
Supporting Common Criteria Security Analysis with Problem
Frames∗

Kristian Beckers, Maritta Heisel
paluno

University of Duisburg-Essen
Germany

firstname.lastname@paluno.uni-due.de

Denis Hatebur
ITESYS

Institute for Technical Systems GmbH
Germany

d.hatebur@itesys.de

Abstract
Security standards, e.g., the Common Criteria (ISO 15408), are applied by software

vendors to establish a level of confidence that the security functionality of their products
and their applied assurance measures are sufficient. To get a Common Criteria certification,
a comprehensible set of documents is necessary, including a detailed threat analysis and
security objective elicitation. We focus on improving the Common Criteria threat analysis
and the derivation of security objectives in our work.

Our method is based upon an attacker model, which considers different attacker types,
e.g., software attackers, that threaten only specific parts of a system. We provide tool
support for checking the consistency and the completeness of the specified software systems
using OCL expressions. For example, we check if all types of attackers have been considered
for a specific domain, we check for all software domains that either a software attacker is
considered or an assumption is documented that excludes software attackers, and we check
if all threats are addressed by security objectives. Moreover, we can generate tables and
texts from our UML models to satisfy the Common Criteria documentation demands. For
instance, we can generate Common Criteria specific cross-table, which maps every security
objective and assumption to a specific threat. The consistency checks are integrated in our
structured method for threat analysis that considers the Common Criteria’s (CC) demands
for documentation of the system in its environment and the reasoning that all threats are
discovered and addressed. With our support tool UML4PF (that extends a UML tool and
contains e.g., a UML profile and an OCL validator), we support security reasoning, validation
of models, and we are able to generate Common Criteria-compliant documentation using
model-to-text transformations. Our threat analysis method can also be used for threat
analysis without the common criteria, because it uses a specific part of the UML profile that
can be adapted to other demands with little effort. For example, it could be adapted for
other security standards like ISO 27001.We illustrate our approach with the development of
a smart metering gateway system.

1 Introduction

Software vendors have to establish a level of confidence that the security functionality of their
products and their applied assurance measures are sufficient. This can be done by a certification
according Security standards, e.g., the Common Criteria (ISO 15408, CC). A certification re-
quires a consistent and understandable set of documents. In this paper, we introduce a method
to create documents necessary for a CC certification.

We reworked and integrated results from previous publications about the creation of Security
Targets [2] and the problem-based CC compliant threat analysis [3]. We added the definition

∗This research was partially supported by the EU project Network of Excellence on Engineering Secure Future
Internet Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy ICT, Grant No. 256980) and the
Ministry of Innovation, Science, Research and Technology of the German State of North Rhine-Westphalia and
EFRE (Grant No. 300266902 and Grant No. 300267002).

1

firstname.lastname@paluno.uni-due.de
d.hatebur@itesys.de

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

of security objectives being the next steps of our the method. Additionally, we extended and
improved the model validation, the support tool and the capabilities of our document generation
functionality.

We proposed to extend the problem frame method (see Sect. 2.2) to support the security
reasoning and documentation demands of the CC (see Sect. 2.1). The CC demand several steps,
such as a description of the software and hardware in its environment, asset identification,
and threat analysis, but does not provide a description of when these steps are complete and all
threats are elicited. A detailed description on how to conduct these steps is also not available. We
provide a method that extends the UML4PF profile (see Sect. 2.2) with CC-specific terminology,
e.g., the so-called ToE is the system containing hardware and software to be certified. In
addition, we introduce an attacker classification and define specific kinds of Jackson’s domains
that these attackers threaten, e.g., a software attacker threatens only causal domains. Our
method is supported by a modeling tool that contains OCL expressions [26], which support
security reasoning by checking for completeness of the threat analysis. For example, it checks
whatever all network connections are threatened by a network attacker. These expressions also
check for consistency problems in the resulting model, e.g., if assets are also attackers.

Our method uses models and inserts all relevant information and texts in these models. We
support the creation of security target (ST) and protection profile (PP) documents. We support
the creation of all sections from the introduction section to the security objectives section (see
Sect. 2.1). This requires a transformation from our UML models into texts and tables. We
provide tool support that supports an automatic transformation from our models to tables
and texts for ST and PP documents. We limit our work to security objectives, because these
correspond to requirements (see our conceptual framework in [11]), and the problem frames
method focuses on the requirements phase of software engineering. The support for the sections
in ST and PP documents, e.g., security functional requirements that refer to software design
are part of our future work. We validated our work by applying our method to an existing CC
protection profile for a smart metering gateway [6].

2 Background

2.1 Common Criteria

The ISO/IEC 15408 - Common Criteria for Information Technology Security Evaluation is a
security standard that can achieve comparability between the results of independent security
evaluations of IT products (machines). These are so-called Targets of Evaluation (TOEs). The
Common Criteria are based upon a general security model. The model considers ToE Owners
that value their Assets and wish to minimise Risk to these Assets via imposing Countermeasures.
Attackers wish to abuse Assets and give rise to Threats for Assets. The Threats increase the
Risks to Assets.

Documentation of the security model is the basis for CC certification. The CC security
model can be expressed in two different types of documents. The security needs of ToE owners
are described in the so-called Security Target (ST). An ST can be a refinement of a so-called
Protection Profile (PP). A PP states the security needs for an entire class of ToEs, e.g., client
VPN application. A PP states the security requirements of ToE owners, and ToE developers
or vendors publish their security claims in an ST.

The document structure of ST and PP is the same on the level of chapters. The first chapter
is an Introduction that contains the description of the ToE and its environment. The chapter
Conformance Claims describes to which PPs the ST or PP is compliant.

2

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

The chapter Security Problem Definition refines the external entities, e.g., stakeholders in
the environment. In addition, the chapter lists all Assets, Assumptions about the ToE and
its environment as well as all Attackers, the Threats they cause to Assets, and Organizational
Security Policies of the ToE ’s environment. The chapter Security Objectives contains the Secu-
rity Objectives for the ToE and its Operational Environment. An example for an Operational
Environment is the operating system the ToE uses.

2.2 Problem Frames

We use a requirements engineering method inspired by Jackson [17]. Requirements can only
be guaranteed for a certain context. Therefore, it is important to describe the environment,
because we build a system to improve something in the world. The environment in which the
system to be built (called machine) will operate is represented by a context diagram.

We use the UML [27] notation with stereotypes defined in the UML profile UML4PF [13] to
create a context diagram and domain knowledge diagrams. Stereotypes give a specific meaning
to the elements of a UML diagram they are attached to, and they are represented by labels sur-
rounded by double angle brackets. The class with the stereotype machine represents the thing
to be developed (e.g., the software). The classes with some domain stereotype, e.g., Causal-
Domain or BiddableDomain represent problem domains that already exist in the application
environment.

Domains are connected by interfaces consisting of shared phenomena. Shared phenomena
may be events, operation calls, messages, and the like. They are observable by at least two
domains, but controlled by only one domain, as indicated by an exclamation mark.

Jackson distinguishes the domain types CausalDomains that comply with some physical
laws, LexicalDomains that are data representations, and BiddableDomains that are usually
people. The stereotype <<causalDomain >> indicates that the corresponding domain is a
CausalDomain, and the stereotype <<biddableDomain >> indicates that it is a BiddableDomain.
In our formal meta-model of problem frames [14], Domains have names and abbreviations, which
are used to define interfaces. Hence, the class Domain has the attributes name and abbreviation
of type string. Requirements engineering by means of problem frames, proceeds as follows: It
begins with a description of the desired functionality of the software to be built, the so-called
machine. This description is refined into requirements and domain knowledge, which consists of
facts and assumptions. An osp is an organizational security policy, which states rules that have
to be followed when using the ToE. We use a context diagram and domain knowledge diagrams
using our UML profile and tool support.

3 Supporting Common Criteria using Problem Frames

The ISO 15408 Standard - Common Criteria for Information Technology Security Evaluation
(short CC) - [16] demands a detailed documentation of the software system that should be
evaluated. This software system is the so-called Target of Evaluation (ToE) and consists of
hard- and software. A ToE has to be described in detail, including its environment.

In this work, we focus on the threat analysis of the CC and on the description of the ToE
in its environment, which is the input for this threat analysis. This considers assets, attackers1,
threats, assumptions, security objectives, and security functional requirements of the ToE. The

1The CC uses the term threat agent for attacker. However, we use attacker as a synonym for threat agent in
this work.

3

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

abbreviation: String
description: String

<<Stereotype>>
Domain

<<Stereotype>>
Biddable Domain

(uml)
Class

<<Stereotype>>
Machine

<<Stereotype>>
Lexical Domain

<<Stereotype>>
Display Domain

<<Stereotype>>
Designed Domain

<<Stereotype>>
Causal Domain

<<Stereotype>>
Connection Domain

expertise: Expertise
elapsedTime: ElapsedTime
knowledgeOfToE: KnowledgeOfToe
windowOfOpportunity: WindowOfOpportunity
Equipment: Equipment

<<stereotype>>
Attacker

<<stereotype>>
PhysicalAttacker

<<stereotype>>
NetworkAttacker

<<stereotype>>
SoftwareAttacker

<<stereotype>>
SocialEngineeringAttacker

<= 1 day (0)
<= 1 week (1)
<= 2 weeks (3)
<= 1 month (4)
<= 2 months (7)
<= 3 months (10)
<= 4 months (10)
<= 5 months (15)
<= 6 months (17)
> 6 months (19)

<<enumeration>>
ElapsedTime

Layman (0)
Proficient (3)
Expert (6)
MultipleExperts (8)

<<enumeration>>
Expertise

Unneccassary/Unlimited access (0)
Easy (1)
Moderate (4)
Difficult (10)

<<enumeration>>
WindowOfOpportunity

Standard (0)
Specialised (4)
Bespoke (7)
MultipleBespoke (9)

<<enumeration>>
Equipment

(uml)
Class

(uml)
Property

description: String [1]
needForProtection: String [1]

<<stereotype>>
Asset <<stereotype>>

SecondaryAsset

name: String [1]
version: String [1]
date: String [1]
authors: String [1]
producers: String [1]
engineers: String [1]

<<Stereotype>>
ToE description: String [1]

againstThreat: threat [1..*]

<<Stereotype>>
Countermeasure

<<Stereotype>>
ToEOwner

Public (0)
Restricted (3)
Sensitive (7)
Critical (11)

<<enumeration>>
KnowledgeOfToe

Figure 1: A Common Criteria extension of the UML4PF Profile (1/2)

challenge of any threat analysis is to achieve a complete coverage of all possible threats. Security
requirements engineering (SRE) methods exist, which provide structured threat analysis on an
abstraction of the system. However, these abstractions often only consider parts of the system-
to-be [11], whereas for a CC-compliant threat analysis we require a complete model of the ToE.

Goal-based methods, e.g., SI* [20] and KAOS [28], investigate the goals and views of all
stakeholders of the system. These methods model threats based upon structured goal models.
Hence, they consider all goals and relevant software artifacts to these goals. However, they do
not consider a complete view of the system-to-be. Other SRE methods follow similar steps, e.g.,
the asset-driven risk management method CORAS [19] identifies assets and determines threats
to these assets. CORAS models the system-to-be in artifacts that have a relation to an asset
and also does not represent the complete system-to-be. Therefore, we do not use any of these
methods for our CC-compliant threat analysis.

The Problem Frames method [17] uses an abstraction of the system-to-be and models the
environment of the system around it. Hence, this method is our choice for satisfying the CC’s
demand to model the ToE in its environment. The method models the ToE and its environ-
ment in domains with certain characteristics, and we propose a threat analysis that uses these
characteristics to determine assets, possible attackers, and subsequent threats for these domains.
We introduce a structured method that elicits attackers and threats for each domain. We also
provide computer-aided support for consistency, document creation, and security reasoning for
this method by using OCL queries on the problem frame models. Hence, we benefit from having
a complete model of the system-to-be and its environment to conduct a threat analysis. Our
method iterates over all domains of the system and reasons if these are threatened by an at-
tacker. Hence, our method achieves completeness when all parts of the model are considered
during security reasoning and the system model is complete.

4 UML Profile for problem-based and Common Criteria com-
pliant Security Analysis

Our Common Criteria extension for the UML4PF profile is shown in Figs. 1 and 2. We split
the profile into two figures in order to improve readability. All parts of the Common Criteria
extension are marked in grey.

4

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

We contribute relations between problem frames and common criteria elements like counter-
measures, which are now a kind of domain (see Fig. 1). The profile considers the machine to be
evaluated, which is the ToE, and the ToEOwner, the person using the ToE. Assets are domains
in Jackson’s sense or part of a domain. We use an OCL expression to enforce this condition (see
expression AE02CON in Tab. 1). Assets have a description and a need for protection attribute.
The CC has also the concept of SecondaryAssets. Harm to SecondaryAssets do not cause a loss
to the ToEOwner directly, but the harm can cause harm to an Asset. This in turn can cause a
loss to a ToEOwner. Threats can harm assets and have an abbreviation and a description. A
Risk caused by threats has a likelihood and a consequence. An osp is an organizational security
policy, which states rules that have to be followed when using the ToE. A SpecificTerm is a term
that is not common knowledge is and defined for the ST/PP document. The specific term has
a definition and a source of the definition.

Threats are caused by Attackers that we classify into the following categories. Physical-
Attackers threaten the physical elements of the system, e.g., hardware or buildings that host
computers. NetworkAttackers threaten Network connections or ConnectionDomains in our mod-
els. SoftwareAttackers threaten the parts of the system that are software, e.g., the ToE or other
CausalDomains that are a software. SocialEngineeringAttackers threaten biddable domains,
e.g., users of the system.

The UML profile also contains �enumerations� to represent the attributes required to
describe an Attacker according to the CC. The attributes, e.g., ElapsedTime or WindowOfOp-
portunity have numeric values attached in brackets. These values are defined by the CC and
are used to determine the EAL (evaluation assurance level) for a system. For example, an at-
tacker with a combined score between 10 and 13 results in a recommendation to implement the
security assurance classes AVA VAN.1 and AVA VAN.2. This recommendation results in an
EAL requirement of at least EAL 2. This classification of attackers is used in the CC during the
evaluation of existing implementations. We propose to use it already during the requirements
stage. Some information might not be available in the requirements phase, but the information
that is already present can be included in the model and used for the security reasoning.

We extended the CC basic security model in order to distinguish different kinds of threats.
Threats can be further divided into controlThreats and observeThreats (see Fig. 2). Con-
trolThreats take control of a domain, while observeThreats only observe information about the
behavior of a domain. For example, an observeThreat is the eavesdropping of confidential in-
formation, whereas the manipulation of a key exchange is a controlThreat. The distinction
between observe and control threats helps to determine the security objectives. For example,
observe threats are likely to cause confidentiality problems. We propose a threat analysis during
requirements engineering where the exact flow of information is only partially known. Hence,
we assume that informational assets can be reached by all domains or interfaces in the model.
This is why we allow threats not only to be attached directly to assets, but to all domains or
interfaces in our model. We explain how we model the ToE in its environment in Sect. 5.

Each security objective mitigates at least one threat and concern the ToE. Security objective oe
state demands for the environment of the ToE. A security objective can also �referTo� a do-
main and �consider� an organizational security objective.

5 A Method for a Systematic Security Analysis and Documen-
tation

Figure 3 shows our security analysis method, which we explain in the following.

5

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

abbreviation: String [1]
description: String [1]

<<stereotype>>
threat

<<stereotype>>
observeThreat

<<stereotype>>
controlThreat

(uml)
Dependency

likelihood: String [1]
consequences: String [1]

<<stereotype>>
Risk

(uml)
Class

(uml)
Property title: String [1]

version: String [1]
date: String [1]
authors: String [1]
registration: String [1]
certification-ID: String [1]
documentType: DocumentType [1]
ccVersion: CC-Version [1]
keywords: String [1..*]
conformanceStatement: String [1]
cc-ConformanceClaim: String [1]
ppClaim: String [1]
conformanceRational: String [1]
packageClaim: String [1]

<<Stereotype>>
CC-System

ProtectionProfile
SecurityTarget

<<enumeration>>
DocumentType

3.1
2.3
1.0

<<enumeration>>
CC-Version

(uml)
Package

definition: String [1]
source: String [1]

<<stereotype>>
SpecificTerm

(uml)
Class

<<stereotype>>
imposedBy

<<stereotype>>
osp

<<stereotype>>
Fact

abbreviation: String [1]
text: String [1]

<<stereotype>>
DomainKnowledge

<<stereotype>>
Assumption

<<stereotype>>
Statement

(uml)
Class

definition: String [1]
source: String [1]

<<stereotype>>
SpecificTerm

<<stereotype>>
security_objective_oe

<<stereotype>>
Requirement

<<stereotype>>
security objective

<<stereotype>>
mitigates

<<stereotype>>
considers

Figure 2: A Common Criteria extension of the UML4PF Profile (2/2)

1. Define scope To perform the security analysis systematically, we start with creating
a context diagram that contains the scope of our analysis. The context diagram contains all
domains (e.g., persons and technical systems) in the environment of the machine that are referred
to by the functional requirements. For an example of a context diagram, see Fig. 4.

We defined several consistency checks for checking that a context diagram is correct. These
are described in detail in [12] and are already part of UML4PF.

2. Asset identification For all domains in the context diagram, we check if the domain
contains an asset or is an asset. Assets are documented in domain knowledge diagrams as classes
with the stereotype �Asset� as introduced in the UML profile in Fig. 1. If the entire domain is
an asset, we add the stereotype �Asset� to that class. In the case that an asset is only part of
a domain, we use UML aggregation or composition relations between the asset and the domain
it belongs to. We also identify secondary assets, which cause harm to other assets. We use OCL
to check model consistency and completeness, which we also use for security reasoning. We state
examples for each step of the method and how this step benefits from our OCL expressions. We
provide an overview of OCL expressions for model consistency in Tab. 1. These expressions
query the entire model, meaning context diagram and all domain knowledge diagrams. The
table has a unique ID for each expression in the first column, the referenced class of the UML
profile shown in Figs. 1 and 2 in the second column, and the consistency check the expression
checks in the third column.

As an example, we discuss the OCL expression AT01CON in more detail, see Listing 1.
The expression selects all attackers (lines 1-11) and checks that the attackers have at least one

m
et

ho
d

in
pu

t/
ou

tp
ut

1. Define
scope

Context
diagram

2. Asset
identification

3. Consider
domain

knowledge

4. Describe
attackers

Domain
Knowledge
Diagrams

Extended
Domain
Knowledge
Diagrams

Domain Knowledge
Diagrams with
detailed attacker
description

5. Identify
threats

A list of
threats to
the assets

8. Generate
documentation

Common
Criteria
documen-
tation

6. Define
security

objectives

7. Validate
models and

Reason about
Security

Security
objectives

Validated
UML4PF CC
extension
models

Figure 3: A Method for Common Criteria-Compliant Security Analysis

6

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

dependency (line 12), all their dependencies have a stereotype �threat� or a subtype (lines
14-20), and attackers are also not assets (lines 21-25).

1l e t
2s t e r e o t y p e : S t r i n g = ’ Attacker ’
3in
4l e t
5a t t a c k e r s : Set (Class) =
6Class . a l l I n s t a n c e s ()−>s e l e c t (
7l e t
8f i r s t : Set (Stereotype) = getApp l i edSte reotypes ()−>asSet ()
9in
10f i r s t −>union (f i r s t −>c l o s u r e (g e n e r a l . oclAsType (Stereotype))) . name−>i n c l u d e s (s t e r e o t y p e)

)
11in
12at tacke r s−>f o r A l l (a | a−>asSequence ()−> f i r s t () . c l ientDependency−>s i z e () >= 1)
13and
14a t t a c k e r s . c l ientDependency−>f o r A l l (
15ge tApp l i edSte reotypes () . name−>i n c l u d e s (’ contro lThreat ’)
16or
17getApp l i edSte reotypes () . name−>i n c l u d e s (’ observeThreat ’)
18or
19getApp l i edSte reotypes () . name−>i n c l u d e s (’ threat ’)
20)
21and
22l e t s : Set (Class) =
23Class . a l l I n s t a n c e s ()−>s e l e c t (ge tApp l i edSte reotypes () . name−>i n c l u d e s (’ Attacker ’) and

getApp l i edSte reotypes () . name−>i n c l u d e s (’ Asset ’))
24in
25s−>isEmpty ()

Listing 1: AT01CON checks that all attackers present at least one threat and are not assets

We use AE01CON (see Tab. 1) to check if an asset has no relation to the machine (in the
case of the Common Criteria this is the ToE). The reason is that the common criteria certifies
products and assets have a relation to that machine. Otherwise, countermeasures in the machine
could not protect the assets. If this is the case, this relation has to be added, or the class is
not an asset and the stereotype should be removed. We use ST01CON (see Tab. 1) to check
secondary assets in a similar manner. Moreover, we use OCL to check for missing assets by
AE01REA (see Tab. 4). The OCL expression AE01REA (see Tab. 4) returns all classes that
are not an asset and do not contain an asset. Security engineers can reason if this is correct
for all the listed assets. This list helps to identify missing assets. For secondary assets, we
proceed in a similar way, using ST01REA and further expressions in Tab. 1. We introduce our
identified OCL expressions that support security reasoning in Tabs. 3, 4, and 5, e.g., by checking
for completeness of the threat analysis in domain knowledge diagrams.

3. Consider domain knowledge As a next step, for all assets, either an assumption or
fact about its protection has to be described. Facts and assumptions help to estimate if an asset
already has sufficient protection and no further security requirement is necessary. They also
help to formulate focused requirements that do only address security issues that are not already
addressed. In addition, relevant facts or assumptions about assets, which can be exploited by an
attacker, have to be documented. Facts and assumptions are documented in domain knowledge
diagrams with classes and the stereotypes �Fact� or �Assumption� using the UML profile
in Fig. 2. The relation between facts and/or assumptions and assets can be documented with
dependencies and the stereotype �refersTo�. �refersTo� states that a statement refers to
some domains. It extends the UML meta-class Dependency. We use the OCL expressions
FA01CON and AS01CON (see Tab. 1) to check that each fact and assumption �refersTo�
at least one domain. In addition, we use FA01REA and AS01REA (see Tab. 4) to list all

7

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

<<contextDiagram,technicalContextDiagram,CC-System>>
Smart_Metering_Gateway

<<ToE>>
SmartMeteringGateway

<<causalDomain>>
SecurityModule

<<biddableDomain>>
AuthorizedExternalEntity

<<causalDomain>>
Meter

<<causalDomain>>
CLS

<<ToEOwner>>
Consumer

<<wan>>
IF_GW_WAN

<<lmn>>
IF_GW_M

<<han>>
IF_GW_SM

<<han>>
IF_GW_CLS

<<physical>>
IF_GW_U

1..*

1

1..*

1..*

0..*

1

<<lexicalDomain>>
UserData <<physical>>

IF_GW_UD

1

1..*

<<lexicalDomain>>
MeterData 1..*

1

<<physical>>
IF_GW_MD

11

IF_GW_WAN = AEE!{sendUpdate}, SMG!{retrieveMeterData}
IF_GW_SM = SMG!{genSIG,verifySIG,storeSIG, genKey,storeKey,retrieveKey,genRand},SM!{sendSIG,verifiedSig, sendKey,sendRand}
IF_GW_U = C!{retrieveMeterData, configureSMG, storeUserData,retrieveUserData,command},CB!{statusGateway}
IF_GW_CLS = CLS!{status}, SMG!{command}
IF_GW_M = M!{sendMeterData}, SMG!{sendUpdate}
IF_GW_MD = SMG!{storeMeterData,retrieveMeterData}
IF_GW_UD = SMG!{storeUserData, retrieveUserData}
IF_GW_CB = CB!{retrieveMeterData, configureSMG, storeUserData,retrieveUserData,command},SMG!{statusGateway}

<<Phenomena>>

<<causalDomain>>
ConsumerBrowser

1..*

<<han>>
IF_GW_CB

1..*

1..*

Figure 4: The Context Diagram of the Smart Metering Gateway

domains having no facts or assumptions (considering all domain knowledge diagrams). For
these domains, one should make sure that the most obvious facts have been considered and that
facts and assumptions have been distinguished correctly.

4. Describe attackers All attackers have to be described using the attributes shown in
Fig. 1. We iterate through all assets and check if they have assumptions or facts that prevent
them from being threatened by a specific kind of attacker. For example, a piece of software that
has no connection with the ToE provides no attack vector for a network attacker. Otherwise, an
attacker has to be introduced that threatens the asset. Moreover, the introduced attackers also
have assumptions and facts. These have to be modeled explicitly, as well, to support a correct
threat assessment.

We use OCL expressions to query our model for getting an overview of all existing threat
analysis elements, e.g., assets. These expressions end with the letters “DOC” that stands for
documentation. We list all DOC expressions in Tab. 2. For example, expression AE01DOC lists
all assets that can be threatened by an attacker. We consider for each asset if an attacker can
cause harm to it. Afterwards, we use the expressions FA01DOC and AS01DOC to check for
each assumption and fact if these can be used to cause harm to an asset. If this is the case,
another attacker has to be introduced.

5. Identify threats Threats are a relation between an attacker and an asset. This re-
lation can be modelled with dependencies and the stereotypes �threat�, �observeThreat�,
or �controlThreat�. In this step we iterate over all the attackers and introduce threats. As-
sumptions or facts have to be considered or introduced when deciding if the attacker represents
an �observeThreat�, or �controlThreat�. We use the AT01DOC (see Tab. 2) to list all at-
tackers to start our iteration. Afterwards, we introduce threats for each attacker. The OCL
expressions AE01DOC, ST01DOC, FA01DOC, AS01DOC (see Tab. 2) provide us with lists of
domain knowledge artifacts, e.g., facts and assets. After we have introduced threats for the
attackers under the consideration of domain knowledge, we check if all attackers represent at

8

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

<<domainKnowledgeDiagram,CC-System>>
Smart_Metering_Gateway_Assets

<<ToE>>
SmartMeteringGateway

description: String = "Date and time of the real-time clock of
the Gateway. Gateway Time is used in Meter Data records
sent to external entities."
needForProtection: String = "Integrity and Authenticity (when
time is adjusted to an external reference time)."

<<SecondaryAsset>>
GatewayTime

<<causalDomain>>
Meter

<<lmn>>
IF_GW_M 1..*

1

1..*

1

<<physical>>
IF_GW_MD

description: String = "Meter readings that allow calculation of the
quantity of a commodity, e.g. electricity, gas, water or heat consumed
over a period. Meter Data comprise Consumption or Production Data
(billing-relevant) and grid status data (not billing- relevant). While billing
data needs to have a relation to the consumer, grid status data do not
have to be directly related to a consumer."
needForProtection: String = "According to their specific need."

<<lexicalDomain,Asset>>
MeterData

description: String = "Configuration data of the Meter to control its behaviour including the
Meter identity."
needForProtection: String = "Integrity and Authenticity and Confidentiality"

<<Asset>>
MeterConfig

Figure 5: An Example for a Common Criteria compliant asset description

least one threat using expression AT01CON (see Tab. 1). If an attacker does not represent a
threat, the attacker should either be removed, or a threat should be added. We execute the
OCL consistency expressions for network, physical, software, and social engineering attacker in
a similar fashion (see Tab. 1).

6. Define security objectives Each of the threats leads to the formulation of a security
objective. The Common Criteria distinguishes between security objectives (SO), which concern
the ToE, and the ones concerning the environment. The latter ones are so-called security objec-
tives for the environment (SO-OE). We model SOs in problem diagrams, because these directed
towards the ToE. SO-OEs are modeled in domain knowledge diagrams, because these concern
the environment.

7. Validate models and Reason about Security We use OCL to check model consis-
tency of the various diagrams. We defined several validation conditions as OCL expressions,

Table 1: OCL Expressions for ensuring Model-Consistency

OCL-EXPR-ID Referenced Class Expression
Domain Knowledge
FA01CON Fact - Refers to at least one domain
AS01CON Assumption - Refers to at least one domain
AE01CON Asset - Has a relation to the ToE domain (e.g. composition) and is not an

attacker
AE02CON Asset - Is a domain or part of a domain
ST01CON Secondary Asset - Has a relation to an asset and is not an attacker
Threats
TH01CON Threat - Threatens only assets
OT01CON observeThreat - Window of opportunity of the attacker is greater than 0
CT01CON controlThreat - Window of opportunity of the attacker is greater than 0
Attackers
AT01CON Attacker - Presents at least one threat and is not an asset
NA01CON Network Attacker - Threatens only connection domains, connections, or subtypes
PA01CON Physical Attacker - Threatens a domain
SA01CON Software Attacker - Threatens only causal domains
SE01CON Social Engineering

Attacker
- Threatens only biddable domains

9

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

which are listed in Tab. 1. These check, e.g., if facts and assumptions refer to at least one
domain. These conditions have to be executed via our support tool in order to validate the
models. All existing inconsistencies have to be removed in this step. We have developed debug
expressions for all OCL expressions, which state precisely which domain(s) caused the model
inconsistency.

In this step we also check for completeness of attackers in the model. For example, the
expressions SA01REA (see Tab. 3) checks for all causal domains if these are threatened by
a software attacker. If this is not the case, we should check for existing assumptions using
AS01CON (see Tab. 3) for these domains. The resulting information of these expression should
serve as a basis for security reasoning for these domains. The question if we need to consider a
software attacker for these domains should be answered in particular. The other attacker types
are considered in a similar manner using the expressions in Tab. 3. We also use the security
reasoning expressions in Tabs. 4 and 5 to reason about the completeness of domain knowledge
and threats.

8. Generate documentation Finally, we generate textual documents from the information
in the models. Our support tool provides functionalities to query the models and select all
relevant information and transform it into text and tables. The output is possible in LATEX or
HTML documents to form the basis for a PP or ST document.

6 Application of our Method

Application scenario We use the protection profile for the smart metering gateway as an example
for our method [6]. We apply our method to the creation of a security target and base it on
this protection profile. The gateway is a part of the smart grid. The smart grid is a commodity
network that intelligently manages the behavior and actions of its participants. The commodity
consists of electricity, gas, water, or heat that is distributed via a grid (or network). The benefit of
this network is envisioned to be a more economic, sustainable, and secure supply of commodities.
Smart metering systems meter the consumption or production of energy and forward the data
to external entities. This data can be used for billing and steering the energy production. The

Table 2: OCL Expressions of Document Generation

OCL-EXPR-ID Referenced Class Expression
Domain Knowledge
DO01DOC Domain - List all facts and assumptions for each domain
FA01DOC Fact - List all facts in the domain knowledge diagrams
AS01DOC Assumption - List all assumptions in the domain knowledge diagrams
AE01DOC Asset - List all considered assets
ST01DOC Secondary Asset - List all considered secondary assets
Threats
TH01DOC Threat - List all considered threats and threatened assets
OT01DOC observeThreat - List all considered observe threats and threatened assets
CT01DOC controlThreat - List all considered control threats and threatened assets
Attackers
AT01DOC Attacker - List all considered attackers including all attributes
NA01DOC Network Attacker - List all considered network attackers
PA01DOC Physical Attacker - List all considered physical attackers
SA01DOC Software Attacker - List all considered software attackers
SE01DOC Social Engineering At-

tacker
- List all considered social engineering attackers

10

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

“Protection Profile defines the security objectives and corresponding requirements for a Gateway
which is the central communication component of such a Smart Metering System” [6, p. 16].

1. Define scope The context diagram shown in Fig. 4 describes the machine to be built in
its environment. It is part of the overview description of the security target. The �ToE� is the
SmartMeteringGateway, which serves as a bridge between the Wide Area Network �wan� and
the Local Network �physical� of the Consumer, the �ToE Owner�. The Meter is connected
to the ToE via a Local Metrological Network �lmn�. This is an in-house equipment that can
be used for energy management. The Controllable Local System CLS can be, for example, an
air conditioning unit or an intelligent refrigerator. The Consumer can also access the ToE [6]
via a ConsumerBrowser. We extended the description for our specification with the following
phenomena. The Meter sends meter data to the SmartMeteringGateway. The SmartMetering-
Gateway stores this data. The Meter can also receive updates from the AuthorizedExternalEntity
forwarded via the SmartMeteringGateway. The AuthorizedExternalEntity gets receives meter data
in fixed intervals from the SmartMeteringGateway. The SecurityModule provides cryptographic
functionalities for the SmartMeteringGateway such as key generation and random number gener-
ation. The Consumer can retrieve meter data via the SmartMeteringGateway. The Consumer can
also configure the SmartMeteringGateway, send commands to the CLS, receive status messages
from the SmartMeteringGateway, and store UserData in it.

2. Asset identification We iterate over the domains in Fig. 4 and identify the MeterData

Table 3: OCL Expressions that support Security Reasoning - Attackers

OCL-
EXPR-ID

Referenced
Class

Expression Reasoning Support for Security Ex-
perts

Attackers
PA01REA Physical

Attacker
- List all biddable domains that are not
threatened by a physical attacker

- Are all humans considered that a physical
attacker can threaten?

PA02REA Physical
Attacker

- List all causal domains that are not
threatened by a physical attacker

- Are all physical devices considered that a
physical attacker can threaten?

SA01REA Software
Attacker

- List all causal domains that are not
threatened by a software attacker

- Is every software considered in the threat
analysis?

AT01REA Attacker - List all attackers that have only observe
threats or only controls threats

- Is the attacker’s potential modeled cor-
rectly?

NA01REA Network
Attacker

- List all connection domains and connec-
tions that are not threatened by a network
attacker

- Are threats to all relevant domains from
that attacker considered?

NA02REA Network
Attacker

- List all connection domains and connec-
tions that are not threatened by a network
attacker and do not have an assumption

- Are threats to all relevant domains from
that attacker considered or do we need to
add an assumption?

SA02REA Software
Attacker

- List all causal domains that are not
threatened by a software attacker and that
do not have an assumption

- If a software attacker is not considered and
we do not have an assumption, we should
add an assumption or include further soft-
ware attackers for the resulting domains in
the threat analysis.

SE01REA Social
Engineering
Attacker

- List all biddable domains that are not
threatened by a social engineering attacker.

- Are all possible threats by social engineer-
ing attackers considered?

SE02REA Social
Engineering
Attacker

- List all biddable domains that are not
threatened by a social engineering attacker
and that do not have an assumption speci-
fied.

- For each biddable domains that is not
threatened by a social engineering attacker,
we should provide at least an assumption
why this is not necessary. If no valid as-
sumption can be found, the threat analysis
should be revised to include this attacker.

11

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

Table 4: OCL Expressions that support Security Reasoning - Domain Knowledge

OCL-
EXPR-ID

Referenced
Class

Expression Reasoning Support for Security Ex-
perts

Domain Knowledge
AE01REA Asset - List all classes that are not assets or sec-

ondary assets or attackers
- Is an asset still missing?

AE02REA Asset - List all assets that have no need-for-
protection property

- Is that asset really an asset if it has no
need for protection?

AE03REA Asset - List all connections or connection domains
that do not transmit assets.

- Does a connection between domains really
transport no assets?

ST01REA Secondary
Asset

- List all secondary assets - Are these all really not assets?

DO01REA Domain - List all domains that have no facts or as-
sumptions

- Do we really have no domain knowledge
at all about a domain?

FA01REA Fact - List all domains that have no facts - Have at least the most obvious facts been
considered?

AS01REA Assumption - List all domains that have no assumptions - Have at least the most obvious assump-
tions been considered?

Table 5: OCL Expressions that support Security Reasoning - Threats

OCL-
EXPR-ID

Referenced
Class

Expression Reasoning Support for Security Ex-
perts

Threats
TH01REA Threat - List all assets that are not threatened - Is an asset not threatened at all?
OT01REA observe

Threat
- List all assets that have no observe
Threats

- Has an asset only control threats?

CT01REA control
Threat

- List all assets that have no control Threats - Has an asset only observe threats?

as an �asset�. Figure 5 presents a domain knowledge diagram that contains the description
of this asset. The meter data has value for the Consumer, because his/her billing depends upon
it and a behavior profile about the Customer can be created from it. Integrity, authenticity, and
confidentiality of this data need to be protected. Another asset of the SmartMeteringGateway
is the GatewayTime (see Fig. 5). The asset is revealed via investigating assumptions about the
SmartMeteringGateway, namely that the meter data is recorded with a correct time stamp. The
time is used in MeterData records that are sent to AuthorizedExternalEntity, e.g., for billing. Its
integrity and authenticity have to be protected and especially the time adjustment using an
externally referenced time is critical.

We use AE01REA (see Tab. 4), which returns all classes that are not an asset and do
not contain assets. For the smart metering gateway running example, we have so far only
identified the assets MeterConfig, MeterData and GatewayTime (see Fig. 5). The expression
AE01REA returns: UserData, AuthorizedExternalEntity, CLS, Consumer, ConsumerBrowser, and
SecurityModule. For these domains, a good rationale has to be given why they are not assets,
or they are have to be marked as assets. For example, the SecurityModule and the connection
IF GW WAN are indeed assets.

3. Consider domain knowledge The Common Criteria demands that assumptions about
domains and connections are made explicit. We choose the assumptions about the AuthorizedEx-
ternalEntity, the IF GW WAN, and the SmartMeteringGateway as examples (taken from [6]). The
assumptions document the assumed behavior of the authorized external entities, reliability and
bandwidth of the connection, and the installation location of the SmartMeteringGateway. As-

12

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

sumptions refer to domains in the context diagram. Additionally, facts can be included, e.g.,
that the SmartMeteringGateway needs electricity to operate. These facts are stated in a domain
knowledge diagram, depicted in Fig. 6.

4. Describe attackers We introduce a �NetworkAttacker�, who threatens the WAN
connection, depicted in Fig. 6. We have also assumptions regarding this attacker. Assumption-
WLANAttacker states that the attacker is located in the WAN and that he/she has the capability
to threaten the smart grid, e.g., via sending forged meter data into the grid. This assumption
�refersTo� the WANAttacker. Based upon the AssumptionWLANAttacker we instantiate the
attacker with the following attributes: the attacker has the Expertise = Expert (6) and the
ElapsedTime = ≤ 1 day (0), the KnowledgeOfToe = Restricted (3), and the WindowOfOpportunity
= Unnecessary/Unlimited access (0). We can calculate the value for these attributes for address-
ing the assurance component AVA VAN for vulnerability assessment of the CC [16, part 3,p.
16]. The results demand at least an EAL 2 of the CC.

We also know that the Meter depends upon electricity and we introduce the FactElectricity.
This can lead to the introduction of a �PhysicalAttacker�. However, the AssumptionPhysi-
calProtection states that a basic level of physical protection exists. Hence, the introduction
of a �PhysicalAttacker� is not required for this scenario if we install the Meter in locked
box. An alternative is to remove the AssumptionPhysicalProtection and consider a sophisticated
�PhysicalAttacker�, who can penetrate the physical barriers of the ToE.

5. Identify threats The WANAttacker gives rise to the �observeThreat� T.Disclosure
WAN (see Fig. 6), which states that the WAN attacker can disclose meter data or meter con-
figuration data. The WANAttacker causes also the �control Threat� T.DataModificationWAN,

<<domainKnowledgeDiagram,CC-System>>
Smart_Metering_Gateway_WLAN_Threats

expertise: Expertise [1..1] = Expert (6)
elapsedTime: ElapsedTime [1..1] = <= 1 day (0)
knowledgeOfToE: KnowledgeOfToe [1..1] = Restricted (3)
windowOfOpportunity: WindowOfOpportunity [1..1] = Unnecessary/Unlimited access (0)
Equipment: Equipment [1..1] = Specialised (4)

<<networkAttacker>>
WANAttacker

<<toe>>
SmartMeteringGateway

<<biddableDomain>>
AuthorizedExternalEntity

<<wan>>
IF_GW_WAN

<<observeThreat>>
T.DisclosureWAN

abbreviation: String = "A.ExternalPrivacy"
text: String = "It is assumed that authorised and authenticated external entities
receiving any kind of privacy-relevant data or billing-relevant data and the
applications that they operate are trustworthy (in the context of the data that they
receive) and do not perform unauthorised analyses of this
data with respect to the corresponding consumer(s)."

<<assumption>>
AsumptionExternalParties

abbreviation: String =
"F.Electricity"
text: String = "It is a fact
that the Smart Metering
Gateway requires a power
supply to operate."

<<fact>>
FactElectricity

abbreviation: String = "A.PhysicalProtection"
text: String = "It is assumed that the TOE is
installed in a non-public environment within
the premises of the consumer which provides
a basic level of physical protection."

<<assumption>>
AssumptionPhysicalProtection

abbreviation: String = "A.WLANAttacker"
text: String = "An attacker located in the WAN
(WAN attacker) trying to compromise the
confidentiality and/or integrity of the Meter Data
and or configuration data transmitted via the WAN,
or attacker trying to conquer a component of the
infrastructure (i.e. Meter, Gateway or Controllable
Local System) via the WAN to cause damage to a
component itself or to the corresponding grid (e.g.
by sending forged Meter Data to an external
entity)."

<<assumption>>
AssumptionWLANAttacker

<<refersTo>>
<<refersTo>>

<<refersTo>>

<<refersTo>>

abbreviation: String = "A.Network"
text: String = "It is assumed that a WAN network
connection with a sufficient reliability and bandwidth for
the individual situation is available, and one or more
trustworthy sources for an update of the system are
available in the WAN."

<<assumption>>
AssumptionNetwork

<<refersTo>>

A WAN attacker may try to violate
the privacy of the consumer by
disclosing Meter Data or
configuration data (Meter config,
Gateway config or CLS config) or
parts of it when transmitted
between Gateway and external
entities in the WAN.

A WAN attacker may try to
modify (i.e. alter, delete, insert,
replay or redirect) Meter Data,
Gateway config data, Meter
config data, CLS config data
or a firmware update when
transmitted between the
Gateway and an external
entity in the WAN.

<<controlThreat>>
T.DataModificationWAN

1..*

IF_GW_WAN = AEE!{sendUpdate}, SMG!{retrieveMeterData} <<Phenomenon>>

1

Figure 6: A domain knowledge diagram for Common Criteria compliant threat description

13

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

which allows the attacker to modify several different data, e.g., meter data, and meter config
data.

We list all threats stated in the protection profile [6] in Fig. 7. The WANAttacker causes
the following threats related to modification and observation of data:

T.DataModificationWan the unauthorized modification of configuration parameters via us-
ing the IF GW WAN connection of to the gateway.

T.DisclosureWan disclosing of meter data from the IF GW WAN connection.

T.ResidentDataWan the unauthorized reading of data on the gateway that is no longer re-
quired and originated from the IF GW WAN connection.

T.TimeModification the unauthorized modification of the gateway time.

T.Privacy the IF GW WAN connection transports data that is not required by the Autho-
rizedExternalEntity

The Local Attacker threatens the SmartMeteringGateway with regards to modification and
observation of data:

T.DisclosureLocal disclosing of meter data from the IF GW CB, IF GW M, and IF GW CLS
connections.

T.TimeModification the unauthorized modification of the gateway time.

T.DataModification the unauthorized modification of configuration parameters using the
connections IF GW CB, IF GW M, and IF GW CLS connection.

T.ResidualDataPhysical the unauthorized reading of data on the gateway that is no longer
required and originated from the IF GW M, and IF GW CLS connections.

T.ResidentData the unauthorized modification of configuration parameters via physical access
to the gateway.

We use AT01DOC (see Tab. 2) to check all considered attackers, which so far only returns the
WAN attacker. In order to reason that all relevant attackers have been considered, we execute
the following OCL expressions from the security reasoning about attackers listed in Tab. 3.
We consider only the domains shown in Fig. 6. NA01REA does not list any domain, because
the connection IF GW WAN is already threatened by a network attacker. PA01REA returns
the SmartMeteringGateway, because a threat caused by physical attacker should be considered.
We do not follow this suggestion, because we introduced AssumptionPhysicalProtection in the
previous step of our method. SA01REA returns that a software attacker should be considered
for the SmartMeteringGateway. The software attacker may penetrate the SmartMeterGateway
and present a �controlThreat� towards it. An assumption about the software attacker is that
she/he can control the SmartMeterGateway and modify all meter data the gateway has access to.
In addition, the OCL expressions SE01REA states that a social engineering attacker can threaten
AuthorizedExternalEntity. The social engineering attacker presents a �controlThreat� towards
the AuthorizedExternalEntity, and an assumption is introduced that the attacker can control the
AuthorizedExternalEntity in such a way that the attacker gains access to the meter data and to
the keys and certificates necessary to access the SmartMeterGateway. Hence, the new assumption
states that the social engineering attacker can access and configure the SmartMeterGateway. For

14

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

example, the attacker could use the gateway to control a CLS, e.g., a heater or a refrigerator.
This assumption has to be included in Fig. 6, as well as the subsequent threats.

6. Define security objectives We define security objectives in problem diagrams. An
example is the security objective Management taken from [6, p. 39].

The protection profiles formulates the security objective Management as follows:

• The ToE shall only provide authorized Gateway Administrators with functions for the
management of the security features.

• The ToE shall ensure that any change in the behavior of the security functions can only
be achieved from the WAN side interface. Any management activity from a local interface
may only be read.

• Further, the ToE shall implement a secure mechanism to update the firmware of the ToE
that ensures that only authorized entities are able to provide updates for the ToE and that
only authentic and integrity protected updates are applied.

We depict the security objective Management in Fig. 7. The security objective Management
�refersTo� Gateway Administrators, a specific kind of AuthorizedExternalEntity. The admin-
istrators are the only domain allowed to access the management functionality of the Smart
Metering Gateway. The functionality for authentication is provided by the Security Module,
which is described in a separate protection profile [7]. The mandatory usage of the Security
Module is also defined in the organizational security policy OSP.SM, which �considers� the
security objective Management. The objective considers the policy OSP.Log, as well. This policy

<<problemDiagram,CC-System>>
SO_Management

<<ToE>>
SmartMeteringGateway

<<biddableDomain>>
AuthorizedExternalEntity

<<causalDomain>>
Meter

<<causalDomain>>
CLS

<<ToEOwner>>
Consumer

<<wan>>
IF_GW_WAN

<<lmn>>
IF_GW_M

<<han>>
IF_GW_CLS

<<physical>>
IF_GW_U

1..*
1

1..*

1..*

0..*

0..*

0..*

1

<<causalDomain>>
ConsumerBrowser

1..*

0..*
<<han>>
IF_GW_CB

<<securityObjective>>
Management

<<biddableDomain>>
Gateway Administrator

<<refersTo>>

<<refersTo>>

<<refersTo>>

<<constrains>><<constrains>>

<<constrains>>

<<networkAttacker>>
WANAttacker

<<physicalAttacker>>
Local Attacker

<<osp>>
OSP.SM

<<osp>>
OSP.Log

<<considers>> <<considers>>

<<controlThreat>>
T.TimeModification

<<controlThreat>>
T.DataModification

<<observeThreat>>
T.DisclosureLocal

<<observeThreat>>
T.ResidualDataPhysical

<<observeThreat>>
T.ResidentData

<<observeThreat>>
T.Privacy

<<controlThreat>>
T.TimeModification

<<observeThreat>>
T.ResidualDataWan

<<observeThreat>>
T.ResidentDataWan

<<observeThreat>>
T.DisclosureWan

<<controlThreat>>
T.DataModificationWan

<<mitigates>>

<<mitigates>>

<<causalDomain>>
SecurityModule

<<refersTo>>

<<refersTo>>

Figure 7: Problem diagram for the security objective “Management”

15

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

states that a set of log files have to be compiled, e.g., for the information flow between the WAN
and the smart metering gateway. In addition, all accesses to the configuration data of the Smart-
MeteringGateway are recorded. The security objective Management �constraints� the Con-
sumerBrowser. The ConsumerBrowser is not allowed to access the management configuration
of the system. The same constraint has to hold for the Consumer and the CLS. The restric-
tion of access to the management functions of the SmartMeteringGateway shall �mitigate�
threats related to modification and observation of data from a WANAttacker introduced in
the previous step. These are T.DataModificationWan, T.DisclosureWan, T.ResidentDataWan,
T.ResidualDataWan, T.TimeModification, T.Privacy.

The restriction of access to the management functions of the SmartMeteringGateway shall
also �mitigate� threats related to modification and observation of data from a Local Attacker
introduced in the previous step, as well. These are T.DisclosureLocal, T.TimeModification,
T.DataModification, T.ResidualDataPhysical, T.ResidentData. lifecycle concerns. The last rows
define Consequences of the design decisions and Dependencies to other parts of the system. to
the AuthorizedExternalEntity.

7. Validate Models and Reason about Security Table 1 states several conditions that
check for consistency problems in the entire model (which contains all context, domain knowl-
edge and problem diagrams). The expression TH01CON checks if all threatened domains and
connections are assets. This check fails on our model. One of the issues is that the WANAttacker
threatens the connection IF GW WAN 6, which is not identified as an asset in the protection
profile. This is an issue for discussion when improving the protection profile. The connection
might not be an asset, because it is not a part of the ToE, but including the connection at least
as secondary asset would probably be a good solution.

Tab. 6 shows the use of our OCL expressions for security reasoning. The first column of the
table states the expression used. We used the expressions only on a few domains. The second
column on the table states the domains considered by the OCL expression. The third column
states the results of the query and the last column the resulting security reasoning based on the
results of the query.

FA01REA (see Tab. 4) checks if we have modeled facts about domains. This is not the
case for the WANAttacker and the AuthorizedExternalEntity. Hence, we have to reason why our
assumptions are sufficient and should get feedback on these assumptions from further security
experts.

NA01REA (see Tab. 3) queries the model if we have considered a NetworkAttacker for all
network connections or connection domains. This is not the case for the network connection
IF GW CB, which connects the ConsumerBrowser and the SmartMeteringGateway (see Fig. 4).
During security reasoning either an assumptions is added to the model instead of a network
attacker. We assume that there are no malicious insiders in the �han�, who misuse network
traffic. Otherwise a security objective has to be added that states the SmartMeteringGateway
has to protect the IF GW CB connection by encryption (see Tab. 6).

SE02REA (see Tab. 3) checks if we considered for all biddable domains SocialEngineeringAt-
tackers or have modeled assumptions. For the Consumer and the AuthorizedExternalEntity we
have modeled neither. Hence, the result of SE02REA should be discussed in an expert work-
shop. The experts decide if SocialEngineeringAttackers have to be included into the threat
analysis. Alternatively, they have to add assumptions, which explain why the consideration of
SocialEngineeringAttackers is not needed.

8. Generate documentation The CC demands a particular description of the ToE, which
has to follow a specific structure. For example, it starts with an introduction that has to contain
a description of the ToE, its interfaces, and the operational environment, e.g., the operating

16

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

Table 6: An example for OCL-based Security Reasoning

OCL-
EXPR-ID

Class or Relation Result Reasoning

FA01REA
(see Tab. 4)

SmartMeteringGateway,
WANAttacker,
AuthorizedExternalParty

WANAttacker,
AuthorizedExternal
Entity

We do not have facts about the WANAttacker and the
AuthorizedExternal Entity. Hence, we have to check if
the assumptions documented are valid, e.g., by dis-
cussing the results with an independent security ex-
pert.

SE02REA
(see Tab. 3)

all domains Consumer,
AuthorizedExternal
Entity

We have not considered SocialEngineeringAttackers
and have no assumptions specified why SocialEngi-
neeringAttackers do not need to be considered.
The result of this OCL expression should trig-
ger a threat analysis regarding if SocialEngi-
neeringAttackers are relevant for the Consumer and
theAuthorizedExternalEntity.

NA01REA
(see Tab. 3)

Consumer,
ConsumerBrowser,
SmartMeteringGateway,
Meter

IF GW CB We have to add a security objective that the commu-
nication on the IF GW CB connection is encrypted
by the SmartMeteringGateway or an assumption that
there are no malicious insiders in the �han�, who
misuse network traffic.

system the ToE runs on. We show an example how a ToE description can be generated using the
UML4PF CC-system extension and a list of assets. We provide example artifacts for a ST/PP:
the ToE-Reference in the Introduction and the Assets in the Security Problem Definition.

1 Property . a l l I n s t a n c e s ()−> s e l e c t (
2 ge tApp l i edSte reotypes () . name−>i n c l u d e s (’ Asset ’))
3 −>c o l l e c t (c |
4 l e t s t : Ste reotype =
5 c . ge tApp l i edSte reotypes ()−> s e l e c t (name=’Asset ’)−>
6 asSequence()−> f i r s t () in
7 c . name . oclAsType (S t r i n g) . concat (’ ; ’)
8 . concat (c . getValue (st , ’ d e s c r i p t i o n ’) . oclAsType (S t r i n g)) . oclAsType (S t r i n g)
9 . concat (’ ; ’) . concat (c . getValue (st , ’ needForProtect ion ’) . oclAsType (S t r i n g))

10)

Listing 2: AE01DOC - Collecting assets and their attributes.

The ToE Reference for a PP can be generated from the information collected in the context
diagram and technical context diagram. We use an OCL expression to extract the collected
information. Tab. 7 presents the output of the example reference. We collected the information
by an OCL expression that collects the information contained in the applied stereotypes �CC-
system� and �ToE�.

Table 7: PP Reference - generated by our tool support

Title Protection Profile for the Gateway of a Smart Metering System (Gateway PP)
Version 01.01.01(final draft)
Date 25.08.11
Authors Dr. Helge Kreutzmann, Stefan Vollmer (BSI), Nils Tekampe and Arnold Abromeit (TÜV In-

formationstechnik GmbH)
Registration Bundesamt für Sicherheit in der Informationstechnik (BSI) Federal Office for Information Secu-

rity Germany
Certification-ID BSI-CC-PP-0073
CC-Version 3.1
Keywords Smart Metering, Protection Profile, Meter, Gateway, PP

17

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

We can automatically generate a list of Assets using OCL on the information contained in
the domain knowledge diagram (see Fig. 5 on page 9). We use the OCL expression AE01DOC
(see Tab. 2) and we show AE01DOC in Listing 2. This expression selects all classes, whose name
contains the String Asset. The expression further creates a sequence that contains the name of
the classes and the values of the attributes description and needForProtection. These values are
separated using a “;”. We use our tool support to transform the resulting String to a LATEXtable
(see Sect. 7 for more details on the support tool). The resulting table is shown in Tab. 8.

Table 8: Table for Assets of the PP/ST - generated by our tool support

Asset Description Need for Protection
MeterData Meter readings that allow calculation of the quantity of a commodity,

e.g. electricity, gas, water or heat consumed over a period. Meter Data
comprise Consumption or Production Data (billing-relevant) and grid
status data (not billing- relevant). While billing data needs to have a
relation to the consumer, grid status data do not have to be directly
related to a consumer.

According to their spe-
cific need.

Consumption
Data

Billing-relevant part of Meter Data. Please note that the term Con-
sumption Data implicitly includes Production Data.

Integrity and authen-
ticity (comparable to
the classical meter and
its security require-
ments), Confidential-
ity (due to privacy
concerns)

Data / User
Data

The terms Data or User Data are used as a hyperonyms for Meter Data
and Supplementary Data.

According to their spe-
cific need

Supplementary
Data

The Gateway may be used for communication purposes by devices in
the LMN or HAN. It may be that the functionality of the Gateway, that
is used by such a device, is limited to pure (but secure) communication
services. Data that is transmitted via the Gateway but that does not
belong to one of the aforementioned data types is named Supplementary
Data.

Integrity and authen-
ticity (comparable to
the classical meter and
its security require-
ments), Confidential-
ity in the WAN (due to
privacy concerns)

Status Data Grid status data, subset of Meter Data that is not billing-relevant. Integrity and authen-
ticity (comparable to
the classical meter and
its security require-
ments), Confidential-
ity (due to privacy
concerns)

Gateway con-
fig

Configuration data of the Gateway to control its behaviour including
the Gateway identity and the access control profiles.

Integrity and authen-
ticity, Confidentiality

Firmware
Update

Firmware update that is downloaded by the TOE to update the firmware
of the TOE.

Integrity and authen-
ticity

Gateway
Time

Date and time of the real-time clock of the Gateway. Gateway Time is
used in Meter Data records sent to external entities.

Integrity and Authen-
ticity (when time is ad-
justed to an external
reference time).

CLS config Configuration data of a CLS to control its behaviour. Integrity and authen-
ticity, Confidentiality

Firmware The firmware of the TOE Integrity, Authenticity
MeterConfig Configuration data of the Meter to control its behaviour including the

Meter identity.
Integrity and authen-
ticity, Confidentiality

The Common Criteria demands a cross-table as part of the security objectives section of the

18

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

- Requirements Editor
- Model Generator
- OCL Validator
- sdgen Editor
- Interactive Model-Transformer

Editor e.g.
Papyrus Eclipse incl. EMF & OCL sdgen

UML Profile for
Problem Frames

UML4PF
OCL Expressions

UML4PF - Common Criteria Extension

UML Profile for
Common Criteria

OCL Expressions
for Common Criteria - Security Reasoner

Acceleo

- Document Generator

Figure 8: UML4PF common criteria extension support tool

ST and PP. The cross table presents the security objectives rational, which analyses the relations
between threats, assumptions, organizational security policies and security objectives, as well as
security objectives for the environment. The cross-table for our example is depicted in Tab. 9.
It shows all security objectives and security objectives for the environment states in the smart
metering gateway PP on the horizontal axis and all threats the objectives mitigate on the vertical
axis. If an element on the vertical axis is addressed by an objective on the horizontal axis, the
box is marked by an “x”. For the security rational it is essential that all threats are addressed
by at least one security objective or security objective for the environment. Assumptions can
only be addressed by security objective for the environment according to the Common Criteria.
Organizational security policies have to be considered by at least one security objective or
security objective for the environment. If the threats, assumptions, and organizational security
policies are addressed reasonably is to be determined by a CC certification body. The cross-table
is of utmost importance for a structured argumentation.

We use OCL expression to collect all threats, assumptions, and OSPs. In addition, we
collect the relations between these threats, assumptions, and OSPs and the security objectives
and security objectives for the environment. We check if the objectives have dependencies with
the stereotype �mitigates� to threats or dependencies with the stereotype �considers� to
assumptions or OSPs. Afterwards, our support tool creates a LATEX table (see Sect. 7 for more
details on the support tool). Table 9 is generated for our example using our support tool.

7 Tool Support

Our method is based on tool support, otherwise the manual creation of all diagrams and manual
mapping to textual documents would be very costly in terms of time. We based our tool
on the UML4PF tool and named our tool UML4PF-CC 2. Figure 8 shows the architecture of
UML4PF-CC. The white boxes in Fig. 8 state components that we implemented specifically for
UML4PF-CC and the grey boxes are components that we re-used from the UML4PF tool.

2This extension is available under the the following homepage:
http://www.uml4pf.org/cc-extension/index.html

19

http://www.uml4pf.org/cc-extension/index.html

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

Table 9: Common Criteria Cross Table - generated with our tool support

SO
.A

cc
es

s

SO
.C

on
ce

al

SO
.C

ry
pt

SO
.F

ire
w

al
l

SO
.L

og

SO
.M

an
ag

em
en

t

SO
.M

et
er

SO
.P

ro
te

ct
io

n

SO
.S

ep
ar

at
eI

F

SO
.T

im
e

SO
O

E.
Ex

te
rn

al
Pr

iv
ac

y

SO
O

E.
N

et
w

or
k

SO
O

E.
Ph

ys
ic

al
Pr

ot
ec

tio
n

SO
O

E.
Pr

ofi
le

SO
O

E.
SM

SO
O

E.
Tr

us
te

dA
dm

in
s

SO
O

E.
U

pd
at

e

T.ResidentData X X X X
T.InfrastructureMeter X X X
T.DisclosureWAN X X X X X X
T.ResidualDataWAN X
T.InfrastructureGateway X X X X X
T.TimeModification X X X X X
T.ResidualDataWan X
T.TimeModificationPhysical X X X
T.InfrastructureCLS X X X X X
T.ResidualDataPhysical X X X
T.ResidentDataWan X X
T.Privacy X X X X X X
T.ResidentDataWAN X
T.DataModificationWAN X X X X
T.DataModificationLocal X X X X X X
T.DisclosureLocal X X X X X X
A.AccessProfile X
A.ExternalPrivacy X
A.Network X
A.PhysicalAttacker X
A.PhysicalProtection X
A.TrustedAdmins X
A.Update X
A.WLANAttacker X
OSP.Log X X X X X
OSP.SM X X X X X

In the following, we list the functionalities and items of UML4PF-CC:

• The UML Profile for Common Criteria defines the relevant stereotypes for the Common
Criteria, e.g., �ToE�.

• The Document Generator uses the ACCELEO3 model-to-text transformation tool, which
is also an Eclipse plug-in. The Document Generator creates HTML and LATEXdocuments
from UML4PF-CC models.

• The Security Reasoner contains several OCL expressions that support security reasoning
based on UML4PF-CC models, e.g., if all attackers are considered. The reasoner is based
on the OCL validator.

3The ACCELEO homepage:
http://www.acceleo.org/pages/home/en

20

http://www.acceleo.org/pages/home/en

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

• The OCL Validator checks if a model is valid and consistent. The OCL Validator has
been extended to use specific OCL expressions for UML4PF-CC models. We contributed
these OCL expressions, as well.

8 Discussion of our Results with Practicioners

Our method was developed based on the experience from several security and especially Common
Criteria projects. To illustrate the procedure, we used a case study that creates a Security Target
for an existing Protection Profile. The method was discussed with two security consultants, who
have already applied parts of the method in industrial projects. In Common Criteria projects,
cross-tabulations are created for checking the consistency of documents. Especially the effort
for this task is significantly reduced by the presented method and tool. The security consultants
also mentioned that this structured procedure

• helps to describe the attackers’ abilities in more detail,

• supports to identify all threats to the given assets,

• helps not to forget relevant assumptions or facts, and

• supports to identify and classify assets.

We also asked two evaluators, who check Common Criteria documentations. They responded
that they prefer the graphical representation used in our method instead of the plain text and
tables in current Common Criteria documents.

The evaluators mentioned the following limitations of our method:

• The amount of text in a class is sometimes distracting.

• The modeling is time consuming.

• The problem frame notation has to be learned beforehand, and

• Our method does not support the entire process of Common Criteria certification.

9 Related Work

We have analzyed related work in the knowledge area of security requirements engineering
methods.

Schmidt proposes the problem-frame based method Security Engineering Process using Pat-
terns (SEPP) [24], which introduces security concerns into the problem frame notation, e.g.,
an attacker. The author decomposes the security issues of a system into security problem
frames. Each security problem frame concerns a particular security concern of the system in
relation to existing functional requirements. The author refines these into concretized security
requirements, which also state possible solutions for the security concerns. The author maps
the artifacts produced by the SEPP method to the Common Criteria. However, the mapping
is proposed, but not shown in an example or integrated into the method itself. Moreover, the
SEPP method does not use the CC terminology like ToE and does not support CC-specific
document creation.

Mellado et al. [22] created the Security Requirements Engineering Process (SREP). SREP
is an iterative and incremental security requirements engineering process. In addition, SREP is

21

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

asset-based, risk driven, and follows the structure of the Common Criteria. The method uses
use cases to model security objectives, and misuse cases to model threats. The authors also
developed a template for ranking threats, attacks, and risks. Thy propose a Security Resources
Repository (SRR) that can store elicited threats, attacks, and risks. The method differs from
our work in the sense that SREP is a method that supports the security reasoning according to
the CC. The authors use misuse cases for eliciting threats and their method does not provide
clear criteria to decide when all threats are elicited.

Rottke et al. [23] present a problem-driven requirements engineering method for CC com-
pliant systems. This high level method also considers problem frames. The method focuses
on creating reliable models for context and problem descriptions. This work differs from ours,
because we do not limit our method to context and problem descriptions.

Yin et al. [29] model so-called early-phase security requirements with an extended i* model.
The authors also describe security policies using a formal model and so-called late-stage security
requirements in an extended UML model. The extended i* framework adds the modeling element
security flaw, which can have a relation to goals and soft goals. The goals can be influenced
by a threat and eliminated by a security goal, e.g., confidentiality. The policies provide three
templates for so-called stream control, which specifies rules for network traffic. For example,
allowed IP addresses. The extended UML model considers explicitly for each element if it
belongs to the ToE, external entities, or communication entities. The method differs from ours,
because it focuses on generating CC policies for stream control. The method does not aim at
providing a holistic support for the generation of ST/PP documents.

Abuse Frames are a method for analyzing security issues and the corresponding threats and
vulnerabilities by using problem frames [18]. So-called anti-requirements and the corresponding
abuse frames are defined. An anti- requirement expresses the intentions of a malicious user, and
an abuse frame represents a security threat. In contrast to our method, abuse frames do not
consider specific notions of the common criteria and do not support computer-aided security
reasoning, e.g., for missing threats.

Mayer et al. present a conceptual model called Information System Security Risk Manage-
ment (ISSRM) [21]. The model defines terms and notions of risk management for IT systems
with regard to security and relates this conceptual model to definitions in standards like Com-
mon Criteria. ISSRM does not provide a structured method for creating Common Criteria
documentation.

Several work focus on ontologies for the Common Criteria.
Bialas [4] introduces an ontology that supports the CC security problem definition (SPD).

The SPD contains threats, security policies, and assumptions concerning the ToE. The ontology
provides relations between security related elements, e.g., risks and threats. The relations can
be used to create an SPD. For example, the ontology maps specific threats to specific risks. In
addition, the ontology can be queried to find countermeasures for specific risks. The author
extends the method to a IT security development framework, which is complaint with the CC
[5]. The method differs from ours, because the author focuses on creating just the SPD and not
a holistic support for generating ST/PP documents. Nevertheless, Bialas work can complement
our own. The stored threats and their relation to the ToE could be implemented as a function
to suggest threats in our method.

Chang et al. [8] design an ontology that is intended to decrease the time for CC certification.
The ontology supports four different use cases. The first is to query content of the CC standard
using a tree. The second use case considers a markup tool that allows the user to mark specific
parts of the CC. These marks can contain a choice of predefined comments that can be used
to ease the review of CC documents. The third use case considers a CC review tool that can

22

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

provide a checklist of required documents for evaluating a ToE for a specific EAL. The CC
review tool also contains information about required documents. This includes already written
and approved documents and documents that have to be revised. The last use case concerns a
review report tool. This tool provides an assessment of the review process using the data from
the previous use case. This work can complement our own. We could use their ontology after
generating documents with our method.

Automated Risk and Utility Management (AURUM) is a method for supporting the NIST
SP 800-30 risk management standard [10]. The method is based upon an ontology that supports
the elicitation of threats, choosing fitting countermeasures, and calculating risks. In contrast to
our work, AURUM focuses exclusively on risk management.

Some work also exists with the aim to improve the Common Criteria or use it as an input
for security analysis.

Ardi et al. [1] extend the CC Security Target document with the knowledge of existing
vulnerabilities. In particular, the authors add threats from known vulnerabilities to the Security
Problem Definition, security objectives from vulnerabilities, and information on how to consider
these vulnerabilities in the Security Objectives section. The authors use vulnerability cause
graphs and security activity graphs to refine the information from the vulnerabilities. This work
can complement our own. We can use the information about existing vulnerabilities in our
process as well.

Schneider et al. [25] use organizational learning to check software documentation for relevant
parts to elicit security requirements. The basis for the organizational learning software the
authors use is the Common Criteria. This work differs from our own, because we aim to create
Common Criteria documentation, while the work of Schneider et al. uses the content of the
Common Criteria standard to identify relevant parts for security requirements elicitation in
software documentation.

We looked in state of the art threat research of security analysis based on the data flow
diagrams as proposed by Microsoft [15]. Dhilion [9] models the flow of information in a system
and investigates possible interaction points of an attacker with the system. The author proposes
to use annotations on the models for security relevant information, e.g., authentication data
flows. These annotations are used to check a database for possible threats, but the work does
not focus on supporting security standards.

10 Conclusion

We contributed a structured model-based method for threat analysis and security objective
elicitation in compliance with Common Criteria. We have extended the UML4PF approach
[12], which is based on Jackson’s problem frame method [17]. Our threat analysis considers
attacker types that threaten specific kinds of Jackson’s domains. Thereby, we built on the
existing UML4PF tool, and its UML profile for dependability [12]. Our method for problem-
based threat analysis and security objective elicitation relies on several OCL expressions, which
provide validation, security reasoning and document generation support. Security reasoning is
meant in the sense that we can check for completeness of the considered attackers during the
threat analysis. Our method includes a structured elicitation, documentation, and validation of
assets, assumptions, threats, attackers, and security objectives.

Our method offers the following main benefits:

• A structured process for elicitation of threat analysis elements for a Common Criteria
certification

23

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

• A tool-supported identification of assets, assumptions, threats, and security objectives

• Support for the reasoning of Common Criteria threats based upon attacker types for
Jackson’s domain types

• Explicit consideration of domain knowledge in terms of facts and assumptions about at-
tackers, the environment, existing security controls.

• Computer-aided generation of tables and figures for each chapter of a Common Criteria
Protection Profile or Security Target

• Consistency checks of all elements and diagrams of the UML4PF-CC model

We created a UML-based method to support the security analysis and documentation de-
mands of the Common Criteria. Our method is tool supported and has the ability to check
models for completeness, validate the models, and generate textual documents from these mod-
els. Our method has the potential to introduce model-based analysis for the Common Criteria
certification, which is currently based on textual documents and tables. These models can
support the discussions about security issues and support a structured threat analysis.

References
[1] Shanai Ardi and Nahid Shahmehri. Introducing vulnerability awareness to common criteria’s secu-

rity targets. In Proceedings of the 4st International Conference on Software Engineering Advances
(ICSEA), Porto, Portugal, pages 419–424. IEEE, September 2009.

[2] Kristian Beckers, Isabelle Côté, Denis Hatebur, Stephan Faßbender, and Maritta Heisel. Common
Criteria CompliAnt Software Development (CC-CASD). In Proceedings of the 28th Symposium on
Applied Computing (SAC), Coimbra, Portugal, pages 937–943. ACM, March 2013.

[3] Kristian Beckers, Denis Hatebur, and Maritta Heisel. A problem-based threat analysis in compliance
with common criteria. In Proceedings of the International Conference on Availability, Reliability and
Security (ARES), Regensburg, Germany, pages 111–120. IEEE, September 2013.

[4] Andrzej Bialas. Ontology-based security problem definition and solution for the common criteria
compliant development process. In Proceedings of the 4th International Conference on Dependability
of Computer Systems (DepCos-RELCOMEX), Brunow, Poland, pages 3–10. IEEE, July 2009.

[5] Andrzej Bia las. Ontological approach to the it security development. In Ewaryst Tkacz and Adrian
Kapczynski, editors, Internet – Technical Development and Applications, volume 64 of Advances in
Intelligent and Soft Computing, pages 261–269. Springer Berlin / Heidelberg, November 2009.

[6] BSI. Protection Profile for the Gateway of a Smart Metering System (Gateway PP). Version
01.01.01(final draft), Bundesamt für Sicherheit in der Informationstechnik (BSI) - Federal Office
for Information Security Germany, 2011. https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile.

[7] BSI. Protection Profile for the Security Module of a Smart Meter Gateway (Security Module PP).
Version 1.0), Bundesamt für Sicherheit in der Informationstechnik (BSI) - Federal Office for In-
formation Security Germany, 2013. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
SmartMeter/PP_Security_%20Module.pdf?__blob=publicationFile.

[8] Sheng-Chieh Chang and Chin-Feng Fan. Construction of an ontology-based common criteria review
tool. In Proccedings of the International Computer Symposium (ICS), Tainan, Taiwan, pages 907–
912. IEEE, December 2010.

[9] Danny Dhillon. Developer-driven threat modeling: Lessons learned in the trenches. IEEE Security
and Privacy, 9(4):41–47, July 2011.

24

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP-SmartMeter.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP_Security_%20Module.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/SmartMeter/PP_Security_%20Module.pdf?__blob=publicationFile

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

[10] Andreas Ekelhart, Stefan Fenz, and Thomas Neubauer. Aurum: A framework for information
security risk management. In Proceedings of the 42nd Hawaii International Conference on System
Sciences (HICSS), Hawaii, USA, pages 1–10. IEEE, January 2009.

[11] Benjamin Fabian, Seda Gürses, Maritta Heisel, Thomas Santen, and Holger Schmidt. A comparison
of security requirements engineering methods. Requirements Engineering – Special Issue on Security
Requirements Engineering, 15(1):7–40, March 2010.

[12] Denis Hatebur. Pattern and Component-based Development of Dependable Systems. Deutscher
Wissenschafts-Verlag (DWV) Baden-Baden, 1st edition, 2012.

[13] Denis Hatebur and Maritta Heisel. A UML profile for requirements analysis of dependable soft-
ware. In Proceedings of the 29th International Conference on Computer Safety, Reliability and Se-
curity (SAFECOMP), Magdeburg, Germany, LNCS, volume 6351, pages 317–331. Springer-Verlag,
September 2010.

[14] Denis Hatebur, Maritta Heisel, and Holger Schmidt. A formal metamodel for problem frames. In
Proceedings of the 11th International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS), Toulouse, France, LNCS, volume 5301, pages 68–82. Springer-Verlag, September-
October 2008.

[15] M. Howard and S. Lipner. The Security Development Lifecycle : SDL : A Process for Developing
Demonstrably More Secure Software. Microsoft Press, 1st edition, 2006.

[16] ISO/IEC. Common Criteria for Information Technology Security Evaluation. ISO/IEC 15408,
International Organization for Standardization (ISO) and International Electrotechnical Commission
(IEC), 2009.

[17] M. Jackson. Problem Frames. Analyzing and structuring software development problems. Addison-
Wesley, 1st edition, 2001.

[18] Luncheng Lin, Bashar Nuseibeh, Darrel C. Ince, and Michael Jackson. Using abuse frames to bound
the scope of security problems. In Proceedings of the 12th International Conference on Requirements
Engineering (RE), Kyoto, Japan, pages 354–355. IEEE, September 2004.

[19] Mass Soldal Lund, Bjørnar Solhaug, and Ketil Stølen. Model-Driven Risk Analysis: The CORAS
Approach. Springer, 1st edition, 2010.

[20] Fabio Massacci, John Mylopoulos, and Nicola Zannone. Security requirements engineering: The si*
modeling language and the secure tropos methodology. In Zbigniew Ras and Li-Shiang Tsay, editors,
Advances in Intelligent Information Systems, volume 265 of Studies in Computational Intelligence,
pages 147–174. Springer, January 2010.

[21] Nicolas Mayer, Patrick Heymans, and Raimundas Matulevicius. Design of a modelling language
for information system security risk management. In Research Challenges in Information Science
(RCIS), Paris, France, pages 121–132. IEEE, May 2007.

[22] Daniel Mellado, Eduardo Fernandez-Medina, and Mario Piattini. A comparison of the common
criteria with proposals of information systems security requirements. In Proceedings of the 1st
Conference on Availability, Reliability and Security (ARES), Vienna, Austria, pages 654–661. IEEE,
April 2006.

[23] Thomas Rottke, Denis Hatebur, Maritta Heisel, and Monika Heiner. A problem-oriented approach
to common criteria certification. In Proceedings of the 21st International Conference on Computer
Safety, Reliability and Security (Safecomp), Catania, Italy, LNCS, volume 2434, pages 334–346.
Springer-Verlag, September 2002.

[24] Holger Schmidt. A Pattern- and Component-Based Method to Develop Secure Software. PhD thesis,
University Duisburg-Essen, April 2010.

[25] Kurt Schneider, Eric Knauss, Siv Houmb, Shareeful Islam, and Jan Jürjens. Enhancing security
requirements engineering by organizational learning. Requirements Engineering, 17(1):35–56, March
2012.

[26] UML Revision Task Force. OMG Object Constraint Language: Reference, February 2010.
[27] UML Revision Task Force. OMG Unified Modeling Language: Superstructure. Object Management

Group (OMG), May 2010.

25

Supporting Common Criteria Security Analysis Beckers, Hatebur, and Heisel

[28] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models to Software
Specifications. John Wiley & Sons, 1st edition, 2009.

[29] Lei Yin and Fang-Liang Qiu. A novel method of security requirements development integrated com-
mon criteria. In Proceedings of the International Conference on Computer Design and Applications
(ICCDA), Qinhuangdao Branch Qinhuangdao, China, pages 531–535. IEEE, June 2010.

26

	Introduction
	Background
	Common Criteria
	Problem Frames

	Supporting Common Criteria using Problem Frames
	UML Profile for problem-based and Common Criteria compliant Security Analysis
	A Method for a Systematic Security Analysis and Documentation
	Application of our Method
	Tool Support
	Discussion of our Results with Practicioners
	Related Work
	Conclusion

