And as legislators enact laws, which aim at special domains, identifying do-
mains helps to find relevant laws. To consider a domain is important, because
describing knowledge and regulations of relevant domains sharpens the view on
the organizations.

A Shareholder brings in a certain asset and gets a share of the organization
in exchange. In most cases the asset is money. The exchange implies that the
assets is owned by the organization afterwards. The share of the organization
ensures a specified degree of influence for the shareholder. Shareholders are the
primary source of business goals of an organization.

Asset Providers cede a material or immaterial asset to one or more organi-
zations. Unlike shareholders, they remain owners of this asset, and therefore
a long-term contractual relation is established. Such a contract implies a cer-
tain influence on the organization. Besides a direct relation, there are also cases

10 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

where organizations have to avoid the improper use of assets they do not know
beforehand. For example,when intellectual properties are stored on a file hosting
platform, the filehoster must enable the owners of these intellectual properties to
delete the these intellectual properties. Thus, asset providers and their influence
on organizations also depend on the relevant legislators.

Knowledge about Stakeholders The pattern shown in Fig. 3 only captures
an important, but small, part of the information about the stakeholders. Hence,
we provide templates for all stakeholders to document the information to be com-
pleted. The templates are kinds of textual patterns, which structure information
about stakeholders. The structure of these templates applies for all stakeholders
of a given kind.

Table 1 and Table 2 show these templates. The first entries are the same for
both templates. They capture the name or identifier of the stakeholder at hand,
a short description to clarify its properties and position in the environment,
and the motivation of interacting in our scenario. The last entry is about the
level of abstraction, which is used to describe the stakeholder. Is it a specific
stakeholder, who represents a group of homogeneous stakeholders, or a generic
stakeholder that is used as placeholder for a group? For the direct stakeholder
template (Table 2) there is an additional option for stakeholders, which describe
roles within an organization.

For the indirect stakeholder template (Table 1), there are two more general
entries. The first entry describes the influence the indirect stakeholder has on
the target organization(s) or provider(s). The second entry describes the rela-
tion to other indirect stakeholders. Besides these general entries for an indirect
stakeholder, Table 1 also shows entries, which are specific for a special kind of
indirect stakeholder. For a legislator, there is an entry for the law candidates,
which might be of relevance. For a domain, there is an entry about the domain-
specific regulations. For shareholders, the description of the shares they own has
to be added. And for the asset provider, the assets have to be described.

For the direct stakeholder template (Table 2), there are two additional stake-
holder kind-specific entries. The first kind specifies the process and activities the
process actors participate in. The second kind specifies the process participants
that these stakeholders have a influence on.

5 A Knowledge Elicitation Method for SOA

We have developed a method to instantiate the patterns shown in Figs. 2 and 3
and the associated templates. We divide the method in an information structur-
ing and a stakeholder elicitation phase.

Information Structuring Phase For structuring the information necessary
to design a SOA according to the SOA layer pattern (see Fig. 2), we suggest a
meet in the middle procedure. The reason is that the business services and infras-
tructure services layers are intertwined with the business elements. Therefore,

Secure Service Engineering 11

Table 1: Template for Indirect Stakeholder

Name What is the name or identifier of the stakeholder?

Description Which important properties does the stakeholder have? What char-
acterizes the stakeholder? What is its place in the environment?

Motivation Which objectives does the stakeholder follow? Why does the stake-
holder influence the organization(s) / provider(s)?

Kind
[0 Specific Is the stakeholder a real entity? Is the stakeholder not used to
represent a group?
[0 Representative Is the stakeholder a real existing entity? Is this stake-
holder used as proxy for a group of homogeneous stakeholders?
[0 Group Is the stakeholder not a real existing entity? Is this stakeholder
used to describe for a group of homogeneous stakeholders?

Influence
On Description Severity

Which organization /|Which kind of influence?|What is the rating for the
provider is influenced? |What kind of enforce-|severity of the influence?
ment? What is the base
for the influence?

Relation to other stakeholders
To Description

Which other indirect stakeholder is re-| Which kind of relation?
lated to the stakeholder at hand?

optional entries

Law candidates (Legislator) Which laws which might be of relevance for the
actual SOA to be developed?

Domain-specific regulations (Domain) Which domain-specific regulations in-
cluding, for example, standards and best practice do exist?

Shares (Shareholder) Which kind of shares owns the shareholder? How many of
them are property of the shareholder?

Assets (Asset Provider)

Asset Description Provided To

What are the assets|What are the properties|To which organization is

owned by the asset|of the asset?” How can it|{the asset provided?

provider? be characterized?

we need both information about the technology-related and the business-related
layers. Furthermore, our method provides validity checks for the relations be-
tween the different layers.

12 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

Table 2: Template for Direct Stakeholder

Name What is the name or identifier of the stakeholder?

Description Which important properties does the stakeholder have? What char-
acterizes the stakeholder? What is its place in the environment?

Motivation Which objectives does the stakeholder follow? Why does the stake-
holder influence the organization(s) / provider(s)?

Kind
O Specific Is the stakeholder a real existing entity? Is the stakeholder not
used to represent a group?
[0 Representative Is the stakeholder a real existing entity? Is this stake-
holder used as proxy for a group of homogeneous stakeholders?
[0 Group Is the stakeholder not a real existing entity? Is this stakeholder
used to describe for a group of homogeneous stakeholders?
O Role Can this stakeholder be shared through groups of heterogeneous
stakeholders? Are there well-defined rights and permissions for this stake-
holder?

optional entries

Takes Part In (Process Actor)

Process Activity
In which process does the actor partic-| Which activity does the actor enact?
ipate?

Influence (Process Actor)
On Description
Which other actor is influenced by the|Which kind of influence does the actor
actor at hand? at hand have to the target actor?

The external input for all steps of this phase (see Fig. 4) is the Unstructured
Scenario Description. The SOA Layer Pattern is an additional external input for
the first step Describe Organizations. It is instantiated layer by layer in separated
steps, based on the Unstructured Scenario Description.

In the step Describe Organizations, we have to collect all relevant organi-
zations. For each such organization we have to collect statements about this
organization, describing it further. Next, we have to analyze these statements if
they describe business relations between organizations. Last, we have to check for
inconsistencies. For example, we have to ensure that no organization is isolated.
Being isolated means that there are no business relations to other organiza-
tions. In case we find an isolated organization, this organizations is either not of
relevance for our scenario, or we are missing important information.

Secure Service Engineering 13

= Unstructured I
ECSB- anér ,_—/"",-" Scenario e
%E pa¥tem _ﬂ_,,—"‘_/,/") Descnpnon o Tl
Describe Describe Describe Descnbe Descrlbe
° : Descrlbe
2 | Organizations Chor(;o%raphy Operational Business Infrastructure
T 9 nd Systems Component Serwces Services
£ Coarse Grained ~ : R
B Processes P | : ;
== i Y Jp—
SOA Layer [\ ! SOA Layer |\ [SOA Layer N\ [SOA Layer B; SOA Layer |\ [SOA Layer N\
Pattern i Pattern Pattern Pattern 1|Pattern Pattern
Instance | Instance Instance Instance \|Instance Instance
Organizations i Organizations ||Organizations | |Organizations : Organizations | |Organizations
— ! B. Processes ||B. Processes | |B. Processes |||B. Processes ||B. Processes
53l ! |B. Services | |B. Services
& 3 Y ! I Services
Pr%cesses \ Components |i{Components | |Components
Choreography‘ O. Systems O. Systems _ |||O. Systems O. Systems

Fig. 4: Description Structuring Phase

In the next step Describe Choreography And Coarse Grained Processes, we have
to structure the interaction between organizations. Additionally, we structure
the available information about internal processes of organizations. The input
for this step is the partly instantiated SOA Layer Pattern. We start with the
organizations and their choreography. The choreography describes the interac-
tion between the organizations. We recommend to document the choreography
using an appropriate notation. For example, UML and SoaML collaboration di-
agrams [?] can be used. UML and SoaML activity diagrams are of use for more
detailed interaction and internal process description. The described processes do
not have to be complete, but processes and process steps already mentioned or
explained in the scenario description should be captured by such diagrams. Next
we have to ensure the coherence of the SOA Layer Pattern instance for finishing
the step Describe Choreography And Coarse Grained Processes. The interactions
described by the choreography should reflect the business relations found for the
organizations. Moreover, the detailed process descriptions must be coherent at
the points of transitions between organizations.

For the step Describe Operational Systems, we look for statements mentioning
IT systems already used within one of the organizations. The operational systems
found have to be analyzed for those, which are to be replaced, and those, which
should be wrapped in the new SOA. Only the latter kind of operational system
should be added to the SOA Layer Pattern instance.

At least one component should be described in the step Describe Compo-
nents for each operational system. Whenever for an operational system there
is no statement about a component, which should be re-used, the information
is missing in the Unstructured Scenario Description, or the operational system is
unnecessary. Note that components can exist, which are not part of an opera-
tional system, but are already mentioned in the scenario description. But to be
sure not to miss any relevant operational system, for each component mentioned

14 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

in the Unstructured Scenario Description, we have to check if it exposes such a
system.

Up to this point, we have structured the business and the technical parts of
the description. Next, we close the gap between those parts. We search for state-
ments, which describe business services for the step Describe Business Services.
We add those services to the business service layer. For each business service, we
have to check if there is a corresponding process step in the processes described
in step Describe Orchestration And Coarse Grained Processes. If such an activity is
missing, it should be added. Additionally we have to check if the business service
at hand directly exposes a component, which is already part of the SOA Layer
Pattern instance. Last we have to check whether the business services at hand
is atomic or a composition of other business services. If it is a composition, the
business services used to compose it have to be added to the business service
layer, too.

The procedure for Describe Infrastructure Services is almost the same. One
difference is that infrastructure services are mapped to business services instead
of activities within the process, and that they can be orphans. It is not necessary
that an infrastructure service is used by an already known business service. The
reason is that infrastructure services may provide a more general functionality.

Stakeholder Elicitation Phase In this phase (see Fig. 5), we elicit the stake-
holders of our SOA. Therefore we inspect each element of the SOA Layer Pattern
instantiated in the previous phase. First, we instantiate the direct system envi-
ronment (see Fig. 3). We start with the organizations given in the SOA Layer
Pattern Instance. For each process related to an organization, we identify the pro-
cess actors, which act on behalf of the organization in this particular process.
There has to be at least one process actor for each organization-process-relation.
For all process actors, we have to instantiate the corresponding Direct Stake-
holder Templates. Finally, we have to establish the relations between associated
process actors.

Next, we inspect each business service, infrastructure service, component and
operational system, whether there are already known provider(s) or not. When
the providers are already known, we instantiate Direct Stakeholder Templates
for them and add them and the corresponding relations to the SOA Stakeholder
Pattern instance.

Further, we instantiate the indirect system environment. We also start with
the organizations. We analyze for each organization at hand, if there are relevant
legislators, domains, shareholders and asset providers. For each identified indirect
stakeholder, we instantiate the corresponding Indirect Stakeholder Template, and
we add the indirect stakeholder and their relations to SOA Stakeholder Pattern
instance. We repeat this procedure for all providers we find in the direct system
environment.

Secure Service Engineering 15

& =[soA Direct _ISOA Layer Indirect ™
© 2 |Stakeholder | |Stakeholder __---"" |Pattern Stakeholder
+ .E |Pattern Templates _4Instance _.1Templates
(o) T ~ -~ - ! ~_ 7 N
(For Each _ Yy o " (For Each N [For Each \
Organization Y Organization * Provider
(For Each ' /E ™~ — —
Elicit Elicit
Related Process lT??.rSEeell’Sir::e / Lel(g;IiSIator(s) Legislator(s)
Elicit I. Service /
Process Actor(s) Component / — .
O.System > (Flict . | (Bhert
8 - OY Domain(s) Domain(s)
L —
= Relate to Elicit,
2 ||\ Activity(ies) Provider(s) Elicit Elicit
Shareholder Shareholder
(Instantiate) Instantiate —
T | Elicit Elicit)
Template(s) ‘ emp ate(s‘)j Asl(snet Provider Asset Provider
Relate to ‘ ‘ ‘ Instantiate Instantiate
Process Actors | | | Template(s) Template(s)
P
. N v | y - B v 2 & v |
ﬁ Direct \ '|SOA Indirect SOA [
ggﬁeholder Stakeholder|:|Stakeholder Stakeholder Stakeholder !
Pattern Instance Template '|Pattern Instance | |Template Pattern Instance |
Instances 'D. s Instances \
— . ||D. Stakeholder 1|D. Stakeholder . D. Stakeholder |
=5~ P.Actors P. Actor(s) |!| — P. Actors Legislator(s) - P. Actors ;
g_% * Provider 1| - * Provider Domain(s) — * Provider !
= |y S ‘ Shareholder ||| stakeholder |
Asset Provider || _ Legislator(s) .
— Domain(s) 1
— Shareholder |
— Asset Provider|

Fig. 5: Stakeholder Elicitation Phase

6 Using the Method

We now apply the presented method to the use case described in Sect. 2. We de-
rive the organizations Customer, Content Aggregator, Content Provider and Bank
from the description in Sect. 2. While the Content Aggregator only represents
the specific aggregator for whom the SOA has to be developed, the other or-
ganizations represent groups. The Content Aggregator is the mediator between
Customer and Content Provider. Hence, the business relations reflect this media-
tion. To accomplish payment, all organizations have business relations to Banks.

Next, we have to structure and describe the choreography and coarse grained
processes. Figure 1 already shows a high level choreography. We refine this chore-
ography further and find three major processes: The Content Look up process,
in which Customer, Content Aggregator, and Content Provider take part, the Con-
tent Delivery process, in which also these three organizations take part, and the
Content Payment process, in which all organizations take part. We refine the
choreography and these major processes further and end up with an integrated

16 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

Consume Content

i <<Participant>> <<Pamc\gam>>
Customer Content Aggregator Content Provider 1 - Content Provider n Payment Gateway

(requesl :ememhsD— ﬂ(spread requesl)—)E z(seavch for matching con(enD Gear:h for matching cun\enD

]]
(Coomera Kpm,mm}t summarcs momaten) (Coommaree omaion)
v &)

provide payment data

<<Participant>>
Bank

check payment data

invalia) X fvalid]

forward payment reject payment
B accept payment
abort }z rejoctcontent dolvery)
—
(save content D\ (requesl oon(enl)\ G"i“a‘e — P)
I deliver content : i
show content) forward conlem)‘/ &

(Content Look Up) (Content Delivery)C Content Payment)

Fig. 6: Business Process

process description as shown in Fig. 6. In this process, we left out the estab-
lishment steps as mentioned in Fig. 1. Hence, we focus on the actual business
process.

The business process shown in Fig. 6 should enable the customer to consume
content offered by different content providers. The content providers want to be
paid. The process is simplified at some points. For example, the payment part
of the process is much more complex than shown in Fig. 6.

The process starts with a customer who requests a content list. This request
contains some search criteria related to the desired content. The content aggre-
gator forwards this request to all currently registered content providers. Each
provider responds with a content list considering the search criteria. They also
add payment information for the content they offer. The lists are pooled and
forwarded to the customer. Note, that for this step the activity diagram is sim-
plified. In a real setting there would be a need to model some sort of timeout
and how to deal with it. Next, the customer selects the desired content, provides
payment data, and requests the content from the aggregator. The aggregator
checks if the payment information is valid. This means that a validity check
is executed that decides if the order matches the payment information. If it is
not valid, the content delivery is rejected. Otherwise the payment information is
forwarded to the payment gateway. The gateway checks if the payment data is
valid. The difference between payment data and payment information is that the
payment data contains the payment information and the order data. In case the
data is invalid the request is rejected and aborted. If the data is valid, the pay-
ment is initiated by the payment gateway and fulfilled by the bank. The payment
gateway also acknowledges the request, and the content aggregator contacts the
relevant content provider. This provider sends the requested content to the ag-
gregator, who forwards it to the customer. The costumer saves and consumes
the content.

Secure Service Engineering 17

~

- -

.- -—-

-

~ - -

\Busmess Processes ‘

i

i
|

" Content
Look up

Register
Content
Provider

Register
Content

Aggregator Payment

Fulfill

S - Se?v]céiL_oE)Rup" Ty
~Service Registry \ﬂ) - Sewice ___-
_Service ___-

A

Component based
Service Realization

Fig. 7: Instance of SOA Layer Pattern

We skip the description of the operational systems and the components,
because our scenario is a new development of a SOA, and no already existing
technologies are mentioned in the scenario description.

As mentioned business services, we find Register Content Provider, Register
Content Aggregator, Check Payment, and Fulfill Payment. Register Content Provider
and Register Content Aggregator rely on the infrastructure services Service Reg-
istry Service, and Service Lookup Service. All in all, we obtain the instance of the
SOA Layer Pattern shown in Fig. 7.

The result of the stakeholder elicitation phase of our method (Fig. 5) is de-
picted in Fig. 8. For the Direct Environment, we identified four process actors
and two providers. Customer, Content Provider and Bank are stakeholders repre-
senting a group. The members of these groups can change dynamically in our
scenario, and the members are not that homogeneous that we can refine them
further, for example, in roles. For the Content Provider we would be able to do so,
but since the processes are to be designed, there is no information we can collect
in this early stage. Payment Gateway and Service Broker were already mentioned
in the initial unstructured scenario description, but as there is no decision for a
specific provider up to this point, they also represent groups.

18 Kristian Beckers, Stephan Falbender, Maritta Heisel, and Rene Meis

Direct Environment O O

+ Content Aggregator[1] _ Content Provider{1..*] Bank[1..*]
- Ss 2

Customer[1

Business Processes| |

Business Services Register Register Check
Gontent Content Payment Fulil
Provider Payment

Aggregator

Inner System

Infrastructure Services

Service Broker[1]

Component-based
Service Realization

Operational Systems

Fig. 8: Instance of the SOA Stakeholder Pattern

For the Indirect Environment we identify Germany, Europe and the USA as
legislators, Media and Finance as domains, and GEMA, VG Wort and Content
Owner as asset providers.

In our setting, the content aggregator wants to serve the German market,
so it is likely that also the customers are from Germany. Thus, the legislator
Germany has to be introduced. And as Germany is a part of Europe, Europe has
also to be introduced. Since the big media companies reside in the US, we also
add USA. To add USA is also necessary for the Payment Gateway, because some
important gateways reside in the US. For the Service Broker, we take the decision
to aim for a FEuropean one.

In Germany, there exist two special kinds of asset providers, besides the
Content Owner, which directly plead themselves against content provider and
aggregator. GEMA and VG Wort are right distributors, who plead all media
owners against media consumers in Germany.

The content aggregator and the content provider are part of the Media do-
main. Bank is part of the Finance domain.

For reasons of space, we do not show instances of the stakeholder templates
(Tables 1 and 2).

Secure Service Engineering 19

7 Using the SOA Pattern in Secure Software
Development Life Cycles

The well-known security development lifecycles (SDL) approaches Microsoft
SDL [?,?] and the Comprehensive, Lightweight Application Security Process
(CLASP) by the Open Web Application Security Project (OWASP) [?] define
processes to develop secure software. Gregoire et al. [?] compared both methods
and derived the following phases: Fducation and Awareness, Project Inception,
Analysis, Design, Implementation, Testing and Verification, and Deployment and
Support.

The education and awareness phase of both SDLs can benefit from our
pattern-based approach due to a structured security education of SOA. Security
experts can use the instantiated pattern and templates to explain the security
requirements of the stakeholders, as well as threats and attacks by pointing out
their relations to other stakeholders or SOA elements in the pattern.

In the project inception phase of the Microsoft SDL, the pattern can be
used to define the roles in the project, which are stakeholders in our pattern.
The CLASP approach focuses on security metrics. The instantiated pattern and
templates can also be useful for eliciting, e.g., the number of assets in the SOA.

The SOA context description is useful as a starting point for defining security
requirements for each stakeholder. The CLASP SDL has always considered secu-
rity requirements in this phase, while the Microsoft SDL only considers security
requirements in a recent update [?]. The SOA pattern can help in the elicitation
of security requirements. For example, the relation of a stakeholder to a part of
the SOA might reveal a security issue, e.g., for the owner of a media content in
the SOA an integrity security goal, and a corresponding requirement might be
needed.

In the design phase, both approaches demand a specification of the archi-
tecture -to -be and also threat modeling. The pattern can be used as a starting
point for deriving a SOA architecture. CLASP emphasizes designing a secu-
rity architecture. This is an extension of the software architecture with security
features. These security features can be checked against the security require-
ments elicited using the SOA pattern. Moreover, CLASP defines an activity for
assessing the security of third-party software that shall be integrated into the
architecture. The instantiated pattern can support the identification of these
third-party components. Microsoft SDL presents a product risk assessment ac-
tivity, which determines where to focus security efforts. The instantiated SOA
pattern can also support this activity for an initial high level risk analysis.

We do not see any use for the pattern in the implementation, testing and
verification phase. However, deployment and support can benefit from our pat-
tern. Both approaches require documentation of security, e.g., in the form of
manuals. The instantiated patterns and the templates can be used as part of
this documentation.

20 Kristian Beckers, Stephan Faflbender, Maritta Heisel, and Rene Meis

8 Conclusion

We presented patterns for the context establishment of Service Oriented Archi-
tectures. This approach serves as a proof-of-concept that context descriptions
of complex software systems can largely benefit from patterns. Our approach
comprises the following main benefits:

— Domain(here: SOA)-specific context establishment based on patterns

Systematic pattern-based identification of all stakeholders and technologies

involved

Easing the burden of setting up an initial description of a SOA

— The approach has the potential to improve the outcome of service develop-
ment within a SOA environment

The work presented here will be extended to support requirements elicitation
and design description of SOA in a software engineering process. We plan to
identify relations between our patterns and specific tasks in typical processes.

In addition, we intend to develop a general method to integrate our SOA
patterns as a pre-phase for context establishment into existing security require-
ments engineering approaches, e.g., KAOS [?], Secure-Tropos [?] and Security
Engineering Process using Patterns (SEPP) [?].

