
A Meta-Model for Context-Patterns
KRISTIAN BECKERS and STEPHAN FASSBENDER and MARITA HEISEL,
paluno, The Ruhr Institute for Software Technology

It is essential for building the right software system to elicit and analyze requirements. Writing requirements that can achieve the purpose of
building the right system is only possible if the domain knowledge of the system-to-be and its environment is known and considered
thoroughly. We consider this as the context problem of software development. In the past, we tackled this problem by describing common
structures and stakeholders for several different domains. The common elements of the context were obtained from observations about the
domain in terms of standards, domain specific p u blications a n d i m plementations. But the d escription of t h e structure of a context-pattern,
especially in terms of its static structure, was not aligned. This inhibits relating context-patterns to form a pattern language. It is also difficult
for inexperienced pattern creators to describe newly observed patterns without any guidance.

We propose a meta model for describing context-patterns. The meta model contains elements, which can be used to structure and describe
domain knowledge in a generic form. These context-patterns can afterwards be instantiated with the domain knowledge required for software
engineering. This work is based on already existing patterns, which we abstracted into a meta-model. We present our context-patterns, show
how we used them to construct our meta-model, and provide an example of how to describe a context-pattern using our meta-model. We
contribute this meta model as a basis for a pattern language for context elicitation.

Categories and Subject Descriptors: Software and its engineering [Software organization and properties]: Software system structures—
Software system models - Model-driven software engineering; Software and its engineering [Software notations and tools]: Context
specific languages—Domain specific languages; Software and its engineering [Software creation and management]: Designing software—
Requirements analysis

General Terms: Human Factors

Additional Key Words and Phrases: Domain Knowledge, Requirements Engineering, Context Establishment

ACM Reference Format:
Beckers, K., Faßbender, S. and Heisel, M. 2015. A Meta-Model for Context-Patterns. EuroPLoP '13: Proceedings of the 18th European
Conference on Pattern Languages of Program, Article 5 (July 2013) , 15 pages. ACM.

1. INTRODUCTION

The long known credo of requirements engineering states that it is challenging to build the right system if you do
not know what right is. Requirements engineering methods have to consider domain knowledge, otherwise severe
problems can occur during software development, e.g., technical solutions to requirements might be impractical
or costly. It is an open research question of how to elicit domain knowledge correctly for effective requirements
elicitation [Niknafs and Berry 2012]. Several requirements engineering methods exist. Fabian et. al [Fabian et al.
2010] concluded in their survey about these methods that it is not yet state of the art to consider domain knowledge.

We propose to build patterns for a structured domain knowledge elicitation. Depending on the kind of domain
knowledge that we have to elicit for a software engineering process, we always have certain elements that require

Author’s address: Kristian Beckers, Oststrasse 99, 47057 Duisburg, Germany; email kristian.beckers@uni-duisburg-essen.de;
Stephan Faßbender, Oststrasse 99, 47057 Duisburg, Germany; email: stephan.fassbender@uni-due.de; Maritta Heisel, Oststrasse 99,
47057 Duisburg, Germany; email: stephan.fassbender@uni-due.de
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
EuroPLoP '13, July 10 - 14, 2013, Irsee, Germany
Copyright 2015 ACM. ISBN 978-1-4503-3465-5/15/07...$15.00
DOI: http://dx.doi.org/10.1145/2739011.2739016

consideration. We base our approach on Jackson’s work [Jackson 2001] that considers requirements engineering
from the point of view of a machine in its environment. The machine is the software to be built and requirements
are the effect the machine is supposed to have on the environment. Our patterns do not enforce considering the
machine explicitly, but demand a description of the environment.

In this paper, we develop and present a meta-model for building patterns for considering domain knowledge
during requirements engineering. We consider different kinds of domain knowledge, e.g., technical or organizational
domain knowledge. Therefore, we use a bottom up approach, starting with a set of previously and independently
developed context-patterns.

The ultimate aim of this paper is to identify the common concepts, which are part of the already obtained
context-pattern, and aggregate them to a meta-model of elements one has to talk and think about when describing
a new context-pattern.This is quite similar to what Jackson [Jackson 2001] proposed for requirements. He defined
a meta-model of reoccurring domains, like causal, biddable and lexical domains. These domains are used to
define basic requirements patterns, so-called Problem Frames. In this work we show a similar meta-model for
context elicitation. We show how we derived it from already existing context elicitation patterns, and how it can be
used to describe the structural part of a new context-pattern.

This meta-model has several benefits. First, i t forms a uniform basis for our context-patterns, making them
comparable. Second, findings and results for one pattern can be transferred to the other pattern via a generalization
of meta-model elements. Third, the meta-model contains the important conceptual elements for context elicitation
patterns. Fourth, it enables us to form a pattern language for the context elicitation pattern.

Note that there are different views on the term pattern language and a meta-model is an important part of it.
According to Fowler [Fowler 1996; 2002] a pattern language indeed is about the relations between patterns. Hafiz
et al. [Hafiz et al. 2012] agree and elaborate that an enumeration of patterns is just a pattern catalog. Both, Hafiz
et al. and Fowler, basically adopt the view of Alexander [Alexander 1978] towards patterns and pattern languages.
In contrast, Jackson [Jackson 2001] calls his domain-types and interfaces in between already a language for
expressing problem frames (which are kind of patterns [Jackson 2001]). The frames themselves are not related by
Jackson. To be precise, Jackson never uses the term "pattern language", but a language for expressing problem
frames.

Those different views can be aligned in some way. Fowler states that a defined "form" [Fowler 1996] or "pattern
structure" [Fowler 2002] is essential for expressing a pattern. He refers further to the work of Alexander. For Fowler,
a pattern structure should consist of a "sketch" [Fowler 2002], which is a structural and graphical description, and
a textual description of behaviour and relations. A very similar understanding of how to describe a pattern can be
found in Hafiz et al. [Hafiz et al. 2012] and Fernandez et al. [Fernandez and Pan 2001]. This understanding is in
line with what Jackson calls a language to describe a problem frame (pattern) [Jackson 2001]. Hafiz refines the
structural and graphical description further to a common vocabulary and syntax [Hafiz et al. 2012]. The textual
description additionally needs a grammar and behavioural elements. Hence, our meta-model is not a full pattern
language. It "only" defines the vocabulary and syntax for describing patterns. But to form a pattern language it is
necessary to have a common way to describe patterns [Fowler 1996; 2002]. Hence, we did the first step towards a
pattern language and will complete the missing steps in future work.

Using this meta-model we empower requirements engineers to describe their own context-patterns, which
capture the most important parts for understanding the context of a system-to-be. Note, that the difference
between our meta model and Tolendano’s [Toledano 2002] meta-pattern is that he abstracted existing patterns
into meta-patterns, while we want to create a meta model as a basis for a pattern language for context elicitation.

In addition, patterns produced with our meta-model are scalable, because it is possible to attach diagrams to
the patterns, e.g., UML activity diagrams that explain interactions between different stakeholders. These diagrams
can support different views and levels of granularity. All these diagrams are based upon our patterns. Hence, we
can apply consistency checks and traceability links with the elements in the attached diagrams and the created
patterns.

The domain knowledge elicited using our patterns is not limited to software engineering. We showed in previous
work, e.g., [Beckers et al. 2013], that the knowledge can also support the establishment of security standards of
the ISO 27000 family of standards [ISO/IEC 2009].

The rest of the paper is organized as follows. In the next section we show several previously and independently
described patterns which were the input for our bottom up method to build the meta-model. We show the meta-
model and its development based on these pattern in Sect. 4. We explain how to use the meta-model in Sect. 5.
Section 6 concludes the paper.

2. DEFINING CONTEXT-PATTERN

We address the context elicitation and consideration as discussed previously in Section 1 by describing common
structures and stakeholders for several different domains in so-called context-patterns for structured domain
knowledge elicitation. Depending on the kind of domain knowledge that we have to elicit for a software engineering
process, we always have certain elements that require consideration. We base our approach on Jackson’s
work [Jackson 2001] that considers requirements engineering from the point of view of a machine in its environment.

A context-pattern consists of the following parts:

Method. A method contains a sequence of steps. Each step is described using well defined activities, inputs,
and outputs. Inputs are descriptions of the required artifacts to perform the activities of the method step.
Activities are descriptions of the processing of all inputs into outputs. Outputs are the desired results of the
activities of this step. A context-pattern has to contain a method that describes how to use the context-pattern.
Graphical pattern. Our context-patterns do not enforce considering the machine, meaning the system we
are going to build explicitly, but demand a description of its environment in graphical form. This environment
contains domain knowledge. In particular, any given environment considers certain elements, e.g., stakeholders
or technical elements. Moreover, we believe that every environment of a software engineering problem can be
divided into parts that have direct physical contact with the machine and parts in the environment that have an
effect on the machine without physical contact, e.g., laws. These relations between the environment and the
machine have to be part of the graphic, as well. A context-pattern has to contain at least one graphical pattern.
We use a UML-based notation for our graphical patterns that uses, e.g., stick figures for actors, but we also
use notation elements that are not part of the UML, such as rectangles that symbolize an environment and all
elements in the rectangle belong to this environment.
Templates. Templates contain additional information about elements in the graphical pattern. For example, a
graphical pattern contains a graphical figure of a stakeholder and a corresponding template for the stakeholder
can contain, e.g., the motivation of the stakeholder for using the machine and the relations to other stakeholders.
Templates provide the means to attach further information to the graphical pattern. The reason for adding this
refinement in a template and not in the graphical pattern is not to overload the graphical pattern with too many
elements. Templates are optional elements of context-patterns, because not all graphical patterns require a
refinement.

3. A CATALOG OF CONTEXT PATTERNS

In the following we will list our catalog of context-patterns. We will only elaborate the graphical part of the patterns
as only this information is of importance for the rest of the paper.

3.1 Peer-to-Peer System Analysis Pattern

Aligning software systems to meet requirements is hard, which is even more difficult when a Peer-to-Peer (P2P)-
based software system shall be developed. For example, the effects of churn, the random leaving or joining of
peers in the system, can cause data loss. If a requirement exists stating that no data loss shall occur in the system,
then churn presents a challenge that has to be considered for this requirement. A software engineer can design a

 Layer
Reliability and Fault ResilienceSecurity Management

Location Lookup Routing

Network

Application

Performance and Resource Management

Resource Discovery

Scalability Security PerformanceReliabilityRedundancy

Application Layer

Service Layer

Services

Meta Data Service MessagingService Management

Peer−to−Peer (P2P) Protocol

Network Layer

Quality RequirementsRequirements leading to P2P

Feature Management

...
...

Layer

Overlay Management

Fig. 1: P2P pattern

countermeasure if she is aware of the challenge. This, however, is difficult, because numerous challenges are
caused by attributes of the P2P protocol or even the network layer.

We present a pattern-based method to identify existing challenges in a P2P-based software system. An initial
pattern considers all layers of a P2P architecture and offers more detailed patterns for, e.g., P2P protocols. The
instantiation of these patterns enables an analysis of the system’s challenges and reveals the information in which
layer each challenge originates. An extensive description of the context-pattern can be found in [Beckers and
Faßbender 2012]. Our P2P pattern (see Figure 1 top) is based upon the P2P architecture from Lua et al. [Lua et al.
2005], which is derived from a survey of existing P2P systems. This survey describes P2P systems as layered
architectures that contain at least the following layers.

The Application Layer concerns applications that are implemented using the underlying P2P overlay. For
example, a Voice-over-IP (VoIP) application. The Service Layer adds application-specific f unctionality t o the
P2P infrastructure. For example, for parallel and computing-intensive tasks, or for content and file management.
Meta-data describe what the service offers, for instance, content storage using P2P technology. Service messaging
describes the way services communicate. The Feature Management Layer contains elements that deal with
security, reliability and fault resiliency, as well as performance and resource management of a P2P system. All
these aspects are important for maintaining the robustness of a P2P system. The Overlay Management Layer is
concerned with peer and resource discovery and routing algorithms. The Network Layer describes the ability of
the peers to connect in an ad hoc manner over the internet or small wireless or sensor-based networks.

3.2 Service-oriented Architecture Pattern

Our Service-oriented Architectures (SOA) pattern concerns eliciting domain knowledge for SOA. A detailed
description of the context-pattern can be found in [Beckers et al. 2012]. The context-pattern was derived from a
survey and research roadmap for SOA [Papazoglou et al. 2008] and validated using industry (e.g. [Arsanjani et al.
2007; Arsanjani et al. 2008]) and research (e.g. [Perepletchikov et al. 2008]) reports.

A SOA spans different layers [Beckers et al. 2012], which form a pattern on a SOA with technological focus,
as depicted in Figure 2 on the top. The first and top layer is the Business Domain layer, which represents the

Component

Component

Component

Business Processes

P
ro

c
e
s
s

P
ro

c
e
s
s

Business
Service

Business
Service

Business
Service

Business
Service

Business Services

Infrastructure Services

Infrastructure
Service

Infrastructure
Service

Infrastructure
Service

Component−based
Service Realization

Operational Systems

CRM ERP

Database

Packaged
Applications

Legacy
Applications

participates in

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organization

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organization

performed by relies on exposes business relation

Organization

Business Domain

Fig. 2: SOA Layer Pattern

real world. It consists of Organizations, their structure and actors, and their business relations to each other. The
second layer is the Business Process layer. To run the business, certain Processes are executed. Organizations
participate in these processes. These processes are supported by Business Services, which form the Business
Service layer. A business service encapsulates a business function, which performs a process activity within
a business process. All business services rely upon Infrastructure Services, which form the fourth layer. The
infrastructure services offer the technical functions needed for the business services. These technical functions
are either implemented especially for the SOA, or they expose interfaces from the Operational Systems used in an
organization. These operational systems, such as databases or legacy systems, are part of the last SOA layer at
the bottom of the SOA stack.

In Figure 2 at the bottom, we adapted problem-based methods, such as problem frames by Jackson [Jackson
2001], to enrich the SOA layer pattern with its environmental context. The white area in Figure 2 (bottom) spans the
SOA layers that form the machine. The business processes describe the behavior of the machine. The business
services, infrastructure services, components, and operational systems describe the structure of the machine. Note

Component

Component

Component

P
ro

c
e
s
s

P
ro

c
e
s
s

Business
Service

Business
Service

Business
Service

Business
Service

Infrastructure
Service

Infrastructure
Service

Infrastructure
Service

CRM ERP

Database

Packaged
Applications

Legacy
Applications

Business Processes

Business Services

Infrastructure Services

Component−based
Service Realization

Operational Systems

Business Domain

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organisation

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organisation Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organisation

Legislator Domain Shareholder LegislatorAsset Provider Domain

Process Actor A Process Actor B Process Actor C Process Actor D

Business Service
Provider

Infrastructure
Service Provider

Component Provider

Operational
Systems Provider

Legislator

influences providesparticipates inpart of

Indirect Environment

Direct Environment

M
a
c
h
in

e

In
n
e
r

S
y
s
te

m

O
u
te

r
S

y
s
te

m

Fig. 3: SOA Layer Stakeholder Pattern

that the business processes are not part of the machine altogether, as the processes also include actors which are
not part of the machine. Thus, the processes are the bridge between the SOA machine and its environment. The
environment is depicted by the gray parts of Figure 2 (bottom). The light gray part spans the Direct Environment
and includes all entities which participate in the business processes or provide a part, like a component, of the
machine. An entity is, for example, something that exits in the environment independently of the machine or other
entities. The dark gray part in Figure 2 (bottom) spans the indirect environment. It comprises all entities not related
to the machine but to the direct environment. The Business Domain layer is one bridge between the direct and
indirect environment. Some entities of the Direct Environment are part of organizations. Some entities of the
Indirect Environment influence one or more organizations. The machine and the Direct Environment form the inner
system, while the outer system also includes the Indirect Environment.

The entities we focused on for the stakeholder SOA pattern are stakeholders, because all requirements to be
elicited stem from them. There are two general kinds of stakeholders. The direct stakeholders are part of the
direct environment, while the indirect stakeholders are part of the indirect environment. We derived more specific
stakeholders from the direct and indirect stakeholders, because these two classes are very generic. Process
actors and different kinds of providers are part of the direct environment. Legislators, domains, shareholders and
asset providers are part of the indirect environment. In Figure 2 (bottom), the resulting stakeholder classes are
depicted as stick figures. For a detailed description of these stakeholders we refer to our previous work [Beckers
et al. 2012].

Legislator(s)

Domain(s)

Target Person(s)Addressee(s)
Influence

Law

Target Subject(s)

Section

Law Structure

Subject Classifier

Person Classifier

Regulation(s)

Avoid /
Activity(ies) Influence

Accomplish

Law / Section

Law / Section Law / Section

Entitled To

Related To

Activity Classifier
Mentioned Or Defined InMentioned Or Defined In

Mentioned Or Defined In

ClassificationContext

Fig. 4: Law Pattern

3.3 Law Pattern

Commonly, laws are not adequately considered during requirements engineering. Therefore, they are not covered
in the subsequent system development phases. One fundamental reason for this is that the involved engineers are
typically not cross-disciplinary experts in law and software and systems engineering. Hence, we present in this
section a context-pattern for identifying laws and regulations including a method to systematically consider laws in
the requirements engineering process. For our method we chose the German law as the binding law. The patterns
are based on legal literature (e.g. [Schwacke 2003; Larenz 1983]) and validated using laws (e.g. the federal data
protection act [Bundestag der Bundesrepublik Deutschland (parliamentary council of federal republic of Germany)
2009])

Based on the structure of laws (details can be found in [Beckers et al. 2012]), we define a law pattern shown in
Fig. 4. The pattern consists of three parts: the dark grey part represents the Law Structure, the light gray part
depicts the Classification to consider the specialization of the elements contained in the Law Structure in related
laws or sections, and the white part considers the Context. The Context part of the law pattern contains the
Legislator(s) defining the jurisdiction, and the Domain(s) clarifying for which domain the law was established.

As it is necessary to know in which context and relation a law is used, we introduce Regulation(s), which are
Related To the section at hand. Regulation(s), Legislator(s), and Domain(s) can be ordered in hierarchies, similar
to classifiers. For instance, Germany is part of the EU and consists of several states.

Figure 5 shows our law identification pattern. The structure is similar to the law pattern in Fig. 4 to allow a
matching of instances of both patterns. In contrast to the legal vocabulary used in the Law Structure of our law
pattern, the wording for the elements in the dark gray colored Core Structure of our law identification pattern is
based on terms known from requirements engineering. For example, the element Asset(s) in our law identification
pattern represents the element Target Subject(s) in our law pattern.

Our law identification pattern takes into account that requirements are often interdependent (Requirement(s)
in the Context part). Given a law relevant to a requirement, the same law might be relevant to the dependent
requirements, too. Furthermore, the pattern helps to document similar dependencies for a given Activity using the
Related Process(es) in the Context part.

Legislator(s)

Process(es)
Related

Domain(s)

Core Structure

Influence

Accomplish

Avoid /
Activity

Influence

Classified As

Requirement Activity

Asset(s)

Active Stakeholder(s) Passive Stakeholder(s)

Subject Classifier

Person Classifier

Law / Section
Defined Or Mentioned In

Activity Classifier

Entitled To

Classified As

Classified As

Defined Or Mentioned In

Defined Or Mentioned In
Classified As

Law / Section

Law / Section

Related To

Requirement(s)

ClassificationContext

Fig. 5: Law Identification Pattern

3.4 Cloud System Analysis Pattern

We present our cloud system analysis pattern that helps to systematically describe cloud computing scenarios
and identify assets in these scenarios. The pattern is based on several cloud standards and publications (e.g.
[Armbrust et al. 2009; Mell and Grance 2009; Vaquero et al. 2008])

The cloud system analysis pattern shown in Fig. 6 provides a conceptual view on cloud computing systems
and serves to systematically analyse stakeholders and technical cloud elements. The notation used to specify the
pattern is based on UML1 notation, i.e. the stick figures represent roles, the boxes represent concepts or entities of
the real world, the named lines represent relations (associations) equipped with cardinalities, the unfilled diamond
represents a part-of relation, and the unfilled triangles represent generalization.

A Cloud is embedded into an environment consisting of two parts, namely the Direct System Environment and the
Indirect System Environment. The Direct System Environment contains stakeholders and other systems that directly
interact with the Cloud, i.e. they are connected by associations. Moreover, associations between stakeholders in the
Direct and Indirect System Environment exist, but not between stakeholders in the Indirect System Environment
and the cloud. Typically, the Indirect System Environment is a significant source for compliance and privacy
requirements.

The Cloud Provider owns a Pool consisting of Resources, which are divided into Hardware and Software
resources. The provider offers its resources as Services, i.e. IaaS, PaaS, or SaaS. The boxes Pool and Service
in Fig. 6 are hatched, because it is not necessary to instantiate them. Instead, the specialized cloud services
such as IaaS, PaaS, and SaaS and specialized Resources are instantiated. The Cloud Developer represents a
software developer assigned by the Cloud Customer. The developer prepares and maintains an IaaS or PaaS
offer. The IaaS offer is a virtualized hardware, in some cases equipped with a basic operating system. The Cloud
Developer deploys a set of software named Cloud Software Stack (e.g., web servers, applications, databases)
into the IaaS in order to offer the functionality required to build a PaaS. In our pattern PaaS consists of an IaaS, a
Cloud Software Stack and a cloud programming interface (CPI), which we subsume as Software Product. The
Cloud Customer hires a Cloud Developer to prepare and create SaaS offers based on the CPI, finally used by the

1Unified Modeling Language: http://www.omg.org/spec/UML/2.3/

1..*

*

*
1..*

*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..*
1..*

*

1..*

*

1..

1..

*

*

* *

*

1..*

1..*

*

PaaS

SaaS

IsComplementedBy

IsComplementedBy

UsedBy

UsedBy

BuiltAndCustomizedBy

BuiltBy

InputBy/OutputTo

IsComplementedBy

Software Stack
Cloud

Direct System Environment Has

IsMonitoredBy

Hardware
Location

Cloud Customer

End Customer

Cloud Developer

Cloud Provider

Software

Product

Data

Indirect System Environment

DomainLegislator

Software

Cloud

Has

WorkFor

Provides

Owns Ressource

Service

Pool

IsBasedOn

IaaS

Fig. 6: Cloud System Analysis Pattern

End Customers. SaaS processes and stores Data in- and output from the End Customers. The Cloud Provider,
Cloud Customer, Cloud Developer, and End Customer are part of the Direct System Environment. Hence, we
categorize them as direct stakeholders. The Legislator and the Domain (and possibly other stakeholders) are part
of the Indirect System Environment. Therefore, we categorize them as indirect stakeholders.

4. DERIVING A META-MODEL FOR PATTERN-BASED CONTEXT ELICITATION

The meta-model was derived in a bottom up way from the different patterns we described independently for
different domains. For the process of deriving the general elements, which then form the meta-model, we started to
analyze each context elicitation pattern in isolation. For each element in a context elicitation pattern we discussed
what the general concept behind this element is or if it is a general concept in itself. Therefore, we set up a table
containing the elements of the current pattern to be analyzed as rows and the conceptual elements as columns.
For each concept found we checked if this concept was already covered in the table or not. In the case it was
already covered we only added a cross to the table. In the case the concept was not covered by a conceptual
element, we added a new column. After iterating over the elements of the pattern, we did a second step by adding
the found conceptual elements as rows and analyzing for each of them if they could be further generalized in a
reasonable way or not. This way we found also new conceptual elements. Hence, we had to do the second step
several times. If nothing new was found, we finished the analysis. This way, we obtained the conceptual elements,
which were candidates for the meta-model.

Table I shows the result of this phase for the SOA pattern. In this case, we analyzed two patterns in conjunction,
because the stakeholder SOA pattern reuses many elements of the SOA layer pattern.

General Concept
Layer Stake-

holder
Process Active

Re-
source

Relation Environ-
ment

Indirect
Environ-

ment

Indirect
Stake-
holder

Direct
Environ-

ment

Direct
Stake-
holder

Ma-
chine

Area Re-
source

S
O

A
La

ye
r

P
at

te
rn

E
le

m
en

t

Business Organizations x
Organization x
Business Processes x
Process x
Business Services x
Business Service x
Infrastructure Services x
Infrastructure Service x
Component-based Service Realization x
Component x
Operational Systems x
CRM x
ERP x
Database x
Packaged Applications x
Legacy Applications x
Participates In x
Performed By x
Relies On x
Exposes x
Business Relation x

S
ta

ke
ho

ld
er

S
O

A
P

at
te

rn
E

le
m

en
t

Outer System x
Indirect Environment x
Legislator x
Domain x
Shareholder x
Asset Provider x
Inner System x
Direct Environment x
Process Actor x
Business Service Provider x
Infrastructure Service Provider x
Component Provider x
Operational Systems Provider x
Machine x
Influences x
Part Of x
Provides x

C
on

ce
pt

ua
lE

le
m

en
t

Layer x
Stakeholder
Process
Active Resource x
Relation
Environment x
Indirect Environment x
Indirect Stakeholder x
Direct Environment x
Direct Stakeholder x
Machine x
Area
Resource

Table I. : Analysis of the SOA Layer Pattern and the Stakeholder SOA Pattern Elements

In a next phase we harmonized the conceptual elements by comparing the found elements, merging them if
needed and setting up their relations. This way we got a coherent set of conceptual elements over all patterns.

In the last phase we had to choose which conceptual elements should be part of the meta-model. Table II
shows the conceptual elements and in which of the patterns a corresponding element exists. Additionally, we
selected for each pattern those elements which were not explicitly part of the pattern and checked if the missing
element is an implicit part of the pattern. The patterns were also tagged with the information if there is a technical
or organizational view provided or a combination of both. This is important to consider, because there might
be elements which only occur in one of the views. Those elements might be excluded by just looking at the
pure occurrence number, because they can only occur in a subset of the pattern. But those elements might be
nevertheless important to capture aspects which are special for a view.

The general rule to include an element into the meta-model or not, was to add every element with an occurrence
greater than three, which means the element occurs in more than the half of the patterns. In case of a view specific
element, an occurrence of greater than two was sufficient, because the number of patterns associated with a view
was four. Every element with an occurrence of two was subject to be discussed. The occurrence of an element
was calculated only considering the explicit occurrence in a pattern.

Type technical technical Technical, or-
ganizational

technical, or-
ganizational

organiza-
tional

organiza-
tional

Pattern P2P Pattern SOA Layer
Pattern

Stakeholder
SOA Pattern

Cloud Pattern Law
Identification

Pattern

Law Pattern

M
et

a-
m

od
el

E
le

m
en

t

Pattern x x x x x x
Areas x x x x x x
Machine o o x x
Environment o x x x x
Direct Environment o x x x x
Indirect Environment o x x x x
Layer x x x
Process x x x x
Activity o o x x
Stakeholder x x x x x
Direct Stakeholder o x x x x
Indirect Stakeholder x x x x
Resource x x x x x x
Active Resource x x x x
Passive Resource x x x
Relation x x x x x x

un
co

ve
re

d
E

le
m

en
ts Requirements x x

Requirements leading to P2P x

Requirements Influenced by P2P x

x = contains element o = contains element implicit

Table II. : Overview of Elements of the Context-Patterns and their relation to the Meta-model

We had to discuss the conceptual elements requirement and machine. For the machine element it seemed that
it is only part of patterns which mix-up the technical and the organizational view. So the first reason to include them
is that for eliciting the context of a software problem the most usual pattern is one which mixes the technical and
organizational view. This reason was supported by the experiences of the authors and context elicitation patterns,
which are currently developed and studied, but which are not published yet. A second reason was the fact that the
patterns with a more technical view contain the machine implicitly. For example, for the SOA Layer pattern the
machine is not an explicit model element, but the extension to the Stakeholder SOA pattern shows that elements
of the SOA layer pattern directly relate to the machine. We could not find similar evidence for the requirement
element. Moreover, we think that the requirement is part of the phases which follow the context elicitation. For the
P2P pattern we only added them for visualization means. Law Identification patterns are used in an iterative way.
Thus, they are applied after eliciting the ideal context without legal restriction. Hence, this is a very specific case,
which one cannot generalize. As a result, the requirement element is excluded and the machine element added to
the context elicitation meta-model. Finally, we formed the meta-model as depicted in Fig. 7 out of the selected
conceptual elements. The meta-model was modeled using the UML notation.

The root element is the Pattern itself. Each pattern consists of at least one Area. In general, an area contains
elements of the same kind, view or level. An area can contain other areas to split it up and make it more fine-grained.
An area can be the Machine, or an Environment, which contains in turn elements that have some kind of relation
to the machine, or a Layer, which encapsulates elements of the same hierarchy level.

The environment can be further refined. There are elements which directly interact with the machine, captured
in the Direct Environment. And there are elements which have an influence on the system via elements of the
direct environment, captured by the Indirect Environment.

An element, which is part of an Area, can be a Process, a Stakeholder, or a Resource. A process describes
some kind of workflow or sequence of activities. Therefore, it can contain Activities. A stakeholder describes
a person, a group of persons, or organizational units, which have some kind of influence on the machine. A
stakeholder can be refined to a Direct Stakeholder, who interacts directly with the machine, and an Indirect

Fig. 7: Meta-Model for Context-Patterns

Stakeholder, who only interacts with direct stakeholders, but has some interest in or influence on the machine.
A Resource describes some material or immaterial element, which is needed to run the machine or which is
processed by the machine and which is not a stakeholder. A resource can be an Active Resource with some
behavior or a Passive Resource without any behavior.

This meta-model has several benefits. First, i t forms a uniform basis for our context-patterns, making them
comparable. If a method already makes use of one of the patterns, it is now easy to generalize the usage to the
elements of the meta-model. This enables one to replace a given used pattern by another one easily. Second,
findings and results for one pattern can be transferred to the other pattern via a generalization to the meta-model
elements. Third, the meta-model contains the important conceptual elements for context elicitation patterns. Thus,
it is helpful to know this elements and search for them in a specific domain when setting up a new context-pattern
for a domain. Fourth, it enables to form a pattern language for the context elicitation pattern. The common
meta-model eases relating the patterns to each other.

5. APPLICATION OF THE META-MODEL

After the definition of the meta-model, we instantiated it for each of our context-patterns. Thus, we aligned all of
the patterns to the same foundation making them comparable. Additionally, when integrating context elicitation
patterns into requirements engineering methods, this can be done in general only referring to the context elicitation
meta-model.

To check whether the meta-model is applicable to any context elicitation pattern, we instantiated the meta-model
for all of the source context elicitation pattern and additionally a smart grid context-pattern. This pattern was not
part of the set of patterns used for deriving the meta-model. Thus, it did not influence the meta-model. But in case
the smart grid pattern can be fully mapped to the meta-model, we show some evidence that the meta-model is
reasonable and useful in general.

For a structured elicitation of information about the context of a smart grid software, we derived a context-pattern
for smart grids. We conducted a in depth analysis of several documents like the CC protection profiles for smart
meters [Kreutzmann et al. 2011a; 2011b], the documentation of the OpenNode project [OPEN node project 2010;
2011], the documentation of the OpenMeter project [OPEN meter project 2009], Siemens case studies from the
NESSoS project, and the Canadian smart grid implementation program [of Gas and Markets 2011b; 2011a]. The
resulting elements and their mapping to the meta-model is shown in Fig. 8.

The root Pattern element is the Smart Grid Pattern itself. The smart grid pattern contains a Direct and an
Indirect Environment, which map to the meta-model elements with the same name. Further, the smart grid pattern
contains three Areas, namely the Grid, the Micro Grid and the Micro Grid Element. These areas contain different
kinds of Grid Elements. A grid element is an Active Resource. Grid elements are connected by Grid Element
Relations which are Relations. The direct environment contains different kinds of Direct Stakeholders which are

Fig. 8: Smart Grid Pattern Metamodel

Direct Stakeholders of the meta-model. Direct stakeholders are related to each other, to grid elements and to
areas by different kinds of Stakeholder Relations which are Relations, too. The indirect environment contains
Domains and Legislators, which are Indirect Stakeholders.

This application of the meta-model shows that the meta-model is sufficient for instantiating context-pattern. The
smart grid pattern could be described using the meta-model without any problems. This way we prove that the
generalization we did for forming the meta-model was reasonable.

6. CONCLUSIONS

We have presented a first step for creating a pattern language for context-patterns, which provide a structured
means for eliciting domain knowledge. This step is creating a meta model for context-patterns. We illustrated
our approach by showing context-patterns, e.g., patterns that consider specific technologies like Peer-to-Peer
networks, specific types of architectures like cloud computing, and specific domains, e.g., the legal domain. All of
these patterns relate to our meta model.

We can use instantiated patterns as a basis for writing requirements, deriving architectures or structured
discussions about a specific domain. In addition, our patterns can be used outside the domain of software
engineering for example for scope descriptions, asset identification, and threat analysis, when building an ISO
27001 [ISO/IEC 2005] compliant Information Security Management System [Beckers et al. 2013].

Our approach offers the following main benefits:

—A meta-model for describing context-patterns for various kinds of domain knowledge. This enables
—comparing different context-patterns
—transferring information between context-patterns instances
—a guided description of new patterns using common elements and terms
—forming a pattern language for context elicitation

—The patterns can be accompanied by further diagrams to support different views and detail levels to support
scalability

—The patterns can be integrated into existing software development processes in order to improve context
elicitation activities

—The patterns are useful beyond software engineering. For example, they can be applied to create the documen-
tation for implementing security standards, e.g., ISO 27001 [ISO/IEC 2005].

The next step of our work is to formulated and describe the pattern language for context-patterns. The meta-
model is one important step in this direction but not sufficient to form a full pattern language. We also aim at
describing a structured method for deriving and describing context-patterns for not already covered domains.

In the future, we will extend our method to provide support for creating textual requirements patterns and
derive software architectures. We will also provide the means for consistency checks of instantiated patterns and
requirements. For example, it will be possible to check if a stakeholder in the domain knowledge pattern instance
is considered in software requirements. In the future we will propose a number of consistency checks between our
context-pattern and models that are derived using our patterns.

7. ACKNOWLEDGEMENTS

We thank our shepherd Hugo Ferreira for fruitful discussions and constructive feedback, as well as the members
of our workshop Veli-Pekka Eloranta, Frank Frey, Carsten Hentrich, James Noble, Daniel Sagenschneider, Dietmar
Schütz, Michael Weiss, Uwe Zdun and Christian Köppe for helpful discussions.

This research was partially supported by the EU project Network of Excellence on Engineering Secure Future
Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy ICT, Grant No. 256980) and the
Ministry of Innovation, Science, Research and Technology of the German State of North Rhine-Westphalia and
EFRE (Grant No. 300266902 and Grant No. 300267002).

REFERENCES

ALEXANDER, C. 1978. A Pattern Language: Towns, Buildings, Construction. Oxford University Press.

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R. H., KONWINSKI, A., LEE, G., PATTERSON, D. A., RABKIN, A., STOICA, I.,
AND ZAHARIA, M. 2009. Above the clouds: A berkeley view of cloud computing. Tech. rep., EECS Department, University of California,
Berkeley.

ARSANJANI, A., GHOSH, S., ALLAM, A., ABDOLLAH, T., GARIAPATHY, S., AND HOLLEY, K. 2008. SOMA: a method for developing service-
oriented solutions. IBM Systems Journal 47, 3, 377–396.

ARSANJANI, A., ZHANG, L.-J., ELLIS, M., ALLAM, A., AND CHANNABASAVAIAH, K. 2007. Design an SOA solution using a reference architecture.
Tech. rep., IBM. http://www.ibm.com/developerworks/library/ar-archtemp/.

BECKERS, K., CÃŤTÃL’, I., FAÃ§BENDER, S., HEISEL, M., AND HOFBAUER, S. 2013. A pattern-based method for establishing a cloud-specific
information security management system. Requirements Engineering, 1–53.

BECKERS, K. AND FASSBENDER, S. 2012. Peer-to-peer driven software engineering considering security, reliability, and performance. In
Proceedings of the International Conference on Availability, Reliability and Security (ARES) - 2nd International Workshop on Resilience and
IT-Risk in Social Infrastructures (RISI 2012). IEEE Computer Society, 485–494.

BECKERS, K., FASSBENDER, S., HEISEL, M., AND MEIS, R. 2012. Pattern-based context establishment for service-oriented architectures. In
Software Service and Application Engineering. LNCS 7365. Springer, 81–101.

BECKERS, K., FASSBENDER, S., KÜSTER, J.-C., AND SCHMIDT, H. 2012. A pattern-based method for identifying and analyzing laws. In
Proceedings of the International Working Conference onRequirements Engineering: Foundation for Software Quality (REFSQ). LNCS 7195.
Springer, 256–262.

BUNDESTAG DER BUNDESREPUBLIK DEUTSCHLAND (PARLIAMENTARY COUNCIL OF FEDERAL REPUBLIC OF GERMANY). 2009. Bundesdaten-
schutzgesetz (Federal Data Protection Act). available at: http://www.gesetze-im-internet.de/englisch_bdsg/federal_data_protection_act.pdf.

FABIAN, B., GÜRSES, S., HEISEL, M., SANTEN, T., AND SCHMIDT, H. 2010. A comparison of security requirements engineering methods.
Requirements Engineering – Special Issue on Security Requirements Engineering 15, 1, 7–40.

FERNANDEZ, E. B. AND PAN, R. 2001. A Pattern Language for Security Models. In 8th Conference of Pattern Languages of Programs (PloP).
FOWLER, M. 1996. Analysis Patterns: Reusable Object Models. Addison-Wesley.
FOWLER, M. 2002. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
HAFIZ, M., ADAMCZYK, P., AND JOHNSON, R. E. 2012. Growing a pattern language (for security). In Proceedings of the ACM international

symposium on New ideas, new paradigms, and reflections on programming and software. Onward! ’12. ACM, New York, NY, USA, 139–158.
ISO/IEC. 2005. Information technology - Security techniques - Information security management systems - Requirements. ISO/IEC 27001,

International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC).
ISO/IEC. 2009. Information technology - Security techniques - Information security management systems - Overview and Vocabulary. ISO/IEC

27000, International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC).
JACKSON, M. 2001. Problem Frames. Analyzing and structuring software development problems. Addison-Wesley.
KREUTZMANN, H., VOLLMER, S., TEKAMPE, N., AND ABROMEIT, A. 2011a. Protection profile for the gateway of a smart metering system.

Tech. rep., BSI.
KREUTZMANN, H., VOLLMER, S., TEKAMPE, N., AND ABROMEIT, A. 2011b. Protection profile for the security module of a smart metering

system. Tech. rep., BSI.
LARENZ, K. 1983. Methodenlehre der Rechtswissenschaft 5. Ed. Springer.
LUA, E. K., CROWCROFT, J., PIAS, M., SHARMA, R., AND LIM, S. 2005. A survey and comparison of peer-to-peer overlay network schemes.

IEEE Communications Surveys and Tutorials 7, 72–93.
MELL, P. AND GRANCE, T. 2009. The NIST definition of cloud computing. Working Paper of the National Institute of Standards and Technology

(NIST).
NIKNAFS, A. AND BERRY, D. M. 2012. The impact of domain knowledge on the effectiveness of requirements idea generation during

requirements elicitation. In Requirements Engineering Conference (RE), 2012 20th IEEE International. 181 –190.
OF GAS, O. AND MARKETS, E. 2011a. Smart Metering Implementation Programme, Response to Prospectus Consultation, Design Require-

ments. Tech. rep., Office of Gas and Electricity Markets.
OF GAS, O. AND MARKETS, E. 2011b. Smart Metering Implementation Programme, Response to Prospectus Consultation, Overview Document.

Tech. rep., Office of Gas and Electricity Markets.
OPEN METER PROJECT. 2009. Requirements of AMI. Tech. rep., OPEN meter project.
OPEN NODE PROJECT. 2010. Evaluation of general requirements according state of the art . Tech. rep., OPEN node project.
OPEN NODE PROJECT. 2011. Functional Use cases. Tech. rep., OPEN node project.
PAPAZOGLOU, M. P., TRAVERSO, P., DUSTDAR, S., AND LEYMANN, F. 2008. Service-oriented computing: a research roadmap. Int. J.

Cooperative Inf. Syst. 17, 2, 223–255.
PEREPLETCHIKOV, M., RYAN, C., FRAMPTON, K., AND SCHMIDT, H. W. 2008. Formalising service-oriented design. Journal of Software 3, 2,

1–14.
SCHWACKE, P. 2003. Juristische Methodik mit Technik der Fallbearbeitung 4. Ed. Kohlhammer Deutscher Gemeindeverlag.
TOLEDANO, M. D. D. 2002. Meta-patterns: Design patterns explained. Tech. rep.
VAQUERO, L. M., RODERO-MERINO, L., CACERES, J., AND LINDNER, M. 2008. A break in the clouds: Towards a cloud definition. Special

Interest Group on Data Communication (SIGCOMM) Computer Communication Review 39, 1, 50–55.

