
Structured Pattern-Based Security Requirements Elicitation for Clouds

Kristian Beckers, Maritta Heisel
paluno - The Ruhr Institute for Software Technolog

University Duisburg-Essen, Germany
Email: {firstname.lastname}@paluno.uni-due.de

Isabelle Côté, Ludger Goeke, Selim Güler
ITESYS Institute for technical Systems GmbH

Dortmund, Germany
Email: {firstname.lastname}@itesys.de

Abstract—Economic benefits make cloud computing systems
a very attractive alternative to traditional IT-systems. However,
numerous concerns about the security of cloud computing
services exist. Potential cloud customers have to be confident
that the cloud services they acquire are secure for them to use.
Therefore, they have to have a clear set of security requirements
covering their security needs. Eliciting these requirements is
a difficult task, because of the amount of stakeholders and
technical components to consider in a cloud environment.

That is why we propose a structured, pattern-based method
supporting eliciting security requirements. The method guides
a potential cloud customer to model a cloud system via
our cloud system analysis pattern. The instantiated pattern
establishes the context of a cloud scenario. Then, the infor-
mation of the instantiated pattern can be used to fill-out our
textual security requirements patterns. The presented method
is tool-supported. Our tool supports the instantiation of the
cloud system analysis pattern and automatically transferes the
information from the instance to the security requirements
patterns. In addition, we have validation conditions that check
e.g., if a security requirement refers to at least one element in
the cloud. We illustrate our method using an online-banking
system as running example.

Keywords-security requirements engineering; security stan-
dards; ISO 27001; cloud computing; requirements patterns

I. INTRODUCTION

The term cloud computing describes a technology as well
as a business model [1]. According to the National Insti-
tute of Standards and Technology (NIST), cloud computing
systems can be defined by the following properties [2]: the
cloud customer can require resources of the cloud provider
over broad network access and on-demand and pays only
for the used capabilities. Resources, i.e., storage, processing,
memory, network bandwidth, and virtual machines, are com-
bined into a so-called pool. Using cloud computing services
is thus an economic way of acquiring IT-resources. The
dynamic acquisition and scalability, yet paying only what
was used, makes cloud computing an interesting alternative
for a large amount of potential customers. The pay-per-use
model includes guarantees such as availability or security for
resources via customized Service Level Agreements (SLA)
[3]. However, the customers are also hesitant to sign up with
a cloud provider. In 2009, the International Data Corpora-
tion1 conducted a survey to find out why customers are so

1https://www-304.ibm.com/isv/library/pdfs/cloud idc.pdf

hesitant. The survey showed that the lack of trust in cloud
security measures is at the top of the list why people avoid
using cloud services. The customers fear that managing and
storing critical data and executing sensitive IT-processes
beyond their grasp has an impact on the security of their
data and IT-processes, respectively.

To (re-)gain this trust some well-known cloud providers
have started to certify their cloud computing systems accord-
ing to the ISO 27001 standard to show potential customers
that they take their concerns, e.g, considering security,
seriously. Unfortunately, it is not always clear to customers
what their security requirements actually are.

Our approach aims at helping potential cloud customers
to elicit their security requirements. We provide patterns
that result in a set of security requirements once they
have been instantiated. The patterns are embedded in a
method that guides a potential cloud customer through the
elicitation process in a structured manner. The method uses
an enhanced version of the Cloud System Analysis Pattern
(CSAP) introduced in [4].

We contribute a metamodel that specifies the structure of
the CSAP. The metamodel enables us to specify validation
conditions to check, e.g., the consistency of the security
requirements amongst each other. In addition, we provide
tool support for instantiating the cloud system analysis
pattern as well as an automatic transfer from the information
of the instance to the security requirements patterns.

We use an online-banking system as running example to
show the applicability of our approach.

The paper is structured as follow: In Sect. II, we briefly
introduce the case study serving as a running example
throughout the remainder of this paper. With Sect. III, we
portray our approach. Section IV provides an overview
of the technical realization of our current tool support.
In Sect. V, we evaluate and discuss our approach. We
conclude the paper with Sects. VI stating related work and
VII summarizing our work and giving directions for future
research.

II. RUNNING EXAMPLE

To illustrate our approach, we consider an online-banking
system as running example. The bank institute, as potential

https://www-304.ibm.com/isv/library/pdfs/cloud_idc.pdf

cloud customer, wants to expand its business by a simple
scenario in form of an online-banking service. To operate
economically, the bank is inclined to use a cloud computing
service for this task.

The registered business address of the bank institute is
within Germany. The bank conducts transactions in Ger-
many, the European Union (EU) and the United States of
America (US). Therefore, it must abide by the rules and
regulations issued by the affected countries as well as by
those of the financial domain. The online-banking service
of the bank comprises a premium proposal aimed at VIP
bank customers. This proposal is a specific service level
agreement between the bank and its VIP customers regarding
the availability of the service.

The bank identified the following requirements that should
be covered by a cloud computing service:

• Data storage: Customer data such as account number,
amount, and transaction log history are stored in the
cloud.

• Data processing: Transactions such as credit transfers
are processed in the cloud.

• Role-based customer handling: The roles Bank Cus-
tomer as well as VIP Bank Customer are handled in
the cloud.

• Compliance: The cloud provider guarantees that the
rules and regulations the bank has to abide by, such
as BASEL III, are met.

The internal development unit of the bank institute pro-
vides the software for the online-banking service. It is
also responsible for building, installing and customizing the
components that are necessary to run the online-banking
software within the cloud. Examples for such components
are the web-server and the application server.

The potential cloud provider should only provide cloud
services for the finance domain. This lies in the fact that they
are tailored to the needs for executing business cases from
the financial domain. Furthermore, they take the appropriate
security requirements into account. Cloud providers offering
a non-domain specific portfolio, implement their services
on a broader scope to cover the needs of customers from
different domains.

A potential cloud provider should also provide a telephone
support, to enable a prompt and straightforward management
of problems and open questions.

III. METHOD

This section introduces the method supporting potential
cloud customers to specify the cloud services they need as
well as to elicit their security requirements.

The basis for the approach presented in this paper is
the so-called Cloud System Analysis Pattern (CSAP) [4]. It
provides the elements and structure to describe a cloud com-
puting system. Furthermore, it models relations between,
e.g., stakeholders and cloud elements. A cloud scenario can

be represented by instantiating the different elements in the
pattern.
The method is structured into two main steps, namely:

A) Modeling the business case by instantiating a Cloud
System Analysis Pattern (CSAP).

B) Instantiating security requirement patterns for the cor-
responding instantiated Cloud System Analysis Pat-
tern.

Each of the above-mentioned steps is further subdivided into
sub-steps in order to gradually guide the customer through
the method. In the following, we describe the different steps
in more detail:

A. Modeling the business case by instantiating a Cloud
System Analysis Pattern (CSAP)

In this section, we briefly introduce our CSAP. Our
approach is based on the pattern introduced in [4]. As
we enrich the above-mentioned pattern, we introduce and
explain it together with our method. To ease assigning
security requirement patterns to the instantiated CSAP in a
later step of our method as well as a preparatory step towards
tool support, we specify a metamodel. The metamodel is
based on the Unified Modeling Language (UML) [5]. We
provide an overview of our CSAP metamodel in Fig. 1.
During the CSAP instantiation process, we explain the
different elements and their meaning for the business cases
of potential cloud customers. Furthermore, we describe how
we realized the different CSAP elements in our metamodel.

As a first modeling step, the potential cloud customers in-
stantiate a CSAP that represents the required cloud services
for supporting their relevant business case. In the following,
we describe the sub-steps in detail:

1) Instantiating Indirect Stakeholders: Indirect
stakeholders are contained in the indirect environment.
The indirect environment is the root element of the
CSAP. It contains the representations of legislations,
domain specific formalities and stipulations in
form of appropriate instantiations of indirect
stakeholders. Furthermore, it contains the direct
system environment. The CSAP metamodel specifies
the indirect system environment by the class
IndirectEnvironment (see Fig. 1).
Indirect stakeholders represent

• legislations of accordant countries,
• domain specific regulations, and
• contractual arrangements

that affect the business case of the potential cloud
customers.
In the CSAP metamodel, indirect stakeholders are
specified by the class IndirectStakeholder (see Fig. 1).
Additionally, the abstract class Stakeholder defines the
common properties for both indirect as well as direct
stakeholders. These properties are:

2

Figure 1. Metamodel of the Cloud System Analysis Pattern

• name: The name of direct and indirect stakehold-
ers. Instantiations of direct stakeholders as well as
indirect stakeholders are identified by their names.

• description: Information that characterizes direct
as well as indirect stakeholders in natural lan-
guage.

• motivation: Motivation of direct and indirect
stakeholders considering their association with the
cloud service.

• compliance and privacy: Relevant compliance and
privacy laws as well as regulations that are raised
by indirect stakeholders or have to be considered
by direct stakeholders.

The type of an indirect stakeholder is represented by
the attribute instanceType. The different types leg-

islator, domain, and contract are represented as the
enumeration IndirectStakeholderType.
In our example, we have to instantiate the indirect
stakeholders according to the information on regula-
tions given in Sect. II. Therefore, it is necessary to
instantiate three indirect stakeholders of instance type
legislator with the names Germany, European Union
and United States (see Fig. 2). The domain specific
regulations are represented by the indirect stakeholder
domain instance Finance. Furthermore, the bank insti-
tute has to consider its contractual arrangement with
the VIP bank customers. This contractual arrangement
is depicted by the indirect stakeholder instance VIP-
Customization.
During the instantiation of indirect stakeholders, all

3

Figure 2. Instantiated Cloud System Analysis Pattern

of their properties have to be set. For example,
the affected regulations have to be allocated to the
property compliance and privacy of the appropriate
indirect stakeholder instances. One regulation for the
indirect stakeholder instance Germany would be the
Bundesdatenschutzgesetz.
The structure of the pattern has been designed in such
a way that the names of the elements provide hints
considering the corresponding type.

2) Instantiating the Cloud: The second sub-step consists
of instantiating the cloud. The direct environment
contains the representations of the cloud and the direct
stakeholders of the cloud. Relations between elements
form the direct environment and indirect stakeholders
contained in the indirect environment are not allowed.
In the CSAP metamodel, the direct environment is
specified by the class DirectEnvironment.
The cloud itself consists of different types of cloud
elements (see sub-step Instantiating Cloud Elements).
Furthermore, assets are contained in the cloud (see
sub-step Instantiating Assets). In the CSAP meta-
model, the cloud is specified by the class Cloud.
The deployment model of the cloud is represented
by the property deploymentModel. The enumeration
DeploymentType defines private, community, public,

and hybrid as values for this type. The different
deployment models are explained in [2].
In our example, the bank institute has to instantiate a
cloud. They chose the deployment model community
and therefore set the deployment type to community,
because they decided to use a cloud provider that only
provides cloud services for the financial domain (see
Sect. II).

3) Instantiating Cloud Elements: Cloud elements repre-
sent the physical cloud resources and the cloud ser-
vices that provide these cloud resources to the cloud
customers. The resources of cloud customers that are
executed in the cloud, are also represented by cloud
elements. In the CSAP metamodel, cloud elements
are specified by the class CloudElement (see Fig. 1).
The property instanceType represents the type of a
cloud element. The different types are defined by the
enumeration CloudElementType.
A cloud element can refer to additional documen-
tation, e.g. manufacturer’s documentation that pro-
vides more information about the accordant cloud
element. This reference is specified by the property
descriptiveDoc. For the representation of the different
models of cloud services CloudElementType defines
the following literals:

4

• IaaS: Infrastructure as a Service.
• PaaS: Platform as a Service.
• SaaS: Software as a Service.

A detailed consideration of the above-mentioned ser-
vice models is given in [2].
All cloud services are contained in a container named
Service (see Fig. 2). It allows the association of
all contained cloud processes at once. The service
container is represented by a cloud element with the
instance type service. It can not be instantiated.
The bank institute, in our running example, requires
an IaaS cloud service in form of a virtual machine
for running components such as a web- and appli-
cation servers. Based on that, a cloud element with
the instance type IaaS has to be instantiated. In our
example, this cloud element instance has the name
Virtual Machine (see Fig. 2).
For processing the online-banking service, a cloud pro-
gramming interface enabling the communication with
the appropriate cloud resources is required. Because
this cloud programming interface represents a PaaS
cloud service, a cloud element with the instance type
PaaS and the name Cloud Progam. Interface has to be
instantiated.
The bank institute requires no SaaS cloud service
as they implement their own online-banking service.
Based on that, no cloud element of the instance type
SaaS has to be instantiated. Therefore, the correspond-
ing CSAP element remains unchanged (see Fig. 2).
Generally, the fact that CSAP elements were not
instantiated indicates that the needed information for
the instantiation is currently unavailable. Elements,
which have not been instantiated remain unchanged.
Cloud resources represent the required hardware and
software supplied by cloud providers. These resources
are provided via cloud services. The modeling of the
cloud resources enables statements about the security
of a cloud service. Hardware and software are repre-
sented by cloud elements with the instance types hard-
ware and software, respectively. A resource is depicted
by a cloud element with the instance type resource.
All cloud resources are contained in a pool. Pool
means that ”resources are pooled to serve multiple
consumers using a multi-tenant model, with different
physical and virtual resources dynamically assigned
and reassigned according to consumer demand” [2].
It allows associating all cloud resources at once. The
pool is represented by a cloud element with the
instance type pool. It can not be instantiated.
In our example, the hardware – a potential cloud
provider has to own – is represented by the cloud
element instance Server with the instance type hard-
ware. The software is depicted by the cloud element

instance Virtualisation-/DB-Software of type software.
The instantiated cloud element Data Center of type
resource, specifies that the cloud resource shall reside
in a data center.
The instantiation of the cloud software stack is nec-
essary if the potential cloud customers require an
IaaS cloud process. In this case, the potential cloud
customers want to execute their own software such as
web servers and application servers by using an IaaS
cloud service.
In our example, the bank institute needs to execute its
own software such as a web server and an application
server for processing their online-banking service us-
ing an IaaS in form of a virtual machine. Therefore,
the cloud software stack has to be instantiated. It is
represented by the instantiated cloud element Web-
/Application-Server with the instance type cloudSoft-
wareStack.
The customer service has to be instantiated, if the
potential cloud customers require a PaaS cloud service
for executing their own service.
In the context of our example, the customer service has
to be instantiated, because the bank institute executes
their online-banking process by the use of a PaaS in
form of the cloud programming interface.
Cloud elements can have relations to each other. In
the CSAP metamodel these relations are specified by
the association relationCloudElements. Our example
contains the relation isBasedOn (see Fig. 2). This
relation specifies that the different cloud services are
based on the pool of cloud resources.

4) Instantiating Direct Stakeholders: Direct stakeholders
are persons, a group of persons or organizations that
have a direct association to the cloud. In the CSAP
metamodel, direct stakeholders are specified by the
class DirectStakeholder (see Fig. 1). The different
types of direct stakeholders are depicted by the prop-
erty instanceType. The enumeration DirectStakehold-
erType defines the following types:

• cloudCustomer: Cloud customers use cloud re-
sources over the appropriated cloud services.

• cloudDeveloper: Cloud developers work for cloud
customers. Based on the models of cloud services
that cloud customers require, the cloud developers
are accountable for the components of the cloud
software stacks and/or the cloud customers ser-
vices.

• support: The support employees work for cloud
providers. They are the contact persons for cloud
customers and end customers and delegate open
questions and problem reports to the cloud admin-
istrators.

• endCustomer: End customers are customers that

5

use a cloud service, but they don’t provide ser-
vices to other customers. An end customer can
use a cloud service directly from a cloud provider
or indirectly over another cloud customer.

• cloudProvider: Cloud providers own a pool of
cloud resources. They provide the usage of these
cloud resources over accordant cloud processes.

• cloudAdministrator: Cloud administrators are re-
sponsible for the administration of the cloud re-
sources. They work for cloud customers.

In our example, the bank institute has to be represented
in the CSAP. For this, a direct stakeholder with the
instance type cloudCustomer and the name Bank In-
stitute has to be instantiated. The property description
depicts informal characteristics of the bank institute,
like the fact that the bank institute represents a legal
person operating in the financial sector. The property
motivation depicts that cost savings are the reasons for
using cloud services (see Sect. II).
Because the bank institute uses its own online-banking
service and cloud software stack components, a direct
stakeholder with the instance type cloudDeveloper has
to be instantiated. In our example, this direct stake-
holder instance has the name Internal Development
Unit.
End customers represent the customers of the bank
institute. As the institute is responsible for selecting
the cloud provider, the end customer is not relevant
and does not need to be instantiated.
The cloud provider, represented by an indirect stake-
holder with the instance type cloudProvider, can’t be
instantiated at this point. The cloud administrator will
be instantiated once the cloud provider is known.
Because the bank institute requires a telephone support
(see Sect. II), the direct stakeholder with the instance
type support has to be instantiated. In our example,
this direct stakeholder instance has the name Tele-
phone Support.
Direct stakeholders can have relations to each other
(see Fig. 1). These relations are specified in the CSAP
metamodel by the association relationDirectStakehold-
ers. An example for such an association is the relation
WorkFor between the bank institute and the internal
development unit (see Fig. 2).
Direct stakeholders can also have relations to cloud
elements. In the CSAP metamodel, the association
relationCloudElementStakeholder defines these rela-
tions. The relation BuiltBy in our example represents
that the internal development unit builds the customer
service (see Fig. 2).

5) Instantiating Assets: Assets represent anything that
has a value to potential cloud customers [6]. Assets can
be, for example, different occurrences of information

or physical objects.
In the CSAP metamodel, assets are defined by the
class Asset. The different types are defined by the
enumeration AssetType with the following values: in-
formation, cloud data, documentation, and physical
object. Additionally, the class Asset defines the fol-
lowing properties:

• owner: Person or group of people who is in charge
for the asset.

• description: Characterizes the asset in natural lan-
guage.

In our example, the data that is relevant in the context
of an online-banking transaction represents an asset for
the bank customer. Indirectly, this transaction data de-
picts also an asset for the bank institute, because a loss
of, e.g., integrity regarding the transaction data would
have serious consequences for them. The transaction
data has to be represented by an instantiated asset of
the instance type cloudData. This asset instance has
the name Transaction Data.
Assets can have relations to the representations of
cloud customers and end customers who own the
assets. These relations are specified by the associ-
ation belongingAssets. In our example, the relation
InputBy/OutputTo depicts, that the transaction data is
an asset for the bank customer.
Furthermore, assets can have relations with the cloud
elements that process, produce and/or store assets. In
the CSAP metamodel, the association relevantAssets
defines these relations. For example, the relation Pro-
cessedBy/CreatedBy represents that transaction data is
processed and produced by the online-banking service.

B. Instantiating security requirement patterns for the corre-
sponding instantiated Cloud System Analysis Pattern

In this step, we describe our security requirement patterns
and how to instantiate them. The resulting security require-
ments are related to elements in the CSAP instance.

According to [7], a security requirement is typically a
confidentiality, integrity or availability requirement. In our
method, these kind of requirements concern the different
elements in a CSAP instance.

The idea of requirement patterns is to provide guidance
on how to specify common types of requirements, to make it
quicker and easier to write them, and to improve the quality
of those requirements [8].

A security requirement pattern contains always fixed text
passages that represent the meaning of the security re-
quirement pattern. These fixed text passages have generic
text passages embedded in them that have the following
structure:

• []: Opening and closing squared brackets mark the be-
ginning and end of a generic text passage, respectively.

6

• instance type of CSAP element: In this case, a generic
text passage references certain elements in the cor-
responding CSAP. They consider all elements whose
instance type correspond to the keyword in the generic
text passage. For example, the generic text passage in
the security requirement pattern in Example 1 refer-
ences all cloud elements of the instance type cloudSoft-
ware. During the instantiation of a security requirement
pattern, the potential cloud customer can select the
elements for which the surrounded fixed text applies.
The appropriate elements are identified by the values
of their name and instanceType properties.
In our example, the cloud software Virtualization-/DB-
Software has to be inserted, because virtualization and
data base software have to be protected against mali-
cious software.
The keyword all before the instance type specifies that
all appropriate referenced CSAP elements are relevant
for the particular security requirement pattern. Here,
potential cloud customers have to insert all referenced
CSAP elements into the corresponding security require-
ment pattern.
During instantiating the security requirement pattern
in Example 3 the representation of the cloud data
Transaction Data has to be inserted into the generic text
passage. The resulting security requirement is given in
Example 2.
Until now, keywords that reference CSAP elements
apply only to CSAP elements of one instance type,
respectively. There are also keywords that allow ref-
erencing several instances of CSAP elements with
different instance types. These keywords are considered
in the following:

– all cloud elements references all instantiated
cloud elements without considering the instance
type. In our example, the representations of the
cloud elements Virtual Machine, Cloud Prog. In-
terface, Web-/Application-Server, Online Banking
Service, Data Center, Server and Virtualisation-
/DB-Software are inserted because they are in-
stantiated. Since the cloud services SaaS is not
instantiated and therefore it is not considered in
the security requirement pattern.

– all cloud services references all instantiated cloud
elements with the instance types Iaas, PaaS and
SaaS.

Protection against malicious software (viruses, Trojan Horses,...)
shall be implemented in software [cloud software].

Example 1. Example for a security requirement pattern that references
information in an CSPA instance

Text in bold-face is used to highlight the aspects treated
in the security requirement pattern.

Protection against malicious software (viruses, Trojan Horses,...)
shall be implemented in software Virtualization-/DB-Software .

Example 2. Example for an instantiated security requirement pattern

The loss of cloud user data [all cloud data] shall be prevented.

Example 3. Security requirement pattern referencing all instantiated cloud
elements of the instance type cloudData

Instantiating security requirement patterns consists of
specifying security requirement patterns and instantiating
requirement patterns.

These two steps are explained in detail in the following:
1) Specifying security requirement patterns: In this step,

the potential cloud customers have to specify their
requirements for the security of a potential cloud
service. For that purpose, a set of predefined security
requirement patterns covering common security issues
is provided. This set should serve as a starting point
for the specification of security requirement patterns
and has no claim for completeness. It is possible to
add new and to update existing security requirement
patterns whenever new or changed threats or security
mechanisms arise. We are confident that the effort
needed to create such new or updated security re-
quirement patterns can be reduced by applying the
previously mentioned syntactic rules. The predefined
security requirement patterns are based on [9], [10],
[11], and [12]. The potential cloud customers can
evaluate the predefined security requirement patterns
and decide, which security requirement patterns are
relevant for them. With this, they have the possibil-
ity to customize the predefined security requirement
patterns to their needs.
In our example, the bank institute specifies one aspect
regarding the privacy of customer data by adopting
the security requirement pattern given in Example 4.
Another privacy aspect for customer data is specified
by customizing the security requirement pattern given
in 5. This customization is necessary, because the bank
institute does not allow the collection of personal data
by third parties.
If potential cloud customers have further security
requirements that are not included in the set, they can
extend the list by creating new security requirement
patterns. The structure of customized and newly cre-
ated security requirement patterns has to be validated.
The resulting set contains all security requirement
patterns that have to be instantiated. This instantiation
is considered in detail in the following step.

2) Instantiating security requirement patterns: After
specifying security requirement patterns the potential
cloud customers have to instantiate the relevant
security requirement patterns consecutively. Therefore,

7

Confidentiality of personal data of [cloud customer,end customer]

shall be achieved.

Example 4. Adapted security requirement pattern

Personal data of [cloud customer, end customer] shall not be
collected without permission.

Example 5. Customized security requirement pattern

they choose an affected security requirement pattern
and assign the information from the corresponding
CSAP to the generic text passages. After that, we add
this security requirement to the other already elicited
security requirements.
During the instantiation of the security requirement
pattern in Example 4, the bank institute has the
opportunity to select the instantiated cloud customer
Bank Institute and the not instantiated end customer
End Customer. They have to select both elements,
because the bank institute’s personal data as well as the
bank customers personal data have to be confidential.
Accordingly, both element names are inserted into the
generic text passage. Thus, the name End Customer
refers to all online-banking customers in general and
not to one specific online-banking customer in partic-
ular.

IV. IMPLEMENTATION

In this section, we present our current tool support.
First, we consider the Cloud System Analysis Pattern Tool
(CSAP Tool). This tool supports the instantiation of the
CSAP. It also provides modeling support that allows to ex-
tend the CSAP with additional instantiable CSAP elements
and the corresponding relations between them and other
CSAP elements. Because this procedure is not part of our
method it will not be considered further.

The notation used to specify the pattern is based on UML,
i.e., stickmen represent roles, boxes represent concepts or
entities of the real world and named lines represent relations
(associations) equipped with cardinalities.

Our tool is based on the Eclipse platform [13] as well as
its plug-ins Eclipse Modeling Framework (EMF) [14] and
the Graphical Editing Framework (GEF) [15]. We further use
the Graphical Modeling Framework (GMF) [16] to generate
graphical editors.

Our CSAP metamodel (see Sect. III-A) serves as the basis
for generating the appropriate (ecore) model using EMF.
This (ecore) model enables the generation of components
representing CSAP information within the CSAP Tool. The
cloud system analysis pattern GUI is generated by GMF
using our CSAP metamodel.

The CSAP Tool uses the eclipse interface IWizard to
create a wizard to support the instantiation of a cloud pattern.

The wizard provides a graphical interface that asks the user
for the necessary information to instantiate stakeholders,
cloud elements and assets. It asks, for example, for the
name and owner of an asset. In addition, the wizard supports
instantiating several instances of one instantiable CSAP el-
ement. For example, the wizard can instantiate four indirect
stakeholders in form of legislators at once. Furthermore, we
equipped the wizard with validation capabilities. An example
for an already implemented validation condition is to check
whether all fields of a stakeholder in the corresponding
template have entries.

It is also possible to generate a report, called CSAP report.
It contains the graphical representation of the model as well
as the texts provided in the stakeholder template. We use
the iTextPDF interface of Eclipse to generate the pdf-files
for the report.

For the management of security requirement patterns, we
provide a Requirement Pattern Editor (RP Editor). Its im-
plementation is also based on the Eclipse platform [13] as
well as the aforementioned plug-ins. The RP Editor pro-
vides functionality for displaying, creating, modifying and
deleting security requirement patterns. Figure 3 shows the
modification of a predefined security requirement pattern.
For creating and modifying security requirement patterns,
the RP Editor provides keywords for referencing CSAP
elements. These keywords represent the instance types of
the corresponding CSAP elements.

Considering a newly created or modified security re-
quirement pattern, it has to be ensured that its structure is
valid. Based on that, the RP Editor provides an appropriate
validation function, that is executed before adding a created
or modified security requirement pattern. This validation
function is future work.

The management of security requirements is provided by
another editor, the so-called Instantiated Requirement Pat-
tern Editor (InstRP Editor). The functionality of the InstRP
Editor comprises instantiating security requirement patterns
as well as displaying, modifying, and deleting security
requirements.

The implementation of the InstRP Editor is in process at
this moment. It is implemented on the basis of the same
technologies as the RP Editor. During the instantiation of
security requirement patterns, the names of the referenced
CSAP elements are inserted into the corresponding generic
text passages, automatically. For this procedure the InstRP
Editor provides an appropriate wizard, that allows the selec-
tion of the relevant CSAP element names.

In Sect. III-B, we mentioned that the set of security
requirements has to be consistent to the corresponding
CSAP instance. This consistency has to be ensured by an
appropriate validation function. To enable this the instance
type of a referenced CSAP element has to be captured in
the representation of a security requirement. Based on the

8

Figure 3. Modification of a security requirement pattern in the RP Editor

name and the instance type, the validation function can
compare the references in the security requirements against
the elements in the corresponding CSAP instance.

V. EVALUATION/DISCUSSION

The procedure presented in this paper was developed
based on discussions with practitioners from cloud security
projects. Parts of our method have been discussed with
security consultants. The security consultants mentioned that
this structured method

• helps to understand the scope of the analysis of a cloud
and to consider all relevant parts of it.

• supports the identification of security requirements.
• increases the use of models instead of texts in standards,

which eases the effort of understanding the system
documentation significantly.

• provides the means for abstraction of a complex system
and structured reasoning for security based upon this
abstraction.

One issue that needs further investigation is scalability,
both in terms of the effort needed by the requirements engi-
neers in order to enter all information about the organisation
as well as the requirements elicitation proposed. We will
use the approach for different scenarios to investigate if the
method scales for different fields, as well.

Our tool will also undergo a series of usability tests,
which shall discover issues with its use in a productive
environment. We aim to identify usability issues and resolve
these in order to further improve the user experience.

We aim to conduct also an empirical study with our tool in
order to analyse the amount of time that can be saved when
using it and the amount of security requirements identified
when using it. We aim to compare it against conventional
text based approaches.

Security requirement patterns and CSAP are linked to-
gether. So, if an element in the CSAP instance is changed,
e.g., name or type, it is necessary to change the security
requirement, as well. Otherwise, we create an inconsistency.

VI. RELATED WORK

Schumacher et al. [17] propose patterns specifically for
security. The authors defined simple solutions to security
problems during the software engineering design and imple-
mentation phases. The resulting pattern catalogues support
specifically design and implementation phases of software
engineering processes, while our work focuses on the anal-
ysis phase of software engineering.

Withall [8] provides guidelines and examples for formu-
lating software requirements based upon project experience.
The author also explains the need for documentation of

9

requirements including assumptions, glossary, document his-
tory and references. Withall’s work aims at writing textual
requirements, which also consider domain knowledge in the
form of assumptions to these requirements. Our work differs
from Withall’s, because we provide patterns for context
descriptions and requirements elicitation.

Fernandez et al. [18] design several UML models of
some aspects of Voice-overIP (VoIP) infrastructure, includ-
ing architectures and basic use cases. The authors also
present security patterns that describe countermeasures to
VoIP attacks. Our work provides additionally tool support
and requirements validation. We can also envision to use the
models and information from Fernandez et al. to provide
an adaptation of our approach for VoIP scenarios. Hafiz
[19] described four privacy design patterns for the network
level of software systems. These patterns solely focus on
anonymity and unlinkability of senders and receivers of
network messages from protocols, e.g., HTTP. The works of
Fernandez et al. and Hafiz focuses exclusively on specific
kinds of systems: Voice-over-IP and network-based software
systems. We focus on any kind of cloud computing system.

VII. CONCLUSION AND FUTURE WORK

We have presented a structured method for describing the
cloud context and eliciting security requirements.

Our method provides the means to analyse cloud scenarios
with regards to security in a structured manner. The method
relies upon patterns to describe the context and elicit the
security requirements, which eases the effort for these ac-
tivities.

Our approach offers the following main benefits:
• A structured method for describing the context and

eliciting security requirements.
• A support tool that contains a graphical representation

of the pattern for describing the cloud scenario as well
as textual patterns for security requirements.

• Validation conditions to check the instantiation of all
patterns.

In the future, we intend to
• implement all currently developed validation condi-

tions.
• match security requirements to security solutions based

on standards, e.g, ISO 27001.
• document the context description, security requirements

definition, and ISO 27001 controls that fulfil the re-
quirements.

• automatically generate standard compliant reports.
• validate our method further by applying it to different

case studies.

ACKNOWLEDGMENTS

This research was partially supported by the EU project
Network of Excellence on Engineering Secure Future Inter-
net Software Services and Systems (NESSoS, ICT-2009.1.4

Trustworthy ICT, Grant No. 256980) and the Ministry of
Innovation, Science, Research and Technology of the Ger-
man State of North Rhine-Westphalia and EFRE (Grant No.
300266902 and Grant No. 300267002).

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” Berkeley, Tech. Rep., 2009.

[2] P. Mell and T. Grance, “The NIST definition of cloud com-
puting,” Special Publication 800-145 of the National Institute
of Standards and Technology (NIST), 2011.

[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-
ner, “A break in the clouds: Towards a cloud definition,”
SIGCOMM Computer Communication Review, vol. 39, no. 1,
pp. 50–55, 2008.

[4] K. Beckers, J.-C. Küster, S. Faßbender, and H. Schmidt,
“Pattern-based support for context establishment and asset
identification of the ISO 27000 in the field of cloud comput-
ing,” in ARES. IEEE Computer Society, 2011, pp. 327–333.

[5] UML Revision Task Force, OMG Unified Modeling Lan-
guage: Superstructure, Object Management Group (OMG),
May 2010.

[6] International Organization for Standardization (ISO) and In-
ternational Electrotechnical Commission (IEC), “Information
technology - Security techniques - Information security man-
agement systems - Requirements,” 2005.

[7] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt,
“A comparison of security requirements engineering meth-
ods,” Requirements Engineering – Special Issue on Security
Requirements Engineering, vol. 15, no. 1, pp. 7–40, 2010.

[8] S. Withall, Software Requirement Patterns. MICROSOFT
PRESS, 2007.

[9] Cloud Security Alliance, “Security Guidance for Critical
Areas of Focus in Cloud Computing,” December 2009.

[10] C. S. Alliance, “Top threats to cloud computing,” March 2010.
[11] J. Heiser and M. Nicolett, “Assessing the security risks of

cloud computing,” June 2008.
[12] European Network and Information Security Agency, “Cloud

computing - benefits, risks and recommendations for infor-
mation security,” 2009.

[13] Eclipse Foundation, Eclipse - An Open Development Plat-
form, 2011, http://www.eclipse.org/.

[14] ——, “Eclipse Modeling Framework Project (EMF),” June
2012, http://www.eclipse.org/modeling/emf/.

[15] ——, “Graphical Editing Framework Project (GEF),” June
2012, http://www.eclipse.org/gef/.

[16] ——, “Eclipse Graphical Modeling Framework (GMF),”
2011, http://www.eclipse.org/modeling/gmf/.

[17] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad, Security Patterns: Inte-
grating Security and Systems Engineering. Wiley, 2006.

[18] E. B. Fernandez, J. C. Pelaez, and M. M. Larrondo-Petrie,
“Security patterns for voice over ip networks,” in ICCGI.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
19–29.

[19] M. Hafiz, “A collection of privacy design patterns,” in PLoP,
ser. PLoP ’06. ACM, 2006, pp. 7:1–7:13.

10

	I Introduction
	II Running Example
	III Method
	III-A Modeling the business case by instantiating a Cloud System Analysis Pattern (CSAP)
	III-B Instantiating security requirement patterns for the corresponding instantiated Cloud System Analysis Pattern

	IV Implementation
	V Evaluation/Discussion
	VI Related Work
	VII Conclusion and Future Work
	Acknowledgments
	References

