
Towards a Computer-aided Problem-oriented
Variability Requirements Engineering Method ?

Azadeh Alebrahim, Stephan Faßbender, Martin Filipczyk,
Michael Goedicke, Maritta Heisel, and Marco Konersmann

Paluno – The Ruhr Institute for Software Technology, Germany
{firstname.lastname}@paluno.uni-due.de

Abstract. In theory, software product lines are planned in advance, using estab-
lished engineering methods. However, there are cases where commonalities and
variabilities between several systems are only discovered after they have been de-
veloped individually as single systems. In retrospect, this leads to the hindsight
that these systems should have been developed as a software product line from
the beginning to reduce costs and effort. To cope with the challenge of detecting
variability early on, we propose the PREVISE method, covering domain and ap-
plication engineering. Domain engineering is concerned with exploring the vari-
ability caused by entities in the environment of the software and the variability in
functional and quality requirements. In application engineering, the configuration
for a concrete product is selected, and subsequently, a requirement model for a
concrete product is derived.

Key words: Variability modeling, problem frames, software product lines (SPL),
orthogonal variability modeling (OVM), UML profile

1 Introduction

In our ongoing project GenEDA2, we aim at extending our method for deriving design
alternatives from quality requirements [11], which supports a single-system develop-
ment to a product-line development addressing quality requirements. Software product
line engineering (SPLE) represents an emerging paradigm to develop software applica-
tions which are tailored to individual customer’s needs [12].

Software product lines (SPL) involve a set of common features as well as a set of
variable ones. The first challenge we are facing is how to utilize and adjust conventional
requirements engineering techniques for modeling and engineering SPL. Modeling and
managing variability is the central concept in SPLE. Beyond the variability which is
caused by variable requirements, there exist further variabilities, which might emerge
because of changes in the environment in which the software will be located. Such kind
of variability should be taken into consideration when developing SPL.

In this paper, we propose the PREVISE (PRoblEm-oriented VarIability Require-
mentS Engineering) method, which conducts requirements engineering in software
? This research was partially supported by the German Research Foundation (DFG) under grant

numbers HE3322/4-2 and GO774/5-2.
2 www.geneda.org



product lines considering quality requirements. Our method is composed of four phases.
It covers domain engineering (phases one and two) as well as application engineering
(phases three and four).

The PREVISE method uses the problem frames approach [10] as a basis for re-
quirements engineering and extends it for developing SPL. We use the problem frames
approach, because 1) it takes the surrounding environment of the software into consid-
eration. Therefore, it allows identifying variability, which is caused by the environment,
2) it allows decomposing the overall software problem into subproblems, thus reducing
the complexity of the problem, 3) it makes it possible to annotate problem diagrams
with quality requirements, 4) it enables various model checking techniques, such as
requirements interaction analysis and reconciliation [1] or quality requirements elicita-
tion [6] due to its semi-formal structure, and 5) it supports a seamless transition from
requirements analysis to architectural design (e.g. [3]).

The remainder of this paper is organized as follows. An alarm system as a running
example is introduced in Sect. 2. Section 3 gives a brief overview of the OVM, prob-
lem frames, and problem-oriented requirements engineering. Section 4 describes how
we extend problem frames with a notation for variability. We introduce the PREVISE
method in Sect. 5. Section 6 presents related work, while Sect. 7 concludes the paper
and points out suggestions for future work.

2 Running Example

As our running example, we have chosen an alarm system. We will not elaborate on a
full alarm system, but a very small and simple one, blanking many functionalities that
such a system normally embodies. An initial problem description is given as follows:
the alarm system is installed within a defined perimeter, such as a building. In this
building alarm buttons and signal horns are installed. Whenever a person in the building
witnesses a critical situation such as a fire, he / she shall warn others. A witness can
alert others in the building, using the alarm buttons. The alarm is given using the signal
horn. The alarm shall be given within one second. Additionally, every alarm raised
is forwarded to an alarm central. The notification is repeated every 30 seconds. The
broadcast to the alarm central is optional as not every owner of the alarm system needs
or can afford using such an alarm central. When a communication to an alarm central
is established, no third party shall be able to tamper with the communication. From
this small scenario, we can derive two functional, one performance and one security
requirement:
R1 A witness can alert others in a building using the alarm buttons. The alarm is given
using the signal horn.
R2 Every alarm raised is forwarded to an alarm central. The notification is repeated
every 30 seconds.
PR1 The alarm shall be given within one second.
SR1 When a communication to an alarm central is established, no third party shall be
able to tamper with the communication.



3 Background

In this section, we give an overview of the concepts and methods our method relies on.
OVM is described in Sect. 3.1, while the problem frames approach is given in Sect. 3.2.

3.1 Orthogonal Variability Modeling

In SPLE, OVM describes an approach to capture a product line’s variability. In contrast
to other approaches, which integrate variability into existing design artifacts, OVM ex-
plicitly captures variability in distinct models. Using traceability links, elements from
OVM models can be connected to arbitrary design or development artifacts or elements
within these artifacts, e.g. requirements, a state within a UML state machine, or imple-
mented classes [12].

OVM comprises a set of model elements that allow for modeling variability. The
central model element is the abstract variation point (VP). A VP defines a place where
single products may differ.

Since an OVM model defines the variability of an entire SPL, it provides a concept
to derive products. Several model elements (including VPs) support a selection concept.
A single product is defined through all elements that have been selected. To indicate a
choice for the developer, selectable VPs may be optional. In contrast, if a VP is con-
sidered essential, it is declared mandatory. A mandatory VP must be selected for every
product.

While VPs define where products may differ, variants define how they differ. Vari-
ants and VPs are linked through variability dependencies (VD), while a variant has to
be associated with at least one VP (in turn, a VP must be associated with at least one
variant). Similar to VPs, variability dependencies may be either optional or mandatory.
If a VP is selected and is associated with a variant through an optional VD, this very
variant may be selected. However, if the association is a mandatory one, the variant
must be selected in this case.

To ensure flexibility in the product derivation, OVM offers the possibility to define
alternate choices. An alternate choice groups a set of variants that are associated with
the same VP through optional dependencies and defines a minimum and a maximum
value. Within product derivation, a number of n with minimum ≤ n ≤ maximum
variants have to be selected if their corresponding VP has been selected.

Since in practice relationships and interactions between variants and VPs can be
observed, OVM allows for defining these relationships through variability constraints.
Variability constraints can be set up between two variants, two VPs, or a variant and
a VP. OVM provides two types of variability constraints: requires and excludes. The
requires constraint is directed from a source to a target element and requires the target
to be selected if the source has been selected. The excludes constraint is undirected and
prevents selecting one element if the other element has been selected.

3.2 Problem Frames

Problem frames [10] proposed by Michael Jackson are a means to describe and classify
software development problems. A problem frame represents a class of software prob-
lems. It is described by a frame diagram, which consists of domains, interfaces between



Fig. 1. Context diagram for the Alarm System (left) and problem diagram for R1 (right)

them, and a requirement. Domains describe entities in the environment. Interfaces con-
nect domains, and they contain shared phenomena. Shared phenomena may, e.g., be
events, operation calls or messages. They are observable by at least two domains, but
controlled by only one domain, as indicated by “!”. For example, the notation W!{alert}
(between Witness and Button) in Fig. 1 (right) means that the phenomenon alert is con-
trolled by the domain Witness. The software to be developed is called machine.

We describe problem frames using UML class diagrams, extended by a specific
UML profile for problem frames (UML4PF) proposed by Hatebur and Heisel [9]. A
class with the stereotype �machine� represents the software to be developed. Jack-
son distinguishes the domain types biddable domains (represented by the stereotype
�BiddableDomain�) that are usually people, causal domains (�CausalDomain�)
that comply with some physical laws, and lexical domains (�LexicalDomain�)
that are data representations. To describe the problem context, a connection domain
(�ConnectionDomain�) between two other domains may be necessary. Connection
domains establish a connection between other domains by means of technical devices.

In UML4PF, requirements are a special kind of statement. When we state a require-
ment, we want to change something in the world with the machine to be developed.
Therefore, each requirement expressed by the stereotype�requirement� constrains
at least one domain. This is expressed by a dependency from the requirement to a do-
main with the stereotype �constrains�. A requirement may refer to several do-
mains in the environment of the machine. This is expressed by a dependency from the
requirement to these domains with the stereotype�refersTo�. The requirement R1
on the right-hand side of Fig. 1 constrains the causal domain Signal Horn, and it refers
to the causal domain Button and the biddable domain Witness.

Problem-oriented Requirements Engineering Our method for problem-oriented
requirements engineering involves the steps problem context elicitation, functional re-
quirements, and quality requirements modeling.

The first step problem context elicitation aims at understanding the problem the
system-to-be shall solve, and therefore understanding the environment it should influ-
ence according to the requirements. We obtain a problem description by eliciting all do-
mains related to the problem, their relations to each other and the system-to-be. To elicit
the problem context, we set up a context diagram consisting of the machine (system-
to-be), related domains in the environment, and interfaces between these domains. The
context diagram for our example is shown on the left-hand side of Fig. 1.



The second step functional requirements modeling is concerned with decompos-
ing the overall problem into subproblems, which describe a certain functionality, as
expressed by a set of related functional requirements. We set up problem diagrams rep-
resenting subproblems to model functional requirements. A problem diagram consists
of one submachine of the machine given in the context diagram, the relevant domains,
the interfaces between these domains, and a requirement referring to and constraining
problem domains. The problem diagram describing the functional requirement R1 in
our example is shown on the right-hand side of Fig. 1.

To analyze quality requirements in the software development process, they have to
be addressed as early as possible in the requirement models. The functionality of the
software is the core, and all quality requirements are related in some way to this core.
Modeling quality requirements and associating them to the functional requirements is
achieved in the step quality requirements modeling. We represent quality requirements
as annotations in problem diagrams. For more information, see our previous work [4].

4 Extending Problem Frames with a Variability Notation

We extend the problem frames notation by introducing new elements for modeling vari-
ability in software product lines. We base our extension on the OVM terms. In Sect. 3.2,
we briefly described the UML4PF profile, which enables us to use the problem frames
notation in UML models. Our extension is a UML profile relying on the UML4PF pro-
file.

The detailed usage of the stereotypes3 will be explained in Sect. 5. The profile
allows the creation of new kinds of diagrams and statements. The first new kind of
UML4PF diagrams are variability diagrams. They capture the actual variation points.
There are requirement variability diagrams, domain variability diagrams, and phe-
nomenon variability diagrams as the variability can stem from requirements, domains,
and phenomena. One special variability diagram is the constraint variability diagram,
which captures constraints to variability. To the context diagram we add two new sub-
types. First of all, a variability context diagram, which describes the context containing
the variability. In contrast, the product context diagram describes the context regarding
a particular product, which is defined by a configuration. The same distinction is made
for problem diagrams. For problem diagrams we also have variability problem dia-
grams and product problem diagrams. The latter diagram is the configuration diagram,
which describes a particular configuration for a product.

The first new statement introduced is the variation point. One can distinguish be-
tween mandatory variation point and optional variation point. Related to variation
points are variants, which can represent an optional variation or a mandatory varia-
tion. A variation point indicates by its min and max properties how many of the variants
have to be chosen for the variation point. The type of variation relation is indicated
by a variation dependency. Variants and variation points can be related by a constraint
dependency. The relation can be an excludes or a requires dependency.
3 The meta-model is available in http://www.geneda.org/pub/TechnicalReportPREVISE.pdf



D
om

ai
n 

E
ng

in
ee

rin
g

Context diagram

Step 1: problem
context elicitation

Step 2: phenomenon
variability identification

Phenomenon variability diagram

Step 3: domain
variability identification

Domain variability diagram

Step 4: problem context
variability elicitation

Variability context diagram

Phase 1: Context Variability Elicitation

Adjusted
problem description

Step 1: problem description/
requirements adjustments

Step 2: functional
variability modeling

Variability problem diagram
Requirement variability diagram

Step 3: quality
requirement modeling

Variability
problem diagram

Step 4: quality requirement
variability identification

Requirement
variability diagram

Phase 2: Problem Variability Decomposition

Step 5: optional
requirement identification

Requirement
variability diagram

Step 6: constraint
identification

Constraint
variability diagram

A
pp

lic
at

io
n 

E
ng

in
ee

rin
g Step 1: requirements

selection
Step 2: phenomena

selection

Configuration diagram

Step 3: domain
selection

Configuration diagram

Step 4: configuration
validation

Configuration diagram

Phase 3: Configuration Engineering

Product 
context diagram

Step 1: product
context definition

Step 2: product functional
requirement modeling

Product
problem diagram

Phase 4: Deriving a Product Requirements Model

Configuration diagram

Step 3: product quality
requirement modeling

Product
problem diagram

Method's step

Output of the step

Phase

Control flow

Legend:

Fig. 2. PREVISE method and the outputs of each step

5 Problem-oriented SPL Requirements Engineering Method

In this section, we present the PREVISE method, which defines the activities in the first
phase of the domain and the application engineering, namely the requirements engineer-
ing. We describe how we extend our current problem-oriented requirements engineering
method described in Sect. 3.2 for SPL. In Sect. 5.1, we describe the phases of domain
engineering and the subsequent steps, in which we create a requirement model for the
SPL. Then, we describe the phases of application engineering, in which we derive a
concrete SPL product from the SPL requirement model in Sect. 5.2. Figure 2 shows an
overview of the steps to be conducted in the PREVISE method and the corresponding
outputs.

5.1 Product Line Requirement Model Creation

Phase 1: Context Variability Elicitation In this phase, the context of the system-to-be
is analyzed, and variation points in the environment of the machine are identified.

Step 1 - Problem context elicitation For our method, it is not necessary to have a
problem description, which already includes variability. Instead, one can start by giving
a problem description for one possible product. The variability is identified and added in
later steps. Hence, in step one we derive a context diagram from the problem description
as proposed by Jackson [10]. The context diagram is shown on the left-hand side of
Fig. 1 and was already explained in Sect. 2.

Step 2 - Phenomenon variability identification In this step, every phenomenon of the
context diagram has to be analyzed for two things. First, if the phenomenon at hand is
a generic one, which has more than one possible concrete instances. For the case that it
is not a generic one, there may be other alternatives for the phenomenon at hand. If one
of these two cases holds, the generic phenomenon has to be added as a variation point
and the concrete phenomena as variants. Additionally, one has to model if a variant or
variation point is optional or not. Second, if a phenomenon is shared using a dedicated
connection domain, this connection domain has to be added to the context diagram.
For our example, the phenomenon alert turns out to be a generic phenomenon, which



Fig. 3. Domain Variability Diagrams

has two variants. First, one can push something to give the alert. Second, one can shout
to give an alarm, which is a more advanced option for an alarm system.

Step 3 - Domain variability identification Similar to the phenomena, the domains of
the context diagram have to be checked for variation points and variants. Note that
it can occur that one variant is a variation point as the variant can be further refined.
One example for domain variability is shown in Fig. 3. The starting domain for this
variability is the causal domain wire. It connects the alarm raiser with the machine. The
domain wire is abstracted to the causal domain raiser connection, which is a mandatory
variation point. Variants for the raiser connection are a direct access connection, which
is mandatory or an indirect access connection, which is optional. For direct access, one
variant is the wire. The other variant is a wireless solution, which can be a WLAN, a
bluetooth, or a ZigBee connection. The indirect access can be realized via internet or a
mobile network.

Step 4 - Problem context variability elicitation This step uses the context diagram and
the domain variability diagrams to generate the variability context diagram. The vari-
ability context diagram enables us not only to elicit all domains related to the problem
to be solved, but also to capture, which domains represent variability and which ones
commonality. The structure of the variability context diagram is similar to the context
diagram from step 1. It differs from it in the way that we represent variation points for
the problem domains and phenomena, which involve variability. The variability con-
text diagram represents a context diagram for the SPL. Note that the variability context
diagram can be automatically generated using the context diagram and the domain vari-
ability diagrams.

Figure 4 on the left-hand side shows the resulting variability context diagram for
our example. The domains alarm system and witness are directly taken from the context
diagram as they are not variable. The signal horn is replaced by the variation point
notifier. The alarm button is replaced by the variation point raiser. Additionally, the
connection domains and their abstract variation points raiser connection, notifier con-
nection, and alarm central connection are added to the variability context diagram.

Phase 2: Problem Variability Decomposition In this phase, the overall problem is
decomposed into smaller subproblems according to the requirements of the system-to-



be. The quality and functional requirements are adjusted in a way that they reflect the
variability of the problem.

Step 1 - Problem description/ requirements adjustment In this step, the textual re-
quirements of the machine are derived from the problem description. As the initial
problem description does not contain the variability identified in phase one, the textual
description of the requirements has to be adjusted. In Sect. 2 we already derived the
textual requirements from the initial problem description. Now the wording has to be
adjusted to the variability context diagram. For example, requirement R1 changes to
“A witness can [alert] others in a building using [raisers]. The alarm is given using
[notifiers].”

Step 2 - Functional variability modeling This step is concerned with decomposing
the overall problem into subproblems, which accommodate variability. Each functional
requirement has to be modeled as a problem diagram. Whenever the problem diagram
contains at least one variation point, the requirement is variable, too. But variability
in a requirement cannot only stem from phenomena or domains, which are variable.
Sometimes requirements contain further variation points, which do not show up in the
structure of a problem diagram. One reason might be a variability in behavior, for exam-
ple in the sequence of phenomena. Hence, each requirement has to be checked for such
variations not visible in the problem diagrams. Such variabilities are represented by a
requirement variability diagram (RVD), which represents the requirement as variation
point and its alternatives as variants. For our example, the functional requirement R2
contains further variability. The repetition of the alarm notification is optional. The ac-
cording requirement variability diagram is shown in Fig. 4 on the right-hand side. Note
that requirement R2.1 contains further variability regarding the time span between the
repetitions. Figure 5 on the left-hand side shows the variability problem diagram for
requirement R2.

Step 3 - Quality requirement modeling This step is concerned with annotating qual-
ity requirements, which complement functional requirements. In contrast to functional
requirements, quality requirements are not modeled as problem diagrams on their own.
Instead, they augment existing functional requirements.

Fig. 4. Variability Context Diagram for the Alarm System (left) & Requirement Variability Dia-
gram for R2 (right)



Step 4 - Quality requirement variability identification Variability in quality require-
ments can be caused when making trade-offs among quality requirements of differ-
ent types. Such requirements are subject to interactions. Interactions among quality
requirements can be detected by applying step 1 of the QuaRO method proposed in
our previous work [1]. To resolve interactions, we generate requirement alternatives by
relaxing the original requirement. To obtain such a variability in quality requirements,
we apply the second step of the QuaRO method. The generated quality requirement
alternatives provide variants for the original requirement. The requirement variability
diagrams have to be updated according to the results of the QuaRO method. Some-
times, quality requirements introduce new domains, e.g., an attacker for security, and
phenomena. Thus, one has to check these domains and phenomena for variability, too.
For our example, we have the security requirement SR1. It complements the functional
requirement R2. It adds the biddable domain attacker. The domain attacker is a varia-
tion point as there can be different attackers distinguished by their abilities (see [1] for
more information).

Step 5 - Optional requirement identification In this step, one has to identify the re-
quirements, which are optional. They have to be modeled as optional variation point.
For the alarm system, the notification of the alarm central is optional, which is already
reflected in Fig. 4 on the right-hand side, as R2 is annotated as an optional variation
point (optionalVP).

Step 6 - Constraint identification This step is concerned with identifying constraint
dependencies among requirement, phenomena, and domain variants. Dependencies
caused by quality requirements interactions are identified as a result of the first step
of the QuaRO method [1]. For functional requirements, one can use the RIT (Require-
ments Interaction Tables) as proposed in previous work [2]. Other kind of dependen-
cies have to be checked manually. We distinguish between two types of dependencies,
namely requires in which one variant or variation point requires another variant or vari-
ation point for a valid configuration, and excludes in which one variant or variation
point is not allowed together with another variant or variation point in a valid con-
figuration. For example, the phenomenon shoutToAlert requires a voice sensor. The
according constraint variability diagram is shown in Fig. 5 on the right-hand side.

Fig. 5. Variability Problem Diagram for R2 (left) & Constraint Variability Diagram for alert to
shout (right)



5.2 Deriving a Concrete Product Requirement Model

To derive requirements for a concrete SPL product, we make use of the artifacts gener-
ated in domain engineering. The aim of the application engineering is to get a coherent
subset of requirements for a particular product from the overall set of requirements con-
taining the variability. The application engineering is divided into two phases, which are
explained in the following. Note that for the product engineering we do not elaborate the
example for reasons of space. The example is explained in the accompanying technical
report4.

Phase 3: Configuration engineering In this phase the configuration for the con-
crete product is selected. The following steps can be supported by a feature diagram
and OVM diagrams derived from the domain requirements model. Note that this phase
can be repetead to define more than one configuration. Step 1 - Requirements selec-
tion: The first step towards a configuration is to select the desired requirements among
all optional requirements. This selection may reduce the phenomena and domains to se-
lect from in the next steps. The reason is that phenomena and domains, which are only
bound to optional requirements that are not selected can be left out. For all requirements,
which represent an optional variation point, one has to decide whether to include the re-
quirement or not. Next, one has to select a variant for all requirements, which represent
a variation point and which are included in the desired set of requirements. The desired
set contains the selected optional and all mandatory requirements. The selected variants
have to be documented in a configuration diagram. Step 2 - Phenomena selection: The
second step is to select the variants for all phenomena, which are variation points. The
reason for going first for the phenomena is that phenomena are the starting point of the
interaction of end users with the system-to-be. Thus, we have the end user in focus.
Additionally, the selected phenomena often constrain the set of domains to be chosen
from. In many cases, specific phenomena exclude or require specific domains. Step 3
- Domain selection: In this step, one has to select for all domain variation points the ac-
cording desired variants. Step 4 - Configuration validation: Last, one has to check if the
constraints defined in the constraint variability diagrams are all satisfied. Additionally,
one has to check whether the variation dependencies given by the variation diagrams
and the min / max constraints of the variation points are satisfied.

Phase 4: Deriving a Product Requirements Model In this phase, the concrete
product requirements model is derived based on a given configuration. Note that one
can define more than one configuration at a time and derive product requirement mod-
els for them. Step 1 - Product context definition: This step is concerned with deriving
a product context diagram for a concrete product. To this end, we make use of a con-
figuration diagram that defines, which requirement variants have to be achieved by the
concrete product. Then, we derive the concrete SPL context diagram from the vari-
ability context diagram, replacing all variation points by the variants defined by the
configuration. Variation points, which are not addressed by a variant in the configura-
tion are removed. Step 2 - Product functional requirement modeling: In this step, we
derive product problem diagrams for a concrete product. By means of the configuration
we know which functional requirements have to be involved in the requirement mod-
4 http://www.geneda.org/pub/TechnicalReportPREVISE.pdf



els for the concrete SPL product. We use the variability problem diagrams for deriving
product problem diagrams. The activities to be performed are like the ones for step 1.
One additional step is the textual adjustment of the requirements. Step 3 - Product
quality requirement modeling: For the product quality requirement modeling one has to
perform the same activities as given for step 2.

6 Related Work

There exist several methods connecting SPL with requirements engineering approaches.
We focus on methods, which connect problem frames and variability. Zuo et al. [14]
introduce an extension of the problem frames notation that provides support for product
line engineering. The extension for problem frames only supports variability in require-
ments and machines. In contrast to the PREVISE method, the authors do not consider
the variability, which can be caused by domains and phenomena. Furthermore, the au-
thors only provide a notation for domain engineering.

Ali et al. [5] propose a vision for dealing with variability in requirements caused
by the environment. The authors propose an idea for a framework, which relates the
three requirements engineering methods goal models, feature diagrams, and problem
frames to the environmental context in order to use context information for product
derivation. In contrast to PREVISE, it does not pay attention to the variability caused
by the requirements and relies on preliminary knowledge about variability.

Variability, which emerges due to changes in the environment (contextual variabil-
ity), is discussed by Salifu et al. [13]. The authors first set up problem diagrams and
then identify a set of variables representing the contextual variations. Using the contex-
tual variables, variant problem diagrams are derived. In their work, the authors provide
no systematic approach on how to identify contextual variations in the environment and
Application engineering is not considered.

An approach for integrating SPLE and the problem frame concept is proposed by
Dao et al. [8]. The starting point is a feature model, which is mapped to a problem
frames model to elicit functional requirements and domain assumptions. To take quality
requirements into account, a goal model is adopted. The three different notations feature
models, problem frames, and goal models are used, which might cause consistency
problems among different models. In contrast, we provide one single model, which
enables consistency checking and tool support.

Similar to our method, the approach proposed by Classen et al. [7] considers vari-
ability in requirements and phenomena. However, the authors do not treat variability in
domains. Furthermore, quality requirements are not considered.

7 Conclusion

In this paper, we have presented an extension of the problem frames notation to en-
able variability modeling. The notation extension for variability is accompanied by a
method called PREVISE for discovering variability, modeling variability, and deriving
products from the variability models. The contributions of this paper are providing 1)



an OVM-based notation for adding variability to requirements, which are expressed in
the problem frames notation (see Sect. 4), 2) a method, which can be conducted without
any previous knowledge about variability, 3) a structured method for conducting do-
main engineering in the requirements phase, which includes (see Sect. 5.1) discovering
and modeling variability, 4) a structured method for conducting application engineering
in the requirements phase, which includes (see Sect. 5.2) setting up configurations for
products and deriving requirement models for products according to the configurations.
For the future, we plan to implement and improve the tool support.5 We also plan to
integrate PREVISE and QuaRO. We will also integrate PREVISE into the GenEDA
method, which will provide the software engineer with a method, which closely inte-
grates requirements engineering, architecture and design, and patterns. Hence, the vari-
ability will not only be reflected in the requirements, but will also be integrated in the
architecture generation. For the validation of the method , we will apply the method to
a bigger case study.

References

1. A. Alebrahim, C. Choppy, S. Faßbender, and M. Heisel. Optimizing functional and quality
requirements according to stakeholders’ goals. In I. Mistrik, editor, Relating System Quality
and Software Architecture. Springer, 2014. to appear.

2. A. Alebrahim, S. Faßbender, M. Heisel, and R. Meis. Problem-Based Requirements Interac-
tion Analysis. In REFSQ, LNCS 8396, pages 200–215. Springer, 2014. to appear.

3. A. Alebrahim, D. Hatebur, and M. Heisel. A method to derive software architectures from
quality requirements. In APSEC, pages 322–330. IEEE Computer Society, 2011.

4. A. Alebrahim, D. Hatebur, and M. Heisel. Towards systematic integration of quality require-
ments into software architecture. In ECSA, LNCS 6903, pages 17–25. Springer, 2011.

5. R. Ali, Y. Yu, R. Chitchyan, A. Nhlabatsi, and P. Giorgini. Towards a Unified Framework for
Contextual Variability in Requirements. In IWSPM ’09, pages 31–34. IEEE, 2009.

6. K. Beckers, S. Faßbender, M. Heisel, and R. Meis. A problem-based approach for computer
aided privacy threat identification. In APF 2012, LNCS 8319, pages 1–16. Springer, 2012.

7. A. Classen, P. Heymans, R. C. Laney, B. Nuseibeh, and T. T. Tun. On the Structure of
Problem Variability: From Feature Diagrams to Problem Frames. In VaMoS’07, pages 109–
117, 2007.

8. T. M. Dao, H. Lee, and K. C. Kang. Problem frames-based approach to achieving quality
attributes in software product line engineering. In SPLC’11, pages 175–180. IEEE, 2011.

9. D. Hatebur and M. Heisel. A UML profile for requirements analysis of dependable software.
In SAFECOMP, LNCS 6351, pages 317–331. Springer, 2010.

10. M. Jackson. Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley, 2001.

11. M. Konersmann, A. Alebrahim, M. Heisel, M. Goedicke, and B. Kersten. Deriving Quality-
based Architecture Alternatives with Patterns. In SE, LNI 198, pages 71–82. GI, 2012.

12. K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer, 2005.

13. M. Salifu, B. Nuseibeh, L. Rapanotti, and T. T. Tun. Using Problem Descriptions to Repre-
sent Variabilities For Context-Aware Applications. In VaMoS’07, pages 149–156, 2007.

14. H. Zuo, M. Mannion, D. Sellier, and R. Foley. An Extension of Problem Frame Notation for
Software Product Lines. In APSEC’5, pages 499–505. IEEE, 2005.

5 For more details see: http://www.geneda.org/pub/TechnicalReportPREVISE.pdf


	Lecture Notes in Business Information Processing
	Authors' Instructions
	Introduction
	Running Example
	Background
	Orthogonal Variability Modeling
	Problem Frames

	Extending Problem Frames with a Variability Notation
	Problem-oriented SPL Requirements Engineering Method
	Product Line Requirement Model Creation
	Deriving a Concrete Product Requirement Model

	Related Work
	Conclusion
	References



