
From Problems to Laws in Requirements Engineering
Using Model-Transformation

Stephan Faßbender, Maritta Heisel
University of Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, Oststrasse 99, Duisburg, Germany

Firstname.Lastname@uni-due.de

Keywords: Compliance, Law, Voting System, Requirements Engineering, Model Transformation

Abstract: Nowadays, many legislators decided to enact different laws, which all enforce legal and natural persons to deal
more carefully with IT systems. Hence, there is a need for techniques to identify and analyze laws, which are
relevant for an IT system. But identifying relevant compliance regulations for an IT system and aligning it to
be compliant to these regulations is a challenging task. In earlier works of ours we proposed patterns and a
structured method to tackle these problems. One of the central crucial steps, while using the patterns and the
method, is the transformation of requirements into a structure, allowing the identification of laws. The step is
not trivial, as requirements, in most cases, focus on the technical parts of the problem, putting the knowledge
about the environment of the system aside. In this work, we propose a method to structure the requirements,
elicit the needed domain knowledge and transform requirements into law identification pattern instances. For
this purpose, we make use of problem diagrams, problem frames, domain knowledge, and questionnaire. We
present our method using a voting system as an example, which was obtained from the ModIWa DFGa project
and the common criteria profile for voting systems.

aJuristisch-informatische Modellierung von Internetwahlen (II). A Deutsche Forschungsgemeinschaft
project: http://cms.uni-kassel.de/unicms/index.php?id=38536

1 Introduction

In general, every legislator demands from every-
one, who lives in or is active within the jurisdiction
of the legislators, to comply to the laws the legislator
enacts. Hence, software engineers have to assure that
the system to be developed is compliant to all relevant
laws. Therefore they need to know the legal require-
ments for the system to be developed. Based on this
knowledge the engineers can decide whether and how
to address compliance.

The identification and analysis of relevant laws
is considered to be difficult, because it is a cross-
disciplinary task in laws, and software and systems
engineering (Biagioli et al., 1987). Otto and Antón
(Otto and Antón, 2007) conclude in their survey about
research on laws in requirements engineering that
there is a need for techniques to identify relevant laws
based on requirements, analyze them, and to derive
requirements from them.

Pattern-based approaches capture the knowledge
of domain experts. In this way, the knowledge is
made explicit and can be re-used for recurring prob-
lems. Hence, we proposed a pattern-based approach

for identifying and analyzing laws in our earlier work
(Beckers et al., 2012a). These patterns already allow
the identification of relevant laws.

However, the identification of a relevant law alone
is not sufficient for software engineers. They require
a structured method that uses this approach to de-
rive software requirements and further implementable
software specifications. In (Beckers et al., 2012b) we
present such a structured method. One crucial and un-
described step within this method is the transforma-
tion of functional requirements into law identification
pattern instances, which allows the matching with law
pattern instances.

In the following, we present a guided transfor-
mation of requirements into law identification pat-
tern instances using a voting system as an example.
We make use of the problem-based requirements en-
gineering approach proposed by Jackson (Jackson,
2001) to structure the requirements in terms of prob-
lem diagrams in the first place. We decided to use
problem frames, because they have a kind of semi for-
mal structure and can be modeled. Furthermore, they
already embody descriptions of common problems.
Thus, they are suitable as input for a transformation



as they have a predictable structure and transforma-
tion rules can be setup on basis of the generic prob-
lems. Then we show how to turn these problem dia-
grams into law identification patterns. We provide de-
tailed transformation rules for different requirement
patterns, as described by (Côté et al., 2008), to get
the corresponding law identification pattern instances.
All these information needed for matching, relating,
and transformation is provided by means of transfor-
mation cards. The transformation cards support and
guide the requirements engineer, when preparing the
requirements for the matching with relevant laws. In
this way, the identification of laws gains precision and
is less error prone, for example due to forgetting im-
portant domain knowledge. Besides improving the
precision and lowering the chance of an error, trans-
formation cards are a step towards a semi-automatic
tool-support for requirements engineers.

Note, that at the actual point model transforma-
tion, as we use the term, is different from the un-
derstanding of the model transformation community.
The transformation is not an automated transforma-
tion between an input and an output model. For using
transformations card an input model is required and
the transformation card specifies an output model, but
does not define a overall automated transformation
process. Nevertheless, main parts are candidates to
be automated in the future.

In Sect. 2 we introduce the problem frame termi-
nology and notation, the pattern for law identification,
and the case study. For our case study, we struc-
ture the problem, ending up with a set of problem
diagrams in Sect. 3. In Sect. 4 we present a struc-
tured method, which guides requirements engineers
through the process of transforming the problem into
relevant laws. Sect. 5 outlines the result of a valida-
tion. Sect. 6 discusses the related work, and Sect. 7
concludes the paper.

2 Background

We use the problem frames (Jackson, 2001) ap-
proach to structure functional requirements and cor-
responding domain knowledge. And we make use of
the problem frames to facilitate the transformation to
the law identification pattern.

Problem Frames Jackson (Jackson, 2001) intro-
duced the concept of problem frames, which is con-
cerned with describing, analyzing, and structuring of
software development problems. A problem frame
represents a class of software development problems.
It is described by a frame diagram, which consists

of domains, interfaces between them, and a require-
ment. Domains describe entities in the environment.
Jackson distinguishes the domain types biddable do-
mains that are usually people, causal domains that
comply with some physical laws, and lexical do-
mains that are data representations. To describe the
problem context, a connection domain between two
other domains may be necessary. Connection do-
mains establish a connection between other domains
by means of technical devices. Examples are video
cameras, sensors, or networks. Finally, we introduced
display domains (Côté et al., 2008), which serve to
display information to some biddable domain.

Interfaces connect domains, and they contain
shared phenomena. Shared phenomena may be
events, operation calls, messages, and the like. They
are observable by at least two domains, but controlled
by only one domain, as indicated by the name of that
domain and “!”. For example, shared phenomenon
login in Fig. 1 is observable by the domains VoterI-
dentificationClient and Voter, but controlled only by
the domain Voter. We describe problem frames us-
ing UML class diagrams, extended by stereotypes, as
proposed by Hatebur and Heisel (Hatebur and Heisel,
2010).

The objective is to construct a machine (i.e., soft-
ware) that controls the behavior of the environment
(in which it is integrated) in accordance with the re-
quirements. When we state a requirement, we want
to change something in the environment. Therefore,
each requirement constrains at least one domain. A
requirement may refer to several domains in the envi-
ronment of the machine.

The problem frames approach distinguishes there-
fore between the requirements (R), the domain knowl-
edge (D), and the specification (S). The requirements
describe the desired system after the machine is built.
The domain knowledge represents the relevant parts
of the problem world. The specifications describe the
behavior of the software in order to meet the require-
ments.

Beside the requirements, the domain knowledge
about the environment of the machine to be built is
crucial for understanding the problem and specify-
ing the machine behavior later on. Unlike Jackson,
we distinguish between assumptions, facts, and defi-
nitions and designations. Assumptions describe condi-
tions fulfilled by the environment that are needed, so
that the requirements can be fulfilled by the machine.
But these can be violated at a certain point. Facts de-
scribe fixed properties of the environment irrespective
of how the machine is built. Definitions and designa-
tions specify a set of special terms used for formula-
tion requirements, assumptions and facts.



Figure 1: Problem Diagram for R 1

Problem-oriented requirements analysis starts
with representing the environment using a context
diagram. Such a diagram describes where the
problem is located by stating the relevant domains
and their interfaces, including the machine to be
built. Problem-oriented requirements analysis pro-
ceeds with a decomposition of the overall problem
into sub-problems, which are represented by problem
diagrams. The problem diagrams should be instances
of problem frames, thereby representing simple de-
velopment problems. In contrast to context diagrams,
problem diagrams contain the requirements belonging
to the sub-problem.An exampleof a problem diagram
can be found in Fig. 1.

Figure 1 shows a problem diagram in UML
notation. The biddable domain (UML class with
stereotype �biddableDomain�) Voter controls
the login command (Name of the UML asso-
ciation with the stereotype �connection� be-
tween the classes Voter and VoterIdentification-
Client), which is observed by the machine domain
VoterIdentificationClient(UML class with stereo-
type�machine�). The VoterIdentificationServer-
Machine observes the phenomenon check the lo-
gin, which is controlled by the VoterIdentification-
Client. The VoterIdentificationServer controls the
phenomenon return check result, which is observed
by the VoterIdentificationClient, and the get identi-
fication data, which is obtained from the Electoral-
Register. The VoterIdentificationClientMachine
shows the login result using the BallotDisplay. The
requirement R 1 (for a textual description see Sect. 3)
constrains the BallotDisplay and refers to the Voters,
and the ElectoralRegister.

Patterns for Requirement-Based Law Identifica-
tion Commonly, laws are not adequately considered
during requirements engineering (Otto and Antón,
2007). Therefore, they are not covered in the subse-
quent system development phases. One fundamental
reason for this is that involved engineers are typically
not cross-disciplinary experts in law and software and
systems engineering. To bridge this gap we developed
law patterns and a general process for law identifica-
tion which relies on these patterns.

We investigated how judges and lawyers are sup-
posed to analyze a law, based upon legal literature re-
search. These insights lead to a basic structure of laws
and the contained sections. One result of our investi-
gations is a common structure of laws. Based on this
structure of laws, we defined a law pattern. The law
pattern itself is discussed in detail in (Beckers et al.,
2012a).

Identifying relevant laws based on functional re-
quirements is challenging. Functional requirements
are often too imprecise for a sufficient law analy-
sis, they contain important information only implic-
itly, and use a different wording than in laws. There-
fore, we developed a law identification pattern, which
structures requirements in a way that important terms
of a requirement can be mapped to the legal wording
and then matched with law pattern instances (Fig. 2
shows an instance).

First of all, a Requirement can be Related To other
Requirements and dictates a certain behavior of the ma-
chine. A behavior can be a certain Activity or an entired
Process. The machine resides in one or more jurisdic-
tions represented by their Legislators. And the problem
the machine has to solve is a problem of one or more
Domains. The fundamental parts of the requirements



Defined in
BDSG Sec. 3

Process

EU
Legislator

Individual
Mentioned In
BDSG Sec. 2

Accomplish

Avoid /

Classified As

Classified As Classified As

Related To

Personal Data
Defined in

BDSG Sec. 3

Core Structure

Passive Stakeholder

AssetActivity

Subject Classifier

Person Classifier

Requirement

Process

Germany
Legislator Activity Classifier

Classified As

Authetication

’Login’

ActivityRequirement

’R 2 (A B C),3,4,5,6’

ElectionAdministration

Public Body
Mentioned In
BDSG Sec. 1

Aktive Stakeholder

ClassificationContext

Influence Entitled To

Domain

Voter

General Public

getIdentification

’Identification and authentification of the voter’

IdentificationData

Figure 2: Law Identification Pattern Instance R 1

are described in the Core Structure. An Activity involves
an Active stakeholder and in some cases an Asset. Ad-
ditionally, an Activity Influences a Passive Stakeholder in
a direct way or indirectly through an Asset, to which
the Passive Stakeholder is entitled to. The terms used for
Activities, Stakeholders, and Assets can be Classified in
the Classification part, using terms of the legal domain.

These two kinds of patterns, the law pattern and
the law identification pattern, can be used through
their graphic and explicit nature to foster the com-
munication between legal experts and software en-
gineers. Moreover, they allow the matching of re-
quirements and laws, because the Law Structure and
the Core Structure of requirements are organized in the
same way. The language gap between the legal and IT
domain is bridged using the Classification part of both
patterns.

The procedure for identifying relevant laws con-
sists of five steps. The first step is to set up a database
of all laws which might be of relevance for a scenario.
Therefore, laws have to be analyzed and stored in the
structure of the law pattern. Thus, they are stored
as pattern instances. The second step uses informa-
tion from functional requirements and their context
to instantiate the core structure and the context of
the law identification pattern. Third, the relation be-
tween laws and software requirements has to be es-
tablished to prepare the identification of relevant laws
for the given system. Hence, a mapping between the
terms and notions of the software requirements to le-
gal terms and notions is derived. Fourth, the law pat-
tern instances and law identification pattern instances
have to be matched. This results in a set of laws
which might be of relevance for the software. Fifth,
the found laws are the basis for further investigations.

In order to accomplish the process described in
(Beckers et al., 2012b), law experts and software
engineers have to work together for the necessary

knowledge transfer. Step one can be done alone by
legal experts and for step two only software engineers
are needed. But in step three and four both groups are
needed to bridge the gap between legal and technical
world. The last step can be accomplished alone by
legal experts. In this paper, we focus on the transfor-
mation step and how to turn requirements, in our case
in terms of problem diagrams, into law identification
pattern instances.

Relevant Laws for Voting Systems In our case
study the German law is the binding law. For simplici-
ties sake, we focus on relevant compliance regulations
for privacy. We only explain the laws and regulations
in detail that we use in the example. In 1995, the Eu-
ropean Union (EU) adopted the Directive 95/46/EC
on the processing of personal data. Germany imple-
ments the European Privacy Directive in the Federal
Data Protection Act (BDSG). According to Section 1
BDSG all private and public bodies that automatically
process, store, and use personal data have to comply
with the BDSG.

Example: Voting System for Germany By its
very nature, the field of electronic voting is an in-
terdisciplinary field, where legal and computer scien-
tists work together. During the development of the
first voting system used in Germany, this fact was ne-
glected or inadequately considered. Hence, the fed-
eral constitutional court of Germany judged in 2009,
that using this system for votings in 2005 was uncon-
stitutional (Federal Constitutional Court of Germany,
2009).

A general problem description of the voting sys-
tem and which functionality it has to provide was
derived from (Brehm, 2012), and (Volkamer, 2009).
The first work was conducted in the context of the



ModIWa II project, while the last work was elabo-
rated in the context of a Common Criteria (CC) Pro-
file (Volkamer and Vogt, 2008) for online voting.

3 Structuring the Problem

As proposed by Jackson (Jackson, 2001), we de-
rive requirements and domain knowledge from the
problem description, structure the overall problem us-
ing a context diagram, and decompose the overall
problem into sub-problems using problem diagrams.
Note, that for presenting our transformation method
we only use functional requirements. Non-functional
requirements are left aside. Nevertheless, the found
laws demand further quality requirements, for exam-
ple privacy requirements.

Requirements and Domain Knowledge The CC
profile for online voting systems (Volkamer and Vogt,
2008) only deals with the polling phase. The pre-
liminary election preparation and the tallying are not
considered in detail. Hence, the profile only defines
functional requirements for the voter and the election
officer, who represents the election authority. In total,
the machine to be built is described in terms of 21 re-
quirements by the CC profile. Later on we split some
of the requirements for handling reasons. We only en-
list one requirement of the voter at this point. It is suf-
ficient for the rest of the paper. The requirement texts
are directly taken from the CC profile (Volkamer and
Vogt, 2008). (Note that the abbreviation TOE stands
for target of evaluation, which is, in terms of the CC,
the machine to be built)

(R 1) identification and authentication of the
voter Only registered voters are permitted to cast
a vote. The voter [. . . ] identifies and authenti-
cates himself to the server-sided TOE. The server-
sided TOE checks the registered voter’s right to
vote. [. . . ] The registered voter receives applica-
ble acknowledgment of the acceptance or refusal
[. . . ].[. . . ]usually in the form of a corresponding
on-screen display. [. . . ] The voter has been iden-
tified and authenticated at the latest when the vote
is cast.

Besides the requirements themselves, the knowl-
edge about the environment of the machine to be built
is crucial for understanding the problem and specify-
ing the machine behavior later on. We only present
the assumptions and facts we derived from CC pro-
file (Volkamer and Vogt, 2008), which are of rele-
vance in the following. In total, the CC profile states

21 assumptions, 14 facts and 35 definitions and des-
ignations.

(A 3) ballot display Vote casting [. . . ] takes place
[. . . ] from a vote-casting device which is able to
display the full contents of the ballot and to im-
plement the responsible election authority’s spec-
ifications for the type of display, in particular the
order of voting options.[. . . ] The voter acts re-
sponsibly in securing the vote-casting device. It
is assumed that each voter that installs or uses the
client-sided TOE does so in such a way that the
vote-casting device can neither observe nor influ-
ence the vote casting process. This includes the
assumption that the voter does not manipulate his
vote-casting device on purpose. The vote-casting
device is able to properly display the ballot, to
properly transfer the voters input to the election
server and to delete the vote after the polling pro-
cess.

(F 3) user relation to identification data Sec-
ondly, the user-related data in the electoral reg-
ister with which a registered voter can uniquely
identify himself.

(DD 8) identification data Firstly, a measure to be
used by every registered voter to identify himself
on the TOE. This can be, for example, a member-
ship number, a name, a data of birth or an address.

For analyzing and structuring requirements we use
problem diagrams. Figure 1 shows the problem di-
agram for the requirement R 1. This requirement
demands that Voters can authenticate and identify
against the machine. The diagram was already de-
scribed in Sect. 2.

4 Transforming Problem Diagrams
to Law Identification Pattern
Instances

So called transformation cards are the central tool
for executing the transformation in the following. We
developed a transformation card for each problem
frame, which helps requirements engineers to fit the
problem diagrams into the according law identifica-
tion pattern instances. The transformation card con-
tains information for matching problem diagrams and
frames, and information how the problem frame, and
therefore the matching problem diagram, is related
to the Core Structure of the law identification pattern.
It also contains information for collecting potentially
missing domain knowledge, which is important trans-
forming for problem diagrams matching the problem



Problem Frame: Query
Referred domain

type(s)
Constrained domain

type(s)
Comment Sequence of Phenomena

B, X D Query IO!E5;[QM!Y2;][DB!Y1;]CM!E5

FeedbackDisplay

�displayDomain�

DataBase

�lexicalDomain�

InquiryOperator

�biddableDomain�

QueryMachine
QueryRules
�requirement�

�machine� �constrains�
B

QM!Y2
DB!Y1

�connection�

QM!E3
�connection�

IO!E5
�connection�

A
�refersTo�

�refersTo�
C

. . .

Table 1: Query Transformation Card: Identification Part

frame at hand, and the transformation rules them-
selves. As a result, the transformation card supports
and guides requirements engineers, when preparing
the requirements for the matching with relevant laws.
In this way, the identification of laws gains precision
and is less error prone, for example due to forgetting
important domain knowledge. Beside improving the
precision and lowering the chance of an error, trans-
formation cards are a step towards a semi-automatic
tool-support for the requirements engineer.

Matching Problem Diagrams with Frames Ta-
ble 1 shows the part of a transformation card, which
can help to identify the matching problem frame. In
the problem frame part the structure of the problem
frames by means of contained domains, phenomena,
their sequence, and refers, constrains relations to the
requirement are described. A matching problem dia-
gram must have the same characteristics as described
in this part of the transformation card.

The problem diagrams have sometimes to be mod-
ified for matching. For example, big and complex
problem diagrams have to be partitioned or domains
have to be merged for fitting the problem diagram
at hand to a problem frame. For reasons of space
we skip the full discussion. The interested reader is
referred to Hatebur and Heisel (Hatebur and Heisel,
2010), which also outlines the possibilities for auto-
mated identification of problem frames.

For our example (Fig. 1), we now check if a trans-
formation card is applicable or not. The first thing
to be checked is, if the domains which are referred
or constrained have the correct type as described in
the identification part. The Voter is a biddable do-
main and the the ElectoralRegister is a lexical do-
main. Both are referred to. This matches the Referred
domain type(s) of the identification part. This is also
true for the Constrained domain type(s), which has to
be a display domain. The constrained domain Ballot-

Display in our problem diagram is a display domain.
Thus, this transformation card remains an applicable
candidate.

Next, we have to check if the overall structure of
the problem diagram matches the problem frame. For
the structure, the problem frame, as described in the
graphical part of the identification part, is quite simi-
lar. The only difference is that we have two machines
in Fig. 1. But this is the case because of the distributed
nature of our problem. For matching, we can merge
those two machine domains. Hence, the structure is
the same.

Last, we have to check whether the implicitly de-
scribed concern of the problem frame, by means of
the phenomena, matches the phenomena of the prob-
lem diagram or not. The sequence of V!{login};
VISM!{getIdentifictaion}; VICM!{showLoginResult}
matches the regular expression as given by the Se-
quence of Phenomena in the transformation card. As
a result, the transformation card for the problem frame
query has to be applied.

Collecting Domain Knowledge After the success-
ful matching, the transformation card contains further
guidance for preparing the transformation. It con-
tains several core structure variants, which describe
the possible Core Structure instantiations of the law
identification pattern for the problem frame at hand.

The core structure variants not only relate problem
frame and Core Structure, but also consider typical do-
main knowledge for a problem frame. To ensure that
this domain knowledge is collected properly, there is
a questionnaire for each core structure variant. The
questionnaire is structured into the parts “Necessary
Information”, which describes for which information
we are looking for, “Details”, which states which do-
main is the target of the question, the “Question” it-
self, and “Result”, which describes how to model the
collected domain knowledge. While answering these



Problem Frame: Query

. . .

Core Structure Variant 2

Accomplish

Avoid /

AssetActivity

Aktive Stakeholder Passive Stakeholder

Influence Entitled To

Machine Stakeholder

QM!Y2 DataBase (part)

DataBase Stakeholder
DataBase Information Stakeholder

Necessary
Information

Details Question Result

Structure Database DataBase Which information is contained in
the database and which structure
does it have?

For each new found part of the database :

Add a�lexical� domain for the part to the model.

Add a aggregation relation between database and database part domain

to the model.roF

Database Stakeholder - Who are the stakeholders owning
the database?

For each found stakeholder :

If stakeholder does not exists in model then Add new �biddable�
domain for the stakeholder to the model.fI

Add a �entitledTo� association between database (part) domain

and stakeholder domain.roF

Database Information
Stakeholder

- Who are the stakeholders entitled
to information contained in the
database (part)?

For each found stakeholder :

If stakeholder does not exists in model then Add new �biddable�
domain for the stakeholder to the model.fI

Add a �entitledTo� association between database (part) domain

and stakeholder domain.roF

Machine Stakeholder - Who is responsible and in control
of the machine?

For each found stakeholder :

If stakeholder does not exists in model then Add new �biddable�
domain for the stakeholder to the model.fI Add a�controls� asso-

ciation between stakeholder domain and machine.roF

Instantiation Rule: For each database and its parts:

For each machine stakeholder:

For each database (information) stakeholder: Instantiate core structure variant 2. roF roF roF

. . .

Table 2: Query Transformation Card: Transformation Part

questions, necessary domain knowledge, which might
be missing, is collected.

Tab. 2 shows one core structure variant. There
are three more variants, which we have to skip due to
reasons of space. The first information, which might
be missing, is about the structure of the DataBase.
Normally, in problem diagrams a lexical domain rep-
resents different information, which can be seen as
parts of the overall database. But for law identifica-
tion we need to know the specific piece(s) of informa-
tion, which are relevant for the problem at hand. In
case the database can be partitioned further, we have
to add a separate lexical domain for each found piece
of information. For the ElectoralRegister we already
collected the information by means of the fact F 3 and
the definition DD 8. Hence, we know that identifica-
tion data is part of the electoral register. Furthermore,
we know from the problem diagram that this infor-
mation is referred to. Thus, we add the identification
data as part of the electoral register. This database
has one DataBase Stakeholder. It is the Electio-
nAuthority, who owns the database. It is the Voter
about whom information is stored, because he own.
The database has one DataBase Information Stake-
holder, to which the next question refers. It is the
Voter about whom information is stored, because he

own. As this stakeholder is already modeled as a bid-
dable domain, we do not have to change the model.
For the question about the database stakeholder and
the last question we have to add the biddable domain
ElectionAuthority, because it is in control of the ma-
chine, but not part of the model yet. Finally, we have
all information in place to start the transformation
from problem diagram to the core structure of the law
identification pattern.

Executing the Transformation With the newly ob-
tained domain knowledge at hand, we can transform
the problem diagram into a law identification pattern
core structure instances. How often a core structure
has to be instantiated is described in the instantiation
rule (see Tab. 2) of each core structure variant part
of the transformation card. Hence, it is possible that
one problem diagram is transformed into several law
identification pattern instances.

For R 1 (Fig. 1) and Core Structure Variant 2
(Tab. 2) we have to instantiate the core structure
for each combination of Database (part), Machine
Stakeholder, DataBase Stakeholder and DataBase
Information Stakeholder. The Activity is the same
for all core structures of variant 2. This results in a
core structure for ElectionAuthority, getIdentifica-



tion, ElectoralRegister, and Voter, a core structure
for ElectionAuthority, getIdentification, Electoral-
Register, and ElectionAuthority, a core structure
for ElectionAuthority, getIdentification, Identifica-
tionData, and ElectionAuthority and a core struc-
ture for ElectionAuthority, getIdentification, Inden-
tificationData, and Voter.

After adding the context information to the pat-
tern and discussing with a legal expert the mappings
of terms, we get a law identification pattern instance
as shown in Fig. 2. For the process of adding the
classification and context and finally the matching to
laws, we refer the interested reader to (Beckers et al.,
2012a; Beckers et al., 2012b).

5 Validation

For the validation of our proposed method we an-
alyzed the voting system in a case of action research.
We modeled and used the transformation cards for all
requirements regarding the voter. We matched the re-
sulting law identification pattern with selected laws of
Germany. These laws were modeled in terms of law
patterns for the case study or were already modeled
for previous case studies. There were two theses to
be tested, namely “The transformation cards are suf-
ficient to integrate in the overall identification process
as described by (Beckers et al., 2012b).” and “Using
the transformation cards leads to an identification of
all relevant laws.”.

To answer the first question, we tested the usage
of transformation cards by conducting it in the overall
process as described in (Beckers et al., 2012b). To be
able to discuss the sufficiency of the transformation
cards, we tracked the generation of core structures in
terms of number and effort. We also documented our
experiences while conducting the method. The result
is more of a qualitative nature than quantitative.

To answer the second question, we conducted a
literature research about the voting system and the rel-
evant German laws for this matter. The main source
was the judgment of 2009 by the Federal Consti-
tutional Court of Germany (Federal Constitutional
Court of Germany, 2009), followed by discussions
with several domain and / or legal experts. These in-
sights lead to expectations whether a requirement will
match with a particular law or not. These expectations
were documented in terms of a table listing the expec-
tations for each law and requirement. This table was
compared to the matching based on the generated law
identification pattern. The result is of a quantitative
nature in terms of false positives and false negatives,
and evidence by the number of matches.

C
ore

Structures
B

D
SG

B
w

ahlG
SigG

PassG
R

equirem
ent

N
am

e
Problem

Fram
e

G
enerated

R
edundant

M
atched

R
elevant

M
atched

R
elevant

M
atched

R
elevant

M
atched

R
elevant

R
1

Identification
and

authentication
ofthe

voter
Q

uery
16

8
8(4)

2(2)
0(0)

0(0)
16(8)

0(0)
0(0)

0(0)
R

2A
Show

the
ballot

Q
uery

20
16

12(2)
4(1)

0(0)
0(0)

0(0)
0(0)

0(0)
0(0)

R
2B

C
om

pletion
ofthe

ballot
Sim

ple
W

orkpiece
12

7
8(3)

2(1)
4(2)

4(2)
0(0)

0(0)
0(0)

0(0)
R

2C
C

orrection
ofthe

ballot
Sim

ple
W

orkpiece
12

7
8(3)

2(1)
4(2)

4(2)
0(0)

0(0)
0(0)

0(0)
R

3
Initiation

ofvote
casting

C
om

m
anded

Transform
ation

20
6

5(3)
5(3)

12(7)
8(4)

0(0)
0(0)

0(0)
0(0)

R
4A

H
asty

voting
protection

Q
uery

24
14

16(6)
4(2)

5(4)
4(3)

0(0)
0(0)

0(0)
0(0)

R
4B

C
astconfirm

ed
vote

C
om

m
anded

Transform
ation

8
4

6(2)
1(1)

6(2)
6(2)

0(0)
0(0)

0(0)
0(0)

R
4C

A
cknow

ledgm
entofvote

M
odelD

isplay
12

4
3(2)

1(1)
0(0)

0(0)
0(0)

0(0)
0(0)

0(0)
R

4D
D

elete
com

pleted
ballot

Sim
ple

Transform
ation

11
6

7(3)
2(1)

0(0)
0(0)

0(0)
0(0)

0(0)
0(0)

R
5

A
bortofthe

polling
process

C
om

m
anded

D
isplay

6
4

0(0)
0(0)

0(0)
0(0)

0(0)
0(0)

0(0)
0(0)

Sum
141

76
73(28)

23(13)
31(17)

26(13)
16(8)

0(0)
0(0)

0(0)

Table
3:V

alidation
results



For the validation, we excluded some laws even
though they were identified as relevant based on the
literature research and discussions. We selected the
highly relevant laws as discussed by the Federal Con-
stitutional Court. These laws are necessary to find
the weaknesses of our method in terms of false nega-
tives. A false negative would be missing match with a
law for a certain requirement. To identify false posi-
tives, we also added laws which are somehow related
to voting systems, but not relevant. Hence, here we
expected to find matches, which are not of real rele-
vance. For the validation, we selected the four follow-
ing laws:

• The BDSG as highly relevant law concerning per-
sonal data.

• The BWahlG (Bundeswahlgesetz), which is the
law for federal state elections in Germany and also
highly relevant.

• The SigG (Signatur Gesetz), a law which regu-
lates the use of digital signatures. This particular
law was selected not due to its relevance, but due
to the matter that it is related to our case study,
e.g. in terms of technological background.

• The PassG (Pass Gesetz), which regulates the use
of passports in Germany. This law is clearly irrel-
evant, nevertheless the passport is a possible au-
thentication means during elections.

Table 3 shows the results of using the transforma-
tion cards. In the first two columns, the requirement
and its name are listed. In the next column the iden-
tified problem frame, for the requirement at hand, is
listed. The next column states how many core struc-
tures were generated by executing the transformation
described by the transformation card for the problem
frame. While executing the transformation it turned
out that the transformation rules generate a notice-
able number of duplicated core structures. Hence,
we added this information in the next column. Next,
the four laws are listed. For each we tracked how of-
ten it was matched by a law identification pattern and
whether this match was relevant or not. The num-
ber before the parentheses states the number consid-
ering all law identification patterns, which include
the duplicates. The number within the parentheses
states number without the duplicates. This table al-
lows some reasoning about the transformation cards.

From our observations, the transformation cards
integrated well in the overall law identification pro-
cess. After the core structures were generated, no fur-
ther modifications were required for instantiating the
full law identification patterns. The preparations of
the core structures were slightly more structured and

therefore less error prone compared to the hands on
instantiation we used previously.

A major downside is the pure number of generated
core structures. Generating the core structure takes
a significant amount of time and afterward not ev-
ery core structure is necessary for a successful match-
ing. The high share of duplicates worsens the situa-
tion even worse as they devalue more than half of the
work (76 duplicates out of 141 as shown in Tab. 3).
The generation of duplicates should be reduced in the
future by detecting them early on. For the non du-
plicated ones the effort to be spent can be reduced
in terms of tool support. From our experience, none
of the non duplicated ones can be removed as they
are all necessary for a detailed detection of relevant
laws. Sometimes only the minor differences between
core structures revealed the most important parts of a
requirement for the relevance of a law. These differ-
ences then help to understand how to address the law.
Furthermore, we could not identify common charac-
teristics for filtering out the core structures, which
match all relevant laws. The laws are too different
to do so. Hence, the big number of core structures is
necessary and even helpful, but regarding the effort to
generate and analyze them, some further research is
needed to minimize the effort.

Speaking of the effort, there are several things to
consider. The matching of problem diagrams with
problem frames is straight forward and takes no time.
The modeling of the problem diagrams by an expe-
rienced user took about 5 person hours (0.5 hour for
one requirement). This seems reasonable if the law
identification gives sufficient results afterward. Addi-
tionally, one can benefit of setting up the diagrams as
their use is not limit to law identification alone. An-
swering the questionnaire and modeling the resulting
information takes some more time. But this process
of answering and modeling speeds up significantly
with rising number of already analyzed requirements.
Mostly, the questions consider the domains directly.
And as the number of domains is limited, so is the
information needed about them. Thus, most informa-
tion is already known and modeled for later require-
ments. Including discussions it took about 10 person
hours for this step (1 hour for one requirement). This
seems to be a significant amount of work, but this in-
formation collected is crucial for the success of the
application of the transformation card. Hence, we
spent some more time for this discussions and search-
ing for the necessary information (e.g. in the protec-
tion profile (Volkamer and Vogt, 2008)). Setting up
the core structures is an easy task, but also time con-
suming. It took 8 person hours to generate all core
structures by hand. Which is about 4 minutes per core



Requirement
R1 R2 A R2 B R2 C R3 R4 A R4 B R4 C R4 D R5

identification show complete correct init hasty vote cast ack clear abort
voter ballot ballot ballot vote protection vote vote buffer vote

Law BDSG X X X X X X X X X
BwahlG X X X X X X X

SigG X
PassG

Table 4: Validation Results: Expected and found matches

structure. In total, executing the proposed method
took 23 person hours, which makes it about 4 person
days.

This effort seems to be significantly high. But
there are two things to consider: First, the time for
generating the core structures can be reduced to al-
most zero by tool support. Second, the elicitation of
law relevant information has to be invested even if
someone uses another method to find relevant laws.
Thus, the effort related to the use of transforma-
tion cards is limited to the modeling of problem di-
agrams and modeling of the collected information.
And this pays as it enables the automated generation
and guided analysis.

Some additional effort not unique to the transfor-
mation cards has to be considered regarding the over-
all process, starting with modeling the laws and end-
ing with a legal revision of the matches. The mod-
eling of the laws is quite time consuming as many
discussions are required and therefore should not be
taken out by one person alone. The time spent for a
particular law depends on the size and complexity of
the law. From our experience, it can take up to an hour
for one particular section of a law. But every law has
to be modeled only once and is reusable afterward.
Discussing the matches is not that time consuming as
the law modeling. The understanding of the system
analyzed is already established and all relevant infor-
mation is known. Thus, to take a decision takes less
time. And using the transformation cards support in
the decision taking, as a high share of found matches
is also relevant (e.g 13 relevant out of 17 matches for
the BWahlG as shown in Tab. 3). Hence, the over-
all effort to be spent seems to be reasonable, as long
as the results of the identification process are precise
enough.

From our experience, the transformation card
method is sufficient to integrate in the overall identifi-
cation process as described by (Beckers et al., 2012b).

For judging the precision and recall of the law
identification using transformation cards, we setup
Tab. 4. Symbols should be read the following way:

• A normal cross indicates an expected and ob-
served match.

• A bold cross indicates an unexpected but correct
match.

• A canceled cross indicates an expected but not ob-
served match and the missing cross turned out to
be correct.

• An underlined cross indicates an unexpected and
irrelevant match.

For the precision the identification turned out to be
remarkable. The precision for the voting system and
the four selected laws is at 0.94 (true positive / (true
positive + false positive) = 16 / (16+1)). Thus, almost
every match points out a relevant law. This is not true
for a single core structure as one can see from Tab. 3.
But whenever there are matches for core structures
regarding one requirement, at least one proves to be
relevant.

For the recall the result is perfect. The recall is at
1 (true positive / (true positive+false negative) = 16 /
(16 + 0)). Thus, not a single relevant law is missed.

Having a high recall is more important than a high
precision in our case. The method should find all
relevant laws. The impact of a missed law is much
more serious to the development and success of the
system-to-be, than the extra effort spent on the legal
revision for an irrelevant law. Hence, having recall
value near to 1.0 is the main objective of our method.
But a precision of 0.94 adds some surplus value. In
terms of precision and recall, it is reasonable to use
our method.

Compared to our expectations based on the re-
quirements and legal insights alone, using the iden-
tification method is superior. For the BDSG we ne-
glected the fact, that the information about the can-
didates and their relation to parties is personal infor-
mation, which falls under the BDSG. In fact, issue is
not of high importance as this information is public
available. But nevertheless it makes the BDSG rele-
vant for these requirements. For the BWahlG it turned
out that this law and its sections only deal with the ex-
pression of opinion alone. Thus, those requirements
that are not directly related to the voting itself are not
in the focus of this particular law. The only point in
favor for our prediction is that we rejected the SigG,



while it was matched once by the law identification
process. Overall, the precision and recall of the law
identification process is significantly higher than for
our educated prediction.

“To sum up, using the transformation cards leads
to an identification of all relevant laws with a high
precision.”. And it significantly improves the situa-
tion compared to an unguided method.

6 Related Work

Breaux et al. (Breaux et al., 2006; Breaux and
Antón, 2008) present a framework that covers analyz-
ing the structure of laws using a natural language pat-
tern. This pattern helps to translate laws into a more
structured restricted natural language and then into a
first-order logic. The idea of using first order logic in
the context of regulations is not a new one. For exam-
ple Bench-Capon et al., (Bench-Capon et al., 1987)
made use of first-order logic to model regulations and
related matters. In contrast to our work, the authors of
those approaches assume that the relevant laws are al-
ready known and thus do not support identifying legal
texts based on functional requirements.

Siena et al. (Siena et al., 2008) describe the dif-
ferences between legal concepts and requirements.
They model the regulations using an ontology, which
is quite similar to the natural language patterns de-
scribed in the approaches mentioned previously. The
ontology is based in the Hohfeld taxonomy (Hohfeld,
1917), which describes the means and relations be-
tween the different means of legal texts in a very
generic way. Thus Hohfeld does not structure a cer-
tain law at all, but he aims at the different meanings of
laws. So the resulting process in (Siena et al., 2008)
to align legal concepts to requirements and the given
concepts are quite high-level and cannot be directly
applied to a scenario. In a second work Siena et al.
(Siena et al., 2009) try to bridge the gap between the
requirements engineering process and compliance us-
ing a goal-oriented approach. In this work they pro-
pose to derive goals from regulations and apply those
goals to the actors within a requirements engineering
scenario. In contrast to our approach they do not iden-
tify relevant laws and do not intertwine compliance
regulations with already elicited requirements.

Maxwell et al. (Maxwell and Antón, 2009) de-
veloped an approach to check existing software re-
quirements for regulatory compliance, i.e., to discover
violations and missing requirements. While our ap-
proach focuses on the identification of relevant laws,
we could imagine using it to detect violations, too.
We consider dependencies between different laws or

regulations, which the approach from Maxwell et al.
neglects.

Álvarez et al. (Álvarez et al., 2002) describe
reusable legal requirements in natural language, based
on the Spanish adaption of the EU directive 95/46/CE
concerning personal data protection. We believe that
the work by Álvarez et al. complements our work,
i.e., applying our law identification method can pre-
ceed using their security requirements templates.

7 Conclusion

In this work, we introduced a structured method
for transforming functional requirements into law
identification pattern instances. This enables us to
find relevant laws for a software system to be built.
The transformation makes use of problem diagrams
for structuring the functional requirements, prob-
lem frames for transformation instructions, domain
knowledge for considering the context of the system,
and questionnaires for refining the domain knowl-
edge. We illustrated the method using a case study
in the field of online voting. The contributions of this
work are:

• Reuse of results of an existing requirements engi-
neering (here problem frames) approach for law
identification.

• Transformation cards, which enable software en-
gineers to

– identify the problem class of the requirement at
hand.

– identify the needed domain knowledge for the
transformation.

– obtain instructions how to model the domain
knowledge.

– execute the transformation.

• A structured and guided method for software en-
gineers to transform functional requirements into
law identification pattern instances.

• An improvement of law identification in require-
ments engineering by augmenting a crucial step
of the law identification process as described in
Beckers et al (Beckers et al., 2012b).

• The basis for semi-automatic tool support.

We will also publish a technical report contain-
ing all transformation cards, the full case study, the
resulting law identification pattern instances, and the
law pattern instances used.

For the future we plan to investigate the matter of
quality requirements. Quality requirements itself are



too vague to be directly transformed into law identifi-
cation pattern instances. But they contain additional,
relevant information about the functionality and con-
text of a system. It seems to be promising to inte-
grate this information to improve the precision of our
method.

In general, our law identification process was used
in the field of cloud computing, health-care and for
this paper in the domain of voting systems. The trans-
formation cards were only used for the latter. From
our experience, our method is usable regarding the
German law for different domains without adaption.
We also found evidence that this observation is also
true for laws from other countries as long as the law
system of the country is a statue law. For example,
Biagioli. et al (Biagioli et al., 1987) describe the very
same structure for Italian laws like we use for German
laws. For case law systems like the one of the US, our
method needs to be adapted. The use of our method
on more domains, for other countries with statue law,
and even for case law countries is under research.

We also plan to formulate rules for the reduction
of core structure candidates. At the moment, we get a
large set of core structures for some problem frames.
This makes the modeling of law identification pattern
instances tedious. Hence, we will improve the sit-
uation by giving guidance to identify irrelevant core
structures or core structures which can be merged.

Finally, we plan to speed up the method execu-
tion by providing tool support for identifying prob-
lem frames for problem diagrams, wizards and rec-
ommenders, which are based on the questionnaires,
for collection the domain knowledge, and automatic
transformation based on this information.

REFERENCES

Álvarez, J. A. T., Olmos, A., and Piattini, M. (2002). Le-
gal requirements reuse: A critical success factor for
requirements quality and personal data protection. In
Proceedings of the International Conference on Re-
quirements Engineering (RE), pages 95–103. IEEE.

Beckers, K., Faßbender, S., Küster, J.-C., and Schmidt, H.
(2012a). A pattern-based method for identifying and
analyzing laws. In REFSQ, pages 256–262.

Beckers, K., Faßbender, S., and Schmidt, H. (2012b). An
integrated method for pattern-based elicitation of legal
requirements applied to a cloud computing example.
In ARES, pages 463–472.

Bench-Capon, T. J. M., Robinson, G. O., Routen, T. W., and
Sergot, M. J. (1987). Logic programming for large
scale applications in law: A formalization of supple-
mentary benefit legislation. In Proceedings of the In-
ternational Conference on Artificial Intelligence and
Law (ICAIL). ACM.

Biagioli, C., Mariani, P., and Tiscornia, D. (1987). Esplex:
A rule and conceptual model for representing statutes.
In ICAIL, pages 240–251. ACM.

Breaux, T. D. and Antón, A. I. (2008). Analyzing regula-
tory rules for privacy and security requirements. IEEE
Transactions on Software Engineering, 34(1):5–20.

Breaux, T. D., Vail, M. W., and Antón, A. I. (2006). To-
wards regulatory compliance: Extracting rights and
obligations to align requirements with regulations. In
Proceedings of the International Conference on Re-
quirements Engineering (RE), pages 46–55. IEEE.

Brehm, R. (2012). Kryptographische Verfahren in Internet-
wahlsystemen. Technical report, Technical University
of Darmstadt.

Côté, I., Hatebur, D., Heisel, M., Schmidt, H., and Went-
zlaff, I. (2008). A systematic account of problem
frames. In Proceedings of the European Confer-
ence on Pattern Languages of Programs (EuroPLoP),
pages 749–767. Universitätsverlag Konstanz.

Federal Constitutional Court of Germany (2009). Verwen-
dung von Wahlcomputern bei der Bundestagswahl
2005 verfassungswidrig.

Hatebur, D. and Heisel, M. (2010). Making pattern- and
model-based software development more rigorous. In
Proceedings of 12th International Conference on For-
mal Engineering Methods, ICFEM 2010, Shanghai,
China, LNCS 6447, pages 253–269. Springer.

Hohfeld, W. N. (1917). Fundamental legal conceptions as
applied in judicial reasoning. The Yale Law Journal,
26(8):710–770.

Jackson, M. (2001). Problem Frames. Analyzing and
structuring software development problems. Addison-
Wesley.

Maxwell, J. C. and Antón, A. I. (2009). Developing pro-
duction rule models to aid in acquiring requirements
from legal texts. In Proceedings of the 2009 17th IEEE
International Requirements Engineering Conference,
RE, RE ’09, Washington, DC, USA. IEEE Computer
Society.

Otto, P. N. and Antón, A. I. (2007). Addressing legal re-
quirements in requirements engineering. In Proceed-
ings of the International Conference on Requirements
Engineering. IEEE.

Siena, A., Perini, A., and Susi, A. (2008). From laws
to requirements. In Proceedings of the Interna-
tional Workshop on Requirements Engineering and
Law (RELAW), pages 6–10. IEEE.

Siena, A., Perini, A., Susi, A., and Mylopoulos, J. (2009).
A meta-model for modelling law-compliant require-
ments. In Proceedings of the International Workshop
on Requirements Engineering and Law (RELAW),
pages 45–51. IEEE.

Volkamer, M. (2009). Evaluation of Electronic Voting: Re-
quirements and Evaluation Procedures to Support Re-
sponsible Election Authorities. Springer Publishing
Company, 1st edition.

Volkamer, M. and Vogt, R. (2008). Common Criteria Pro-
tection Profile for Basic set of security requirements
for Online Voting Products. Bundesamt f”ur Sicher-
heit in der Informationstechnik.


