
Common Criteria CompliAnt Software Development
(CC-CASD)

Kristian Beckers, Stephan Faßbender,
Denis Hatebur, Maritta Heisel

paluno
Duisburg, Germany

{firstname.lastname}@uni-due.de

Isabelle Côté
ITESYS

Dortmund, Germany
{firstname.lastname}@itesys.de

ABSTRACT
In order to gain their customers’ trust, software vendors can certify
their products according to security standards, e.g., the Common
Criteria (ISO 15408). However, a Common Criteria certification
requires a comprehensible documentation of the software product.
The creation of this documentation results in high costs in terms of
time and money.

We propose a software development process that supports the
creation of the required documentation for a Common Criteria cer-
tification. Hence, we do not need to create the documentation after
the software is built. Furthermore, we propose to use an enhanced
version of the requirements-driven software engineering process
called ADIT to discover possible problems with the establishment
of Common Criteria documents. We aim to detect these issues be-
fore the certification process. Thus, we avoid expensive delays of
the certification effort. ADIT provides a seamless development ap-
proach that allows consistency checks between different kinds of
UML models. ADIT also supports traceability from security re-
quirements to design documents. We illustrate our approach with
the development of a smart metering gateway system.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: Standards; D.2.1 [Software Engi-
neering]: Requirements/Specification; K.4.2 [Software Engineer-
ing]: Security

Keywords
Common Criteria, Problem Frames, Security Standards, Document
Generation, Model-driven Engineering, Security Requirements En-
gineering, ADIT

1. INTRODUCTION
Software vendors have to gain their customers’ trust. One way of

gaining it is with a security certification. The ISO 15408 Standard
- Common Criteria for Information Technology Security Evalua-
tion (short CC) - [14] provides a certification schema for software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-0857-1/12/03 ...$10.00.

systems. However, a CC certification demands a detailed documen-
tation of the software system. The system is called Target of Evalu-
ation (ToE) in the CC. A ToE has to be described in detail including
its environment. In addition, the attackers1, threats, assumptions,
security objectives, and security functional requirements of the ToE
have to be elicited and reasoned in detail. The CC demands a de-
scription of the implementation of a ToE.

The standard provides a specific structure the documentation has
to follow. For example, each specification of a ToE has to start
with an introduction that has to contain a description of the ToE,
its interfaces and the operational environment, e.g. the Operation
System, the ToE works in. Furthermore, the CC follows a security
model that requires a reasoning effort. For example, the creator of
the document has to state why he/she thinks that the security objec-
tives are complete and why all of them have implemented security
solutions that address them.

We propose to use an extension of the requirements-driven soft-
ware engineering process ADIT [7, 10]. Our contributions are two-
fold: a) We provide an extension of the UML-profile UML4PF [7,
10] that introduces the terminology and the attributes of the CC.
We also implement these extension into the UML4PF support tool
[8]. Hence, we extend ADIT with CC-specific model elements that
can be used in the software engineering process. This provides
the means to generate texts, figures or tables that can be re-used
to create CC documentation. b) We re-use ADIT’s traceability and
consistency checks between different models of the software engi-
neering process. For example, ADIT provides the means to trace a
software component to the requirement it fulfills. Moreover, ADIT
provides checks that can analyze if all model elements, which are
used in the architecture, refine a model element of the context de-
scription in the analysis phase. We improved this mechanism to
support several CC elements. For example, we can check that se-
curity objectives can be traced back to the attackers and threats that
caused them.

The rest of the paper is organised as follows. Section 2 presents
background on Problem Frames, ADIT, and the CC. Section 3 presents
our UML profile for the CC, and Sect. 4 explains which parts of the
CC we support. Sect. 5 shows the application of our approach to
a smart grid scenario. Sect. 6 presents related work, and Sect. 7
concludes and gives directions for future research.

2. BACKGROUND
In the following we introduce the ADIT development process

(see Sect. 2.1) and the Common Criteria (see Sect. 2.2).

1The CC uses the term threat agent for attacker. However, we
use attacker as a synonym for threat agent in this work.

2.1 The ADIT Process
ADIT (Analysis, Design, Implementation, and Test) is a model-

driven, pattern-based development process also making use of com-
ponents. The process is based entirely upon the UML notation [19]
and defines relations between different kinds of models. The ADIT
process defines consistency checks between these models including
tool support [8]. The support tool is called UML4PF and contains
a UML profile of the same name. The ADIT process also sup-
ports traceability between development phases. For example, the
tool support provides several OCL [20] queries that can answer the
question, to which requirement a design artifact refers. We focus
on the analysis phase in this work and present it in the following.

A1 - Problem Elicitation and Description The process begins
with a description of the desired functionality of the software
to be built, the so-called machine. This description is refined
into requirements and domain knowledge, which consists of
facts and assumptions. We use a context diagram and domain
knowledge diagrams using our UML profile and tool support
. This step is based upon Problem Frames [15].

A2 - Problem Decomposition The second step decomposes the
context diagram into problem diagrams (also according to
[15]). Each problem diagram represents a specific problem
that the requirement expresses.

A3 - Abstract Software Specification Problem diagrams present
the structure of a problem and not its behavior. In this step
UML sequence diagrams are used to describe the behavior of
the machine. These serve also as the basis for our software
specification.

A4 - Technical Context Diagram This step describes the techni-
cal environment of the machine. For example, a web applica-
tion machine may use the Apache web server. We use again
the UML-based notation mentioned in steps A1 and A2. We
also use components and their APIs to describe the technical
means, e.g., the API of the Apache web server.

A5 - Operation and Data Specification The purpose of this step
is to set up the necessary internal data structures represented
as analysis class diagrams. Furthermore, we specify the op-
erations identified in Step Abstract Software Specification by
providing pre- and postconditions for each operation. We use
OCL [20] to express these operation specifications.

A6 - Software Life-Cycle We use life-cycle expressions proposed
in the Fusion method [6] to describe the overall behavior of
the machine.

Problem Frames.
Problem frames (PF)s are a means to describe software develop-

ment problems. PFs were proposed by Jackson [15], who describes
them as follows: “A problem frame is a kind of pattern. It defines
an intuitively identifiable problem class in terms of its context and
the characteristics of its domains, interfaces and requirement.”. We
represent problem frames by using UML class diagrams extended
by stereotypes as proposed by Hatebur and Heisel [11]. All ele-
ments of a problem frame diagram act as placeholders, which must
be instantiated to represent concrete problems. In doing so, one ob-
tains a problem description that belongs to a specific kind of prob-
lem.

The class with the stereotype machine represents the thing to
be developed (e.g., the software). The classes with some domain

stereotype, e.g., CausalDomain or BiddableDomain represent prob-
lem domains that already exist in the application environment. Do-
mains are connected by interfaces consisting of shared phenomena.
Shared phenomena may be events, operation calls, messages, and
the like. They are observable by at least two domains, but con-
trolled by only one domain, as indicated by an exclamation mark.

Jackson distinguishes the domain types CausalDomains that com-
ply with some physical laws, LexicalDomains that are data rep-
resentations, and BiddableDomains that are usually people. The
stereotype «causalDomain » indicates that the corresponding do-
main is a CausalDomain, and the stereotype «biddableDomain »
indicates that it is a BiddableDomain. In our formal meta-model
of problem frames [12] Domains have names and abbreviations,
which are used to define interfaces. Hence, the class Domain has
the attributes name and abbreviation of type string.

2.2 The Common Criteria
The ISO/IEC 15408 - Common Criteria for Information Tech-

nology Security Evaluation is a security standard that can achieve
comparability between the results of independent security evalu-
ations of IT products (machines). These are so-called Targets of
Evaluation (TOEs). The Common Criteria are based upon a gen-
eral security model. The model considers ToE Owners that value
their Assets and wish to minimise Risk to these Assets via imposing
Countermeasures. Attackers wish to abuse Assets and give rise to
Threats for Assets. The Threats increase the Risks to Assets.

Documentation of the security model is the basis for CC certifi-
cation. The CC security model can be expressed in two different
types of documents. The security needs of TOE owners are de-
scribed in the so-called Security Target (ST). STs can be a refine-
ment of a so-called Protection Profile (PP). A PP states the security
needs for an entire class of ToEs, e.g., client VPN application. A
PP states the security requirements of TOE owners and ToE devel-
opers or vendors publish their security claims in an ST.

The document structure of ST and PP is the same on the level of
chapters. The first chapter is an Introduction that contains the de-
scription of the ToE and its environment. The chapter Conformance
Claims describes to which PPs the ST or PP is compliant.

The chapter Security Problem Definition refines the external en-
tities, e.g., stakeholders in the environment. In addition, the chapter
lists all Assets, Assumptions about the ToE and its environment and,
all Attackers, the Threats they cause to Assets, and Organizational
Security Policies of the ToE’s environment. The chapter Security
Objectives contains the Security Objectives for the ToE and its Op-
erational Environment. An example for an Operational Environ-
ment is the operating system the ToE uses.

A Security Functional Requirement (SFR) is a description of a
security function (or solution) in the CC. For example, how a stake-
holder might be authenticated. The CC provides many generic
SFRs in the form of gap texts. The gaps have to be filled for the ToE
that is described in the ST/PP. The chapter Extended Component
Definition describes SFRs that complement the set of SFRs that are
already present in the CC. Hence, these are specific security func-
tions of the ToE that is described in the ST/PP. The chapter Security
Functional Requirements (SFR) presents instantiations (filled gaps)
of all relevant SFRs from the set that the CC provides. The Secu-
rity Assurance Requirements (SAR) describe the implementation of
the SFRs. These description is provided for a particular Evaluation
Assurance Level (EAL). An EAL is a numerical rating ranging from
1 to 7, which states the depth of the evaluation. EAL 1 is the most
basic level and EAL 7 the most stringent one.

expertise: Expertise
elapsedTime: ElapsedTime
knowledgeOfToE: KnowledgeOfToe
windowOfOpportunity: WindowOfOpportunity
Equipment: Equipment

<<stereotype>>
Attacker

<<stereotype>>
BiddableDomain

<= 1 day (0)
<= 1 week (1)
<= 2 weeks (3)
<= 1 month (4)
<= 2 months (7)
<= 3 months (10)
<= 4 months (10)
<= 5 months (15)
<= 6 months (17)
> 6 months (19)

<<enumeration>>
ElapsedTime

Layman (0)
Proficient (3)
Expert (6)
MultipleExperts (8)

<<enumeration>>
Exptertise

Public (0)
Restricted (3)
Sensitive (7)
Critical (11)

<<enumeration>>
KnowledgeOfToe

Unneccasary/Unlimited access (0)
Easy (1)
Moderate (4)
Difficult (10)

<<enumeration>>
WindowOfOpportunity

Standard (0)
Specialised (4)
Bespoke (7)
MultipleBespoke (9)

<<enumeration>>
Equipment

(uml)
Dependency

abbreviation: String [1]
description: String [1]

<<stereotype>>
threat

<<stereotype>>
observeThreat

<<stereotype>>
controlThreat

<<stereotype>>
imposedBy

<<stereotype>>
osp

<<stereotype>>
Fact

abbreviation: String [1]
text: String [1]

<<stereotype>>
DomainKnowledge

<<stereotype>>
Assumption

<<Stereotype>>
Machine

name: String [1]
version: String [1]
date: String [1]
authors: String [1]
producers: String [1]
engineers: String [1]

<<Stereotype>>
ToE

titel: String [1]
version: String [1]
date: String [1]
authors: String [1]
registration: String [1]
certification-ID: String [1]
documentType: DocumentType [1]
ccVersion: CC-Version [1]
keywords: String [1..*]
conformanceStatement: String [1]
cc-ConformanceClaim: String [1]
ppClaim: String [1]
conformanceRational: String [1]
packageClaim: String [1]

<<Stereotype>>
CC-System

ProtectionProfile
SecurityTarget

<<enumeration>>
DocumentType

3.1
2.3
1.0

<<enumeration>>
CC-Version

(uml)
Package

<<stereotype>>
PhysicalAttacker

<<stereotype>>
NetworkAttacker

<<stereotype>>
SoftwareAttacker

<<stereotype>>
SocialEngineering

Attacker

(uml)
Class

(uml)
Property

description: String [1]
needForProtection: String [1]

<<stereotype>>
Asset

<<stereotype>>
SecondaryAsset

UML4PF CC-System extension

UML4PF ToE domain extensionUML4PF OSP extension

UML4PF attacker/threat extension
UML4PF Common Criteria extension

definition: String [1]
source: String [1]

<<stereotype>>
SpecificTerm

likelihood: String [1]
consequences: String [1]

<<stereotype>>
Risk

<<Stereotype>>
CausalDomaindescription: String [1]

againstThreat: threat [1..*]

<<Stereotype>>
Countermeasure

<<stereotype>>
Statement

(uml)
Class

(uml)
Dependency

(uml)
Class

<<Stereotype>>
ToEOwner

<<stereotype>>
BiddableDomain

Figure 1: A Common Criteria extension of the UML4PF Profile

3. EXTENDING ADIT’S UML PROFILE
WITH COMMON CRITERIA SUPPORT

We extend the UML profile and support tool UML4PF of the
ADIT process (see Sect. 2.1) to support the Common Criteria stan-
dard. Fig. 1 depicts the extensions to UML4PF, which contain sev-
eral sub-extensions.

Firstly, we introduce the ToE (see UML4PF ToE domain exten-
sion), which is derived from the machine domain in the Jackson
terminology (see Sect. 2.1). Another derived element from Jack-
son’s terminology is the Countermeasure, which is a specific kind
of CausalDomain.

Secondly, we introduce the elements of the CC basic security
model (see Sect. 2.2) in the UML4PF attacker/threat extension.
Assets have descriptions and a need for protection. The CC has
the concept of SecondaryAssets. Harm to SecondaryAssets do not
cause a loss to the ToEOwner directly, but the harm can cause harm
to an Asset. This in turn can cause a loss to a ToEOwner. Assets
are subject to Risks, which have likelihood and consequences at-
tributes. Risks can also be increased by a Threat. Threats have an
abbreviation and a description.

We extended the CC basic security model. Threats can be further
divided into controlThreats and observeThreats. ControlThreats
take control of a domain, while observeThreats only observe in-
formation about the behavior of a domain. For example, an ob-
serveThreat is the eavesdropping of confidential information, whereas
the manipulation of a key exchange is a controlThreat.

The UML4PF attacker/threat extension contains also «enumer-
ations» to represent the attributes required to describe an Attacker
according to the CC. The attributes, e.g., ElapsedTime or WindowOf-
Opportunity have also numeric values attached in brackets. These
values are defined by the CC and are used to determine the EAL for
a system. For example, an attacker with a combined score between
10 and 13 results in a recommendation to implement the security
assurance classes AVA_VAN.1 and AVA_VAN.2. This recommenda-
tion results in an EAL requirement of at least EAL 2.

We extended the CC basic security model also with an Attacker
classification. PhysicalAttackers threaten the physical elements of
the system, e.g., hardware or buildings that host computers. Net-
workAttackers threaten Network connections or ConnectionDomains
in our models. SoftwareAttackers threaten CausalDomains, e.g.,
the ToE or another software component. SocialEngineeringAttackers

threaten biddable domains, e.g., users of the system.
Thirdly, we collect information that is required for the genera-

tion of tables for ST/PP documents. The UML4PF CC-System ex-
tension contains attributes. The instantiations of which can be used
to generate tables. These tables are the main parts of the PP/ST
Reference in the Introduction and the Conformance Claims chap-
ter. The UML4PF ToE domain extension contains the information
to generate a ToE reference for the Introduction. For example, the
name and the authors of the ToE are required for a ToE reference.

The UML4PF OSP extension enables the collection of all infor-
mation for CC compliant Organizational Security Policies (OSP)s.
The policies are imposed by a BiddableDomain in the environment
of the ToE. OSPs are sets of rules, regulations, or guidelines that
the environment imposes on the ToE. Hence, they are part of the
domain knowledge alongside facts and assumptions.

We also added several consistency checks for modeling attackers
using our profile. These checks are implemented in OCL [20]. For
example, we check that attackers only threaten domains they can
reach. The network attacker can only threaten connections, e.g.,
WLAN connections or connection domains.

4. EXTENDING ADIT’S PHASES TO SUP-
PORT THE COMMON CRITERIA

We analyzed the documents resulting from the ADIT software
development process and the document requirements of the Com-
mon Criteria. We present the results in Tab. 1. The table lists the
chapters and sections of Security Targets and Protection Profiles in
the first two columns. The sections that are only relevant for a Secu-
rity Target are annotated with an “(ST)” , the sections only relevant
for a Protection Profile are annotated with a “(PP)” . The follow-
ing columns state the related ADIT phase and the output document
types of this phase. The “-” sign states that the ADIT process does
not produce a document that can support the CC. We listed the ex-
tensions of the ADIT process that we made for this work in italics.
These represent the contribution of our work. We introduced spe-
cific classes to represent CC-Systems and specific CC artifacts, e.g.
organizational security policies, in the UML4Pf profile. The In-
troduction, Conformance Classes and Security Problem Definition
chapters of the ST and PP are CC-specifc. Hence, these require
numerous extensions to ADIT as extension to the UML4PF profile
and in the form of OCL expressions. The Security Objectives chap-

Common Criteria - PP and ST ADIT ADIT Artefact Type

In
tr

od
uc

tio
n

PP/ST Reference A1 Context Diagram
UML4PF CC-System extension

TOE-Reference (ST) A1 Context Diagram
UML4PF ToE domain extension

ToE-Overview A1

(A2)*
(A3)*
A4

Context diagram
UML4PF ToE domain extension
(Problem Diagram)*
(Sequence Diagram)*
Technical Context Diagram

ToE-Description (ST) A1,

A2
(A3)*
A4

Context diagram
UML4PF ToE domain extension
Problem Diagram
(Sequence Diagram)*
Technical Context Diagram

C
on

fo
rm

an
ce

C
la

im
s

CC-Conformance A1 Context Diagram,
UML4PF CC-System extension

PP-Conformance or
Security-Requirements-Package

A1 Context Diagram,
UML4PF CC-System extension

Explanation for Conformance A1 Context Diagram,
UML4PF CC-System extension

Conformance Definition (PP) A1 Context Diagram,
UML4PF CC-System extension

Se
cu

ri
ty

Pr
ob

le
m

D
efi

ni
tio

n

External Entities A2

(A4)*

Domain Knowledge Diagram,
Problem Diagram
(Technical Context Diagram)*

Assets A2 Domain Knowledge Diagram
UML4PF asset extension

Assumptions A2 Domain Knowledge Diagram
Threats A2 Domain Knowledge Diagram

UML4PF attacker/threat extension
Organizational Security Policy (OSP) A2 Domain Knowledge Diagram

UML4PF OSP extension

Se
cu

ri
ty

O
bj

ec
tiv

es

ToE Security Objectives A2
A2 (PP)
A3 (ST)

Domain Knowledge Diagram
Problem Diagram
Sequence Diagram

Security Objectives for the
Environment

A2 (PP)
A3 (ST)

Domain Knowledge Diagram
Sequence Diagram

Objectives Rational (OR) A2

A3

Domain Knowledge Diagram
Problem Diagram
Sequence Diagram

E
xt

en
de

d
C

om
p.

D
efi

ni
tio

n Security Functional Requirements for the Extended Compo-
nents (if needed)

- -

Se
cu

ri
ty

R
eq

ui
re

m
en

ts

Security Functional Requirements A2
A3
A4
(A5)*

Problem Diagram
Sequence Diagrams
Technical Context Diagram
(Operation and Data Specification)*

Security Assurance Requirements (PP) A Phase all previously mentioned diagrams
Security Assurance Requirements (ST) A,D,I,T

Phases
all previously mentioned diagrams

The entries with * are optional. ST = Security Target (ST) and PP = Protection Profile
Italics represent the contribution of this work. They are the parts of the ADIT process, which have to apply the

UML4PF Common Criteria extension.

Table 1: Mapping ADIT Phases to PP and ST documents of the Common Criteria

ter of ST/PP documents requires enhanced DomainKnowledgeDia-
grams to represent Attackers, Threats, and Assumptions. In an ear-
lier work we investigated the difference in terminology between the
problem frame approach and the CC [9]. One of the findings is that
the term security objective is similar to the term security require-
ment in the problem frame approach, which is used in the ADIT
phases A1, A2, and A4. The Extended Component Definition chap-
ter requires an extension of the security functional requirements in
the CC.

5. APPLICATION
For simplicities’ sake, we provide only a short example of rel-

evant ADIT artifacts we use for supporting the establishment of a
CC-compliant ST/PP document.

We show an example how a ToE description can be generated
using the UML4PF CC-system extension and a list of assets of the
ToE and its environment. Hence, we provide example artifacts for a

ST/PP: the ToE-Overview in the Introduction and the Assets in the
Security Problem Definition.

Running Example.
The Smart Metering Gateway is a part of the smart grid. This is

a commodity network that intelligently manages the behavior and
actions of its participants. The commodity consists of electricity,
gas, water, or heat that is distributed via a grid (or network). The
benefit of this network is envisioned to be more economic, sustain-
able and to secure supply of commodities. Smart metering system
meters the consumption or production of energy and forwards the
data to external entities. This data can be used for billing and steer-
ing the energy production. This system description is taken from a
PP [4]. We used the information in the PP to generate our artifacts
and to check that our results match the example in the PP. Hence,
our results can be used to instatiate the resulting model in order to
create an ST.

<<contextDiagram,technicalContextDiagram,CC-System>>
Smart_Metering_Gateway

<<ToE>>
SmartMeteringGateway

<<causalDomain>>
SecurityModul

<<biddableDomain>>
AuthorizedExternalEntity

<<causalDomain>>
Meter

<<causalDomain>>
CLS

<<ToEOwner>>
Consumer

<<wan>>
IF_GW_WAN

<<lmn>>
IF_GW_M

<<han>>
IF_GW_U

<<han>>
IF_GW_CLS

<<physical>>
IF_GW_SU

1..*1

1..*

1..*

0..*0..*

1..*
1

<<lexicalDomain>>
UserData

<<physical>>

1

1..*
<<lexicalDomain>>

MeterData
1..*

1

<<physical>>

Figure 2: The Context Diagram of the Smart Metering Gate-
way

TOE Overview.
The ToE overview contains a description of the machine to be

built in its environment. We propose to use the ADIT Phase A1 for
this purpose. This phase relies upon the problem frame approach
as introduced in Sect. 2. We provide a context diagram and tech-
nical context diagram to describe the ToE (see Fig. 2). The ToE
is a SmartMeteringGateway, which serves as a bridge between the
Wide Area Network (WAN) and the Home Area Network (HAN) of
the ToE owner. The ToE owner is the commodity Consumer of the
smart grid scenario. The Meter is connected to the machine via
a Local Metrological Network (LMN) and measures the consump-
tion of commodities of the Consumer. The LMN is an in-house
network for equipment that can be used for energy management.
The Controllable Local System (CLS) is a system that can be con-
trolled using the SmartMeteringGateway and is connected to the
SmartMeteringGateway with the HAN. For example, an air condi-
tioning unit or an intelligent fridge. The Consumer can also access
the SmartMeteringGateway. A detailed interface description, e.g.,
IF_GW_WAN can be found in [4].

The ToE Reference for a PP can be generated from the infor-
mation collected in the context diagram and technical context dia-
gram. We use an OCL expression to extract the collected informa-
tion. We present Tab. 2 as an output of the example reference.

Field Description
Titel Protection Profile for the Gateway of a

Smart Metering System (Gateway PP)
Version 01.01.01(final draft)
Date 25.08.11
Authors (left out for privacy reasons)
Registration Bundesamt für Sicherheit in der Informa-

tionstechnik (BSI) Federal Office for In-
formation Security Germany

Certification-
ID

BSI-CC-PP-0073

CC-Version 3.1 Revision 3
Keywords Smart Metering, Protection Profile, Meter,

Gateway, PP

Table 2: Generated PP Reference

Assets.
A ST/PP document requires a list of assets and their description.

In addition, the need for each Assets protection needs to be stated
and assets have to be derived into Assets and SecondaryAssets. We
instantiate the Assets and SecondaryAssets in the UML4PF attack-
er/threat extension with the data from [4]. In this example we limit
the diagram to three assets, depicted in Fig. 3. The Smart Metering
Gateway contains eleven assets [4].

Figure 3 presents a domain knowledge diagram. We use compo-

sition associations of UML class diagrams to integrate Assets to the
ToE or its environment, because Assets are always part of an exist-
ing domain that was introduced in the context diagram. Assets have
the attributes description, which describe the asset and a need for
protection, because they represent a value for the ToE owner. The
Assets that we use in this example are MeterData, which are con-
sumption records of commodities that the Consumer has used, e.g.,
electricity. The MeterConfig are configuration data of the Meter.
For example, the time intervals in which MeterData is transmitted
over the WAN. The GatewayTime is the date and time of the clock
of the SmartMeteringGateway.

We can automatically generate a list of Assets using OCL on
the information contained in the domain knowledge diagram (see
Fig. 3). We use the OCL expression presented in 1. This expres-
sion selects all classes, which name includes the String Asset. The
expression further creates a sequences that contains the name of the
classes and the values of the attributes description and needForPro-
tection. These values are separated using a “;”.

1 P r o p e r t y . a l l I n s t a n c e s ()−> s e l e c t (
2 g e t A p p l i e d S t e r e o t y p e s () . name−>i n c l u d e s (’ Asse t ’))
3 −> c o l l e c t (c |
4 l e t s t : S t e r e o t y p e =
5 c . g e t A p p l i e d S t e r e o t y p e s ()−> s e l e c t (name= ’ Asse t ’)−>
6 asSequence ()−> f i r s t () i n
7 c . name . oclAsType (S t r i n g) . c o n c a t (’ ; ’)
8 . c o n c a t (c . g e t V a l u e (s t , ’ d e s c r i p t i o n ’)
9 . oclAsType (S t r i n g)) . oclAsType (S t r i n g) . c o n c a t (’ ; ’)

10 . c o n c a t (c . g e t V a l u e (s t , ’ n e e d F o r P r o t e c t i o n ’) .
11 oclAsType (S t r i n g))
12)

Listing 1: Collecting assets and their attributes.

We generate a table using the information collected by the OCL
expression for the ST/PP document. The resulting table is shown
in Tab. 3.

Asset Description Need for
Protection

Meter Data Meter readings that allow calculation of the quantity of
a commodity, e.g. electricity, gas, water or heat con-
sumed over a period. Meter Data comprise Consump-
tion or Production Data (billing-relevant) and grid status
data (not billing-relevant). While billing data needs to
have a relation to the consumer grid status data do not
have to be directly related to a consumer.

According to
their specific
need.

Gateway time
(secondary
asset)

Date and time of the real-time clock of the Gateway.
Gateway Time is used in Meter Data records sent to ex-
ternal entities.

Integrity and
Authenticity
(when time
is adjusted to
an external
reference
time)

Meter config
(secondary
asset)

Configuration data of the Meter to control its behaviour
including the Meter identity.

Integrity and
Authenticity
and Confi-
dentiality

Table 3: Table for Assets of the PP/ST

Re-using ADITs Tracebility and Consistency checks.
For the ADIT development process more than 70 traceability and

consistency checks between the different diagrams have been de-
fined [7]. For example, it is checked that each element in a problem
diagram has a relation to the context diagram. A possible relation
is that an element in the problem diagram is part of an element
in the context diagram. Such relations support the refinement and
detailed descriptions of security properties. These are essential in
order to ensure an adequad protection against threats.

<<domainKnowledgeDiagram,CC-System>>
Smart_Metering_Gateway_Assets

<<ToE>>
SmartMeteringGateway

<<ToEOwner>>
Consumer

<<han>>
IF_GW_U

description: String = "Date and time of the real-time clock of
the Gateway. Gateway Time is used in Meter Data records
sent to external entities."
needForProtection: String = "Integrity and Authenticity (when
time is adjusted to an external reference time)."

<<SecondaryAsset>>
GatewayTime

<<causalDomain>>
Meter

<<lmn>>
IF_GW_M

1..*1

1..*

1

<<physical>> description: String = "Meter readings that allow calculation of the
quantity of a commodity, e.g. electricity, gas, water or heat consumed
over a period. Meter Data comprise Consumption or Production Data
(billing-relevant) and grid status data (not billing- relevant). While billing
data needs to have a relation to the consumer, grid status data do not
have to be directly related to a consumer."
needForProtection: String = "According to their specific need."

<<lexicalDomain,Asset>>
MeterData

description: String = "Configuration data of the Meter to control its behaviour including the
Meter identity."
needForProtection: String = "Integrity and Authenticity and Confidentiality"

<<Asset>>
MeterConfig

Figure 3: A domain knowledge diagram for asset descriptions

6. RELATED WORK
Mellado et al. [16, 17] created the Security Requirements En-

gineering Process (SREP). SREP is an iterative and incremental
security requirements engineering process. In addition, SREP is
asset-based, risk driven, and follows the structure of the Common
Criteria. The approach uses use cases to model security objectives,
and misuse cases to model threats. The authors also developed a
template for ranking threats, attacks, and risks. The authors pro-
pose a Security Resources Repository (SRR) that can store elicited
threats, attacks, and risks. The approach differs from our work
in the sense that SREP is a method that supports the security rea-
soning according to the CC. However, it is not a holistic software
development process.

Yin and Qiu [21] model so-called early-phase security require-
ments with an extended i* model. The authors also describe secu-
rity policies using a formal model and so-called late-stage security
requirements in an extended UML model. The extended i* frame-
work adds the modeling elements security flaw that can have a re-
lation to goals and soft goals. These can be influenced by a threat
and eliminated by a security goal, e.g., confidentiality. The policies
provide three templates for so-called stream control that specifies
rules for network traffic. For example, allowed IP addresses. The
extended UML considers explicitly for each element if it belongs to
the ToE, external entities or communication entities. The approach
differs from ours, because it focuses on generating CC policies for
stream control. The approach does not aim at providing a holistic
support for the generation of ST/PP documents.

Bialas [2] introduces an ontology that supports the CC security
problem defintion (SPD). The SPD contains threats, security poli-
cies, and assumptions concerning the ToE. The ontology provides
relations between security related elements, e.g., risks and threats.
The relations can be used to create a SPD. For example, the ontol-
ogy can provide threats for specific risks. In addition, the ontology
can be queried for known countermeasures for these risks. The au-
thor extended the approach to the IT security development frame-
work that is complaint to the entire CC [3]. The approach differs
from ours, because the author focuses on creating just the SPD and
not a holistic support for generating ST/PP documents.

Ardi and Shahmehri [1] extend the CC Security Target docu-
ment with the knowledge of existing vulnerabilities. In particular
the authors add threats from known vulnerabilities to the Security
Problem Definition, security objectives from vulnerabilities and in-
formation on how to consider these vulnerabilities in the Security
Objectives section. The authors use vulnerability cause graphs and

security activity graphs to refine the information from the vulner-
abilities. This work can complement our own. We can use the
information about existing vulnerabilities in our process as well.

Chang and Fan [5] design an ontology that is intended to de-
crease the time for CC certification. The ontology supports four
different use cases. The first is to query CC content using a hi-
erarchical tree. The second use case considers a markup tool that
allows the user to mark specific parts of the CC. These marks can
include a choice of predefined comments that can be used to ease
the review of CC documents. The third use case considers a CC
review tool that can provide a checklist of required documents and
for evaluating a specific EAL. The CC review tool also contains in-
formation about required documents. This include already written
and approved documents and documents that have to be revised.
The last use case concerns a review report tool. This tool provides
a judgement of the review process using the data from the previous
use case. This work can complement our own. We could use their
ontology after generating documents with our method.

Rottke et al. [18] present a problem-driven requirements engi-
neering method for CC compliant systems. This high level ap-
proach also considers Problem Frames. The method focuses on
creating reliable models for context and problem descriptions. This
work differs from ours, because we focus on the entire CC process
and do not limit our approach to context and problem descriptions.

7. CONCLUSION
We have extended the ADIT software development process with

a UML profile for Common Criteria systems. Thereby, we built on
the existing UML4PF tool and its UML profile for dependability
[10]. We provide UML elements to model security as described in
the Common Criteria. The ADIT process relies upon the Problem
Frame method for a structured elicitation and analysis of require-
ments.

Our method offers the following main benefits:

• A structured process for elicitation of the required knowledge
for a Common Criteria certification

• Computer-aided generation of tables and figures for each chap-
ter of a Common Criteria Protection Profile or Security Tar-
get

• Support for the reasoning of Common Criteria Security Ob-
jectives from ToE descriptions to Common Criteria Security
Objectives

• Traceability from elements of to the ToE description to threats
on to Common Criteria Security Objectives

• Consistency checks from elements of the ToE description to
Common Criteria Security Objectives

• Explicit consideration of domain knowledge in terms of as-
sumptions and facts

• Re-use of patterns, e.g., problem diagrams for different projects

The work presented here will be extended to support further se-
curity standards, e.g., the ISO 27001 standard [13]. We also aim
to support the choice of relevant Common Criteria Security Func-
tional Requirements for given problem diagrams. In addition, we
want to support the decision if the Common Criteria Security Func-
tional Requirements have to be extended for a given ToE.

Acknowledgment
This research was partially supported by the EU project Network
of Excellence on Engineering Secure Future Internet Software Ser-
vices and Systems (NESSoS, ICT-2009.1.4 Trustworthy ICT, Grant
No. 256980) as well as the Ministry of Innovation, Science, Re-
search and Technology of the German State of North Rhine-Westphalia
and EFRE (Grant No. 300266902 and Grant No. 300267002).

8. REFERENCES
[1] S. Ardi and N. Shahmehri. Introducing vulnerability

awareness to common criteria’s security targets. In Software
Engineering Advances, 2009. ICSEA ’09. Fourth
International Conference on, pages 419 –424, sept. 2009.

[2] A. Bialas. Ontology-based security problem definition and
solution for the common criteria compliant development
process. In Dependability of Computer Systems, 2009.
DepCos-RELCOMEX ’09. Fourth International Conference
on, pages 3 –10, 30 2009-july 2 2009.

[3] A. Białas. Ontological approach to the it security
development. In E. Tkacz and A. Kapczynski, editors,
Internet – Technical Development and Applications,
volume 64 of Advances in Intelligent and Soft Computing,
pages 261–269. Springer Berlin / Heidelberg, 2009.

[4] BSI. Protection Profile for the Gateway of a Smart Metering
System (Gateway PP). Version 01.01.01(final draft),
Bundesamt für Sicherheit in der Informationstechnik (BSI) -
Federal Office for Information Security Germany, 2011.
https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/SmartMeter/
PP-SmartMeter.pdf?__blob=publicationFile.

[5] S.-C. Chang and C.-F. Fan. Construction of an
ontology-based common criteria review tool. In Computer
Symposium (ICS), 2010 International, pages 907–912, dec.
2010.

[6] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist,
F. Hayes, and P. Jeremaes. Object-Oriented Development:
The Fusion Method. Prentice Hall, 1994. (out of print).

[7] I. Côté. A Systematic Approach to Software Evolution.
Deutscher Wissenschafts-Verlag (DWV) Baden-Baden,
2012.

[8] I. Côté, D. Hatebur, M. Heisel, and H. Schmidt. UML4PF – a
tool for problem-oriented requirements analysis. In
Proceedings of the International Conference on
Requirements Engineering (RE), pages 349–350. IEEE
Computer Society, 2011.

[9] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt.
A comparison of security requirements engineering methods.
Requirements Engineering – Special Issue on Security
Requirements Engineering, 15(1):7–40, 2010.

[10] D. Hatebur. Pattern and Component-based Development of
Dependable Systems. Deutscher Wissenschafts-Verlag
(DWV) Baden-Baden, 2012.

[11] D. Hatebur and M. Heisel. A UML profile for requirements
analysis of dependable software. In SAFECOMP, pages
317–331, 2010.

[12] D. Hatebur, M. Heisel, and H. Schmidt. A formal metamodel
for problem frames. In Proceedings of the International
Conference on Model Driven Engineering Languages and
Systems (MODELS), volume 5301, pages 68–82. Springer
Berlin / Heidelberg, 2008.

[13] ISO/IEC. Information technology - Security techniques -
Information security management systems - Requirements.
ISO/IEC 27001, International Organization for
Standardization (ISO) and International Electrotechnical
Commission (IEC), 2005.

[14] ISO/IEC. Common Criteria for Information Technology
Security Evaluation. ISO/IEC 15408, International
Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC), 2009.

[15] M. Jackson. Problem Frames. Analyzing and structuring
software development problems. Addison-Wesley, 2001.

[16] D. Mellado, E. Fernandez-Medina, and M. Piattini. A
comparison of the common criteria with proposals of
information systems security requirements. In Availability,
Reliability and Security, 2006. ARES 2006. The First
International Conference on, page 8 pp., april 2006.

[17] D. Mellado, E. Fernández-Medina, and M. Piattini. Applying
a security requirements engineering process. In D. Gollmann,
J. Meier, and A. Sabelfeld, editors, Computer Security –
ESORICS 2006, volume 4189 of Lecture Notes in Computer
Science, pages 192–206. Springer Berlin / Heidelberg, 2006.

[18] T. Rottke, D. Hatebur, M. Heisel, and M. Heiner. A
problem-oriented approach to common criteria certification.
In Proceedings of the 21st International Conference on
Computer Safety, Reliability and Security, SAFECOMP ’02,
pages 334–346, London, UK, UK, 2002. Springer-Verlag.

[19] UML Revision Task Force. OMG Unified Modeling
Language (UML), Superstructure.
http://www.omg.org/spec/UML/2.3/Superstructure/PDF.

[20] UML Revision Task Force. OMG Object Constraint
Language: Reference, February 2010.

[21] L. Yin and F.-L. Qiu. A novel method of security
requirements development integrated common criteria. In
Computer Design and Applications (ICCDA), 2010
International Conference on, volume 5, pages V5–531
–V5–535, june 2010.

