
Problem-oriented Security Patterns for Requirements
Engineering
Azadeh Alebrahim, paluno – The Ruhr Institute for Software Technology, Germany
Maritta Heisel, paluno – The Ruhr Institute for Software Technology, Germany

Security is one essential quality requirement that needs to be addressed during the software development process. While quality requirements
such as security are supposed to be the architectural drivers, architecture solutions such as security patterns represent design decisions on
the architecture and design levels that in turn might constrain quality requirements significantly. Thus, knowledge which is gained in the
solution space, for example from security patterns, should be reflected in the requirements engineering to obtain sound architectures and
correct requirements. We propose to reuse security patterns in the requirements engineering in a systematic manner to equip requirement
models with security solution approaches early in the software development process. To this end, we propose problem-oriented security pat-
terns. Each problem-oriented security pattern consists of a three-part graphical pattern representing the functional problem which describes
the functional requirement annotated with a security requirement, the solution to the security requirement, and the composition of them. In
addition, we provide a template that captures the affect of applying the security solution on the requirement models.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]: Design Methodology—pattern analysis; D.2.11 [Software Engineering]:
Requirements/Specifications—Methodologies; D.2.9 [Software Engineering]: Management—Software quality assurance (SQA); K.6.5 [Man-
agement of Computing and Information Systems] Security and Protection

General Terms: Design, Security

Additional Key Words and Phrases: Security patterns, problem frames, requirements engineering

ACM Reference Format:

Alebrahim, A. and Heisel, M. 2014. Problem-oriented Security Patterns for Requirements Engineering jn 2, 3, Article 1 (May 2010), 17 pages.

1. INTRODUCTION

Many software systems fail to achieve their quality objectives due to neglecting quality requirements at the
beginning of the software development life cycle [Chung et al. 2000]. In order to obtain a software that achieves
not only its required functionality but also the desired quality properties, it is necessary to consider both types of
requirements, functional and quality ones, early enough in the software development life cycle. Security is one
essential quality requirement to be considered during the software development process.

Architecture solutions provide a means to satisfy quality requirements. While requirements are supposed to be
the architectural drivers, architecture solutions represent design decisions on the architecture level that in turn
affect the achievement of quality requirements significantly. Decisions made in the design phase could constrain
the achievement of initial requirements, and thus could change them. Hence, requirements cannot be considered in
isolation and should be co-developed with architectural descriptions iteratively known as Twin Peaks as proposed
by Nuseibeh [Nuseibeh 2001] to support the creation of sound architectures and correct requirements [Whalen

Author’s address: Azadeh Alebrahim, Oststrasse 99, 47057 Duisburg, Germany; email: azadeh.alebrahim@paluno.uni-due.de; Maritta Heisel,
Oststrasse 99, 47057 Duisburg, Germany; email: maritta.heisel@paluno.uni-due.de

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP’14, July 09-13, 2014, Irsee, Germany. Copyright 2014 is held by the author(s). ACM 978-1-4503-3416-7



et al. 2013]. In this paper, we follow the concept of the twin peaks model, in which we refine the security issues at
the requirement level by reusing the knowledge located in the solution space to bridge the gap between security
problems and security solutions.

Patterns describe solutions for commonly recurring problems in software development. They are defined for
different software development phases, such as Jackson’s problem frames [Jackson 2001] and Fowler’s analysis
patterns [Fowler 1996] for the requirements level, architectural styles [Shaw and Garlan 1996] for the architecture
level, and design patterns [Gamma et al. 1995] for the design level. Schumacher et al. [Schumacher et al.
2005] provide solutions to security problems represented as patterns that can be applied during the design and
implementation phases of software development processes.

In this paper, we represent patterns that can be used during the requirements engineering phase to refine
the requirement models. These patterns reuse the knowledge gained in the design phase (solution space) from
security patterns to equip the requirement models (problem space) with security solution approaches early in the
software development process. That is, we do not only elicit and model security requirements, but also provide
solution approaches for these requirements. This supports the seamless transition of requirement descriptions to
architectural descriptions.

As a basis for requirements analysis, we use the problem frames approach [Jackson 2001]. It is a requirements
engineering method providing a means for understanding, analyzing, and describing the software development
problems. The problem frames approach suggests to decompose the overall software problem into simple
subproblems. Each subproblem is related to one or more requirements. The solutions of the subproblems will be
composed to solve the overall software problem. Subproblems are described using so called problem diagrams.
We call our proposed patterns problem-oriented security patterns as we represent them by means of the problem
frames approach, which focuses on understanding the problem.

The benefit of the proposed patterns is manifold. First, it provides guidance for refining security problem
descriptions located in the problem space using security patterns located in the solution space. Hence, it enables
less experienced software engineers to apply solution approaches early in the requirements engineering phase
in a systematic manner. Second, it supports the transformation of the elaborated security requirement models
into a particular solution at the design level. Thus, it bridges the gap between security problems and security
solutions. Third, it supports the concurrent and iterative development of requirements and architectural descriptions
systematically.

The remainder of this paper is organized as follows. Section 2 gives a brief overview of the problem frames
approach. We introduce our problem-oriented security patterns in Section 3. Section 4 describes how to use the
proposed patterns in our problem-oriented software development method. Section 5 presents related work, while
Section 6 concludes the paper and points out suggestions for future work.

2. BACKGROUND

This section outlines the basic concepts of problem frames as a requirements engineering approach.
Problem frames are a means to understand, describe, and analyze software development problems. They were

proposed by Michael Jackson [Jackson 2001], who describes them as follows:
“A problem frame is a kind of pattern. It defines an intuitively identifiable problem class in terms of its context

and the characteristics of its domains, interfaces and requirement.”
A problem frame is described by a frame diagram, which basically consists of domains, interfaces between

them, and a requirement. The task is to construct a machine (i.e., software) that improves the behavior of the
environment (in which it is integrated) in accordance with the requirements. A problem diagram represents an
instance of a problem frame. In this paper, we only use the instances of problem frames, namely the problem
diagrams.

We use a UML-based enhancement of problem frames, which is extended by a specific UML profile for problem
frames (UML4PF) proposed by Hatebur and Heisel [Hatebur and Heisel 2010a]. The software to be developed

Problem-oriented Security Patterns for Requirements Engineering — Page 2



(machine in problem frames terminology) is represented by the stereotype�machine�. Jackson distinguishes
the following domain types:

—Biddable domains that are usually people. A biddable domain is represented by the stereotype�Biddable-

Domain�.

—Causal domains that comply with some physical laws. Causal domains are represented by the stereotype
�CausalDomain�.

—Lexical domains that are data representations. A lexical domain is represented by the stereotype�Lexical-

Domain�.

To establish a connection between two other domains by means of technical devices, a connection domain
(�ConnectionDomain�) may be necessary. Examples are video cameras, sensors, or networks. This kind of
modeling allows one to add further domain types, such as�DisplayDomain� (introduced in [Côté et al. 2008]),
being a special case of a causal domain.

In this paper, we use a smart grid application to illustrate the concepts introduced here. To use energy in an
optimal way, smart grids make it possible to couple the generation, distribution, storage, and consumption of
energy. Smart grids use information and communication technology (ICT), which allows for financial, informational,
and electrical transactions.

We derived the functional and security requirements from the documents such as “Application Case Study:
Smart Grid” and “Smart Grid Concrete Scenario” provided by the industrial partners of the EU project NESSoS 1

and the “Protection Profile for the Gateway of a Smart Metering System” [Kreutzmann et al. 2011a; Kreutzmann
et al. 2011b] provided by the German Federal Office for Information Security 2. The protection profile states that
“the Gateway is responsible for handling Meter Data. It receives the Meter Data from the Meter(s), processes it,
stores it and submits it to external parties”. Therefore, we define the requirements RQ1-RQ3 to receive, process,
and store meter data from smart meters. The requirement RQ4 is concerned with submitting meter data to
authorized external entities. Detailed description of the example smart grid is described in [Alebrahim et al. 2014].

Figure 1 illustrates the problem diagram in the context of our smart grid example. It describes the functional re-
quirement RQ3, which states that smart meter gateway shall store meter data from smart meters. The submachine
StoreMeterData receives meter data from the domain TemporaryStorage and stores it in the domain MeterData.

Fig. 1. A problem diagram expressed in UML

1http://www.nessos-project.eu/
2www.bsi.bund.de

Problem-oriented Security Patterns for Requirements Engineering — Page 3



In problem diagrams, interfaces connect domains and they contain shared phenomena. Shared phenomena
may, e.g., be events, operation calls or messages. They are observable by at least two domains, but controlled
by only one domain, as indicated by “!”. The notation StMD!{writeMeterData} (between StoreMeterData
and MeterData in Fig. 1) means that the phenomenon writeMeterData is controlled by the machine domain
StoreMeterData.

When we state a requirement we want to change something in the world with the machine to be developed.
Therefore, each requirement expressed by the stereotype �requirement� constrains at least one domain.
This is expressed by a dependency from the requirement to a domain with the stereotype�constrains�. A
requirement may refer to several domains in the environment of the machine. This is expressed by a dependency
from the requirement to a domain with the stereotype�refersTo�. The requirement RQ3 in Fig. 1 constrains
the domain MeterData. It refers to the domain TemporaryStorage.

In order to annotate problem diagrams with quality requirements, we extended the UML profile for problem
frames [Alebrahim et al. 2011b]. It enables us to complement functional requirements with quality requirements. A
dependency from a quality requirement to a functional one is expressed with the stereotype�complements�.
For annotating security requirements, we use the dependability profile [Hatebur and Heisel 2010b] that provides
us with stereotypes such as�confidentiality� and�integrity�. The confidentiality requirement RQ9
complements the functional requirement RQ3 in Fig. 1. The confidentiality requirement RQ9 states that data shall
be protected from unauthorized disclosure while stored in the gateway.

3. PROBLEM-ORIENTED SECURITY PATTERNS

In this section, we reuse existing security patterns and mechanisms and adapt them in a way that they can be
used in the problem-oriented requirements engineering. We call the adapted patterns problem-oriented security
patterns. The adaptation allows the requirements engineer to integrate such security-specific solutions early in
the requirements engineering. Three problem-oriented security patterns are represented in this paper. Further
problem-oriented security patterns may be extracted from the existing security patterns and mechanisms by the
software engineers to aid the requirements engineers in integrating security solution approaches early in the
requirements analysis.

The structure of the problem-oriented security patterns is described in Section 3.1. Sections 3.2, 3.3, and 3.4
describe the three patterns problem-oriented encryption, problem-oriented RBAC, and problem-oriented digital
signature in detail.

3.1 Structure of the problem-oriented security patterns

A problem-oriented security pattern consists of a graphical pattern and a template. In the following, we describe
the constituents of the pattern.

Graphical pattern:
The graphical pattern involves the following parts:

Functional Problem Diagram: During the requirements analysis phase, it is essential to describe and under-
stand the problem explicitly. Hence, setting up a functional problem diagram is the first step to be performed for
describing a specific problem. It captures the structure of the problem explicitly and consists of a generic functional
requirement and the involved domains. To describe the security problem related to the functional requirement, we
annotate this problem diagram with a specific security requirement, for which we provide a solution approach in
the second part. The security requirement is annotated as complement to the functional requirement.

Security Problem Diagram: In the functional problem diagram, we described the functional problem and its
related security requirement. The second part of a problem-oriented security pattern is a security problem diagram

Problem-oriented Security Patterns for Requirements Engineering — Page 4



that describes the particular solution approach for the security requirement annotated in the first part.

Composition Problem Diagram: The third part is concerned with composing the functional problem diagram
and security problem diagram to obtain a solution for the overall problem. Hence, we provide a composition
problem diagram that describes how the functional problem diagram and the security problem diagram can be
composed to solve the overall problem. To this end, we make use of Composition Frames introduced in [Laney et al.
2004; Alebrahim et al. 2012] as a new kind of problem frames. Composition frames deal with the composition of
two machines, each of which is described by a problem diagram in order to address combined requirements [Laney
et al. 2004]. We use composition frames to integrate the problem diagram for the selected security solution with
the functional problem diagram. A composition frame includes the domains shared between the functional problem
and the security solution, and their corresponding machine domains. For the graphical patterns we use the same
notation we use for the problem frames as described in Section 2.

As an optional part of the graphical pattern, a sequence diagram might be used to illustrate how the functional
machine and the security machine interact with each other to solve the overall problem.

Template:
We provide a template consisting of two parts that documents additional information related to the domains in
the problem diagrams. Such information is not observable in the graphical pattern. The first part accommodates
information about the security mechanism itself such as name (Name), purpose (Purpose), description (Brief
Description), and the quality requirement which will be achieved when applying this pattern (Quality Requirement to
be achieved). Moreover, a security solution may affect the achievement of other quality requirements. For example,
improving the security may result in decreasing the performance. Hence, the impact of each security solution on
other quality requirements has to be captured in the first part of the template (Affected Quality Requirement). A
security pattern not only solves a problem, but also produces new functional and quality problems that have to be
addressed either as Requirements to be elicited or as Assumptions needed to be made in the second part of the
template. We elicit new functional and quality problems as requirements if the software to be built shall achieve
them. Assumptions have to be satisfied by the environment [Lamsweerde 2009b]. They do not guarantee to be
true in every case. For the case that we assume the environment (not the machine) takes the responsibility for
meeting them, we capture them as assumptions. This should be negotiated with the stakeholders and documented
properly.

We must note that the problem-oriented security patterns do not intend to provide rationales on how a particular
security mechanism or pattern is selected. We assume this task has been done in the solution space prior to
adopting the patterns and transforming them into the problem space as we make use of existing patterns and
mechanisms. In this paper, we facilitate the use of proven security solutions from the design phase in a systematic
manner by adopting them for the requirements analysis.

We present three problem-oriented security patterns, namely symmetric encryption, Role-Based Access Control
(RBAC), and digital signature as solutions for achieving confidentiality, integrity, and authenticity. Other security
patterns and mechanisms can be transformed into the problem space analogously in order to be used in the
problem-oriented software development.

3.2 Problem-oriented symmetric encryption pattern

Symmetric encryption is an important security mechanism to achieve confidentiality. There exists only one secret
key which is used for encrypting and decrypting a plaintext that has to be kept confidentially. Asymmetric encryption
is a similar means to achieve confidentiality. It however uses different keys for the encryption and decryption. One
advantage of symmetric encryption is that it is faster than asymmetric encryption. The disadvantage is that both

Problem-oriented Security Patterns for Requirements Engineering — Page 5



Fig. 2. Problem-oriented symmetric encryption pattern

communication parties must know the same key, which has to be distributed securely or negotiated. In asymmetric
encryption, there is no key distribution problem, but a trusted third party is needed that issues the key pairs.

We present the problem-oriented symmetric encryption pattern by its corresponding graphical pattern depicted
in Fig. 2 and its corresponding template shown in Table I.

Graphical pattern:

Functional Problem Diagram: The graphical pattern first describes the functional problem expressed as the
problem diagram GenericProblem. It describes the functional requirement FunctionalReq and the involved domains.
The functional requirement might be “sending the data", “storing data”, . . . to be achieved by the machine Func-
tionalM. Plaintext is expressed as the causal domain Domain in the problem diagram. It might be a causal domain
such as a harddisc containing plaintext or a lexical domain which itself represents the plaintext. A lexical domain
is defined as a special causal domain in UML4PF [Hatebur and Heisel 2010a]. The confidentiality requirement
ConfidentialityReq is annotated in the problem diagram by complementing the functional requirement. It requires
the achievement of the functional requirement in a confidential way. The functional problem diagram is depicted at
the top of Fig. 2. Depending on the functional requirement, the problem diagram might contain other domains that
are not relevant for the security problem. Hence, they are not represented in the pattern.

Security Problem Diagram: The symmetric encryption as a solution for the confidentiality problem is expressed
by the problem diagram SymmetricEncryption shown in the middle of Fig. 2. It consists of all domains that are

Problem-oriented Security Patterns for Requirements Engineering — Page 6



relevant for the solution. The machine SymEncM should achieve the confidentiality requirement ConfidentialityReq
by encrypting the Domain using the SecretKey which is part of the machine SymEncM.

Table I. Problem-oriented symmetric encryption pattern (template)
Security Solution

Name Symmetric Encryption
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description The plaintext is encrypted using the secret key
Quality Requirement to be achieved Security (confidentiality) ConfidentialityReq
Affected Quality Requirement Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement2 Assumption2 Secret key shall be/is distributed.

Requirement2 Assumption2 Confidentiality of secret key distribution shall be/is preserved.

Requirement2 Assumption2 Integrity of secret key distribution shall be/is preserved.

Requirement2 Assumption2 Confidentiality of secret key during transmission shall be/is preserved

Requirement2 Assumption2 Confidentiality of secret key during storage shall be/is preserved.

Requirement2 Assumption2 Integrity of secret key during storage shall be/is preserved.

Requirement2 Assumption2 Confidentiality of encryption machine shall be/is preserved.

Requirement2 Assumption2 Integrity of encryption machine shall be/is preserved.

Composition Problem Diagram: The third part of the graphical pattern shown at the bottom of Fig. 2 is con-
cerned with combining the functional problem diagram with the security problem diagram to obtain the composed
problem diagram FunctionalSecComposition. It consists of the new machine CompositionM, both machine domains
FunctionalM and SymEncM, and the domains shared by both problem diagrams. In our case, there is only one do-
main Domain. Consider that the lexical domain SecretKey is part of the machin SymEncM that we made visible as
it is of great importance for the encryption mechanism. The machine CompositionM is responsible for coordinating
the functional machine FunctionalM and the solution machine SymEncM. The requirement CompositionReq shall
be achieved by the machine CompositionM.

We will see in the following by the description of the related template that we need to capture new assumptions
and elicit new requirements regarding the secret key.

Template:
The template shown in Table I represents the additional information corresponding to the graphical part of the
problem-oriented pattern symmetric encryption. After capturing the basic information in the first part, in the second
part we elicit new requirements and capture new assumptions that arise with the solution, such as secret key
shall be/ is distributed. Eliciting this condition results in thinking about security issues concerned with it, such
as confidentiality and integrity of secret key distribution shall be/is preserved. Note that the requirements and
assumptions are not fixed. Requirements have to be met by the machine (i.e. software-to-be) and assumptions
by the environment. If we require that the software we build is responsible for preserving the confidentiality and
integrity of the secret key not only during the transmission but also during the storage, we have to capture these
as requirements. This is the reason why the necessary conditions are presented as checkboxes to be selected by
checking the relevant checkbox as requirement or assumption.

Note that the problem-oriented security pattern symmetric encryption has to be applied by the sender for
encrypting the plaintext. There exists a counterpart to this pattern, namely the problem oriented security pattern

Problem-oriented Security Patterns for Requirements Engineering — Page 7



Fig. 3. Problem-oriented RBAC pattern (graphical pattern)

symmetric decryption on the receiver side which is responsible for decrypting the encrypted plaintext. The
counterpart pattern is structured in the same way. We do not introduce the counterpart pattern in this paper as it is
very similar to the problem-oriented security pattern symmetric encryption.

3.3 Problem-oriented RBAC pattern

Since verifying permission is a frequently recurring problem in security relevant systems, it has been treated in
several access control patterns for the design phase [Yskout et al. 2006; Schumacher et al. 2005]. Access control
patterns define security constraints regarding access to resources. Role-Based Access Control (RBAC) provides
access to resources based on functions of people in an environment, known as roles, and the kind of permission
they have, known as rights.

We present the problem-oriented RBAC pattern by its corresponding graphical pattern depicted in Fig. 3 and its
corresponding template shown in Table II.

Graphical pattern:

Functional Problem Diagram: The first part of the graphical pattern, namely the functional problem diagram
expressed by the problem diagram GenericProblem, is similar to the previous one from the structure point of
view. The functional requirement FunctionalReq might be “editing data” to be met by the functional machine
FunctionalM. The functional requirement is complemented by the security requirement IntegrityReq demanding

Problem-oriented Security Patterns for Requirements Engineering — Page 8



Table II. Problem-oriented RBAC pattern (template)
Security Solution

Name RBAC
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description It provides access to data based on defined roles and rights captured as access rights.
Quality Requirement to be achieved Security (confidentiality and integrity during storage) ConfidentialityReq, IntegrityReq
Affected Quality Requirement Performance PerformanceReq, availability AvailabilityReq

Necessary Conditions

Requirement2 Assumption2 Integrity of access rights shall be/is preserved.

Requirement2 Assumption2 Confidentiality of data during storage shall be/is preserved.

Requirement2 Assumption2 Integrity of data during storage shall be/is preserved.

Requirement2 Assumption2 Confidentiality of RBAC machine shall be/is preserved.

Requirement2 Assumption2 Integrity of RBAC machine shall be/is preserved.

“the protection of data against unauthorized access”. The functional problem diagram is depicted at the top of Fig. 3.

Security Problem Diagram: The second part provides the domains that are required for applying the RBAC
pattern expressed by the problem diagram RBAC shown in the middle of Fig. 3. The lexical domain AccessRights
represents user id, assigned role(s) to it, and assigned right(s) to the role(s). It is a part of the machine RBACM
which is responsible for achieving the integrity requirement.

Composition Problem Diagram: The third part composes the functional machine FunctionalM with the security
machine RBACM by introducing a new machine CompositionM that has to meet the requirement CompositionReq
composed of the requirements FuncitonalReq and IntegrityReq. It is depicted at the bottom of Fig. 3.

Note that the problem-oriented RBAC pattern can be used to achieve a confidentiality requirement as well.
In Fig. 3, we only showed the use of the problem-oriented RBAC pattern to achieve the integrity requirement
IntegrityReq in order to keep the figure clear and readable. One can apply the same pattern and only replace the
integrity requirement with the confidentiality requirement to achieve confidentiality.

Template:
The template shown in Table II represents the additional information corresponding to the graphical part of
the problem-oriented pattern RBAC. In addition to the basic information regarding the pattern itself, it contains
requirements and assumptions to be selected by the requirements engineer.

3.4 Problem-oriented digital signature pattern

Digital signature is an important means for achieving integrity and authenticity of data. Using the digital signature,
the receiver ensures that the data is created by the known sender.

We present the problem-oriented digital signature pattern by its corresponding graphical pattern depicted in
Fig. 4 and its corresponding template shown in Table III.

Graphical pattern:
The structure of the graphical pattern is similar to the previous patterns. As we described the structure of previous
patterns extensively, we do not describe the graphical pattern any more and only refer to Fig. 4.

Note that the problem-oriented digital signature pattern can be used to achieve an integrity requirement as
well. In Fig. 4, we only showed the use of the problem-oriented digital signature pattern to achieve the integrity
requirement AuthenticityReq in order to keep the figure clear and readable. One can apply the same pattern and

Problem-oriented Security Patterns for Requirements Engineering — Page 9



Fig. 4. Problem-oriented digital signature pattern (graphical pattern)

Table III. Problem-oriented digital signature pattern (template)
Security Solution

Name Digital Signature
Purpose For Domain constrained by the requirement FunctionalReq
Brief Description Sender produces a signature using the private key and the data.
Quality Requirement to be achieved Security (integrity and authenticity) IntegrityReq, AuthenticityReq
Affected Quality Requirement Performance PerformanceReq

Necessary Conditions

Requirement2 Assumption2 Confidentiality of private key during storage shall be/is preserved.

Requirement2 Assumption2 Integrity of private key during storage shall be/is preserved.

Requirement2 Assumption2 Confidentiality of signature machine shall be/is preserved.

Requirement2 Assumption2 Integrity of signature machine shall be/is preserved.

only replace the authenticity requirement with the integrity requirement to achieve integrity.

Template:
The template shown in Table III represents the additional information corresponding to the graphical part of the
problem-oriented pattern digital signature. New requirements and assumptions to be considered are represented
in the second part of the template.

Problem-oriented Security Patterns for Requirements Engineering — Page 10



Note that we do not provide a structured method to identify new requirements and assumptions as necessary
conditions. However, as mentioned earlier in this section, new requirements and assumptions arise due to
introducing the security solution (Security Problem Diagram). Hence, we can reduce the scope of consideration for
identifying new requirements and assumptions to the solution for the security requirement, namely to the Security
Problem Diagram. In this problem diagram, we only need to consider the lexical domain for example the SecretKey
for the problem-oriented symmetric encryption pattern and its related security machine SymEncM. For these two
domains, we have to think about new problems that might arise and then capture them as new requirements
and/or assumptions.

4. RELATION TO PROBLEM-ORIENTED SOFTWARE DEVELOPMENT

In this section, we describe how the proposed patterns can be applied within our problem-oriented software
development method [Alebrahim et al. 2011b; Alebrahim et al. 2011a; Alebrahim et al. 2014]. As we mentioned
earlier, problem descriptions and architectural descriptions should be considered as intertwining artifacts influencing
each other. We therefore take the Twin Peaks model [Nuseibeh 2001] into account and illustrate our problem-
oriented software development method embedded in the context of the Twin Peaks model (see Fig. 5). Our
problem-oriented software development method consists of five phases.

Problem Peak Solution Peak

 

 

2

4

1

General

Detailed

Le
ve

l o
f d

et
ai

l

Independent Dependent

Implementation dependence

3

5

solution selection
& application

context elicitation
& problem decomposition

domain knowledge
elicitation & modeling

solution identification
& analysis

quality-based
architecture derivation

Fig. 5. Overview of our method embedded in the Twin Peaks Model

Phase 1- context elicitation & problem decomposition. This phase (see 1 in Fig. 5) involves understand-
ing the problem and its context, decomposing the overall problem into subproblems, and annotating security
requirements. In order to understand the problem, we elicit all domains related to the problem to be solved, their
relations to each other and the software to be constructed. Doing this, we obtain a context diagram consisting of
the machine (software-to-be), related domains in the environment, and interfaces between these domains. Then,
we decompose the overall problem into subproblems, which describe a certain functionality, as expressed by a set
of related functional requirements. We set up problem diagrams representing subproblems to model functional
requirements. A problem diagram consists of one submachine of the machine given in the context diagram, the
relevant domains, the interfaces between these domains, and a requirement referring to and constraining problem
domains.

Problem-oriented Security Patterns for Requirements Engineering — Page 11



To analyze and integrate quality requirements in the software development process, quality requirements have
to be modeled and integrated as early as possible in the requirement models. Modeling quality requirements and
associating them to the functional requirements is achieved by annotating them in problem diagrams. Figure 1
illustrates the problem diagram for describing the functional requirement RQ3 annotated by the security requirement
RQ9. For more information about context elicitation and problem decomposition, see our previous work [Alebrahim
et al. 2011b].

Phase 2- domain knowledge elicitation & modeling. The system-to-be comprises the software to be built and
its surrounding environment such as people, devices, and existing software [Lamsweerde 2009b]. In requirements
engineering, properties of the environment and constraints about it, called domain knowledge, need to be captured
in addition to exploring the requirements [Jackson 2001; Lamsweerde 2009a]. Hence, the second phase (see 2 in
Fig. 5) involves domain knowledge elicitation & modeling. For more information, see our previous work [Alebrahim
et al. 2014].

Phase 3- solution identification & analysis. The first two phases are concerned with the activities accom-
modated in the requirements engineering (known as problem peak in the Twin Peaks model). Finding security
strategies to achieve security requirements is the aim of the third phase (see 3 in Fig. 5). To this end, we explore
the solution space by identifying those security patterns and mechanisms such as encryption and RBAC that
support the achievement of security requirements which have already been annotated in problem diagrams (for
example in Fig. 1).

Phase 4- solution selection & application. Once we have identified the most appropriate security pattern for
our particular security problem, we map it to one of our proposed problem-oriented security patterns in the fourth
phase (see 4 in Fig. 5). Then we apply the selected problem-oriented security pattern to refine the requirement
models by integrating security mechanisms.

We assume that we have identified symmetric encryption as an appropriate mechanism to fulfill confidentiality
in phase three. In phase four, we map the problem diagram shown in Fig. 1 to the first part of the graphical
pattern described in Section 3.2, namely the functional problem diagram. Figure 1 represents an instance of
the functional problem diagram, in which the machine StoreMeterData represents the machine FunctionalM,
the domain TemporaryStorage represents the domain Domain, the functional requirement RQ3 represents the
functional requirement FunctionalReq, and the confidentiality requirement RQ9 represents the confidentiality
requirement ConfidentialityReq. As mentioned in Section 3.2, depending on the functional requirement, the problem
diagram might contain other domains that are not relevant for the security problem at hand. Hence, they are not
represented in the pattern. The lexical domain MeterData in Figure 1 is such a case.

We instantiate the second part of the pattern, namely the security problem diagram. Doing this, we obtain the
upper problem diagram in Fig. 6, in which the domain TemporaryStorage represents the domain Domain, the
domain Key represents the domain SecretKey, the confidentiality requirement RQ9 represents the confidentiality
requirement ConfidentialityReq, and the machine SymEnc represents the machine SymEncM in the pattern. In
this problem diagram, the machine SymEnc receives the key (keyContent) from the domain Key and the data
(tempData) from the domain TemporaryStorage and encrypts it by producing the encryptedData.

We instantiate the third part of the pattern, namely the composition problem diagram, by mapping the do-
main Domain to the domain TemporaryStorage, the machine SymEncM to the machine SymEnc, the machine
FunctionalM to the machine StoreMeterData, the composition requirement Req to the composition requirement
RQ3+RQ9, and the composition machine CompositionM to the composition machine SecurityManager. Doing this,
we obtain the lower problem diagram in Fig. 6, in which the functional problem diagram represented in Fig. 1 and
the security problem diagram in Fig. 6 are combined. The machine SecurityManager receives the tempData from
the domain TemporaryStorage, sends it to the machine SymEnc. The machine SymEnc encrypts the data and

Problem-oriented Security Patterns for Requirements Engineering — Page 12



Fig. 6. Instance of the second and third parts of the problem-oriented symmetric encryption pattern

sends the encryptedData back to the machine SecurityManager. This machine sends the encrypted data to the
machine StoreMeterData, which stores the data persistently in the domain MeterData.

In this way, we successfully instantiated and applied the problem-oriented symmetric encryption pattern in phase
four of our method in order to fulfill the confidentiality requirement RQ9 for the functional requirement RQ3. We
only showed the instantiation of the graphical part of the pattern. The corresponding template can be easily filled
out using the information obtained from the solution space and according to the responsibility for the achievement
of necessary conditions. As mentioned before, the templates as part of the problem-oriented security patterns
describe the effect of each pattern on the requirement models. According to this part of the templates, we have to
update the requirement models including domain knowledge (first and second phases of the method) by selecting
and applying a problem-oriented security pattern. Therefore, our method has to be conducted as a recursive one
to obtain correct requirements and a sound architecture.

Phase 5- quality-based architecture derivation. In this phase (see 5 in Fig. 5), we derive an architecture
description from problem descriptions by mapping domains from problem diagrams to components in the software
architecture. For more information, see our previous work [Alebrahim et al. 2011a].

Benefits. Problem-oriented security patterns allow software engineers not only to think about security problems
as early as possible in the software development life cycle, but also to think about solution approaches solving
such security problems. Furthermore, the corresponding templates represent consequences of applying such
solution approaches by providing new assumptions and/or requirements to be considered when deciding on a
specific pattern.

By exploring the solution space, we find appropriate solution mechanisms, which can be used for refining security
requirement models in the requirement engineering phase. However, problem-oriented security patterns do not
really apply a solution. They only enforce the requirements analyst to think about the problem, its solution and the
consequences of applying a specific solution as early as possible. This results in preparing the requirement models
for applying the “classical” security patterns later on in the design phase. For example, to think about new lexical
domains and machines to be introduced, new assumptions to be captured, and new requirements to be elicited.

Problem-oriented Security Patterns for Requirements Engineering — Page 13



Thus, they do not replace the application of the “classical” security patterns. Problem-oriented security patterns
are located in the problem space aiming at structuring and elaborating security problems while “classical” security
patterns are accommodated in the solution space aiming at solving security problems. Hence, problem-oriented
security patterns in the requirements engineering phase represent the counterpart to the “classical” security
patterns in the design phase.

In a model-driven software development, the elaborated security requirement models can easily be transformed
into a particular security pattern at the design level. As the requirement models and the architecture models
can be kept in one single model, it is possible to perform integrity checks in order to verify whether there exist
security solutions on the architecture level that fulfill the security requirements annotated in the requirement
models. In addition, traceability links between requirement and architecture models can be easily provided in such
a model-based approach. Hence, problem-oriented security patterns support bridging the gap between security
problems and security solutions.

5. RELATED WORK

There has been a number of research works that proposed patterns for different areas of software engineering and
other application domains. We mainly discuss here those approaches related to the problem frames approach.

Five basic problem frames are defined in the problem frames approach proposed by Jackson [Jackson 2001],
namely the required behaviour, commanded behaviour, information display, simple workpieces, and transformation
to which all problems can be mapped. The problem frames approach provides no support for addressing quality
requirements. In our previous work [Alebrahim et al. 2011b], we proposed an extension of it by introducing new
elements that enable us annotating quality requirements. In this paper, we make use of the extension to address
quality requirements in the functional problem diagram and propose a security solution for the annotated quality
requirements. Hence, the problem frames provide a framework which allows for expressing problem-oriented
security patterns as problem diagrams.

Beckers et al. [Beckers et al. 2013] propose a meta model for describing context patterns for various kinds
of domain knowledge. The meta model is based on a number of context patterns for different areas of domain
knowledge such as Peer-to-Peer, cloud computing, and the legal domain developed in the past by the authors. To
improve the understanding of the context and eliciting required information, these patterns can be integrated into
existing software development methods. The domain knowledge required for the software engineering can be
captured by instantiating such context patterns. Similar to our patterns, the context patterns are provided for the
requirements engineering phase. However, they differ from our problem-oriented security patterns as they elicit
and analyze the context supporting the elicitation of requirements while we focus on finding solution approaches
for already elicited security requirements.

Hatebur et al. [Hatebur et al. 2006] propose security problem frames and concretized security problem frames.
Security problem frames represent special kinds of problem frames which address the security problems. They
do not take into account a solution. They have to be transformed into concretized security problem frames which
address a solution using generic security mechanisms. Similar to this approach, we make use of the problem
frames approach as a basis for providing security patterns. The first part of our graphical pattern, namely the
generic problem diagram corresponds to the security problem frames proposed in [Hatebur et al. 2006]. The
second part of our graphical pattern represents a generic security mechanism, while the third part corresponds
to the concretized security problem frames. In addition, we provide a template for each pattern including meta
information and necessary conditions that need to be considered when applying a specific pattern.

The same authors present a pattern system in a further work [Hatebur et al. 2007] based on security problem
frames and their counterparts concretized security problem frames. In this work, the relationships and dependen-
cies between different frames are represented explicitly in the pattern system. The pattern system should support
the security engineer by choosing the appropriate concretized security problem frame for an identified security
problem frame.

Problem-oriented Security Patterns for Requirements Engineering — Page 14



A pattern language for security risk analysis of web applications is proposed by Li et al. [Li et al. 2013], which can
be used to support the conduction of risk analysis in the early phase of the software development life cycle. The
authors introduce three basic pattern types, namely security requirement patterns, web application architecture
design patterns, and risk analysis model patterns that can be combined to build security risk analysis composite
patterns. A security requirement pattern is defined according to the problem frames notation. The output of
the security requirement pattern, namely a security requirement, represents the input for the web application
architecture design pattern representing the architecture design for a specific web application. Our problem-
oriented security patterns can be used as an intermediate step between the security requirement patterns and
web application architecture design patterns to facilitate the transformation of security requirement patterns in the
requirement analysis phase into the web application architecture design patterns in the design phase. In addition,
our patterns help identifying new assumptions / requirements that need to be considered when applying a specific
security pattern.

Choppy et al. [Choppy et al. 2005] propose software architectural patterns that correspond to the different
problem frames to be used in the design phase. To create an architectural solution for a concrete problem frame,
the relating architectural pattern must be instantiated which provides the starting point for building a software
architecture. Our security patterns focus on the analysis phase of software engineering, whereas the architectural
patterns as solutions to the problem frames are defined for the design phase of software engineering.

Architectural Frames (AFrames) [Rapanotti et al. 2004] represent combinations of architectural styles and
Problem Frames. They are introduced to make use of the knowledge of existing software architectural patterns
such as Pipe-and-Filter and Model-View-Controller (MVC) in the problem frames approach to decompose the
problem frames. The corresponding AFrames are applied to the classes of transformation and control problems.
Similar to our problem-oriented security patterns, AFrames use the knowledge gained in the solution space in the
problem space. However, they are used for decomposing the problem frames as functional problems, whereas our
proposed patterns are concerned with security problems.

6. CONCLUSION

We have provided a systematic structure for problem-oriented security patterns consisting of a three-part graphical
pattern and a template describing the affect of the security pattern on requirements when applied. We have
presented three examples of problem-oriented security patterns to address confidentiality, integrity, and authenticity
problems on the requirement level. Other security patterns and mechanisms located in the solution space can
easily be transformed into the problem space analogously using the proposed structure for problem-oriented
security patterns. Necessary for such transformation is the knowledge about the patterns and/or mechanisms,
their structure, and their constituents which we gain in phase 3 of our method (solution identification & analysis) to
build problem-oriented security patterns.

The proposed patterns facilitate the use of proven security solutions from the design phase in a systematic
manner by adopting them for the requirements analysis. The instantiations of the patterns can be used as a
basis for a seamless transition from requirement analysis to architectural design. The proposed patterns can be
integrated into software development processes based on problem frames to refine the requirement models and
bridge the gap between security problems and security solutions.

Note that the problem-oriented security patterns are not intended to only update the requirement models after
applying the “classical” security patterns in the design phase. Rather they have to be applied first in phase 4
(solution selection & application) to adapt the requirement models by adding new domains, new assumptions, facts,
and/or requirements. We then apply the security patterns to design the architecture by making more fine-grained
decisions such as selecting the algorithms, secret key (key length, . . . ) in phase 5 (quality-based architecture
derivation).

In the future, we will extend the basis of our existing problem-oriented security patterns with more patterns
in order to provide a catalog of problem-oriented security patterns for requirements analysis addressing more

Problem-oriented Security Patterns for Requirements Engineering — Page 15



kinds of security issues. In addition, we strive for improving our current problem-oriented software development
process by introducing a new step for the use of problem-oriented security patterns in a systematic manner.
Furthermore, we plan to provide problem-oriented performance patterns which are structured in a similar way
as the proposed problem-oriented security patterns. They will be integrated into our problem-oriented software
development process to derive software architectures that not only meet the security requirements but also the
performance requirements.

7. ACKNOWLEDGMENTS
We would like to thank our shepherd Christopher Preschern for his valuable feedback to improve this paper.

REFERENCES

ALEBRAHIM, A., CHOPPY, C., FASSBENDER, S., AND HEISEL, M. 2014. Optimizing functional and quality requirements according to
stakeholders’ goals. In System Quality and Software Architecture (SQSA). Elsevier, 75–120.

ALEBRAHIM, A., HATEBUR, D., AND HEISEL, M. 2011a. A method to derive software architectures from quality requirements. In Proceedings of
the 18th Asia-Pacific Software Engineering Conference (APSEC), T. D. Thu and K. Leung, Eds. IEEE Computer Society, 322–330.

ALEBRAHIM, A., HATEBUR, D., AND HEISEL, M. 2011b. Towards systematic integration of quality requirements into software architecture.
In Proceedings of the 5th European Conference on Software Architecture (ECSA), I. Crnkovic, V. Gruhn, and M. Book, Eds. LNCS 6903.
Springer Verlag, 17–25.

ALEBRAHIM, A., HEISEL, M., AND MEIS, R. 2014. A structured approach for eliciting, modeling, and using quality-related domain knowledge. In
Proceedings of the 14th International Conference on Computational Science and Its Applications (ICCSA). LNCS 8583. Springer, 370–386.

ALEBRAHIM, A., TUN, T. T., YU, Y., HEISEL, M., , AND NUSEIBEH, B. 2012. An aspect-oriented approach to relating security requirements and
access control. In Proceedings of the CAiSE Forum. CEUR Workshop Proceedings Series, vol. 855. CEUR-WS.org, 15–22.

BECKERS, K., FASSBENDER, S., AND HEISEL, M. 2013. A meta-model approach to the fundamentals for a pattern language for context
elicitation. In Proceedings of the 18th European Conference on Pattern Languages of Programs (EuroPLoP). ACM, –. Accepted for
Publication.

CHOPPY, C., HATEBUR, D., AND HEISEL, M. 2005. Architectural patterns for problem frames. IEE Proceedings – Software, Special issue on
Relating Software Requirements and Architecture 152, 4, 198–208.

CHUNG, L., NIXON, B. A., YU, E., AND MYLOPOULOS, J. 2000. Non-functional requirements in software engineering. Klewer Academic.
CÔTÉ, I., HATEBUR, D., HEISEL, M., SCHMIDT, H., AND WENTZLAFF, I. 2008. A Systematic Account of Problem Frames. In Proceedings of the

European Conference on Pattern Languages of Programs (EuroPLoP). Universitätsverlag Konstanz, 749–767.
FOWLER, M. 1996. Analysis Patterns: Reusable Object Models. Addison Wesley.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Addison

Wesley.
HATEBUR, D. AND HEISEL, M. 2010a. Making Pattern- and Model-Based Software Development More Rigorous. In Proceedings of 12th

International Conference on Formal Engineering Methods (ICFEM), J. S. Dong and H. Zhu, Eds. LNCS 6447. Springer Verlag, 253–269.
HATEBUR, D. AND HEISEL, M. 2010b. A UML profile for requirements analysis of dependable software. In Proceedings of the International

Conference on Computer Safety, Reliability and Security (SAFECOMP), E. Schoitsch, Ed. LNCS 6351. Springer Verlag, 317–331.
HATEBUR, D., HEISEL, M., AND SCHMIDT, H. 2006. Security engineering using problem frames. In Proceedings of the International Conference

on Emerging Trends in Information and Communication Security (ETRICS). Springer Verlag, 238–253.
HATEBUR, D., HEISEL, M., AND SCHMIDT, H. 2007. A pattern system for security requirements engineering. In Proceedings of the 7th

International Conference on Availability, Reliability and Security (AReS). IEEE Computer Society, Los Alamitos, CA, USA, 356–365.
JACKSON, M. 2001. Problem Frames. Analyzing and structuring software development problems. Addison-Wesley.
KREUTZMANN, H., VOLLMER, S., TEKAMPE, N., AND ABROMEIT, A. 2011a. Protection profile for the gateway of a smart metering system.

Tech. rep., BSI.
KREUTZMANN, H., VOLLMER, S., TEKAMPE, N., AND ABROMEIT, A. 2011b. Protection profile for the security module of a smart metering

system. Tech. rep., BSI.
LAMSWEERDE, A. 2009a. Reasoning about alternative requirements options. In Conceptual Modeling: Foundations and Applications,

A. Borgida, V. Chaudhri, P. Giorgini, and E. Yu, Eds. Vol. LNCS 5600. Springer, 380–397.
LAMSWEERDE, A. 2009b. Requirements Engineering: From System Goals to UML Models to Software Specifications. Wiley.
LANEY, R., BARROCA, L., JACKSON, M., AND NUSEIBEH, B. 2004. Composing requirements using problem frames. In Proceedings of the 4th

IEEE International Requirements Engineering Conference (RE). Press, 122–131.

Problem-oriented Security Patterns for Requirements Engineering — Page 16



LI, Y., KOBRO RUNDE, R., AND STØLEN, K. 2013. A meta-model approach to the fundamentals for a pattern language for context elicitation. In
Proceedings of the 20th Conference on Pattern Languages of Programs (PLOP).

NUSEIBEH, B. 2001. Weaving together requirements and architectures. IEEE Computer 34, 3, 115–117.
RAPANOTTI, L., HALL, J. G., JACKSON, M., AND NUSEIBEH, B. 2004. Architecture-driven problem decomposition. In Proceedings of the 12th

IEEE International Requirements Engineering Conference (RE). 80–89.
SCHUMACHER, M., FERNANDEZ-BUGLIONI, E., HYBERTSON, D., BUSCHMANN, F., AND SOMMERLAD, P. 2005. Security patterns: integrating

security and systems engineering. John Wiley & Sons.
SHAW, M. AND GARLAN, G. 1996. Software Aechitecture: Perspectives on an emerging discipline. Prentice Hall.
WHALEN, M., GACEK, A., COFER, D., MURUGESAN, A., HEIMDAHL, M., AND RAYADURGAM, S. 2013. Your "What" Is My "How": Iteration and

Hierarchy in System Design. IEEE Software 30, 2, 54–60.
YSKOUT, K., HEYMAN, T., SCANDARIATO, R., AND JOOSEN, W. 2006. A system of security patterns. Report CW 469, K.U.Leuven, Department

of Computer Science.

EuroPLoP’14, July 09-13, 2014, Irsee, Germany. Copyright 2014 is held by the author(s). ACM 978-1-4503-3416-7

Problem-oriented Security Patterns for Requirements Engineering — Page 17


	Introduction
	Background
	Problem-oriented Security Patterns
	Structure of the problem-oriented security patterns
	Problem-oriented symmetric encryption pattern
	Problem-oriented RBAC pattern
	Problem-oriented digital signature pattern

	Relation to Problem-oriented Software Development
	Related Work
	conclusion
	Acknowledgments



