A Problem-based Threat Analysis in compliance
with Common Criteria

Kristian Beckers
University of Duisburg-Essen
paluno
Germany
Email: Kristian.Beckers @paluno.uni-due.de

Abstract—In order to gain their customers’ trust, software ven-
dors can certify their products according to security standards,
e.g., the Common Criteria (ISO 15408). A Common Criteria
certification requires a comprehensible documentation of the
software product, including a detailed threat analysis. In our
work, we focus on improving that threat analysis. Our method
is based upon an attacker model, which considers attacker types
like software attacker that threaten only specific parts of a
system. We use OCL expressions to check if all attackers for a
specific domain have been considered. For example, we propose
a computer-aided method that checks if all software systems
have either considered a software attacker or documented an
assumption that excludes software attackers.

Hence, we propose a structured method for threat analysis that
considers the Common Criteria’s (CC) demands for documen-
tation of the system in its environment and the reasoning that
all threats are discovered. We use UML4PF, a UML profile and
support tool for Jackson’s problem frame method and OCL for
supporting security reasoning, validation of models, and also to
generate Common Criteria-compliant documentation. Our threat
analysis method can also be used for threat analysis without the
common criteria, because it uses a specific part of the UML
profile that can be adapted to other demands with little effort.
We illustrate our approach with the development of a smart
metering gateway system.

Index Terms—Common Criteria, Problem Frames, Security
Standards, Document Generation, Model-driven Engineering,
Security Requirements Engineering

I. INTRODUCTION

The ISO 15408 Standard - Common Criteria for Information
Technology Security Evaluation (short CC) - [1] demands a
detailed documentation of the software system. This system is
a so-called Target of Evaluation (ToE) and consists of hard-
and software. A ToE has to be described in detail, including
its environment.

In this work, we focus on the threat analysis of the CC
and on the description of the 7oE in its environment, which
is the input for this threat analysis. This considers assets,
attackers', threats, assumptions, security objectives, and secu-
rity functional requirements of the ToE. The challenge of any
threat analysis is to achieve a coverage of all possible threats.
Security requirements engineering (SRE) methods exist, which
provide structured threat analysis on an abstraction of the

IThe CC uses the term threat agent for attacker. However, we use attacker
as a synonym for threat agent in this work.

Denis Hatebur
ITESYS Institute for
Technical Systems GmbH
Germany
Email: d.hatebur@itesys.de

Maritta Heisel
University of Duisburg-Essen
paluno
Germany
Email: Maritta.Heisel @paluno.uni-due.de

system. However, these abstractions often only consider parts
of the system-to-be [2] and for a CC-compliant threat analysis
we require a complete model of the ToE.

Goal-based methods, e.g., SI* [3] and KAOS [4], investigate
the goals and views of all stakeholders of the system. These
approaches model threats based upon structured goal models.
Hence, they consider all goals and relevant software artifacts to
these goals. However, they do not consider a complete view of
the system-to-be. Other SRE methods have a similar approach,
e.g., the asset-driven risk management method CORAS [5]
identifies assets and determines threats to these assets. CORAS
models the system-to-be in artifacts that have a relation to
an asset and also do not represent the complete system-to-
be. Thus, we do not use any of these methods for our CC-
compliant threat analysis.

The Problem Frames [6] method uses an abstraction of the
system-to-be and models the environment of the system around
it. Thus, this method is our choice for satisfying the CC’s
demand to model the ToE in its environment. The method
models the ToE and its environment in domains with certain
characteristics, and we propose a threat analysis that uses
these characteristic to determine assets, possible attackers, and
subsequent threats for these domains. We show a structured
method that elicits attackers and threats for each domain. We
also provide computer-aided support for consistency, docu-
ment creation, and security reasoning for this method by using
OCL queries on the problem frame models. Hence, we use the
benefit of having a complete model of the system-to-be and
its environment in domains to conduct a threat analysis.

This means that the results of the threat analysis can be
equally complete via reasoning about all possible attackers
and threats to domains.

Our main contributions are: a) We propose a structured
method to identify and document domain knowledge for assets
and threats in terms of assumptions and facts using our CC
extension of our UML-profile UML4PF [7]. b) We use OCL
[8] for security reasoning support, validation of models, and
also for document generation as part of our method. We also
implement these extension into the UML4PF support tool [9].

Our method provides the means to generate texts, figures
or tables that can be re-used to create CC documentation.
However, the method is generic and can be used for threat

analysis during requirements engineering in a given software
engineering process.

The remainder of the paper is organized as follows. Sec-
tion II presents background on Common Criteria and Sect. III.
Section III presents the UML profile we use for our threat
analysis. Section IV shows our method, and Sect. V illustrates
the application of our method to a smart grid scenario.
Section VII presents related work, and Sect. VIII concludes
and gives directions for future research.

II. COMMON CRITERIA

The ISO/IEC 15408 - Common Criteria for Information
Technology Security Evaluation is a security standard that
can achieve comparability between the results of independent
security evaluations of IT products (machines). These are so-
called Targets of Evaluation (TOEs). The Common Criteria are
based upon a general security model. The model considers ToE
Owners that value their Assets and wish to minimise Risk to
these Assets via imposing Countermeasures. Attackers wish to
abuse Assets and give rise to Threats for Assets. The Threats
increase the Risks to Assets.

Documentation of the security model is the basis for CC
certification. The CC security model can be expressed in
two different types of documents. The security needs of ToE
owners are described in the so-called Security Target (ST). An
ST can be a refinement of a so-called Protection Profile (PP).
A PP states the security needs for an entire class of ToEs, e.g.,
client VPN application. A PP states the security requirements
of ToE owners, and ToE developers or vendors publish their
security claims in an ST.

The document structure of ST and PP is the same on the
level of chapters. The first chapter is an Introduction that
contains the description of the ToE and its environment. The
chapter Conformance Claims describes to which PPs the ST
or PP is compliant.

The chapter Security Problem Definition refines the external
entities, e.g., stakeholders in the environment. In addition, the
chapter lists all Assets, Assumptions about the ToE and its
environment as well as all Attackers, the Threats they cause
to Assets, and Organizational Security Policies of the ToE’s
environment. The chapter Security Objectives contains the Se-
curity Objectives for the ToE and its Operational Environment.
An example for an Operational Environment is the operating
system the ToE uses.

III. UML PROFILE FOR PROBLEM-BASED AND COMMON
CRITERIA COMPLIANT THREAT ANALYSIS

We use a requirements engineering method inspired by
Jackson [6]. Requirements can only be guaranteed for a certain
context. Therefore, it is important to describe the environment,
because we build a system to improve something in the world.
The environment in which the system to be built (called
machine) will operate is represented by a context diagram.

We use the UML [10] notation with stereotypes defined in
the UML profile UMLA4PF [11] to create a context diagram
and domain knowledge diagrams. Stereotypes give a specific

meaning to the elements of a UML diagram they are attached
to, and they are represented by labels surrounded by double
angle brackets. The class with the stereotype machine rep-
resents the thing to be developed (e.g., the software). The
classes with some domain stereotype, e.g., CausalDomain or
BiddableDomain represent problem domains that already exist
in the application environment.

Domains are connected by interfaces consisting of shared
phenomena. Shared phenomena may be events, operation calls,
messages, and the like. They are observable by at least two
domains, but controlled by only one domain, as indicated by
an exclamation mark.

Jackson distinguishes the domain types CausalDomains that
comply with some physical laws, LexicalDomains that are
data representations, and BiddableDomains that are usually
people (see top of Fig. 1). The stereotype <<causalDomain >>
indicates that the corresponding domain is a CausalDomain,
and the stereotype <<biddableDomain >> indicates that it is
a BiddableDomain. In our formal meta-model of problem
frames [12], Domains have names and abbreviations, which
are used to define interfaces. Hence, the class Domain has the
attributes name and abbreviation of type string. Requirements
engineering by means of problem frames, proceeds as follows:
It begins with a description of the desired functionality of the
software to be built, the so-called machine. This description
is refined into requirements and domain knowledge, which
consists of facts and assumptions. An osp is an organizational
security policy, which states rules that have to be followed
when using the ToE. We use a context diagram and domain
knowledge diagrams using our UML profile and tool support.

Our updated Common Criteria extension for the UML4PF
profile is shown in Fig. 1. We introduced a previous version
of the profile in [13] and showed a structured software
development process for creating Common Criteria documen-
tation during software development. We improved the relations
between problem frames and common criteria elements like
countermeasures, which are now a kind of domain. In this
work we developed a technique for threat analysis compliant
to Common Criteria that also relies upon Problem Frame
reasoning. Assets have descriptions and a need for protection.
Assets have to be a problem frame domain or be part of a
domain, because we can not model this in the UML profile
directly. We use an OCL expression to enforce this condition
(see expression AEO2CON in Tab. I). The CC has also the
concept of SecondaryAssets. Harm to SecondaryAssets do not
cause a loss to the ToEOwner directly, but the harm can
cause harm to an Asset. This in turn can cause a loss to a
ToEOwner. Threats can harm assets and have an abbreviation
and a description.

We extended the CC basic security model. Threats can
be further divided into controlThreats and observeThreats.
ControlThreats take control of a domain, while observeThreats
only observe information about the behavior of a domain. For
example, an observeThreat is the eavesdropping of confidential
information, whereas the manipulation of a key exchange is
a controlThreat. We propose a threat analysis during require-

(uml) <<enumeration>>
<<Stereotype>> <<Stereotype>> <<Stereotype>> Class . .
| Lexical Domain || Display Domain Designed Domain WindowOfOpportunity
<<Stereotype>> Unneccassary/Unlimited access (0)
<<Stereotype>> " |<}—{ Connection Domain Easy (1)
bb Domams Si <<Stereotype>> Moderate (4)
abbreviation: String <<Stereotype>> _ Difficult (10)
| <<S'\tne;‘e:g:)r/‘;;e>> |—|>| é:ﬁt:;leontzg_le;: > description: String < Biddable Domain | ToEOwner
<<enumeration>> <<enumeration>>
—=Stereoness ElapsedTime Expertise
<<Stereotype>> (umi) (umi) P yp ——
Property Class ountermeasure <<stereotype>> <=1day (0) Layman (0)
ToE description: String [1] Attacker <=1 week (1) Proficient (3)
name: String [1] % A againstThreat: threat [1..] — - <=2 weeks (3) Expert (6)
version: String [1] expertise: Expertise <=1 month (4) MultipleExperts (8)
date: String [1] <<stereotype>> elapsedTime: ElapsedTime <= 2 months (7)
authors: String [1] Asset <<stereotype>> knowledgeOfToE: KnowledgeOfToe || <=3 months (10) <<enumeration>>
producers: String [1] description: String [1] SecondaryAsset wm@wOfOpporltunlty: WindowOfOpportunity <= 4 months (10) <eE:ui;n$egt
engineers: String [1] needForProtection: String [1] Equipment: Equipment <=5 months (15)
<=6 months (17) Standard (0)
> 6 months (19) Specialised (4)
<<stereotype>> (uml) Bespoke (7)
Statement Class e <<ste;;eic;tl¥pe>> MultipleBespoke (9)
ZF likelihood: String [1] | |
(uml) (4| consequences: String [1] <<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
<<stereotype>> Property PhysicalAttack eAttacker NetworkAttacker SocialEngineeringAttacker
DomainKi ledg
abbreviation: String [1] <<stereotype>> | P (ulml) |<— <<g§':;;¥2fn>> (uml) <<stereotype>> <<enumeration>>
text: String [1] < osp Tie- Stng 1] pendency imposedBy KnowledgeOfToe
ﬂ version: String [1] Public (0)
m— — (umli) da:ﬁi Strig?_[ﬂ » Restricted (3)
<<stereotype>> <<stereotype>> Class authors: String Sensitive (7
Assumption Fact registration: String [1] <<stereotype>> Critical (11())
f certification-ID: String [1] threat
<<enumeration>> <<stereotype>> do\c/u;n:er:]t?l’gg:vD?ciunmﬁr}tType [abbreviation: String [1]
CC-Version <<enumeration>> SpecificTerm ﬁgy\?v:rgs: Stringe[1s [f] description: String [1]
3.1 D tT . ot Stri
23 Prot!:z?t‘i?ne;rofﬁge definition: String [1] | | conformanceStatement: String [1] ﬂ K
10 Security Target source: String [1] cc-ConformanceClaim: String [1]
J yTarg ppClaim: String [1] <<stereotype>> <<stereotype>>
conformanceRational: String [1] observeThreat controlThreat
packageClaim: String [1]

Fig. 1.

ments engineering, where the exact flow of information is only
partially known. Hence, we assume that in the initial threat
analysis informational assets can be reached by all domains
or interfaces in the model. We model this by allowing threats
not only be attached directly to assets, but to all domains or
interfaces that allows to reach the asset.

Threats are caused by Atfackers that we classify into the
following categories. PhysicalAttackers threaten the physical
elements of the system, e.g., hardware or buildings that host
computers. NetworkAttackers threaten Network connections or
ConnectionDomains in our models. SoftwareAttackers threaten
CausalDomains, e.g., the ToE or another software component.
SocialEngineeringAttackers threaten biddable domains, e.g.,
users of the system.

The UML profile also contains <enumerations>> to represent
the attributes required to describe an Atfacker according to the
CC. The attributes, e.g., ElapsedTime or WindowOfOpportu-
nity have numeric values attached in brackets. These values
are defined by the CC and are used to determine the EAL
(evaluation assurance level) for a system. For example, an
attacker with a combined score between 10 and 13 results in a
recommendation to implement the security assurance classes
AVA_VAN.I and AVA_VAN.2. This recommendation results in
an FAL requirement of at least EAL 2. This classification of
attackers is used in the CC during the evaluation of existing
implementations. We propose to use it already during the

A Common Criteria extension of the UML4PF Profile

requirements stage. Some information might not be available
in the requirements phase, but the information that is already
present can be included and used for the security reasoning.
It is difficult to model behavioral aspects with problem
frames. Hence, in our overall method CC-CASD [13] to
generate Common Criteria documentation we consider using
also behavioral descriptions like UML sequence diagrams. For
reasons of space, we do not address this aspect in this paper.

IV. METHOD FOR A SYSTEMATIC THREAT ANALYSIS

Figure 2 shows our threat analysis method, which we
explain in the following. Grey areas in the figure represent
the contribution of this work. We use OCL to check model
consistency and completeness, which we also use for security
reasoning. We state examples for each step of the method and
how this step benefits from our OCL expressions.

We provide an overview of OCL expressions for model
consistency in Tab. I. These expression query the entire model,
meaning context diagram and all domain knowledge diagrams.
The table has a unique ID for each expression in the first
column, the referenced class of the UML profile shown in
Fig. 1 in the second column, and the consistency check the
expression checks in the third column.

As an example, we discuss the OCL expression AT0I CON
in more detail, see Listing I. The expression first selects all
special attackers (lines 1 and 2) and checks that all their

® OoCL

= Domain UML4PF '

53 Context Knowledge profile @il
X E di " with CC for threat

) lagram Diagram C lysi

extensions chElyES

3 1. Define 2. Asset < d(écr»;\::ger 4. Describe 5. Identify 6. Generate
i scope identification kn owl o attackers threats documentation
B v v v

j=3 . Instantiated Extended Domain Knowledge .
3 Instantiated Domain Domain Diagram with ¢ A list of Threat analysis
B context Knowledge Knowledge detailed attacker threats to documentation
g diagram Diagrams Diagrams description the assets for ST

Fig. 2. A Method for Common Criteria-Compliant Threat Analysis; grey areas represent the contribution of this work
TABLE I
OCL EXPRESSIONS FOR ENSURING MODEL-CONSISTENCY OF THE THREAT ANALYSIS
OCL-EXPR-ID | Referenced Class | Expression
D Knowledge
FAO1CON Fact - Refers to at least one domain
ASO1ICON Assumption - Refers to at least one domain
AEO01CON Asset - Has a relation to the ToE domain (e.g. composition) and is not an attacker
AE02CON Asset - Is a domain or part of a domain
STO1CON Secondary Asset - Has a relation to an asset and is not an attacker
Attackers
ATOICON Attacker - Present at least one threat and is not an asset
NAOICON Network Attacker - Threatens only connection domains, connections, or subtypes
PAOICON Physical Attacker - Threatens a domain
SAOICON Software Attacker - Threatens only causal domains
SEO1CON Social Engineering Attacker - Threatens only biddable domains
Threats
THOICON Threat - Threatens only assets
OTO01CON observeThreat - Window of opportunity of the attacker is greater than 0
CTO1CON control Threat - Window of opportunity of the attacker is greater than 0

dependencies have a stereotype
3-5).

<threat> or a subtype (lines

Class . alllnstances ()—>select (
getAppliedStereotypes (). general .name—>includes (’ Attacker
"))
.clientDependency —>exists (
getAppliedStereotypes () .name—>includes (' threat ’) or

getAppliedStereotypes (). general .name—>includes (’threat ’))

Listing 1.
one threat.

1. Define scope To perform the threat analysis systemati-
cally, we start with creating a context diagram that contains
the scope of our analysis. The context diagram contains all
domains (e.g., persons and technical systems) in the environ-
ment of the machine that are referred to by the functional
requirements. For an example of a context diagram, see Fig. 3.

We defined several consistency checks for checking that a
context diagram is correct. These are described in detail in [7]
and are already part of UML4PF.

2. Asset identification For all domains in the context
diagram, we check if the domain contains an asset or is an
asset. Assets are documented in domain knowledge diagrams
as classes with the stereotype <asset> as introduced in the
UML profile in Fig. 1. If the entire domain is an asset, we
add the stereotype «<asset> to that class. In the case that
an asset is only part of a domain, we use UML aggregation
or composition relations between the asset and the domain
it belongs to. The Common Criteria uses also the notion of

ATOI1CON reveals all attackers and subclasses that present at least

secondary assets. Attacks to assets cause harm to toe owners,
while attacks to secondary assets can cause only harm to
assets. In turn harm to secondary assets also causes harm
%o primary assets and thus to toe owners. An example for
A secondary asset is a connection that transports an asset, e.g.,
4 network connection that transports a confidential file.

We use AEOICON (see Tab. I) to check if an asset has no
relation to the machine, in the case of the Common Criteria
this is the ToE. The reason is that the common criteria certifies
products and assets have a relation to that machine. Otherwise
countermeasure in the machine could not protect the assets. If
this is the case, this relation has to be added, or the class is not
an asset and the stereotype should be removed. We also use
STOICON (see Tab. I) to check secondary assets in a similar
manner. Moreover, we use OCL to check for missing assets.

We introduce OCL expressions that support security reason-
ing in Tab. II, e.g. by checking for completeness of the threat
analysis in domain knowledge diagrams. The OCL expression
AEOQIREA (see Tab. II) returns all classes that are not an asset
or do not contain an asset.

This list helps to identify missing assets. For secondary
assets, we proceed in a similar way, using STO/REA and
further expressions in Tab. 1.

3. Consider domain knowledge As a next step, for all
assets, either an assumption or fact about its protection has
to be described. In addition, relevant facts or assumptions

TABLE I

OCL EXPRESSIONS THAT SUPPORT SECURITY REASONING

OCL-EXPR-ID | Referenced Class | Expression [R ing Support for Security Experts
Domain Knowledge
DOOIREA Domain - List all domains that have no facts or assump- | - Do we really have no domain knowledge at all about a
tions domain?
FAOIREA Fact - List all domains that have no facts - Have at least the most obvious facts been considered?
ASOIREA Assumption - List all domains that have no assumptions - Have at least the most obvious assumptions been considered?
AEOIREA Asset - List all classes that are not assets or secondary | - Is an asset still missing?
assets or attackers
AE02REA Asset - List all assets that have no need-for-protection | - Is that asset really an asset if it has no need for protection?
property
AEO3REA Asset - List all connections or connection domains | - Does a connection between domains really transport no assets?
that do not transmit assets.
STOIREA Secondary Asset - List all secondary assets - Are these all really not assets?
Attackers
ATOIREA Attacker - List all attackers that have only observe threats | - Is the attacker’s potential modeled correctly?
or only controls threats
NAOIREA Network Attacker - List all connection domains and connections | - Are threats to all relevant domains from that attacker consid-
that are not threatened by a network attacker ered?
NAO2REA Network Attacker - List all connection domains and connections | - Are threats to all relevant domains from that attacker consid-
that are not threatened by a network attacker | ered or do we need to add an assumption?
and do not have an assumption
PAOIREA Physical Attacker - List all biddable domains that are not threat- | - Are all humans considered that a physical attacker can
ened by a physical attacker threaten?
PAO2REA Physical Attacker - List all causal domains that are not threatened | - Are all physical devices considered that a physical attacker
by a physical attacker can threaten?
SAOIREA Software Attacker - List all causal domains that are not threatened | - Is every software considered in the threat analysis?
by a software attacker
SAO2REA Software Attacker - List all causal domains that are not threatened | - If a software attacker is not considered and we do not
by a software attacker and that does not have | have an assumption, we should add an assumption or include
an assumption further software attackers for the resulting domains in the threat
analysis.
SEOIREA Social ~ Engineering | - List all biddable domains that are not threat- | - Are all possible threats by social engineering attackers con-
Attacker ened by a social engineering attacker. sidered?
SEO2REA Social ~ Engineering | - List all biddable domains that are not threat- | - For each biddable domains that is not threatened by a social
Attacker ened by a social engineering attacker and that | engineering attacker, we should provide at least an assumption
do not have an assumption specified. why this is not necessary. If no valid assumption can be found,
the threat analysis should be revised to include this attacker.
Threats
THOIREA Threat - List all assets that are not threatened - Is an asset not threatened, meaning secure?
OTOIREA observeThreat - List all assets that have no observe Threats - Has an asset only control threats?
CTOIREA control Threat - List all assets that have no control Threats - Has an asset only observe threats?

about assets, which can be exploited by an attacker, have to be
documented. Facts and assumptions are documented in domain
knowledge diagrams with classes and the stereotypes «Fact>
or <Assumptions>> using the UML profile in Fig. 1. The
relation between facts and/or assumptions and assets can be
documented with dependencies and the stereotype <refersTo>>.
<refersTo> states that a domain refers to some domains. It
extends the UML meta-class Dependency.

We use the OCL expressions FAOICON and ASOICON (see
Tab. I) to check that facts and assumptions model at least
one domain. In addition, we use FAOIREA and ASOIREA (see
Tab. II) to list all domains having no facts or assumptions. For
these domains, one should make sure that the most obvious
facts have been considered and that facts and assumptions have
been distinguished correctly.

4. Describe attackers All attackers have to be described
using the attributes shown in Fig. 1. We iterate through all
assets and check if they have assumptions or facts that prevent
them from being threatened by a specific kind of attacker. For
example, a piece of software that has no connection with the
ToE provides no attack vector for a network attacker. Other-
wise, an attacker has to be introduced that threatens the asset.
Moreover, the introduced attackers also have assumptions and

facts. These have to be modelled explicitly as well, to support
a correct threat assessment.

We use OCL expressions to query our model for getting an
overview of all existing threat analysis elements e.g. assets.
These expressions end with the letters “DOC”. For simplicity’s
sake, we do not present a table of all these expression in this
paper.

For example, expression AEOIDOC lists all assets that can
be threatened by an attacker. We consider for each asset
if an attacker can cause harm to it. Afterwards, we use
the expressions FAOIDOC and ASOIDOC to check for each
assumption and fact if these can be used to cause harm to an
asset. If this is the case, another attacker has to be introduced.

5. Identify threats Threats are a relation between an
attacker and an asset. This relation can be modelled with
dependencies and the stereotypes <threat>, <observeThreat>,
or <controlThreat>. In this step we iterate over all the attackers
and introduce threats. Assumptions or facts have to be consid-
ered or introduced when deciding if the attacker represents an
«<observeThreat>>, or <controlThreat>.

We use the ATOIDOC to list all attackers to start our
iteration. Afterwards we introduce threats for each attacker.
The OCL expressions AEOIDOC, STOIDOC, FAOIDOC,

<<contextDiagram,technicalContextDiagram,CC-System>>
Smart_Metering_Gateway

<<lexicalDomain>>

<<lexicalDomain>>
MeterData

<<biddableDomain>>
AuthorizedExternalEntity

UserData <<physical>>
1. IF_GW_UD
<<causalDomain>> |1
SecurityModule <<han>>
IF_GW_SM

1

1.°

<<physical>>

Z<wan>> IF_GW_MD

IF_GW_WAN

<<causalDomain>>

y <<ToE>>

Meter

1 1.7
<<imn>>
IF_GW_M

<<physical>> -

SmartMeteringGateway | 4

<<han>>

IF_GW_WAN = AEE!{sendUpdate}, SMGYretrieveMeterData}
IF_GW_CLS = CLS!{status}, SMGl{command}

IF_GW_M = M!{sendMeterData}, SMG!{sendUpdate}
IF_GW_MD = SMG!{storeMeterData,retrieveMeterData}

IF_GW_UD = SMG!{storeUserData, retrieveUserData}

<<ToEOwner>> IF_GW_U 0. 0.
Consumer o <<causalDomain>> IF«(QS\;D(?B IF_GW_CLS <<causalDomain>>
- 0.* | ConsumerBrowser -0 CLs
<<Phenomena>>

IF_GW_SM = SMG!{genSIG,verifySIG,storeSIG, genKey,storeKey,retrieveKey,genRand},SM{sendSIG,verifiedSig, sendKey,sendRand}
IF_GW_U = ClretrieveMeterData, configureSMG, storeUserData,retrieveUserData,command},CB!{statusGateway}

IF_GW_CB = CB!{retrieveMeterData, configureSMG, storeUserData,retrieveUserData,command},SMG!{statusGateway}

Fig. 3.

AS0IDOC provide us with lists of domain knowledge artifacts,
e.g., facts and assets. After we have introduced threats for the
attackers under the consideration of domain knowledge, we
check if all attackers represent at least one threat using expres-
sion ATOICON (see Tab. I). If an attacker does not represent a
threat, the attacker should either be removed, or a threat should
be added. We execute the OCL consistency expressions for
network, physical, software, and social engineering attacker
in a similar fashion (see Tab. I).

In this step we also check for completeness of attackers in
the model. For example, the expressions SAOIREA (see Tab. II)
checks for all causal domains if these are threatened by a
software attacker. If this is not the case, we should check for
existing assumptions using ASOICON (see Tab. II) for these
domains. The resulting information of these expression should
serve as a basis for security reasoning for these domains. The
question if we need to consider a software attacker for these
domains should be answered in particular. The other attacker
types are considered in a similar manner using the expressions
in Tab. II.

6. Generate documentation Finally, we generate textual
documents from the information in the domain knowledge
diagrams.

We execute all consistency checks (see Tab. I) and check
if our model requires improvement. The results of the checks
have to be thoroughly investigated. Afterwards we generate
Common Criteria documentation as described in [13].

V. APPLICATION OF OUR METHOD

Application scenario We use the protection profile for the
smart metering gateway as an example for our approach [14].
We apply our method to the creation of a security target and
base it on this protection profile. The gateway is a part of
the smart grid. This is a commodity network that intelligently

The Context Diagram of the Smart Metering Gateway

manages the behaviour and actions of its participants. The
commodity consists of electricity, gas, water or heat that is
distributed via a grid (or network). The benefit of this network
is envisioned to be a more economic, sustainable and secure
supply of commodities. Smart metering systems meter the
consumption or production of energy and forward the data
to external entities. This data can be used for billing and
steering the energy production. The “Protection Profile defines
the security objectives and corresponding requirements for a
Gateway which is the central communication component of
such a Smart Metering System” [14, p. 16].

1. Define scope The context diagram shown in Fig. 3
describes the machine to be built in its environment. It is part
of the overview description of the security target. The <ToE>
is the SmartMeteringGateway, which serves as a bridge between
the Wide Area Network <wans and the Local Network
<physical> of the Consumer, the <ToE Owner>. The Meter is
connected to the toe via a Local Metrological Network <Imn>>.
This is an in-house equipment for equipment that can be used
for energy management. The Controllable Local System CLS
can be, for example, an air conditioning unit or an intelligent
refrigerator. The Consumer can also access the toe [14] via a
ConsumerBrowser. We extended the description for our specifi-
cation with the following phenomena. The Meter sends meter
data to the SmartMeteringGateway. The SmartMeteringGateway
stores this data. The Meter can also receive updates from the
AuthorizedExternalEntity forwarded via the SmartMeteringGateway.
The AuthorizedExternalEntity gets sent meter data in fixed in-
tervals from the SmartMeteringGateway. The SecurityModule pro-
vides cryptographic functionalities for the SmartMeteringGate-
way like key generation and random number generation. The
Consumer can retrieve meter data via the SmartMeteringGateway.
The Consumer can also configure the SmartMeteringGateway,
send commands to the CLS, receive status messages from the

<<domainKnowledgeDiagram,CC-System>>
Smart_Metering_Gateway_Assets

<<physical>>

<<ToE>>
SmartMeteringGateway
1
<<Imn>> <<causalDomain>>
IF_GW_M 1 Meter
s
<<SecondaryAsset>>

1.0

<<lexicalDomain,Asset>>
MeterData

description: String = "Meter readings that allow calculation of the
quantity of a commaodity, e.g. electricity, gas, water or heat consumed
over a period. Meter Data comprise Consumption or Production Data
(billing-relevant) and grid status data (not billing-relevant). While billing
data needs to have a relation to the consumer, grid status data do not
have to be directly related to a consumer."

needForProtection: String = "According to their specific need."

GatewayTime

description: String = "Date and time of the real-time clock of

<<Asset>>
MeterConfig

the Gateway. Gateway Time is used in Meter Data records
sent to external entities."

needForProtection: String = "Integrity and Authenticity (when
time is adjusted to an external reference time)."

description: String = "Configuration data of the Meter to control its behaviour including the
Meter identity."
needForProtection: String = "Integrity and Authenticity and Confidentiality"

Fig. 4. An Example for a Common Criteria compliant asset description

SmartMeteringGateway and store UserData in it.

2. Asset identification We iterated over the domains in
Fig. 3 and identified the MeterData as an <asset>. Fig-
ure 4 presents a domain knowledge diagram that contains
the description of this asset. The meter data has value for
the Consumer, because his/her billing depends upon it and
behaviour profile about the Customer can be created from it.
Integrity, authenticity, and confidentiality of this data need
to be protected. Another asset of the SmartMeteringGateway
is the GatewayTime. The asset is revealed via investigating
assumptions about the SmartMeteringGateway, namely that the
meter data is recorded with a correct time stamp. The time is
used in MeterData records that are sent to AuthorizedExternalEntity
for, e.g., billing. Its integrity and authenticity have to be pro-
tected and especially the time adjustment using an externally
referenced time is critical.

We use AEOIREA (see Tab. II), which returns all classes are
not an assets and do not contain assets. For the smart metering
gateway running example we have so far only identified the
assets MeterConfig, MeterData and GatewayTime (see Fig. 4). The
expression AEOIREA returns: UserData, AuthorizedExternalEntity,
CLS, Consumer, ConsumerBrowser, and SecurityModule. For these
domains, a good rationale has to be given that these are not
assets, or these have to be identified as assets. For example,
for the SecurityModule and the connection IF_GW_WAN, assets
have to be documented.

3. Consider domain knowledge The Common Criteria
demands that assumptions about domains and connections are
made explicit. We choose the assumptions about the Autho-
rizedExternalEntity, the IF_GW_WAN, and the SmartMeteringGate-
way as examples [14]. The assumptions document the assumed
behaviour of the authorised external entities, reliability and
bandwidth of the connection, and the installation location of
the SmartMeteringGateway. Assumptions refer to domains in the
context diagram. Additionally, facts can be included, e.g., that
the SmartMeteringGateway needs electricity to operate. These

facts are stated in a domain knowledge diagram, depicted in
Fig. 5.

4. Describe attackers We introduce a <NetworkAttacker>>,
who threatens the WAN connection, depicted in Fig. 5. We
have also assumptions regarding this attacker. Assumption-
WLANAttacker states that the attacker is located in the WAN
and that he/she has the capability to threaten the smart grid,
e.g. via sending forged meter data into the grid. This assump-
tion <refersTo>> the WANAttacker. Based upon the Assumption-
WLANAttacker we instantiate the attacker with the following
attributes: the attacker has the Expertise = Expert (6) and the
ElapsedTime = < 1 day (0), the KnowledgeOfToe = Restricted (3),
and the WindowOfOpportunity = Unnecessary/Unlimited access (0).
We can calculate the value for these attributes for addressing
the assurance component AVA_VAN of the CC. The results
demand at least an EAL 2 of the CC.

We also know that the Meter depends upon electricity and
introduce the FactElectricity. This can lead to the introduction of
a < PhysicalAttacker>>. However, the AssumptionPhysicalProtection
states that a basic level of physical protection exist. Hence,
the introduction of a «PhysicalAttacker> is not required for
this scenario. If we installed the Meter in a data storage for
a bank data center, a sophisticated <PhysicalAttacker> should
be considered, who can penetrate the physical barriers of the
ToE.

5. Identify threats The WANAttacker gives rise to the
<observeThreat>> T.Disclosure WAN (the designation is taken
from the PP), which states that the WAN attacker can disclose
meter data or meter configuration data. The WANAttacker causes
also the «<control Threat> T.DataModificationWAN, which allows
the attacker to modify several different data, e.g., meter data,
and meter config data. We use ATOI/DOC to check all consid-
ered attackers, which so far only returns the WAN attacker. In
order to reason that all relevant attackers have been considered,
we execute NAOIREA, PAOIREA, SAOIREA, SEOIREA (see
Tab. II). These return that a physical attacker should be consid-

<<domainKnowledgeDiagram,CC-System>>
Smart_Metering_Gateway WLAN_Threats

<<assumption>>
AssumptionExternalParties

abbreviation: String = "A.ExternalPrivacy"

text: String = "It is assumed that authorised and authenticated external entities
receiving any kind of privacy-relevant data or billing-relevant data and the
applications that they operate are trustworthy (in the context of the data that they
receive) and do not perform unauthorised analyses of this

data with respect to the corresponding consumer(s)."

‘N<<refersTo>> PPk
<<fact>> <<biddableDomain>> .- ZrefersToss
FactElectricity AuthorizedExternalEntity e

1.*

<<assumption>>
AssumptionNetwork

abbreviation: String = "A.Network"

text: String = "It is assumed that a WAN network
connection with a sufficient reliability and bandwidth for
the individual situation is available, and one or more
trustworthy sources for an update of the system are
available in the WAN."

<<assumption>>
AssumptionWLANAttacker

abbreviation: String = "A.WLANAttacker"
text: String = "An attacker located in the WAN

abbreviation: String =
"F.Electricity"

text: String = "It is a fact
that the Smart Metering

<<wan>>
IF_GW_WAN

Gateway requires a power
supply to operate."

<
<<refersTo>> AN
N\
<<toe>>
SmartMeteringGateway

<<refersTo>>/
/

’
’

<<assumption>>
AssumptionPhysicalProtection

A WAN attacker may try to violate the privacy
of the consumer by disclosing Meter Data or configuration
data (Meter config, Gateway config or CLS config) or parts
of it when transmitted between Gateway and external

(WAN attacker) trying to compromise the
confidentiality and/or integrity of the Meter Data
and or configuration data transmitted via the WAN,
or attacker trying to conquer a component of the

entities in the WAN.

infrastructure (i.e. Meter, Gateway or Controllable

<<controlThreatss ~ -
T.DataModificationWAN

A WAN attacker may try to
modify (i.e. alter, delete, insert,
replay or redirect) Meter Data,

abbreviation: String = "A.PhysicalProtection"
text: String = "It is assumed that the TOE is
installed in a non-public environment within
the premises of the consumer which provides
a basic level of physical protection."

Gateway config data, Meter
config data, CLS config data
or a firmware update when
transmitted between the
Gateway and an external
entity in the WAN.

Local System) via the WAN to cause damage to a
component itself or to the corresponding grid (e.g.

<<observeThreat>> by sending forged Meter Data to an external
~~.T.Disclosure WAN entity)."
T ~< /
=N S~ol ’
S~ RN /<<refersTo>>
.o Tl /
. ~~ ¥y
<<networkAttacker>>
WANAttacker

expertise: Expertise [1..1] = Expert (6)

elapsedTime: ElapsedTime [1..1] = <=1 day (0)

knowledgeOfToE: KnowledgeOfToe [1..1] = Restricted (3)

windowOfOpportunity: WindowOfOpportunity [1..1] = Unnecessary/Unlimited access (0)
Equipment: Equipment [1..1] = Specialised (4)

<<Phenomenon>>

IF_GW_WAN = AEE{sendUpdate}, SMG!{retrieveMeterData}

—

Fig. 5.

ered. We do not follow this suggestion, because we introduced
AssumptionPhysicalProtection in the previous step of our method.
In addition, the OCL expressions return that a software at-
tacker should be considered for the SmartMeteringGateway and a
social engineering attacker for the AuthorizedExternalEntity. Both
of them have to be modelled in further domain knowledge
diagrams and considered in the threat analysis. The software
attacker may penetrate the SmartMeterGateway and present a
<controlThreat>> towards it. An assumption about the software
attacker is that she/he can control the SmartMeterGateway and
modify all meter data the gateway has access to. The social
engineering attacker presents a <controlThreat> towards the
AuthorizedExternalEntity and an assumption is that the attacker
can control the AuthorizedExternalEntity in such a way that the
attacker gains access to the meter data and to the keys and
certificates necessary to access the SmartMeterGateway. Hence,
the assumption states that the social engineering attacker can
access and configure the SmartMeterGateway. For example, the
attacker could use the gateway to control a CLS, e.g., a heater
or a refrigerator.

Tab. I1I shows the usage of our OCL expressions for security
reasoning. The first column of the table states the expression
used. For simplicity’s sake, we use the expressions only on
a few domains and the second column on the table states the
domains considered by the OCL expression. The third column

An Example for a Common Criteria compliant threat description

states the results of the query and the last column the resulting
security reasoning based on the results of the query.

FAO1REA checks if we have modelled facts about domains.
This is not the case for the WANAttacker and the AuthorizedExter-
nalEntity. Hence, we have to reason why our assumptions are
sufficient and should get feedback on these assumptions from
further security experts.

NAOIREA queries the model if we have considered a
NetworkAttacker for all network connections or connection
domains. This is not the case for the network connection
IF_GW_CB, which connects the ConsumerBrowser and the Smart-
MeteringGateway (see Fig. 3). During security reasoning two
assumptions are added to the model instead of a network
attacker. We assume that there are no malicious insiders in
the <han>> that misuse network traffic and that the Consumer
provides measures to protect the IF_GW_CB connection.

SEO2REA checks if we considered for all biddable domains
SocialEngineeringAttackers or have assumptions modeled. For
the Consumer and the AuthorizedExternalEntity we have modelled
neither.

Hence, the result of SEO2REA are discussed in an expert
workshop. The experts decide if SocialEngineeringAttackers have
to be included into the threat analysis. Alternatively they have
to add assumptions, which explain why the consideration of
SocialEngineeringAttackers is not needed.

TABLE III
AN EXAMPLE FOR OCL-BASED SECURITY REASONING

OCL-EXPR-ID Class or Relation Result Reasoning
FAOIREA SmartMeteringGateway, WANAttacker, We do not have facts about the WANAttacker and the AuthorizedExternalEntity. Hence,
WANAttacker, AuthorizedExternalEntity | we have to check if the assumptions documented are valid e.g. by examination of an
AuthorizedExternalParty independent security expert.
NAOIREA Consumer, ConsumerBrowser, | IF_GW_CB We have to add an assumption that the Consumer provides sufficient protection of the
SmartMeteringGateway, Meter IF_GW_CB connection.
SEO2REA all domains Consumer, We have not considered SocialEngineeringAttackers and have no assumptions specified
AuthorizedExternalEntity | why SocialEngineeringAttackers do not need to be considered. The result of this OCL
expression should trigger a threat analysis regarding if SocialEngineeringAttackers are
relevant threats for the Consumer and theAuthorizedExternalEntity.

6. Generate documentation For reasons of space, we refer
to our previous work [13] for the generation of Common
Criteria compliant documentation.

VI. DISCUSSION

The procedure presented in this paper was developed based
on the experience from several (confidential industrial) secu-
rity and especially Common Criteria projects. To present the
procedure, we use a case study that creates a Security Target
for an existing Protection Profile. The method was discussed
with security consultants, who have already applied parts of
the method in industrial projects. In Common Criteria projects,
cross-tabulations are created for checking the consistency of
documents. Especially the effort for this task is significantly
reduced by the presented method and tool. The security
consultants also mentioned that this structured procedure

o helps to describe the attackers’ abilities in more detail,

o supports the identification of all threats on the given
assets,

« helps not to forget relevant assumptions or facts, and

« supports the identification and classification of assets.

We also asked evaluators, who check Common Criteria doc-
umentations. They responded that they prefer the graphical
representation used in our method instead of the plain text
and tables in current Common Criteria documents.

The reviewers also mentioned the following limitations.

o The amount of text in a class is sometimes distracting.

o The modeling is time consuming.

o The problem frame notation has to be learned beforehand,
and

« our method does not support the entire process of Com-
mon Criteria certification.

VII. RELATED WORK

Mellado et al. [15], [16] created the Security Require-
ments Engineering Process (SREP). SREP is an iterative and
incremental security requirements engineering process. The
approach differs from our work, because the authors use
misuse cases for eliciting threats. The approach does not
provide clear criteria for when all threats are elicited.

Bialas [17] introduces an ontology that supports the CC
security problem definition (SPD). The SPD contains threats,
security policies, and assumptions concerning the ToE. The
ontology provides relations between, e.g., risks and threats.
The relations can be used to create an SPD. For example, the

ontology can provide threats for specific risks. In addition, the
ontology can be queried for known countermeasures for these
risks. The author extended the approach to the IT security
development framework that is complaint to the entire CC
[18]. The approach can complement our own. The stored
threats and their relation to the ToE could be implemented
as threat suggestions in our method.

Ardi and Shahmehri [19] extend the CC Security Target
document with a section that considers knowledge of existing
vulnerabilities. Their method can complement our own.

Abuse Frames is a method for analysing security issues
and the corresponding threats and vulnerabilities by using
problem frames [20]. So-called anti-requirements and the
corresponding abuse frames are defined. An anti- requirement
expresses the intentions of a malicious user, and an abuse
frame represents a security threat. In contrast to our method,
abuse frames do not consider specific notions of the common
criteria and do not support computer-aided security reasoning
for, e.g., missing threats.

Schneider et al. [21] use organizational learning to check
software documentation for relevant parts to elicit security
requirements. The basis for the organizational learning soft-
ware the authors use is the common criteria. This work
differs from our own, because we aim to create common
criteria documentation, while the work of Schneider et al.
uses the content of the common criteria standard to identify
relevant parts for security requirements elicitation in software
documentation.

Mayer et al. present a conceptual model called Information
System Security Risk Management (ISSRM) [22]. The model
defines terms and notions of risk management for IT systems
with regard to security and relates this conceptual model to
definitions in standards like Common Criteria. ISSRM does
not provide a structured method for creating Common Criteria
documentation.

AURUM is a method for supporting the NIST SP 800-30
risk management standard [23]. The method is based upon
an ontology that supports the elicitation of threats, choosing
fitting countermeasures and calculating risks. In contrast to our
work, AURUM focuses exclusively on risk management.

Dhilion models the flow of information in a system and
investigate possible interaction points of an attacker with the
system [24]. The author proposes to use annotations on the
models for security relevant information, e.g., authentication
data flows. These annotations are used to check a database for

possible threats, but the work does not focus on supporting
security standards.

VIII. CONCLUSION

We have extended the Jackson’s problem frame method with
a threat analysis compliant to Common Criteria. Our threat
analysis considers attacker types that threaten specific kinds of
Jackson’s domains. Thereby, we built on the existing UML4PF
tool, its UML profile for dependability [7], and an updated
versions of its Common Criteria specific extension. Our contri-
bution is a structured method for problem-based threat analysis
including several OCL expressions, which provide validation,
security reasoning and document generation support. Security
reasoning in the sense that we can check for completeness of
the considered attackers during the threat analysis. Our method
includes a structured elicitation, documentation and validation
of assets, assumptions, threats, and attackers.

Our method offers the following main benefits:

e A structured process for elicitation of threat analysis
elements for a Common Criteria certification

« A tool-supported identification of assets, assumptions and
threats

e Support for the reasoning of Common Criteria threats
based upon attacker types for Jackson’s domain types

o Traceability from elements of the 7ToFE to threats

« Explicit consideration of domain knowledge in terms of
assumptions and facts

o The method can also be used without the common
criteria. The UML profile and the OCL constraints can
be adapted with little effort to other security standards or
methods

In the future, we will work on an extension of the method
towards risk management and the selection of countermea-
sures. We will improve the tool support to allow to hide texts
in diagrams and to work towards a holistic modeling support
for the Common Criteria. Moreover, we plan to also support
further security standards like ISO 27001 [25].

ACKNOWLEDGMENT

This research was partially supported by the EU project
Network of Excellence on Engineering Secure Future Inter-
net Software Services and Systems (NESSoS, ICT-2009.1.4
Trustworthy ICT, Grant No. 256980) as well as the Ministry
of Innovation, Science, Research and Technology of the Ger-
man State of North Rhine-Westphalia and EFRE (Grant No.
300266902 and Grant No. 300267002).

REFERENCES

[1] ISO/IEC, “Common Criteria for Information Technology Security Eval-
uation,” International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC), ISO/IEC 15408, 2009.

B. Fabian, S. Giirses, M. Heisel, T. Santen, and H. Schmidt, “A com-
parison of security requirements engineering methods,” Requirements
Engineering — Special Issue on Security Requirements Engineering,
vol. 15, no. 1, pp. 7-40, 2010.

F. Massacci, J. Mylopoulos, and N. Zannone, “Security Requirements
Engineering: The SI* Modeling Language and the Secure Tropos
Methodology,” in AlIS, ser. SCI, Z. Ras and L.-S. Tsay, Eds. Springer,
2010, vol. 265, pp. 147-174.

[2]

[3]

10

[4]
[5]
[6]
[7]

[8]

[9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. John Wiley & Sons, 2009.
M. S. Lund, B. Solhaug, and K. Stglen, Model-Driven Risk Analysis:
The CORAS Approach. Springer, 2010.

M. Jackson, Problem Frames. Analyzing and structuring software de-
velopment problems. Addison-Wesley, 2001.

D. Hatebur, Pattern and Component-based Development of Depend-
able Systems. Deutscher Wissenschafts-Verlag (DWV) Baden-Baden,
September 2012.

UML Revision Task Force, “OMG Object Constraint Language:
Reference,” February 2010. [Online]. Available: http://www.omg.org/
docs/formal/10-02-02.pdf

1. Coté, D. Hatebur, M. Heisel, and H. Schmidt, “UMLA4PF — a tool for
problem-oriented requirements analysis,” in Proceedings of RE. 1EEE
Computer Society, 2011, pp. 349-350.

UML Revision Task Force, OMG Unified Modeling Language: Super-
structure, Object Management Group (OMG), May 2010.

D. Hatebur and M. Heisel, “A UML profile for requirements analysis of
dependable software,” in Proceedings of the International Conference on
Computer Safety, Reliability and Security (SAFECOMP) (LNCS 6351),
E. Schoitsch, Ed. Springer, 2010, pp. 317-331.

D. Hatebur, M. Heisel, and H. Schmidt, “A formal metamodel for
problem frames,” in Proceedings of the International Conference on
Model Driven Engineering Languages and Systems (MODELS), vol.
5301. Springer Berlin / Heidelberg, 2008, pp. 68-82.

K. Beckers, 1. Co6té, D. Hatebur, S. FaBbender, and M. Heisel,
“Common Criteria CompliAnt Software Development (CC-CASD),” in
Proceedings 28th Symposium on Applied Computing. ACM, 2013, pp.
937-943. [Online]. Available: http://dl.acm.org/

BSI, “Protection Profile for the Gateway of a Smart Metering

System (Gateway PP),” Bundesamt fiir Sicherheit in der
Informationstechnik (BSI) - Federal Office for Information
Security ~ Germany, Version 01.01.01(final draft), 2011,

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/
PP-SmartMeter.pdf?__blob=publicationFile.

D. Mellado, E. Fernandez-Medina, and M. Piattini, “A comparison of
the common criteria with proposals of information systems security
requirements,” in Proceedings of ARES, 2006, p. 8 pp.

D. Mellado, E. Ferndndez-Medina, and M. Piattini, “Applying a security
requirements engineering process,” in ESORICS 2006, ser. LNCS 4189,
D. Gollmann, J. Meier, and A. Sabelfeld, Eds. Springer Berlin /
Heidelberg, 2006, pp. 192-206.

A. Bialas, “Ontology-based security problem definition and solution for
the common criteria compliant development process,” in Dependability
of Computer Systems, vol. DepCos-RELCOMEX ’09. Fourth Interna-
tional Conference on, 2009, pp. 3-10.

A. Biafas, “Ontological approach to the it security development,” in
Internet — Technical Development and Applications, ser. Advances in
Intelligent and Soft Computing, E. Tkacz and A. Kapczynski, Eds.
Springer Berlin / Heidelberg, 2009, vol. 64, pp. 261-269.

S. Ardi and N. Shahmehri, “Introducing vulnerability awareness to
common criteria’s security targets,” in Software Engineering Advances,
2009. ICSEA °09. Fourth International Conference on, 2009, pp. 419—
424.

L. Lin, B. Nuseibeh, D. C. Ince, and M. Jackson, “Using abuse frames
to bound the scope of security problems,” in RE, 2004, pp. 354-355.
K. Schneider, E. Knauss, S. Houmb, S. Islam, and J. Jiirjens, “Enhancing
security requirements engineering by organizational learning,” Require-
ments Engineering, vol. 17, pp. 35-56, 2012.

N. Mayer, P. Heymans, and R. Matulevicius, “Design of a modelling
language for information system security risk management,” in RCIS,
2007, pp. 121-132.

A. Ekelhart, S. Fenz, and T. Neubauer, “Aurum: A framework for
information security risk management,” in HICSS, 2009, pp. 1-10.

D. Dhillon, “Developer-driven threat modeling: Lessons learned in the
trenches,” IEEE Security and Privacy, vol. 9, no. 4, pp. 41-47, Jul. 2011.
ISO/IEC, “Information technology - Security techniques - Information
security management systems - Requirements,” International Organiza-
tion for Standardization (ISO) and International Electrotechnical Com-
mission (IEC), ISO/IEC 27001, 2005.

