
Deriving a Pattern Language Syntax for Context-Patterns
Kristian Beckers, paluno – The Ruhr Institute for Software Technology
Stephan Faßbender, paluno – The Ruhr Institute for Software Technology
Maritta Heisel, paluno – The Ruhr Institute for Software Technology

In a previous publication we introduced a catalog of context-patterns. Each context pattern describes common structures and stakeholders
for a specific domain. The common elements of the context were obtained from observations about the domain in terms of standards, domain
specific-publications, and implementations. Whenever the domain of a system-to-be is already described by a context-pattern, one can
use this context-pattern to elicit domain knowledge by instantiating the corresponding context-pattern. Moreover, we analyzed the common
concepts in our context-patterns and created a meta-model to describe the relations between these concepts. This meta-model was the initial
step towards a pattern language for context-patterns. In this work, we show the consequent next step for the definition of a pattern language
syntax for context-patterns. Thus, we describe how to derive the connections between the existing context-pattern in a structured way and
present the results.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—System architectures,Systems specification method-
ology; D.2.1 [Software Engineering]: Requirements/Specifications—Elicitation methods, methodologies; H.1.1 [Information Systems]:
Systems and Information Theory—General systems theory

General Terms: Documentation

Additional Key Words and Phrases: Domain Knowledge, Requirements Engineering, Context Establishment

ACM Reference Format:

Beckers K., Faßbender S. 2014. Deriving a Pattern Language for Context-Patterns jn 2, 3, Article 1 (May 2010), 25 pages.

1. INTRODUCTION

The long known credo of requirements engineering states that it is challenging to build the right system if you do
not know what right is. Requirements engineering methods have to consider domain knowledge, otherwise severe
problems can occur during software development, e.g., technical solutions to requirements might be impractical
or costly. It is an open research question of how to elicit domain knowledge correctly for effective requirements
elicitation [Niknafs and Berry 2012]. Fabian et al. [Fabian et al. 2010] concluded in their survey about existing
requirements engineering methods that it is not yet state of the art to consider domain knowledge.

We propose to built patterns for a structured domain knowledge elicitation. Depending on the kind of domain
knowledge that we have to elicit for a software engineering process, we always have certain elements that require
consideration. We base our approach on Jackson’s work [Jackson 2001] that considers requirements engineering
from the point of view of a machine in its environment. The machine is the software to be built and requirements

Author’s address: Kristian Beckers, Oststrasse 99, 47057 Duisburg, Germany; email kristian.beckers@uni-duisburg-essen.de; Stephan
Faßbender, Oststrasse 99, 47057 Duisburg, Germany; email: stephan.fassbender@uni-due.de; Maritta Heisel, Oststrasse 99, 47057 Duisburg,
Germany; email: stephan.fassbender@uni-due.de

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A prelimi-
nary version of this paper was presented in a writers’ workshop at the 19th Conference on Pattern Languages of Programs (PLoP).
EuroPLoP’19, July 9-13 2014, Kloster Irsee, Bavaria, Germany. Copyright 2014 is held by the author(s). ACM 978-1-4503-0107-7



are the effect the machine is supposed to have on the environment. Our patterns do not enforce considering the
machine explicitly, but demand a description of the environment.

Our context-patterns support the structured elicitation of domain knowledge and we showed a number of these
in the previous works of ours [Beckers et al. 2012; Beckers et al. 2012; Beckers and Faßbender 2012; Beckers et al.
2012]. However, these patterns are isolated from each other and a common language is missing that describes
how a problem that requires multiple patterns can be solved by their combination. Our intention is that the pattern
catalog should grow, and providing an easy way for engineers to describe further context-patterns is a step
towards this aim. Hence, our pattern language has the intention to support engineers in a better understanding of
context-patterns, describing further context-patterns, and finding a useful way to combine context-patterns to solve
a problem.

In this work, we will focus on the relations between context-patterns. These relations form the syntax of a pattern
language. For a definition of the term syntax see Sect. 1. We will show how one can derive these relations using
so called pattern relation tables, and which steps one has to take to fill such a table. Additionally, we present the
resulting relations between the already existing context-patterns.

Some similar advances exist in the related work. Winn and Calder [Winn and Calder 2003] describe a pattern
language for pattern languages in their work. It contains different patterns which can be applied to solve different
problems occurring while deriving a pattern language. While some of the patterns emphasise the importance of
relations between patterns, no pattern is available for the problem of finding the relations. Pauwels et al. [Pauwels
et al. 2010] also stress the importance of relations between patterns. But the method for building a pattern language
contains no explicit step for finding relations, nor does any other step embody the relation mining. Zdun [Zdun
2007] proposes, based on an idea of Henney [Henney 2005], to use formal grammars to refine and define pattern
relations and subsequently to use the relations for pattern selection. While existing relations are refined when
formalising them and additional information for the relations is collected, the initial set of relations has to be
known beforehand. Hence, this work might be fruitful for further investigations and refinement of relations between
context-patterns.

The remainder of the paper is organised as follows. We provide background on context-patterns in Sect. 2,
and contribute a template for describing pattern languages in Sect. 3. The elements of our pattern language
include a meta-model (previously introduced in [Beckers et al. 2013]), shown in Sect. 4, and relations between
context-patterns and an overview of all possible sequences of context-patterns (see Sect. 5). Section 6 presents
lessons learned when applying our pattern language and Sect. 7 concludes.

2. CONTEXT-PATTERNS

We developed a number of patterns for the elicitation of domain knowledge, so-called Context-Patterns. The
pattern language syntax described in this paper refers to these context-patterns. Note that we view context in the
sense of Jackson [Jackson 2001], which is a model-based description of all the domains in the environment of the
machine, the thing to be built.

2.1 P2P pattern

Our P2P pattern (see Figure 1 top) is based upon the P2P architecture from Lua et al. [Lua et al. 2005], which is
derived from a survey of existing P2P systems. This survey describes P2P systems as layered architectures that
contain at least the following layers.

The Application Layer concerns applications that are implemented using the underlying P2P overlay, for
example, a Voice-over-IP (VoIP) application. The Service Layer adds application specific functionality to the
P2P infrastructure, for example, for parallel and computing-intensive tasks or for content and file management.
Meta-data describe what the service offers, for instance, content storage using P2P technology. Service messaging
describes the way services communicate. The Feature Management Layer contains elements that deal with
security, reliability and fault resiliency, as well as performance and resource management of a P2P system. All

Deriving a Pattern Language Syntax for Context-Patterns — Page 2



             Layer
Reliability and Fault ResilienceSecurity Management

Location Lookup Routing

Network

Application

Performance and Resource Management

Resource Discovery

Scalability Security PerformanceReliabilityRedundancy

Application Layer

Service Layer

Services

Meta Data Service MessagingService Management

Peer−to−Peer (P2P) Protocol

Network Layer

Quality RequirementsRequirements leading to P2P

Feature Management

...
...

Layer

Overlay Management

1..*

*

*
1..*

*

1..*

1..*
1..*

*

1..*

*

*1..*

*1..*

*

*

* *

*

1..*

1..*

*

1..*

1..*

1..*

1..* 1..*

1..*

1..*

1..*

1..*

1..* 1..*

1..*

WorkFor

Pool

BuiltAndCustomizedBy

BuiltBy

Cloud Customer

Cloud

End Customer

Indirect System Environment

IsComplementedBy

Software Stack

Has

Cloud Developer

Software
Product

Data

Cloud

IsBasedOn

WorkFor

InputBy/OutputTo

Legislator

Service

IaaS

PaaS

SaaS

IsComplementedBy

IsComplementedBy

Has

UsedBy

Cloud Provider

Hardware

Hypervisor

Software

UsedBy

IsMonitoredBy

Direct System Environment

Domain

Provides

Cloud Administrator

Cloud Database

Ressource

Location

Owns

WorkFor

Cloud Support

Helps

Administrates

Fig. 1: P2P pattern (top) and cloud analysis pattern (bottom)

these aspects are important for maintaining the robustness of a P2P system. The Overlay Management Layer is
concerned with peer and resource discovery and routing algorithms. The Network Layer describes the ability of
the peers to connect in an ad hoc manner over the internet or small wireless or sensor-based networks.

2.2 Cloud Pattern

We also briefly introduce our cloud pattern (see Figure 1 bottom) [Beckers et al. 2011]. A Cloud is embedded
into an environment consisting of two parts, namely the Direct System Environment and the Indirect System
Environment. The Direct System Environment contains stakeholders and other systems that directly interact with
the Cloud, i.e., they are connected to the cloud by associations. Moreover, associations between stakeholders in
the Direct and Indirect System Environment exist, but not between stakeholders in the Indirect System Environment
and the Cloud. The Cloud Provider owns a Pool consisting of Resources, which are divided into Hardware and

Deriving a Pattern Language Syntax for Context-Patterns — Page 3



Software resources. The provider offers its resources as Services, i.e., IaaS, PaaS, or SaaS. The Pool and
Service do not require instantiation. Instead, the specialized cloud services such as IaaS, PaaS, and SaaS and
specialized Resources are instantiated. The Cloud Developer represents a software developer assigned by the
Cloud Customer. The developer prepares and maintains an IaaS or PaaS offer. The IaaS offer is a virtualized
hardware, in some cases it is equipped with a basic operating system. The Cloud Developer deploys a set of
software named Cloud Software Stack (e.g., web servers, applications, databases) into the IaaS in order to offer
the functionality required to build a PaaS. In our pattern PaaS consists of an IaaS, a Cloud Software Stack and
a cloud programming interface (CPI), which we subsume as Software Product. The Cloud Customer hires a
Cloud Developer to prepare and create SaaS offers based on the CPI, finally used by the End Customers. SaaS
processes and stores Data input and output from the End Customers. The Cloud Provider, Cloud Customer, Cloud
Developer, and End Customer are part of the Direct System Environment. Hence, we categorize them as direct
stakeholders. The Legislator and the Domain (and possibly other stakeholders) are part of the Indirect System
Environment. Therefore, we categorize them as indirect stakeholders.

2.3 The SOA Pattern

Our SOA patterns concern domain knowledge for Service-Oriented Architectures (SOA). The following description
is taken from [Beckers et al. 2012]. A SOA spans different layers [Beckers et al. 2012], which form a pattern on a
SOA with technological focus, as depicted in Figure 2 on the top. The first and top layer is the Business Domain
layer, which represents the real world. It consists of Organizations, their structure and actors, and their business
relations to each other. The second layer is the Business Process layer. To run the business, certain Processes
are executed. Organizations participate in these processes. These processes are supported by Business Services,
which form the Business Service layer. A business service encapsulates a business function, which performs a
process activity within a business process. All business services rely upon Infrastructure Services, which form
the fourth layer. The infrastructure services offer the technical functions needed for the business services. These
technical functions are either implemented especially for the SOA, or they expose interfaces from the Operational
Systems used in an organization. These operational systems, like databases or legacy systems, are part of the
last SOA layer at the bottom of the SOA stack. These layers form a generic pattern, the SOA layer pattern, to
describe the essence of a SOA.

In Figure 2 on the bottom, we adapted problem-based methods, such as problem frames by Jackson [Jackson
2001], to enrich the SOA layer pattern with its environmental context. The white area in Figure 2 (bottom) spans
the SOA layers that form the machine. The business processes describe the behaviour of the machine. The
business services, infrastructure services, components, and operational systems describe the structure of the
machine. Note that the business processes are not part of the machine altogether, as the processes also include
actors which are not part of the machine. Thus, the processes are the bridge between the SOA machine and its
environment. The environment is depicted by the grey parts of Figure 2 (bottom). The light grey part spans the
Direct Environment and includes all entities, which participate in the business processes or provide a part, like a
component, of the machine. An entity is something that exists in the environment independently of the machine
or other entities. The dark grey part in Figure 2 (bottom) spans the indirect environment. It comprises all entities
not related to the machine but to the direct environment. The Business Domain layer is one bridge between the
direct and indirect environment. Some entities of the Direct Environment are part of organisations. Some entities
of the Indirect Environment influence one or more organisations. The machine and the Direct Environment form
the inner system, while the outer system also includes the Indirect Environment. The entities we focused on for the
stakeholder SOA pattern are stakeholders, because all requirements to be elicited stem from them. There are
two general kinds of stakeholders. The direct stakeholders are part of the direct environment, while the indirect
stakeholders are part of the indirect environment. We derived more specific stakeholders from the direct and
indirect stakeholders, because these two classes are very generic. Process actors and different kinds of providers
are part of the direct environment. Legislators, domains, shareholders and asset providers are part of the indirect

Deriving a Pattern Language Syntax for Context-Patterns — Page 4



Component

Component

Component

Business Processes

P
ro

c
e

s
s

P
ro

c
e

s
s

Business
Service

Business
Service

Business
Service

Business
Service

Business Services

Infrastructure Services

Infrastructure
Service

Infrastructure
Service

Infrastructure
Service

Component−based
Service Realization

Operational Systems

CRM ERP

Database

Packaged
Applications

Legacy
Applications

participates in

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organization

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organization

performed by relies on exposes business relation

Organization

Business Domain

Component

Component

Component

P
ro

c
e
s
s

P
ro

c
e
s
s

Business
Service

Business
Service

Business
Service

Business
Service

Infrastructure
Service

Infrastructure
Service

Infrastructure
Service

CRM ERP

Database

Packaged
Applications

Legacy
Applications

Business Processes

Business Services

Infrastructure Services

Component−based
Service Realization

Operational Systems

Business Domain

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organisation

Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organisation Actor

Unit
Actor

Actor

Unit

Actor

Actor

Unit

Organisation

Legislator Domain Shareholder LegislatorAsset Provider Domain

Process Actor A Process Actor B Process Actor C Process Actor D

Business Service
Provider

Infrastructure
Service Provider

Component Provider

Operational
Systems Provider

Legislator

influences providesparticipates inpart of

Indirect Environment

Direct Environment

M
a
c
h
in

e

In
n
e
r 

S
y
s
te

m

O
u
te

r 
S

y
s
te

m

Fig. 2: SOA layer pattern (top) and SOA layer stakeholder pattern (bottom)

environment. In Figure 2 (bottom), the resulting stakeholder classes are depicted as stick figures. For a detailed
description of these stakeholders, we refer to our previous work [Beckers et al. 2012].

Deriving a Pattern Language Syntax for Context-Patterns — Page 5



2.3.1 Patterns for Requirement-Based Law Identification. We consider legal domain knowledge using a set of
law patterns. Commonly, laws are not adequately considered during requirements engineering [Otto and Antón
2007]. Therefore, they are not covered in the subsequent system development phases. One fundamental reason
for this is that involved engineers are typically not cross-disciplinary experts in law and software and systems
engineering. To bridge this gap we developed law patterns and a general process for law identification which relies
on these patterns [Beckers et al. 2012].

We investigated how judges and lawyers are supposed to analyse a law, based upon legal literature research.
These insights lead to a basic structure of laws and the contained sections and how they relate to the context of
a system-to-be in terms of requirements. One result of our investigations is a common structure of laws. Based
on this structure of laws, we defined a law pattern (see Figure 3 left hand). The law pattern itself is discussed in
detail in [Beckers et al. 2012]. Every dictate of justice as part of a law states that every Addressee who avoids
or accomplishes a certain Activity which influences a Target Subject or a Target Person, to which an Individual
(Target Person) is entitled to, has to comply with law. This information forms the Law Structure. The artefacts of
the Law Structure are generalized in the Classification part. The addressees of this section are specializations of
Person Classifier, the activities of Activity Classifier, the target subject of Subject Classifier, and the target person
of Person Classifier. A Law itself is enacted by a legislator for a Domain and related to other laws (Law Pattern).

Legislator(s)

Domain(s)

Target Person(s)Addressee(s)
Influence

Law

Target Subject(s)

Section

Law Structure

Subject Classifier

Person Classifier

Regulation(s)

Avoid /
Activity(ies) Influence

Accomplish

Law / Section

Law / Section Law / Section

Entitled To

Related To

Activity Classifier
Mentioned Or Defined InMentioned Or Defined In

Mentioned Or Defined In

ClassificationContext

Legislator(s)

Process(es)
Related

Domain(s)

Core Structure

Influence

Accomplish

Avoid /
Activity

Influence

Classified As

Requirement Activity

Asset(s)

Active Stakeholder(s) Passive Stakeholder(s)

Subject Classifier

Person Classifier

Law / Section
Defined Or Mentioned In

Activity Classifier

Entitled To

Classified As

Classified As

Defined Or Mentioned In

Defined Or Mentioned In
Classified As

Law / Section

Law / Section

Related To

Requirement(s)

ClassificationContext

Fig. 3: Law pattern (left) and law identification pattern (right)

To determine the legal context of a system the requirements have to be related to the law pattern. Therefore, we
developed the law identification pattern (see Figure 3 right hand). First of all, a Requirement can be related to
other Requirements and dictates a certain behaviour of the machine. A behaviour can be a certain Activity or a
whole Process. A Process consists of different Activities. An Activity involves an Active Stakeholder and in some
cases an Asset. Additionally, an Activity influences a Passive Stakeholder in a direct way or indirect through an
Asset which is entitled to the Passive Stakeholder. In addition, Assets can be related to each other, for example,
one Asset is part of another Asset. All these relations also have to be discovered and documented. They form the
Core Structure of the law identification pattern. Finally, the gap between the terms and notions of the technical
world and the terms and notions of the legal world has to be bridged. Therefore, the parts of the core structure
have to be classified using the terms of the legal world. And the context in means of Countries and Domains the
system will operate in has to be set up.

3. A TEMPLATE FOR PATTERN LANGUAGES

We propose a template to describe and compare pattern languages. This template is based on the idea that a
pattern language consists of the same elements the natural language does: vocabulary, syntax, and grammar. We
looked into the works of Alexander [Alexander 1977] and Buschmann et al. [Buschmann et al. 2007] and their

Deriving a Pattern Language Syntax for Context-Patterns — Page 6



views on pattern languages (see Sect. 3.1). We discuss our template based on inspirations by their fundamental
work on the area of pattern languages. In addition, we instantiated our template with several influential existing
software engineering pattern languages (see Sect. 3.3) and discuss the results. Finally, we describe in Sect. 3.4
how we show an instantiation of our template for our pattern language for context-patterns.

3.1 Viewpoints of Pattern Languages

[Alexander 1977] described the term pattern language, which is a structured method for describing common
design practices for a knowledge area. Alexander described a pattern language for creating towns and buildings in
[Alexander 1977] and he wanted to empower ordinary people to successfully solve very large, complex design
problems. “This language is extremely practical. It is a language that we have distilled from our own building and
planning efforts over the last eight years. You can use it to work with your neighbors, to improve your town and
neighborhood. You can use it to design a house yourself, with your family; or to work with other people to design
an office or a workshop or a public building like a school. And you can use it to guide you in the actual process of
construction.” [Alexander 1977, p. x].

Inspired by the work of Alexander we looked into the essential elements of a pattern language and state that
these elements are vocabulary, syntax, and grammar. Note that Alexander did not explicitly state in his work that
these are elements of a pattern language, but we argue in the following that these elements are referenced in
his work. Beforehand, we define these terms for human language based on the Oxford English Dictionary (OED).
The term language in the OED1 is defined as follows: “The system of spoken or written communication used by a
particular country, people, community, etc., typically consisting of words used within a regular grammatical and
syntactic structure”. In addition, the OED2 defines the vocabulary of a language as: “the body of words used in
a particular language”. Moreover, the OED3 defines the term semantic as: “relating to meaning in language or
logic”. Alexander states in regard to a pattern language that “the elements of this language are entities called
patterns.” [Alexander 1977, p. x]. Hence, patterns are the vocabulary of a pattern language. In addition, Alexander
states that “A pattern language has the structure of a network. [...] However, when we use the network of a
language, we always use it as a sequence, going through the patterns, moving always from the larger patterns
to the smaller, always from the ones which create structures, to the ones which then embellish those structures,
and then to those which embellish the embellishments. ... Since the language is in truth a network, there is no
one sequence which perfectly captures it. But the sequence which follows, captures the broad sweep of the full
network; in doing so, it follows a line, dips down, dips up again, and follows an irregular course, a little like a needle
following a tapestry.” [Alexander 1977, p. xviii].

Furthermore, Alexander reasons about the use of his language in comparison to the use of the English language.
“This language, like English, can be a medium for prose, or a medium for poetry. The difference between prose
and poetry is not that different languages are used, but that the same language is used, differently. In an ordinary
English sentence, each word has one meaning, and the sentence too, has one simple meaning. In a poem,
the meaning is far more dense. Each word carries several meanings; and the sentence as a whole carries an
enormous density of interlocking meanings, which together illuminate the whole.” [Alexander 1977, p. xli].

Buschmann et al. [Buschmann et al. 2007] formulate a hypothesis in their work that a pattern language is built
up from over several stages. Firstly, pattern stories describe specific examples of the application of patterns in
combination. Secondly, the experiences from the stories are abstracted into pattern sequences. Thirdly, numerous
sequences of patterns form a pattern language. These show that the patterns can be combined in a way that helps
engineers to solve problems with different solutions.

1The definition of the term language in the Oxford English Dictionary: http://www.oed.com/view/Entry/105582?rskey=uuYVrM&result=
1&isAdvanced=false#eid
2The term vocabulary defined in the Oxford dictionaries http://www.oxforddictionaries.com/definition/english/vocabulary?q=
vocabulary
3The definition of the term semantic in the Oxford dictionaries http://www.oxforddictionaries.com/definition/english/semantic

Deriving a Pattern Language Syntax for Context-Patterns — Page 7



3.2 A Template for Describing a Pattern Language

Note that the difference between a language and a pattern language is that a language focuses on communication.
In addition, a pattern language focuses on complex engineering activities. Complex engineering problems are
often split up into sub-problems, which are addressed separately. Different patterns contain problems and solutions
for the different granularity levels of a problem (its sub-problems). Hence, the solution to a design problem often
requires the combination of different patterns applied in sequence. Moreover, in a pattern language there often
exist multiple solutions to a problem, which means multiple pattern sequences. A pattern language contains all
these sequences of patterns.

We propose the following template for describing a pattern language:

Patterns (Vocabulary). “The elements of this language are entities called patterns. Each pattern describes
a problem which occurs over and over again in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a million times over, without ever doing it the
same way twice.” [Alexander 1977, p. x]. Moreover, patterns have to be presented in a consistent format “For
convenience and clarity” [Alexander 1977, p. x]. The same format also makes them easier to understand and
browse.
Patterns have to describe how a solution solves a problem. This solution has to be described in a way that
makes it possible to decide if this solution creates an added value (or a benefit) for the user of the pattern.
Hence, the engineer can decide if the solution does create the added value he/she is looking for or if the
solution should not be implemented to save time and resources. It is vital “to present the problem and solution
of each pattern in such a way that you can judge it for yourself, and modify it, without losing the essence that is
central to it.” [Alexander 1977, p. x].
Note that Alexander does not state in one precise sentence that problem-solution pairs are an element of a
pattern language. However, Alexander states [Alexander 1977, p. x] that a pattern language consists of patterns
and in turn that a pattern contains the essence of a problem-solution pair. Moreover, Alexander states that all
patterns of a pattern language should be described using the same format. In the following page [Alexander
1977, p. xi], Alexander states that: “There are two essential purposes behind this format. First, to present
each pattern connected to other patterns, so that you grasp the collection of all 253 patterns as a whole, as
a language, within which you can create an infinite variety of combinations. Second, to present the problem
and solution of each pattern in such a way that you can judge it for yourself, and modify it, without losing the
essence that is central to it.” [Alexander 1977, p. xi]. Hence, it is our understanding that patterns in a pattern
language should have the same format and the problem-solution pair is essential to a pattern. We conclude that
in turn the problem-solution pair is essential to a pattern form used in a particular pattern language, as well.
Connections between Patterns (Syntax). Each solution includes syntax, a description that shows where the
solution fits in a larger, more comprehensive design and which other solutions can refine this design. This
relates the solution into a network of other needed solutions. For example, a larger solution might be a house
for a place people want to live in. The rooms are part of the house and require ways to get light. One way to get
light into a room is an electronic lamp. Another way is a candle. “In short, no pattern is an isolated entity. Each
pattern can exist in the world, only to the extent that is supported by other patterns: the larger patterns in which
it is embedded, the patterns of the same size that surround it, and the smaller pattern which are embedded in
it.” [Alexander 1977, p. xiii].
Pattern Sequences (Grammar). The grammar provides the meaning of sequences of patterns. Meaning with
regard to patterns is a solution to a problem, which is derived by applying a sequence of patterns. Note that a
pattern language allows that different sequences of patterns exist, which all solve the same problem. This is in
line with Buschmann et al. [Buschmann et al. 2007], who state that numerous pattern sequences form a pattern
language. This can be compared to a language in which different sentences can have the same meaning, while
being syntactically different. For example, the following sentences are syntactically different but have the same

Deriving a Pattern Language Syntax for Context-Patterns — Page 8



meaning; (1) I have not seen the sun in a long time, and (2) It has been ages since I saw the sun. In short, a
grammar explains in which places of what sequences a pattern is useful [Eloranta et al. 2014].
In several books regarding pattern languages all possible sequences of patterns are shown in a diagram, such
as [Eloranta et al. 2014; Buschmann et al. 1996; Gamma et al. 1994; Schumacher et al. 2006; Schümmer and
Lukosch 2007]. In some cases such as [Eloranta et al. 2014] the number of possible sequences of patterns
lead to a large diagram. To address this problem, the authors show only a partial view of the diagram in the
book and reference the entire diagram on a corresponding homepage. Thus, the scalability issue of the diagram
size can be solved.

3.3 Software Engineering Definitions of a Pattern Language

We describe the vocabulary, syntax, and semantics of a pattern language for the related work on patterns for
software engineering. We focus in particular on the works of [Fowler 1996], [Gamma et al. 1994], and [Schumacher
et al. 2006]. We consider the works of Fowler, because he presented analysis patterns for capturing domain
knowledge of enterprise systems. His pattern language for analysis pattern has some impact, to be precise 223
citations are listed in the ACM digital library4. Fowler’s analysis patterns refer to the analysis phase of software
engineering and support in particular the structured re-use of elicited domain knowledge. His work has the closest
similarity to our work concerning the re-use of elicited domain knowledge using context-pattern. To the best of
our knowledge no work about patterns for re-using elicited domain knowledge for software engineering with more
citations exists. This is why we consider Fowler’s work. In addition, we decided to consider patterns for the design
phase of software engineering with significant impact. The work on design patterns of Gamma et al. [Gamma et al.
1994] has a citation count of 4524 in the ACM digital library5 and we are not aware of a work regarding patterns in
software design with a higher citation count. Similar works, for example, the work of Buschmann et al. [Buschmann
et al. 1996] regarding pattern-oriented software architecture, have a lower citation count. Buschmann et al.’s work
has 837 citations6. We selected the work of Schumacher et al. [Schumacher et al. 2006] as a representative
pattern-based work concerning a specific knowledge area in software design, in this case security. In the future,
we are planning to include further work regarding pattern languages, e.g., the previously mentioned work of
Buschmann et al. in an extended comparison of pattern languages using the structure following parts of a pattern
language.

Patterns (Vocabulary). Fowler agrees with Alexander that a pattern language requires to have a common way
to describe patterns [Fowler 1996; 2002]. His common way for describing analysis pattern contains a unique
name, structural and graphical description, and a textual description of behavior and relations to other patterns.
A very similar understanding of how to describe a pattern can be found in [Hafiz et al. 2012] and [Fernandez
and Pan 2001].
Even though Fowler does not follow it strictly in his analysis patterns, he identified a meta structure of design
patterns: “It is commonly said that a pattern, however it is written, has four essential parts: a statement of the
context where the pattern is useful, the problem that the pattern addresses, the forces that play in forming a
solution, and the solution that resolves those forces.” [Fowler 1996, p. 6].
[Gamma et al. 1994] also state that patterns need a consistent format in agreement with Alexander. The format
of the author’s design patterns is defined by a template, which is structured into different sections. For example,
every pattern has among others a section for its name, intent, motivation, solution, forces, consequences, and
known uses.

4ACM citation count of Analysis patterns: reusable objects models source: http://dl.acm.org/citation.cfm?id=265172
5ACM citation count of Design patterns: elements of reusable object-oriented software source: http://dl.acm.org/citation.cfm?id=
186897
6ACM citation count of Pattern-oriented software architecture: a system of patterns source: http://dl.acm.org/citation.cfm?id=249013

Deriving a Pattern Language Syntax for Context-Patterns — Page 9



[Schumacher et al. 2006] use a similar template as [Gamma et al. 1994] for their security design pattern. It is
interesting to note that the patterns of the authors have no security specific sections in their template such as
security goals, e.g., confidentiality. This allows the assumption that the template could also be used in a more
general sense for non security related design patterns.
To sum up, [Gamma et al. 1994] and [Schumacher et al. 2006] follow a well defined set of sections in their
template that describes each pattern. In contrast, [Fowler 1996; 2002] defines the structure of his analysis
patterns more abstract. His structure just requires a name and some form of structural and behavioural
description.
[Fowler 1996] refrains from restricting his analysis pattern to a fixed form of a single problem-solution relationship
in contrast to design patterns. “A fixed form carries its own disadvantages, however. In this book, for instance, I
do not find that a problem-solution pair always makes a good unit for a pattern. Several patterns in this book
show how a single problem can be solved in more than one way, depending on various trade-offs. Although this
could always be expressed as separate patterns for each solution, the notion of discussing several solutions
together strikes me as no less elegant than pattern practice. Of course, the contents of the pattern forms make
a lot of sense-any technical writing usually includes context, problem, forces, and solution. Whether this makes
every piece of technical writing a pattern is another matter for discussion.” [Fowler 1996, p. 6-7].
However, Fowler states in his meta structure for design patterns of other authors (introduced above in the
syntax part) that: “This form appears with and without specific headings but underlies many published patterns.
It is an important form because it supports the definition of a pattern as ’a solution to a problem in context’, a
definition that fixes the bounds of the pattern to a single problem-solution pair.” [Fowler 1996, p. 6].
The pattern template of [Gamma et al. 1994] describes the problem in several separate sections. The section
Intent describes the general design problem. The section Motivation states a scenario in which the design
problem occurs and the section Applicability refers to specific situations in which the design pattern is useful. The
solutions are described in several sections, as well. The section Structure describes the graphical representation
of the pattern. Participants illustrates the elements in the graphical representation. Collaborations states the
elements’ collaborations and responsibilities. Implementations and Sample Code illustrate how to represent the
pattern in source code.
[Schumacher et al. 2006] consider the sections Problem and Solution explicitly in their template. The sections
are also paired in the sense that the Solution section follows the Problem sections without any section in
between. However, several sections refine the solution such as descriptions of Structure, Dynamics, and
Implementation.
Overall, design patterns such as the ones from [Gamma et al. 1994] and [Schumacher et al. 2006] seem to
follow the guideline of describing one problem and one solution in a pattern. Nevertheless, [Fowler 1996] still
embeds a problem solution relationship in his patterns, but not as strict. In some cases he refers to multiple
solutions or problems.

Connections between Patterns (Syntax). [Fowler 1996; 2002] states that the relations between patterns are
important. Note that Alexander uses the term connection instead of relation. We argue that connection is a
synonym for relationship7 and use the term relationship for the remainder of this chapter. The reason is that
software engineering works such as [Fowler 1996; 2002; Schumacher et al. 2006] use the term relationship, as
well.
Moreover, according to [Fowler 1996; 2002] a pattern language is indeed about the relations between patterns.
Fowler dedicates an entire part of his book [Fowler 1996] to Support Patterns, which define the relationships
between organizational patterns for, e.g., accounting to software architecture patterns such as the Layered
Architecture pattern.

7Connection and Relationship are synonyms according to dictonary.com: http://dictionary.reference.com/browse/relationship

Deriving a Pattern Language Syntax for Context-Patterns — Page 10



In addition, [Hafiz et al. 2012] agree and elaborate that an enumeration of patterns without defined relations
among them is just a pattern catalog. Both, Hafiz et al. and Fowler, basically adopt the view of [Alexander 1977]
towards connections between patterns being an essential part of a pattern language.
[Gamma et al. 1994] state also that the relationship between patterns is important. They even create a figure
to illustrating the relations between their patterns. Moreover, a section in their template defines the relations
to other patterns. The relations between design patterns have many different names such as single instance,
adding operations, or defining algorithm’s steps.
[Schumacher et al. 2006] dedicate two sections in their template to documenting the relations between patterns.
The Variants section contains descriptions of variants and specialisations of a pattern. In addition, the See Also
section in the template references patterns that solve similar problems and patterns that refine the pattern.
In summary, [Fowler 1996], [Gamma et al. 1994], and [Schumacher et al. 2006] agree that relations between
patterns have to be defined. However, each pattern language uses different kinds of relations and different
ways to document these relations.
Pattern Sequences (Grammar). Fowler uses two different types of patterns: analysis patterns that refer to
a particular business domain, and supporting patterns that describe how to apply the analysis patterns. The
pattern sequences in Fowler’s work can relate different analysis patterns or analysis patterns and supporting
patterns. However, Fowler’s books do not contain a diagram that shows all pattern sequences, instead the
sequences are written in texts of the individual patterns [Fowler 1996; 2002].
Gamma et al. [Gamma et al. 1994] show diagrams in their books, which contain all possible sequences of their
patterns. In contrast, Schumacher et al. [Schumacher et al. 2006] use a taxonomy for security and map their
patterns to the respective parts of the taxonomy.

3.4 A Pattern Language for Context-Patterns

We describe in the following how our work done so far on context-patterns fits into the required elements of a
pattern language and discuss how close we are to having a pattern language for context-patterns.

Patterns (Vocabulary). We analyze in [Beckers et al. 2013] which elements and concepts we used in the
context-patterns presented in different works of ours [Beckers et al. 2012; Beckers et al. 2012; Beckers and
Faßbender 2012; Beckers et al. 2012]. Further, we described the relations between the identified elements and
concepts in a meta-model in [Beckers et al. 2013] (A short summary is given in Sect. 4) and we showed how to
describe a context-pattern using the meta-model. We claim our meta-model and the pattern catalog contain the
vocabulary for our pattern language and published the claim in [Beckers et al. 2013].
Our context-patterns each address a particular problem and have a method that states how to solve this
problem. The pattern form which reflects this information is introduced in [Beckers et al. 2014]. We explicitly
state the problem and forces for the problem. The grammar is contained in the method description which is part
of each of our patterns. Describing the solution in a method provides engineers with descriptions of how to
apply the solutions.
Connections between Patterns (Syntax). We analyzed the relations between our context-patterns and
present the results in Sect. 5. Context-pattern can refine each other. Moreover, the domain knowledge elicited
and stored in one context-pattern can be used by another pattern as input. This requires that both patterns
are combined in a new method and that their elements have to be mapped. We showed how this can work
in [Beckers et al. 2012] and combined the cloud system analysis pattern with the law pattern adding a new
method. How to derive relations between context-pattern and the relations found for the existing context-pattern
are the contribution of this work.
Pattern Sequences (Grammar). We are showing all possible sequences between our context-patterns in
Fig. 5, similar to the related works [Eloranta et al. 2014; Buschmann et al. 1996; Gamma et al. 1994; Schumacher
et al. 2006; Schümmer and Lukosch 2007]. The figure shows sequences of context-patterns of the types

Deriving a Pattern Language Syntax for Context-Patterns — Page 11



technical, organisational & technical, and organisational. The sequences contain context-patterns that are used
jointly, refine or are input for other context-patterns.

As a result, we claim to have defined the vocabulary of a pattern-language via our meta-model and pattern
catalog in Sect. 4 and [Beckers et al. 2013], and the syntax via our defined relations between the context-patterns
in Sect. 5. We rely on the methods in our context-patterns as grammar for the pattern language [Beckers et al.
2014]. This is quite different from the design patterns by [Gamma et al. 1994] and [Schumacher et al. 2006], which
use more explicit sections of their templates to describe problems and solutions. However, the analysis patterns by
[Fowler 1996] also contain problems and solutions, but in a less strict format. Our context-patterns also focus on
the analysis phase of software engineering and we claim to be in alignment with Fowler. Nevertheless, our view of
integrating a method as solution is novel and we have to discuss further with the pattern community if this satisfies
as a grammar for our pattern language.

In contrast, not all works follow Alexander’s definition of a pattern language. Jackson’s work on problem
frames [Jackson 2001] provides a different view. He considers his problem frames as a kind of pattern and also
presents a pattern language. This language for expressing problem frames contains domain-types and interfaces
between problem frames. However, Jackson avoids the term pattern language in his definition and it is an open
debate if his language qualifies as a pattern language, because it differs from [Fowler 1996], [Gamma et al. 1994],
and [Schumacher et al. 2006]. This example shows that not all patterns require a pattern language in Alexander’s
sense. However, we will focus on defining an accepted pattern language for context-patterns via publishing papers
in the community and discussing it with the experts of the pattern community.

4. A META-MODEL FOR CONTEXT-PATTERN

In this section, which is a summary of a previous work [Beckers et al. 2013], we present a meta-model for building
context-patterns that consider domain knowledge during the analysis phase of software engineering. We consider
different kinds of domain knowledge, e.g., technical domain knowledge. Therefore, we used a bottom-up approach,
starting with a set of previously and independently developed context-patterns.

We identified the common concepts in our existing context-patterns [Beckers et al. 2012; Beckers et al. 2012;
Beckers and Faßbender 2012; Beckers et al. 2012], and aggregate this knowledge into a meta-model of elements
one has to talk and think about when describing a new context-pattern [Beckers et al. 2013].

This is quite similar to what Jackson [Jackson 2001] proposed for requirements. He defined a meta-model
of reoccurring domains, like causal, biddable and lexical domains. These domains are used to define basic
requirements patterns, so-called Problem Frames [Jackson 2001].

In this section, we show a similar meta-model for context-patterns. We show how we derived it from already
existing context-patterns and how it can be used to describe the structural part of a new context-pattern. This
section summarizes the results from one previous works of ours [Beckers et al. 2013].

This meta-model has several benefits. First, it forms a uniform basis for our context-patterns, making them com-
parable. Second, findings and results for one pattern can be transferred to the other patterns via a generalization.
Third, the meta-model contains the important conceptual elements for context-patterns. Fourth, it enables us to
form a pattern language for context-patterns. However, in this work we focus on the aspects of the meta model
which create the basis of a pattern language for context-patterns.

Using this meta-model we empower requirements and software engineers to describe their own context-patterns,
which capture the most important parts for understanding the context of a system-to-be. The meta-model was
derived in a bottom-up way from the different patterns we described independently for different domains. For
the process of deriving the general elements, which then form the meta-model, we started to analyze each
context-pattern in isolation. For each element in a context-pattern we discussed what the general concept behind
this element is or if it is a general concept in itself. In a next phase we harmonized the conceptual elements by
comparing the found elements, merging them if needed and setting up their relations. This way we got a coherent

Deriving a Pattern Language Syntax for Context-Patterns — Page 12



Fig. 4: Context-Pattern Meta-model

set of conceptual elements over all patterns. In the last phase we had to choose which conceptual elements should
be part of the meta-model. Finally, we formed the meta-model as depicted in Fig. 4 out of the selected conceptual
elements. The meta-model was modeled using the UML notation.

The root element is the Pattern itself. Each pattern contains at least one Area. In general, an area contains
elements of either a technical or organizational view. An area can contain other areas, which do not need to be the
same view. An area can concern either a Machine, i.e. the thing to be developed, or an Environment, which in
turn contains elements that have some kind of relation to the machine, or a Layer, which encapsulates a set of
elements.

The environment can be further refined. There are elements which directly interact with the machine, captured
in the Direct Environment. And there are elements which have an influence on the system via elements of the
direct environment, captured by the Indirect Environment.

An element which is part of an Area can be a Process, a Stakeholder, or a Resource. A process describes
some kind of workflow or sequence of activities. Therefore, it can contain Activities. A stakeholder describes
a person, a group of persons, or organizational units, which have some kind of influence on the machine. A
stakeholder can be refined to a Direct Stakeholder who interacts directly with the machine, and an Indirect
Stakeholder who only interacts with direct stakeholders but has some interest in or influence on the machine. A
Resource describes some physical or non physical (e.g., information) element which is needed to run the machine
or which is processed by the machine and which is not a stakeholder. A resource can be an Active Resource
with some behavior or a Passive Resource without any behavior.

This meta-model has several benefits. First, it forms a uniform basis for our context-patterns, making them
comparable. If a method already makes use of one of the patterns, it is now easy to generalize the usage to the
elements of the meta-model. This enables one to replace a given used pattern by another one easily. Second,
findings and results for one pattern can be transferred to the other pattern via a generalization to the meta-model
elements. Third, the meta-model contains the important conceptual elements for context-patterns. Thus, it is
helpful to know these elements and search for them in a specific domain when setting up a new context-pattern for
a domain. Fourth, it enables to form a pattern language for the context-pattern. The common meta-model eases
relating the patterns to each other.

5. RELATING CONTEXT-PATTERNS

For forming a context-pattern language, we investigated the commonalities and differences between the patterns
as enumerated in Sec. 2. We also identified how one context-pattern can be used in combination with another
context-pattern.

Deriving a Pattern Language Syntax for Context-Patterns — Page 13



5.1 Relation Types

Based on these insight, we defined relations between our patterns and identified the following kinds of relations:
can refine. The can refine relation describes that one context-pattern refines another pattern or parts thereof.
For example, one pattern can refer to services, while another describes how these services are composed.
Moreover, the semantics or abstraction level of context-patterns differs. Hence, we call the relation can refine in
order to make it obvious that this may not hold for all possible instantiations of a context-pattern. This problem is
caused by the very different detail degree of information available in the early stages of software development.
input. The information contained in the instantiation of one pattern can be the input for another pattern. For
example, our law pattern can use the information of other patterns to identify relevant laws. We show how the
information in the cloud pattern can be used as scenario description for the law pattern in [Beckers et al. 2012].

Note that we distinguish only these two types. We did not find any additional type while relating our context
pattern as described in Sec. 5.3. We explicitly tried to find other relations as described in other pattern languages,
for example [Gamma et al. 1994; Schumacher et al. 2006]. While some relation types can be mapped such as
complements, which is a kind of can refine relation, other kinds could neither be mapped nor found for our context
pattern.

Van Welie and Van der Veer [Welie and Veer 2003] distinguish three fundamental relation types, which can have
different variations and flavors:

Aggregation. One pattern is part of another pattern and completes it.
Specialization. One pattern can be derived from (parts) of another pattern and adds more detail or parts of the
solution.
Association. Patterns with the same context or the same problem to be solved.

According to these enumeration, our relation types for context patterns only cover the specialization relation type
explicitly. But both, the can refine and the input relation, are quite special regarding their specialization properties.

Exploiting a can refine relation always starts at one element of the source pattern, adding more context to this
specific element (see Sec.5.3). Additionally, the refinement relation can be bidirectional which is quite uncommon.
This is due to the nature of a context which is always bound to the entity one is exploring. And each context
contains entities which add more context if inspected in detail.

An input relation is a specialization of a combination of entities of the source pattern. Hence, it does not add
context to one entity but to a group of entities.

The aggregation relation is implicitly given by the joint use of patterns (see Sec.5). But the joint use of patterns
is not that strict, as the patterns which are used jointly can be used separated. For the association relation, we
have no counterpart. The reason is that a context pattern for a domain should be that general that there is no need
for further context pattern for this domain.

Noble classified relations between object-oriented design patterns [Noble 1998] and identified the following
main relationships:

Uses. A pattern uses another pattern
Refines. A more focused pattern refines a general pattern
Conflicts. Two patterns address the same problem

Our relations for context-patterns map to Nobel’s design pattern relations as follows. The used jointly and input
for relations both map to the uses relations. For context-patterns it is important to distinguish if two patterns
are used together or if they are used in sequence. In a sequence one is used first and the output of the pattern
instantiation serve as the input of the other pattern, which is used afterwards. We also have identified the refines
relations with the same meaning as Noble’s relation. In contrast to Noble’s work we do not have a conflicts relation,

Deriving a Pattern Language Syntax for Context-Patterns — Page 14



SOA Layer Stakeholder Pattern

SOA Layer PatternPeer to Peer Pattern

Cloud System Analyses Pattern

Law Identification Pattern

Law Pattern

O
rg

a
n

iz
a
ti

o
n

a
l 
&

 T
e
c
h

n
ic

a
l

O
rg

a
n

iz
a
ti

o
n

a
l

T
e
c
h

n
ic

a
l

Used Jointly can refine input for

Fig. 5: Relations between Context-Patterns

because each context requires a separate context-patterns. For instance, a cloud computing scenario requires the
cloud system analysis pattern and no other context-pattern such as the SOA Layer pattern can be applied to this
particular context.

5.2 Found Relations between Context Pattern

The resulting relations between context-patterns are shown in Fig. 5. In general, we have three groups of
context-patterns. Context-patterns which only focus on the technical context, context-patterns that only focus on
organisational aspects, and context-patterns which combine those two views. The groups and the information to

Deriving a Pattern Language Syntax for Context-Patterns — Page 15



same
Mapping

Element in CP1 Element in CP2
Area

Machine CP1::Element1 CP2::Element2
Environment

Direct Environment
Indirect Environment

Layer
Process
Activity
Relation

Stakeholder CP1::Element4 CP2::Element3
Indirect Stakeholder
Direct Stakeholder

Resource CP1::Element8
CP2::Element11
CP2::Element13

Active Resource CP1::Element7 CP2::Element2
Passive Resource

Only in Context-Pattern One 
(CP1)

Only in Context-Pattern Two 
(CP2)

Table I. : Pattern Relation Investigation Table Template

which group a pattern belongs are one result of our previous work [Beckers et al. 2013]. In this work we observed
that some patterns only describe the indirect environment of the system-to-be (organisational), some only describe
the direct environment and the system-to-be itself (technical), and some mix both views. The three groups are
indicated in Fig. 5 as layers separated by dot-slashed lines.

The relations are shown using directed arrows. A solid arrow indicates a can refine relation, while a dashed
arrow indicates an input relation. Some of the patterns are used jointly which means that those patterns are
usually used together and closely related. For example, the SOA layer stakeholder pattern contains all layers
and elements of the SOA layer pattern. The SOA layer pattern only adds the technical relations between the
elements, while the SOA stakeholder pattern adds the environments and stakeholders. The can refine relation has
a particular effect when it occurs on a pair of joined context-patterns. Namely, the relation always occurs for both
joined patterns, but this is not explicitly shown. For example, the SOA stakeholder layer pattern can refine the
cloud system analysis pattern, so can the SOA layer pattern. But in a normal case, both SOA patterns will be used
jointly to refine a cloud system analysis pattern. Figure 5 shows that the SOA stakeholder layer pattern and SOA
layer pattern, as well as the law pattern and law identification pattern, are used jointly. The law pattern is input
for the law identification pattern. The SOA layer pattern can refine the SOA layer stakeholder pattern. The cloud
system analysis pattern and the SOA layer stakeholder pattern can refine each other. The peer to peer pattern can
refine the cloud system analysis pattern and the SOA layer stakeholder pattern. All patterns of the organisational
& technical layer can serve as input for the law identification pattern. Figure 5 gives a quick and compact overview
of the relations hiding some details we will elaborate in the following.

5.3 Tables for Finding Relations between Context-Pattern

For investigating the relation between two context-patterns we used so-called pattern relation investigation tables.
The template for such a table is shown in Fig. I. A pattern relation investigation table compares two given context-
pattern. In the first column of such a table the general element types are stated (like Area in the second row) as
defined by the meta-model discussed in Sect. 4. Therefore, a row of a pattern relation investigation table contains
the refined elements (like CP1::Element1 in the third row) which correspond to the given general element type.
The columns contain the corresponding elements of the two patterns under investigation. This way, a relation
investigation table shows the commonalities and difference of two patterns and allows to derive the type of relation
between two patterns. Table V illustrates an example.

Some of the refined elements only occur in one of the patterns at hand. Hence, they are added to the columns
Only Context-Pattern One (CP1) or Only Context-Pattern One (CP2) (see Table Fig. I). These elements are not of
relevance when two context-patterns are used jointly. For example, for the meta-model type Relations, the cloud

Deriving a Pattern Language Syntax for Context-Patterns — Page 16



system analysis pattern and the SOA layer stakeholder pattern are completely disjointed (see Tab. V row Relation
and columns Only. . . ).

Some of the refined elements have the same semantic in both of the patterns. They are added to the column
same. Later, when one has the instances of the two patterns at hand, all refined elements of the same column
should be synchronized. This means, for example, that adding one instance of such a refined element to one
context-pattern instance results in adding the instance of the refined element to the other pattern. For example,
the indirect stakeholders domain and legislators are the same for the cloud system analysis pattern and the SOA
layer stakeholder pattern. Hence, when adding an instance of a legislator to the cloud system analysis pattern
instance the same instance must also be added as a legislator of relevance to the SOA layer stakeholder pattern
instance (see Tab. V row Indirect Stakeholders and column same).

Other elements do not have exactly the same semantic in each of the patterns but can be mapped to elements
of the other pattern. These mappings are not deterministic in all case. Some elements can be mapped to more
than one element of the other pattern (see Table I fifteenth row). In this case, it depends on the actual scenario
which element is used for the actual refinement. For example, the direct stakeholder cloud provider can be mapped
to an infrastructure service provider in case he plays no central role in the scenario under investigation. If the
cloud provider has a more central role, he/she might be one of the organizations or process actors involved in the
business processes of the scenario (see Tab. V row Direct Stakeholders and column Mapping). If an element is
written in italics, it means that this element is of another type as indicated by the row (see Table I sixteenth row).
For example, the machine of the SOA layer stakeholder pattern can be mapped to the SaaS or software product
elements of the cloud system analysis pattern. But SaaS and software product are of the type active resource
in the cloud system analysis pattern as it has another point of view on the system-to-be. A bold written element
indicates that this element might be the reason for a refinement (see Table I fourth row). Such a mapping can be
bidirectional (see Table I twelfth row). For example, one might want to develop a SOA application in the first place.
But later he/she is also interested to broaden the context to the cloud domain as the application is deployed in
the cloud (see Tab. V row Machine and column Mapping). A bidirectional relation exists between, for example,
cloud customer and process actor (see Tab. V row Direct Stakeholder and column Mapping). On the one hand,
the refinement can start in a SOA context in which one of the process actors uses a cloud solution for (parts) of
its IT infrastructure. Thus, when the cloud context is also important for our problem at hand, we use the cloud
context-pattern jointly. On the other hand, the refinement can also start in the cloud context and it turns out to be
important that the cloud customer is part of a SOA context.

5.4 Steps and Sources for Finding Relations between Context Pattern

The information for filling a pattern relation investigation table stems from three different sources:
Own Experience. The first source are our experiences from using the patterns. As we have used such patterns
extensively, we already came across situations where we combined patterns (like in [Beckers et al. 2012]).
Such known uses can be refined to the relations captured in the pattern relation investigation table.

Domain Experts. The second source are experts of the different domains. They are often experts for one
specific domain, but, from our experience, it is not unlikely that they were involved in cases where two or more
domains were important.

Available Documentation. The third source are reports or papers which document a certain combination of
domains. Such documentation plays the role of known uses for a combination in our case. A documentation
can be a more general description given in a white-paper, a product description, a project documentation, and
so forth.

The process of filling a pattern relation investigation table starts with documenting the relations experienced by
ourselves. Such relations are mostly supported by known uses of us. Hence, they are marked as reliable. Then,

Deriving a Pattern Language Syntax for Context-Patterns — Page 17



we conduct a mind experiment to find possible relations. A possible relation is mostly supported by a hand made
example. Such a relation is marked as unreliable. The reason that we do this mind experiment is that in the next
step we talk to domain experts. It speeds up the process and raises the willingness of the experts when the table
is prefilled. The domain experts then give feedback about missing relations and relations they can support. For
both cases they should give an example. This way, some of the relations marked as unreliable can be turned into
reliable relations, or an already reliable relation is strengthened. Finally, we search for available documentation on
combining the two domains at hand in general and for the unreliable relations in specific. For each documented
relation found this way, we add a reliable relation, strengthen a reliable relation, or promote an unreliable relation.
After conducting this step, we remove all remaining unreliable relations.

5.5 Results of the Relation Mining

We describe each aggregated relation between two context-pattern using a template (see Tab. II for an example)
that states first the Direction of the relation, second the Relation Type, third the Reasoning why the relationship
holds, and forth a reference to the details of the relation. Relations between context-patterns can consist of several
(sub-)relations. The relation type and direction is derived from relation investigation tables. If an element of a
context-pattern of the two patterns in the corresponding investigation table is marked bold, this context-pattern can
be refined by the other context-pattern. If there is no element marked bold, then we assume that there is an input
relation. The template instance only contains a compact reasoning and explanation of the relation.

SOA Layer Stakeholder Pattern ↔ Cloud System Analysis Pattern - The SOA pattern and the cloud pattern
can refine each other (see Tab. II).

Table II. : Pattern Relation SOA Layer Stakeholder Pattern to Cloud System Analysis Pattern

Direction SOA to Cloud, Cloud to SOA
Relation Type can refine
Reasoning The services deployed in a cloud can be created or composed in a SOA. Hence, the information in the SOA layer stakeholder pattern can

be seen as a refinement of the services in the cloud system analysis pattern. In addition, the stakeholders involved in the creation and
maintenance of the service can be cloud stakeholders. But it is also possible that the cloud system analysis pattern is used to elicit more
information about stakeholders of a SOA layer stakeholder pattern or the deployment of the whole system-to-be.

Details Tab. V

Cloud System Analysis Pattern ↔ Peer to Peer Pattern - The P2P pattern can refine the cloud pattern (see
Tab. III).

Table III. : Pattern Relation Cloud System Analysis Patter to Peer To Peer Pattern

Direction P2P to Cloud
Relation Type can refine
Reasoning Specific technologies that form the core of the cloud, e.g., the cloud database or the hypervisor, are likely based on P2P-architectures. In

addition, the services deployed in the cloud can also be based on P2P-architectures. In both cases the P2P pattern can refine the description
of these services or cloud components.

Details Tab. VI

SOA Layer Stakeholder Pattern ↔ Peer to Peer Pattern - The SOA patterns can be refined by a P2P Pattern
(see Tab. IV).

Deriving a Pattern Language Syntax for Context-Patterns — Page 18



Table IV. : Pattern Relation SOA Layer Stakeholder Pattern to Peer to Peer Pattern

Direction P2P Pattern to SOA Pattern
Relation Type can refine
Reasoning The services described in the SOA pattern can rely on P2P-architectures. The P2P pattern can be used to create a refined description of

these services and also reason if these services can fulfill certain quality requirements, e.g., security. The isolated analysis of services in a
SOA can be helpful when services shall be evaluated for the question if they can fulfill certain requirements at all. Hence, the P2P pattern can
help excluding certain services from the SOA patterns.

Details Tab. VII

same
Mapping

Element in CSAP Element in SLSP
Area Inner System, Outer System

Machine Cloud Machine
Software Product

Direct Environment

Indirect Environment

Layer

Process Process

Relation

Indirect Stakeholder
Cloud Provider 

Organization Shareholder, Asset ProviderCloud Customer
End Customer

Direct Stakeholder Cloud Developer

Cloud Provider 
Infrastructure Service Provider

Organization
Process Actor

Cloud Customer
Business Service Provider

Organization
Process Actor

End Customer
Process Actor
Organization

Resource Resource, Pool

Active Resource Hardware, Software, Service

Infrastructure Service

Component

Cloud Software Stack Infrastructure Service
Infrastructure Service

Software Product

Business Service
Infrastructure Service

CRM
ERP

Database
 Packaged Applications

Legacy Applications
Machine

Business Service
Machine

Passive Resource Data, Location

Only in Cloud System Analysis 
Pattern(CSAP)

Only SOA Layer 
Stakeholder Pattern (SLSP)

SaaS

Direct 
Environment

Indirect 
Environment

Business Domain, Business 
Processes, Business 

Services, Infrastructure 
Services, Component-

based Service Realization, 
Operational System

has, monitors, 
builtAndCustomizedBy, buildBy, work 

for, owns, provides, 
isComplementedb, isBasedOn, 

partOf, isA

influences, part of, 
participates in, provides

Domain, 
Legislator

Component Provider, 
Operational Systems 

Provider

IaaS

PaaS

SaaS

Table V. : Cloud System Analyses Pattern to SOA Layer Stakeholder Pattern Relation Investigation Table

Deriving a Pattern Language Syntax for Context-Patterns — Page 19



same
Mapping

Only Peer to Peer Pattern (PPP)Element in CSAP Element in PPP
Area Services, Peer to Peer Protocol

Machine Cloud
Direct Environment Direct Environment

Indirect Environment Indirect Environment

Layer

Relation uses, constrains

Indirect Stakeholder Domain, Legislator

Direct Stakeholder

Resource Resource, Pool

Active Resource Hardware, Software, Service

Application
Cloud Software Stack Application

Application
Software Product Application

Application
Passive Resource Data, Location Meta Data

Only in Cloud System Analysis 
Pattern(CSAP)

Application Layer, Service Layer, Feature 
Management Layer, Overlay Management 

Layer, Network Layer

has, monitors, builtAndCustomizedBy, 
buildBy, work for, owns, provides, 

isComplementedb, isBasedOn, partOf, isA

Cloud Developer, Cloud Provider, Cloud 
Customer, End Customer

IaaS Service Management, Service Messaging, 
Security Management, Reliability and Fault 

Resilience, Performance and Resource 
Management, Resource Discovery, 
Location Lookup, Routing, Network

PaaS

SaaS

Table VI. : Cloud System Analyses Pattern to Peer to Peer Pattern Relation Investigation Table

same
Mapping

Element in PPP Element in SLSP

Area Services, Peer to Peer Protocol Inner System, Outer System

Machine Application Machine
Direct Environment Direct Environment

Indirect Environment Indirect Environment

Layer

Process Process

Relation uses, constrains

Indirect Stakeholder

Direct Stakeholder

Active Resource Application

Infrastructure Service

Machine

Passive Resource Meta Data

Only in Peer to Peer Pattern 
(PPP)

Only SOA Layer Stakeholder Pattern 
(SLSP)

Application Layer, Service 
Layer, Feature Management 
Layer, Overlay Management 

Layer, Network Layer

Business Domain, Business Processes, 
Business Services, Infrastructure 

Services, Component-based Service 
Realization, Operational System

influences, part of, participates in, 
provides

Domain, Legislator, Shareholder, Asset 
Provider, Organization

Component Provider, Operational 
Systems Provider, Infrastructure Service 

Provider, Business Service Provider, 
Process Actor

Service Management, Service 
Messaging, Security 

Management, Reliability and 
Fault Resilience, Performance 
and Resource Management, 

Resource Discovery, Location 
Lookup, Routing, Network

Business Service, CRM, ERP, 
Database, Packaged Applications, 
Legacy Applications, Component

Table VII. : Peer to Peer Pattern to SOA Layer Stakeholder Pattern Relation Investigation Table

Only in SOA Layer Pattern (SLP) same
Mapping

Only SOA Layer Stakeholder Pattern (SLSP)Element in SLSP
Area Inner System, Outer System

Machine Whole Pattern Machine
Direct Environment Direct Environment

Indirect Environment Indirect Environment

Layer

Process Process
Relation performed by, relies on, exposes, business relation participates in influences, part of, provides

Indirect Stakeholder Organization

Direct Stakeholder

Active Resource

SLP

Business Domain, Business 
Processes, Business 

Services, Infrastructure 
Services, Component-based 

Service Realization, 
Operational System

Domain, Legislator,Shareholder, Asset 
Provider

Component Provider, Operational Systems 
Provider, Infrastructure Service Provider, 
Process Actor, Business Service Provider

Component, Business 
Service, CRM, ERP, 
Database, Packaged 
Applications, Legacy 

Applications, Infrastructure 
Service

Table VIII. : SOA Layer Stakeholder Pattern To SOA Layer Pattern Relation Investigation Table

Deriving a Pattern Language Syntax for Context-Patterns — Page 20



Only in Law Pattern (LP) same
Mapping

Only Law Identification Pattern (LIP)Element in LP Element in LIP
Area Classification

Direct Environment Law Structure Core Structure
Indirect Environment Context Context

Process Related Process(es)
Activities Activities, Activity Classifier

Relation Classified As

Stakeholder Person Classifier
Indirect Stakeholder Domain, Legislator

Direct Stakeholder
Addressee Active Stakeholder

Target Person Passive Stakeholder
Resource Subject Classifier Target Subject Asset

Passive Resource Regulations

 isA
Avoid, Accomplish, Influence, 

Entitled To

Table IX. : Law Pattern to Law Identification Pattern Relation Investigation Table

Only SOA Layer Stakeholder Pattern (SLSP) same
Mapping

Only Law Identification Pattern (LIP)Element in SLSP Element in LIP
Area Inner System, Outer System Classification

Machine Machine Asset
Direct Environment Direct Environment Core Structure

Indirect Environment Indirect Environment Context

Layer

Process Process Related Process(es)
Activities Activities, Activity Classifier

Relation

Stakeholder Person Classifier

Indirect Stakeholder Domain, Legislator

Asset Provider Passive Stakeholder
Shareholder Passive Stakeholder

Organization
Passive Stakeholder
Active Stakeholder

Direct Stakeholder

Component Provider

Active Stakeholder

Operational Systems Provider
Infrastructure Service Provider

Process Actor
Business Service Provider

Organization
Component Provider

Passive Stakeholder

Operational Systems Provider
Infrastructure Service Provider

Process Actor
Business Service Provider

Asset Provider
Shareholder
Organization

Resource Subject Classifier, Asset

Active Resource

Component

Asset

Business Service
CRM
ERP

Database
Packaged Applications

Legacy Applications
Infrastructure Service

Business Domain, 
Business Processes, 
Business Services, 

Infrastructure Services, 
Component-based 

Service Realization, 
Operational System

performed by, relies on, exposes, business 
relation, participates in

Avoid, Accomplish, Influence, 
Entitled To, Classified As

Table X. : SOA Layer Stakeholder Pattern To Law Identification Pattern Relation Investigation Table

Deriving a Pattern Language Syntax for Context-Patterns — Page 21



Only in Cloud System Analysis Pattern(CSAP) same
Mapping

Element in CSAP Element in LIP
Area Classification

Machine Cloud Asset

Direct Environment Core Structure

Indirect Environment Context

Process Related Process(es)
Activities Activities, Activity Classifier

Relation

Stakeholder Person Classifier
Indirect Stakeholder Domain, Legislator

Direct Stakeholder

Cloud Provider 

Active Stakeholder
Cloud Customer
End Customer

Cloud Developer
Cloud Provider 
Cloud Customer
End Customer

Cloud Developer

Resource
Resource

Asset Subject Classifier
Pool

Active Resource AssetSoftware Product

Hardware
Software
Service

Passive Resource Location Data Asset

Only Law Identification Pattern 
(LIP)

Direct 
Environment

Indirect 
Environment

has, monitors, builtAndCustomizedBy, buildBy, work 
for, owns, provides, isComplementedb, isBasedOn, 

partOf, isA

Avoid, Accomplish, Influence, 
Entitled To, Classified As

Passive 
Stakeholder

IaaS
Cloud Software 

Stack
PaaS

SaaS

Table XI. : Cloud System Analyses Pattern to Law Identification Pattern Relation Investigation Table

Deriving a Pattern Language Syntax for Context-Patterns — Page 22



SOA Layer Stakeholder Pattern ↔ Law Identification Pattern - Our SOA pattern can be input for law patterns
to identify relevant laws for SOA scenarios.

Table XII. : Pattern Relation SOA Layer Stakeholder Pattern to Law Identification Pattern

Direction SOA Pattern to Law Pattern
Relation Type input
Reasoning The SOA patterns can be used as the input for identifying relevant laws and the creation of legal hierarchies. The hierarchies are essential for

the mapping of law patterns to law identification patterns.
Details Tab. X

Cloud System Analysis Pattern ↔ Law Identification Pattern - Our cloud pattern can be input for the law
pattern. We show an example of how to use this relation in [Beckers et al. 2012].

Table XIII. : Pattern Relation Cloud System Analysis Pattern to Law Identification Pattern

Direction Cloud to Law Pattern
Relation Type input
Reasoning The cloud pattern can be used as the input for identifying relevant laws using the law patterns. Moreover, the creation of legal hierarchies can

be based on the cloud pattern. The hierarchies are essential for the mapping of law patterns to law identification patterns.
Details Tab. XI

6. LESSONS LEARNED

While the process description given in Sect. 5 sounds like a straight forward process, it is not in reality. Some
possible relations do not come up during a mind experiment session, but at another point in time. The opportunities
to talk to domain experts often drop in by accident. Cross-domain documents are found while searching for other
content. This leads to a more or less unstructured, iterative process. But one has to make sure that all three
sources of information are considered and reflected in the final pattern relation investigation table thoroughly. The
ideal scenario for the process mentioned above would be a sequence of workshops following the process. But the
given constraints in time and budget often hinder such an ideal scenario.

Another lesson learned is about the effort for establishing relations. At first, it seems that for adding one
additional pattern one has to make (numberOfOldPatterns+1) * (numberOfOldPatterns) / 2 comparisons. This
turns out to be the upper bound never reached. The reasons are manifold. First, a new pattern has only to be
related to patterns of the same kind and adjacent kinds. We never came across a situation where we were able
to relate a technical-only context-pattern with an organizational-only context-pattern. Second, if already existing
context-patterns are meant to be used jointly, it is sufficient to relate the new patterns to one of them. The relations
are transitive in this case. Third, there are domains which exclude each other at first sight. Nevertheless, the effort
for relating context-patterns is noticeable. It is possible to learn from already established relations between existing
context-patterns, for example, in means of inspiration for the mind experiments or already found documentation.
This way, the effort can be lowered.

The next lesson learned is to wait until a new context-pattern is really stable. Every change of the pattern, when,
for example, a new element is added, an element is removed, or the semantic has to be changed, leads inevitably
to a rerun of the relation establishing process.

Finally, we acknowledge that we only have one evaluation of our process, so far. In the future, we are planning
to conduct further evaluations of the process and share further lessons learned.

Deriving a Pattern Language Syntax for Context-Patterns — Page 23



7. CONCLUSION

In this work we identified relations between context-patterns using the meta-model described in a previous
work [Beckers et al. 2013]. The relations were investigated in detail using relation investigation tables introduced
in this work. The result of this work is a pattern language for context-patterns with a detailed description of the
relations.

We illustrated our approach by showing context patterns, e.g., patterns that consider specific technologies such
as Peer-to-Peer networks, specific types of architectures like cloud computing, and specific domains, e.g., the
legal domain.

We can use instantiated patterns as a basis for writing requirements, deriving architectures or structured
discussions about a specific domain. In addition, our patterns can be used outside the domain of software
engineering, for example for scope descriptions, asset identification, and threat analysis, when building an ISO
27001 [ISO/IEC 2005] compliant Information Security Management System [Beckers et al. 2013].

We contribute the following in this work:

—We defined relation types and analyzed all relations between our existing context-patterns. These relations form
the semantics of our pattern language.

—The relations between context-patterns in combinations with the meta-model are our initial basis for a pattern
language for context-patterns.

—We compared our patterns and pattern language with different existing definitions for pattern languages

8. ACKNOWLEDGEMENTS

We thank our shepherd Christopher Preschern for fruitful discussions and constructive feedback. This research
was partially supported by the EU project Network of Excellence on Engineering Secure Future Internet Software
Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy ICT, Grant No. 256980), the German Research
Foundation (DFG) under grant number HE3322/4-2, and the Ministry of Innovation, Science, Research and
Technology of the German State of North Rhine-Westphalia and EFRE (Grant No. 300266902 and Grant No.
300267002).

REFERENCES

ALEXANDER, C. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press.

BECKERS, K., COTE, I., FASSBENDER, S., HEISEL, M., AND HOFBAUER, S. 2013. A pattern-based method for establishing a cloud-specific
information security management system. Requirements Engineering, 1–53.

BECKERS, K. AND FASSBENDER, S. 2012. Peer-to-peer driven software engineering considering security, reliability, and performance. In
Proceedings of the International Conference on Availability, Reliability and Security (ARES) - 2nd International Workshop on Resilience and
IT-Risk in Social Infrastructures (RISI 2012). IEEE Computer Society, 485–494.

BECKERS, K., FASSBENDER, S., AND HEISEL, M. 2013. A meta-model approach to the fundamentals for a pattern language for context
elicitation. In Proceedings of the 18th European Conference on Pattern Languages of Programs (Europlop). ACM, –. Accepted for
Publication.

BECKERS, K., FASSBENDER, S., AND HEISEL, M. 2014. A meta-pattern and pattern form for context-patterns. In Proceedings of the 19th
European Conference on Pattern Languages of Programs (Europlop). ACM, –. Accepted for Sheperding.

BECKERS, K., FASSBENDER, S., HEISEL, M., AND MEIS, R. 2012. Pattern-based context establishment for service-oriented architectures. In
Software Service and Application Engineering. LNCS 7365. Springer, 81–101.

BECKERS, K., FASSBENDER, S., KÜSTER, J.-C., AND SCHMIDT, H. 2012. A pattern-based method for identifying and analysing laws in the
field of cloud computing compliance. In Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ).
LNCS Series, vol. 7195. Springer, 256–262.

BECKERS, K., FASSBENDER, S., AND SCHMIDT, H. 2012. An integrated method for pattern-based elicitation of legal requirements applied to a
cloud computing example. In Proceedings of the International Conference on Availability, Reliability and Security (ARES) - 2nd International
Workshop on Resilience and IT-Risk in Social Infrastructures(RISI 2012). IEEE Computer Society, 463–472.

Deriving a Pattern Language Syntax for Context-Patterns — Page 24



BECKERS, K., KÜSTER, J.-C., FASSBENDER, S., AND SCHMIDT, H. 2011. Pattern-based support for context establishment and asset
identification of the ISO 27000 in the field of cloud computing. In Proceedings of the International Conference on Availability, Reliability and
Security (ARES). IEEE Computer Society, 327–333.

BUSCHMANN, F., HENNEY, K., AND SCHMIDT, D. C. 2007. Pattern-Oriented Software Architecture Volume 5: On Patterns and Pattern
Languages. Wiley.

BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 1996. Pattern-Oriented Software Architecture Volume 1: A
System of Patterns. Wiley.

ELORANTA, V.-P., KOSKINEN, J., LEPPÄNEN, M., AND REIJONEN, V. 2014. Designing Distributed Control Systems: A Pattern Language
Approach. Wiley.

FABIAN, B., GÜRSES, S., HEISEL, M., SANTEN, T., AND SCHMIDT, H. 2010. A comparison of security requirements engineering methods.
Requirements Engineering – Special Issue on Security Requirements Engineering 15, 1, 7–40.

FERNANDEZ, E. B. AND PAN, R. 2001. A Pattern Language for Security Models. In 8th Conference of Pattern Languages of Programs (PloP).
FOWLER, M. 1996. Analysis Patterns: Reusable Object Models. Addison-Wesley.
FOWLER, M. 2002. Patterns of Enterprise Application Architecture. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1994. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley.
HAFIZ, M., ADAMCZYK, P., AND JOHNSON, R. E. 2012. Growing a pattern language (for security). In Proceedings of the ACM international

symposium on New ideas, new paradigms, and reflections on programming and software. Onward! ’12. ACM, New York, NY, USA, 139–158.
HENNEY, K. 2005. Context encapsulation - three stories, a language, and some sequences. In EuroPLoP (2010-03-02), A. Longshaw and

U. Zdun, Eds. UVK - Universitaetsverlag Konstanz, 379–414.
ISO/IEC. 2005. Information technology - Security techniques - Information security management systems - Requirements. ISO/IEC 27001,

International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC).
JACKSON, M. 2001. Problem Frames. Analyzing and structuring software development problems. Addison-Wesley.
LUA, E. K., CROWCROFT, J., PIAS, M., SHARMA, R., AND LIM, S. 2005. A survey and comparison of peer-to-peer overlay network schemes.

IEEE Communications Surveys and Tutorials 7, 72–93.
NIKNAFS, A. AND BERRY, D. M. 2012. The impact of domain knowledge on the effectiveness of requirements idea generation during

requirements elicitation. In Requirements Engineering Conference (RE), 2012 20th IEEE International. 181 –190.
NOBLE, J. 1998. Classifying relationships between object-oriented design patterns. In Proceedings of the Australian Software Engineering

Conference. ASWEC ’98. IEEE Computer Society, Washington, DC, USA, 98–107.
OTTO, P. N. AND ANTÓN, A. I. 2007. Addressing legal requirements in requirements engineering. In RE.
PAUWELS, S. L., HÄBSCHER, C., BARGAS-AVILA, J. A., AND OPWIS, K. 2010. Building an interaction design pattern language: A case study.

Computers in Human Behavior 26, 3, 452 – 463.
SCHUMACHER, M., FERNANDEZ-BUGLIONI, E., HYBERTSON, D., BUSCHMANN, F., AND SOMMERLAD, P. 2006. Security Patterns: Integrating

Security and Systems Engineering. Wiley.
SCHÜMMER, T. AND LUKOSCH, S. 2007. Patterns for Computer-Mediated Interaction. Wiley.
WELIE, M. V. AND VEER, G. C. V. D. 2003. Pattern languages in interaction design: Structure and organization. In Proc. Interact ’03, M.

Rauterberg, Wesson, Ed(s). IOS. IOS Press, 527–534.
WINN, T. AND CALDER, P. 2003. A pattern language for pattern language structure. In Proceedings of the 2002 Conference on Pattern

Languages of Programs - Volume 13. CRPIT ’02. Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 45–58.
ZDUN, U. 2007. Systematic pattern selection using pattern language grammars and design space analysis. Softw. Pract. Exper. 37, 9,

983–1016.

EuroPLoP’19, July 9-13 2014, Kloster Irsee, Bavaria, Germany. Copyright 2014 is held by the author(s). ACM 978-1-4503-0107-7

Deriving a Pattern Language Syntax for Context-Patterns — Page 25


