
Intertwining Relationship Between Requirements,

Architecture, and Domain Knowledge

Azadeh Alebrahim, Maritta Heisel

paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Germany

Email: firstname.lastname@paluno.uni-due.de

Abstract—In requirements engineering, properties of the environ-
ment and assumptions about it, called domain knowledge, need to
be captured in addition to exploring the requirements. Despite the
recognition of the significance of capturing the required domain
knowledge, domain knowledge might be missing, left implicit,
or be captured inadequately during the software development
process, causing incorrect specifications and software failure.
Domain knowledge affects the elicitation and evolution of require-
ments, the evolution of software architectures, and related design
decisions. Conversely, requirements and design decisions affect
the elicitation and modification of domain knowledge. In this
paper, we propose the iterative capturing and co-developing of
domain knowledge with requirements and software architectures.
We explicitly discuss the effects of requirements and design
decisions on domain knowledge and illustrate this relationship
with examples drawn from our research, where we had to go
back and forth between requirements, domain knowledge, and
design decisions.

Keywords–quality requirements; requirements engineering; do-
main knowledge; design decisions; software architecture.

I. INTRODUCTION

It is acknowledged that there is an iterative interplay
between requirements and software architecture [1]. Require-
ments cannot be considered in isolation and should be co-
developed with architectural descriptions iteratively, known
as Twin Peaks as proposed by Nuseibeh [2], to support the
creation of sound architectures and correct requirements [3].

The system-to-be comprises the software to be built and
its surrounding environment such as people, devices, and
existing software [4]. The environment consists of the part
of the real world into which the software will be integrated.
According to Jackson [5], requirements expressing wishes are
properties of the environment that are to be guaranteed by the
software (machine in Jackson’s terminology), whereas there is
another class of environment properties that are guaranteed
by the environment. Such environment properties and also
assumptions about the environment are known as domain
knowledge [4][6]. Domain properties typically correspond to
physical laws. They are invariable, no matter how we build the
software. Assumptions have to be satisfied by the environment.
They are not guaranteed to be true in every case. For example,
when we build a traffic light system to prevent accidents, the
assumption is that drivers stop when they see a red traffic light.
Otherwise, a traffic light system cannot prevent accidents.

Specifications describe the machine and not the environ-
ment. Domain knowledge supports the refinement of require-

ments into implementable specifications [7]. Hence, in require-
ments engineering domain knowledge needs to be captured in
addition to exploring the requirements [4][6].

Despite the recognition of the significance of capturing the
required domain knowledge, it might be missing, left implicit,
or be captured inadequately during the software development
process [4]. Several requirements engineering methods exist,
e.g., for security. Fabian et al. [8] concluded in their survey
about these methods that there is no state of the art considering
domain knowledge yet. Hooks and Farry report on a project
in which 49% of requirements errors were due to incorrect
domain knowledge [9]. In Colombia in December 1995, cap-
turing inadequate assumptions about the environment of the
flight guidance software led to the crash of a Boeing 757 [10].

As software systems become larger and more complex,
explicitly capturing domain knowledge becomes crucial. The
consideration of domain knowledge is particularly essential
when talking about quality requirements since quality re-
quirements such as performance and security rely on spe-
cific constraints and assumptions for their satisfaction. For
instance, performance is concerned with available resources
(such as CPU and memory) to process the workload [11].
Such resources employed by the software-to-be have specific
characteristics such as speed and size that might constrain the
satisfaction of quality requirements. Hence, one must explicitly
define under which constraints and assumptions a quality
requirement will be fulfilled.

We are convinced that during the software development
process, domain knowledge is not only used in requirements
engineering for obtaining adequate specifications, it also has
to be captured during the design phase when selecting patterns
and mechanisms or when making design decisions. There
are new assumptions and requirements associated with each
pattern and quality-specific solution, which have to be consid-
ered when deciding on this solution. For example, selecting
asymmetric encryption as a solution for a confidentiality re-
quirement demands other assumptions regarding the keys and
their distribution than symmetric encryption.

We distinguish between the domain knowledge related to
the problem world, required for obtaining correct specifica-
tions, and the domain knowledge which is associated with
properties and assumptions about the solution world, required
for applying a pattern or mechanism properly. We call the
former Problem-Specific Domain Knowledge (PSDK), which
is part of the problem peak in the twin peaks model [2]
and the latter Solution-Specific Domain Knowledge (SSDK),



as a part of the solution peak. PSDK and SSDK have to be
captured for functional requirements and their corresponding
functional solutions as well as for quality requirements and
their corresponding quality-specific solutions. In this paper, we
focus on PSDK and SSDK related to quality requirements and
the corresponding solutions.

As an example for the PSDK, we consider the performance.
Performance requirements typically describe the time needed
for conducting a task (response time). In order to identify
and analyze potential performance problems, the workload
and the available resources as performance-relevant domain
knowledge have to be captured explicitly (see Section IV-A).
As an example for the SSDK, we consider the symmetric en-
cryption as a security-specific solution candidate for achieving
a confidentiality requirement. This security solution demands
new assumptions regarding the secret key that have to be
elicited explicitly (see Section IV-B).

Capturing SSDK facilitates future design decisions and
architecture evolution since the architect knows the conse-
quences of each design decision through necessary assump-
tions and requirements and can therefore play “what if”
scenarios. Consequently, we consider the SSDK as a set of
assumptions and facts that builds the foundation for making
design decisions. The SSDK represents one input to the design
process.

Domain knowledge affects the elicitation and evolution of
requirements as well as the evolution of software architectures
and related design decisions. Conversely, modification of initial
requirements or taking design decisions might lead to capturing
new domain knowledge or modifying the existing one. There-
fore, apart from the concurrent and iterative development of
requirements and architecture, there is an iterative interplay
within the problem peak between the requirements and the
PSDK and within the solution peak between the design deci-
sions and SSDK. In this paper, we describe these intertwining
relationships and propose to co-develop the domain knowl-
edge together with requirements and software architecture. We
illustrate these relationships with examples drawn from our
research, where we had to go back and forth within each peak
and between two peaks.

The contribution of this paper is 1) emphasizing the im-
portance of domain knowledge, particularly quality-relevant
domain knowledge and the need for capturing and reusing it in
the software development process in a systematic manner, 2)
explicitly considering PSDK as part of the problem peak and
SSDK as part of the solution peak, and 3) elaborating the inter-
twining relationship of domain knowledge with requirements
and design decisions.

The rest of this paper is structured as follows: In the
following, we discuss the related work in Section II. The
smart grid scenario as a running example is introduced in
Section III. In Section IV, we first present our idea of co-
developing requirements, architecture, and domain knowledge.
Then, we give examples on how these artifacts affect each
other. We conclude the paper in Section V.

II. RELATED WORK

Beside the common and traditional approaches utilizing
requirements for creating the software architecture, there have
been increasing efforts regarding the intertwining relationship

between requirements and architecture. De Boer and van
Vliet [12] review different opinions regarding this relationship
between requirements as problem description and software
architecture as solution description. They propose a closer
collaboration between the two communities to profit from the
research results that each community provides.

Ferrari and Madhavji [13] conduct an empirical study to
analyze the impact of requirements knowledge and experience
on the software architecture. Their findings show that architects
having knowledge and experience in requirements engineering
perform better in terms of architecture quality.

A number of approaches exist that explore the impact of
software architecture and design decisions on requirements
engineering [14][15][16][17]. Durdik et al. [14] discuss how
the results of design decisions can be used to drive require-
ment elicitation and prioritization. Koziolek [15] proposes
to use the feedback from architecture evaluation and design
space exploration for prioritizing quality requirements. An
exploratory study has been conducted to analyze to what
extent an existing software architecture affects requirements
engineering [16]. The authors found four types of architectural
effects on requirements decisions, namely enabler, constraint,
influence, and neutral. Woods and Rozanski [17] report on
their experience regarding the relationship between the system
requirements and software architecture. They propose to use
the architecture design to constrain the requirements to a set
which is achievable, to frame the requirements, and to inspire
new requirements.

Van Lamsweerde [4] and Jackson [6] underline the im-
portance of eliciting domain knowledge in addition to the
elicitation of requirements to obtain correct specifications. This
corresponds to capturing the PSDK in this paper. Babar et
al. [18] emphasize the significance of capturing architecture
knowledge for software development. This corresponds to
eliciting the SSDK eplicitly.

However, none of these approaches investigate the in-
tertwining relationship between these artifcats. Moreover, to
the best of our knowledge, there is no approach exploring
the types of effects of requirements, domain knowledge, and
design decisions on each other such as capturing new domain
knowledge and requirement or modifiying the existing ones.

III. SMART GRID EXAMPLE

We illustrate our proposed idea through the example of a
smart grid system, based on the protection profile that was
issued by the Bundesamt für Sicherheit in der Information-
stechnik [19]. To use energy in an optimal way, smart grids
make it possible to couple the generation, distribution, storage,
and consumption of energy. Smart grids use information and
communication technology, which allows for financial, infor-
mational, and electrical transactions.

Figure 1 shows the simplified context of a smart grid
system based on the protection profile [19]. Gateway, the
Target Of Evaluation (TOE) is used for collecting, storing,
and providing meter data from one or more smart meters
which are responsible for one or more commodities, such
as electricity, gas, water, or heat. The Local Metrological
Network (LMN) represents the in-house data communication
netweork which interconnects the smart meters to the gateway.
The term Meter refers to a device which is comparable to



Figure 1. The context of a smart grid system based on [19].

a classical meter with additional functionality. Controllable
Local Systems (CLS) are devices of the consumer, such as air
condition, solar planet, and intelligent household appliances
containing IT-components. They do not belong to the smart
metering system. They are in the Home Area Network (HAN)
of the consumer. HAN is the in-house data communication
netweork interconnecting domestic equipments.

Table I shows an excerpt of terms specific to the smart grid
domain taken from the protection profile that are relevant to
understand the requirements.

We focus in this paper on the functional requirement
“The smart meter gateway shall submit processed meter data
to authorized external entities (RQ4)”, the security require-
ments “Integrity (RQ10)/ Confidentiality (RQ11)/ Authenticity
(RQ12) of data transferred in the WAN shall be protected”,
and the performance requirement “The time to retrieve meter
data from the smart meter and publish it through WAN shall be
less than 5 seconds (RQ24)”. We derived these requirements
from the protection profile [19] and the report “Requirements
of AMI” [20].

IV. INTERPLAY OF REQUIREMENTS, ARCHITECTURE,
AND DOMAIN KNOWLEDGE

In this section, we describe how requirements, architecture,
and domain knowledge affect each other. Figure 2 shows the
twin peaks model. It addresses the problem in some linear
software development approaches in which on the one hand
requirements are elicited, analyzed, and specified in isolation
without considering the impact of architecture artifacts. On the
other hand design decisions are made without managing the
conflicts and making necessary changes in the requirements.
The twin peaks model emphasizes the intertwining relationship

TABLE I. AN EXCERPT OF RELEVANT TERMS FOR THE SMART
GRID

Gateway represents the central communication unit in a smart metering
system. It is responsible for collecting, processing, storing, and
communicating meter data.

Meter data refers to meter readings measured by the meter regarding con-
sumption or production of a certain commodity.

Smart meter represents the device that measures the consumption or produc-
tion of a certain commodity and sends it to the gateway.

Authorized
external
entity

could be a human or IT unit that communicates with the
gateway from outside the gateway boundaries through a Wide
Area Network (WAN).

WAN WAN provides the communication network that interconnects the
gateway with the outside world.

Problem Peak Solution Peak

Quality-specific
Solutions

Design Decisions
 

 

PSDK

General

Detailed

Le
ve

l o
f d

et
ai

l

Independent Dependent

Implementation dependence

Requirements

SSDK

Figure 2. Twin peak model including interrelationships within each peak.

between requirements and architecture. The spiral between the
problem peak and the solution peak in Figure 2 illustrates
this relationship between the problem world and the solution
world [2].

In this paper, we emphasize the need to capture and
specify requirements and PSDK as it affects the elicitation
and evolution of requirements. Equally, evolving requirements
might have an affect on previously captured PSDK. The spiral
in the first peak, the problem peak in Figure 2 represents
the synergistic relationship between the requirements and the
PSDK. Similarly, architecture artifacts and SSDK exhibit such
intertwining relationship as design decisions and trade-offs
might require the elicitation of new SSDK or modification of
the existing one. Figure 2 shows the relationship between the
design decisions and the SSDK by means of the spiral in the
solution peak.

In the following, we describe the impact of requirements
and PSDK on each other in the problem peak. Then, the impact
of design decisions and SSDK on each other is described. We
give examples of such effects using the smart grid example.

A. Interplay of Requirements and PSDK
For developing software that achieves its desired quality

requirements, additional information (PSDK) for each quality
requirement must be explicitly elicited. As an example, we
consider the performance. As mentioned in Section I, the
workload and the available resources as performance-relevant
domain knowledge have to be elicited and incorporated into
existing requirement models explicitly. The workload is de-
scribed by triggers of the system, representing requests from
outside or inside the system. Workload exhibits the character-
istics of the system use. It includes the number of concurrent
users and their arrival pattern. The arrival pattern can be
periodic (e.g., every 10 milliseconds), stochastic (according
to a probabilistic distribution), or sporadic (not to capture by
periodic or stochastic characterization) [21]. Processing the
requests requires resources. Each resource has to be described
by its type in the system, such as CPU, memory, and network,
its utilization, and its capacity, such as the transmission speed
for a network.

Performance-relevant domain knowledge can be gained
from performance experts and analysts. In this paper, we do
not aim at proposing approaches on how to elicit and model
performance-relevant domain knowledge, but at emphasizing
the need for eliciting domain knowledge as additional infor-
mation to the quality requirements and annotating it properly



TABLE II. INSTANTIATED PSDK TEMPLATE FOR RQ24 (AND MAPPING TO THE MARTE PROFILE)

Quality: Performance, Quality Requirement: RQ24
PSDK Template Mapping to MARTE

PSDK Description Possible Values Value Range of Value Property
Number of concurrent users Natural 50 GaWorkloadEvent. pattern. population

Arrival pattern ArrivalPattern closed GaWorkloadEvent. pattern
Data size DataSize (bit, Byte, KB, MB, GB) 640 MB GaStep. msgSize

Memory capacity DataSize (bit, Byte, KB, MB, GB) - HwMemory. memorySize
latency Duration (s, ms, min,hr, day) - HwMemory. timing

Network bandwidth DataRate (b/s, Kb/s, Mb/s) 2.4 Kb/s HwMedia. bandWidth
latency Duration (s, ms, min,hr, day) - HwMedia. packetTime

CPU speed Frequency (Hz, kHz, MHz, GHz) 470 MHz HwProcessor. frequency
Number of cores Natural 1 HwProcessor. nbCores

in the requirement models as initially proposed in our previous
work [22]. We propose to document the PSDK for the corre-
sponding software qualities as structured templates. We call
such templates PSDK Templates to be instantiated separately
for each type of software quality. The instantiated template
should be known to the requirements engineer or performance
analyst to analyze whether a particular performance require-
ment can be satisfied or not. In order for the analyst to be
able to determine “whether the meter data can be transferred
through WAN within 5 seconds”, (s)he needs PSDK involving
the number of concurrent users in the system, the bandwidth of
the network, the CPU speed and the core numbers, and the data
volume which is transferred over the network. We exemplify
the instantiation of the PSDK template for the performance
requirement RQ24 according to the information contained in
the existing documents for the smart grid application [19][20].
Table II shows the instantiated PSDK template (see column
Value). The columns PSDK Description and Possible Values
show the domain knowledge to be elicited for performance
and its possible values. We may extend the template with the
column Range of Value showing the possible range of values.
Such information can be obtained from documents or involved
stakeholders. We make use of this column later on to modify
(strengthen or relax) the PSDK as a conflict resolution strategy.

In addition to the template, a suitable notation for inte-
grating quality-relevant domain knowledge in the requirement
models can be selected to be used for requirements analysis
in a model-based approach. We select the UML profile for
Modeling and Analysis of Real-Time and Embedded systems
(MARTE) [23] adopted by OMG consortium that allows us to
annotate performance-relevant domain knowledge in a UML-
based modeling approach. The column Property shows the
corresponding stereotypes from the MARTE profile.

We describe the need for eliciting PSDK and documenting
it in PSDK templates when we elicit quality requirements
by the example of a performance requirement. Requirements
might affect the PSDK when they are modified for any reason.
In such a case, the PSDK has to be checked for possible
modifications.

One important source for changes in the requirements is
detecting and resolving conflicts among requirements. Such
changes might cause changes in the PSDK [24]. Requirements
conflicts can typically be resolved on the requirement level
by relaxing the conflicting requirements or on the architecture
level by relaxing the corresponding solutions. In some cases,
only potential conflicts among requirements can be detected
and not the genuine ones [25]. Hence, in such cases the
conflict resolution shall preferably be postponed to the archi-

tecture level, where more details are available for detecting the
genuine requirement conflicts and resolving them. Resolving
requirements conflicts by relaxing requirements might lead to
the modification of the existing PSDK (e.g., assumptions).
Resolution of conflicting requirements on the requirement level
is one source for updating existing domain knowledge. One
might make a trade-off between a performance requirement
and a security requirement by relaxing the performance re-
quirement.

In our previous work [24], we proposed a method for
detecting and resolving conflicts among performance and
security requirements, as security has mostly a deep impact
on the performance of the whole system. The reason is that
mechanisms and patterns for satisfying security requirements,
such as encryption or Message Authentication Code (MAC)
are time-consuming. The general principle of our method
for detecting interactions among requirements is using the
structure of requirement models to identify trade-off points,
where security and performance requirements might interact.
After we have identified pairs of conflicting requirements,
we have made trade-offs by relaxing one or both conflicting
requirements to resolve the conflict. As an example, we
consider two requirements RQ11 and RQ24 that we identi-
fied as conflicting. One option for relaxing the performance
requirement is modifying the performance-relevant domain
knowledge. Typically, domain knowledge consists of facts
(domain properties in [4]) that we cannot change, relax, and
negotiate and assumptions that can be changed, relaxed, and
negotiated [4]. For resolving the conflict, we might modify
(relax or strengthen) the assumptions. For example, the number
of concurrent users is not a fixed property. It is an assumption
and can be modified, when the performance requirement
cannot be achieved with this assumption. Hence, we modify
number of concurrent users by reducing it to a number less
than 50. The same holds true for data size, which has to
be reduced to less than 640 MB, network bandwidth, which
has to be relaxed to more than 2.4 Kb/s (see the instantiated
PSDK in Table II). The rest of the properties are either fixed
(can be considered as facts) or irrelevant for the corresponding
requirement, or unknown and thus cannot be considered for the
modification process. We document such modifications in the
column Range of Value. Note that changes in the requirements
or PSDK should be negotiated with the stakeholders.

B. Interplay of Design Decisions and SSDK
Quality-specific patterns and mechanisms for performance

such as load balancer and master worker [26] and for secu-
rity such as Role-Based Access Control (RBAC) and encryp-
tion [27] represent solution candidates for achieving quality



TABLE III. IMPACT OF SECURITY-SPECIFIC SOLUTION ASYMMETRIC ENCRYPTION ON REQUIREMENTS AND SSDK

Security-specific Solution
Name Asymmetric Encryption
Brief Description The plaintext is encrypted using the public key and decrypted using the private key.
Quality Requirement to be achieved Security (confidentiality)
Positively affected quality requirement(s) -
Negatively affected quality requirement(s) Performance

Necessary Conditions

Quality Requirement 2 SSDK 2
Integrity of public key during transmission shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of private key during transmission shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of private key during transmission shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of private key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of private key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of public key during storage shall be/is preserved.

TABLE IV. IMPACT OF SECURITY-SPECIFIC SOLUTION SYMMETRIC ENCRYPTION ON REQUIREMENTS AND SSDK

Security-specific Solution
Name Symmetric Encryption
Brief Description The plaintext is encrypted and decrypted using the same secret key.
Quality Requirement to be achieved Security (confidentiality)
Positively affected quality requirement(s) -
Negatively affected quality requirement(s) Performance

Necessary Conditions

Functional Requirement 2 SSDK 2
Secret key shall be/is distributed.

Quality Requirement 2 SSDK 2
Confidentiality and integrity of secret key distribution distribution shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of secret key during transmission shall be/is preserved

Quality Requirement 2 SSDK 2
Confidentiality of secret key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of secret key during storage shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of encryption machine shall be/is preserved.

Quality Requirement 2 SSDK 2
Integrity of encryption machine shall be/is preserved.

Quality Requirement 2 SSDK 2
Confidentiality of plaintext shall be/is preserved.

requirements. By exploring the solution space for achieving
quality requirements, we require to know which assumptions
and facts are to be considered, and which new functional and
quality requirements are to be elicited when deciding on a
particular solution. Generally speaking, all information that can
affect the requirements and related domain knowledge has to
be documented.

We propose to provide a template consisting of two parts
for the analysis of quality-specific solutions and their impacts
on requirements and domain knowledge. We analyze the
impact of the solution candidate on the problem space (i.e.,
requirements), and on the SSDK. Such a template helps us
later on when selecting a particular solution candidate to keep
track on changes in the requirements and domain knowledge. It
also supports an unexperienced architect in understanding the
impact of design decisions on the entire system, particularly
on the achievement of quality requirements.

The first part of the template (see Table III) accommo-
dates information about the quality-specific solution itself,
such as name (Name), description (Brief Description), the
quality requirement which will be achieved when selecting this
solution (Quality Requirement to be achieved), and the quality
requirements which are positively or negatively affected by this
solution ((Positively affected Quality Requirement), (Negatively
affected Quality Requirement)). For example, improving the
security may result in decreasing the performance. Hence,

the impact of each security-specific solution on other quality
requirements has to be captured in the first part of the template.

The second part of the template captures and documents
necessary conditions which have to be addressed when select-
ing this solution. Necessary conditions have to be addressed
either as Functional Requirement, Quality Requirement, or as
SSDK. We elicit the necessary conditions as requirements if
the software to be built shall achieve them. In contrast, as-
sumptions have to be satisfied by the environment [4]. Hence,
the necessary conditions have to be captured as assumptions
(one part of the SSDK) if they have to be satisfied by the
environment. Assumptions are not guaranteed to be true in
every case. For the case that we assume the environment
(not the machine) takes the responsibility for meeting them,
we capture them as assumptions. This should be negotiated
with the stakeholders and documented properly. Tables III and
IV show such a template for the security-specific solutions
asymmetric encryption and symmetric encryption.

We describe Table IV in more detail. After capturing the
basic information about the security-specific solution symmet-
ric encryption in the first part, in the second part we elicit
new requirements and capture new assumptions that arise
with the solution, such as secret key shall be/ is distributed.
Eliciting this condition results in thinking about security issues
concerned with it, such as confidentiality and integrity of
secret key distribution shall be/is preserved. If we require



that the software we build is responsible for preserving the
confidentiality and integrity of the secret key not only during
the transmission but also during the storage, we have to capture
these as requirements. This is the reason why the necessary
conditions are presented as checkboxes to be selected by
checking the relevant checkbox as requirement or SSDK.

As mentioned before, one option for resolving interactions
among requirements is making trade-offs between correspond-
ing quality-specific solutions. To this end, one or both quality-
specific solutions have to be relaxed. Making such design de-
cisions requires eliciting or updating SSDK and requirements
associated with the particular solution. For example, selecting
a symmetric encryption for achieving a confidentiality re-
quirement instead of an asymmetric encryption demands other
assumptions and requirements with respect to the required keys
and key distribution as shown in the corresponding Templates
(Tables III and IV). To demonstrate this idea, we consider the
asymmetric encryption as the initial security-specific solution,
which is selected for satisfying the security requirement RQ11.
RQ11 is concerned with transmitting meter data through the
WAN in a confidential way. Asymmetric encryption provides
sufficient protection during transmitting meter data through the
WAN so that the confidentiality requirement can be achieved.
However, by applying our method for detecting interactions
among quality requirements in our previous work [24], we
detected a conflict with the performance requirement RQ24.
Hence, RQ24 cannot be achieved in less than 5 seconds when
keeping the security-specific solution asymmetric encryption
for meeting the security requirement RQ11. We have to decide
for a strategy to resolve the conflict. We can relax the perfor-
mance requirement by increasing the response time as one pos-
sible resolution strategy. Strengthening or relaxing the PSDK
for example by raising the network bandwidth or by decreasing
the data size is possible as well, as described in Section IV-A.
Such strategies are at the cost of the performance requirement
RQ24 and can only be used if the security requirement RQ11
has a higher priority. Here, we assume that the performance
requirement RQ24 has a higher priority. Hence, we have to
make a trade-off by relaxing the security-specific solution. This
can be achieved by selecting another security-specific solution,
which is faster. We decide on symmetric encryption instead of
asymmetric encryption. Symmetric encryption is faster than the
asymmetric encryption. It, however, demands other require-
ments and SSDK. In contrast to the asymmetric encryption,
which uses different keys for encrypting and decrypting data,
the symmetric encryption uses only one key. Thus, we have
to care about the key distribution. Hence, this design decision
leads to changes in the requirements as well as in the domain
knowledge as shown in Table IV.

V. CONCLUSION AND FUTURE WORK

In this paper, we underlined the importance of captur-
ing and documenting domain knowledge, particularly quality-
relevant domain knowledge for the problem space as well
as for the solution space. More importantly, we described
how requirements, design decisions and domain knowledge
affect each other. Eliciting and updating requirements causes
elicitation and modification of PSDK. Capturing and evolv-
ing solutions on the architecture level requires eliciting and
modifying SSDK and requirements. Hence, domain knowledge
should be captured and developed iteratively and incrementally

with requirements and architecture to achieve adequate speci-
fications.

In order to be able to argue that the requirements will
be satisfied under specific constraints and assumptions, PSDK
should be traceable to the requirements [4]. Moreover, design
decisions should be traceable to SSDK and requirements to re-
flect the changes in design decisions and software architecture
to the problem peak. Keeping the changes consistent in require-
ments, domain knowledge (PSDK and SSDK), and software
architecture is challenging. Model-based approaches enables
us to provide support by keeping such trace information in
the model. In the future, we want to provide traceability links
between these artifacts in our models to keep track of the
changes emerging in one peak which cause changes in the
other peak.

ACKNOWLEDGMENTS.
This research was partially supported by the German

Research Foundation (DFG) under grant numbers HE3322/4-
2. We thank Thein Than Tun for his useful feedback on our
work.

REFERENCES

[1] M. Mirakhorli and J. Cleland-Huang, “Traversing the twin peaks,” IEEE
Software, vol. 30, no. 2, 2013, pp. 30–36.

[2] B. Nuseibeh, “Weaving together requirements and architectures,” IEEE
Computer, vol. 34, no. 3, 2001, pp. 115–117.

[3] M. Whalen, A. Gacek, D. Cofer, A. Murugesan, M. Heimdahl, and
S. Rayadurgam, “Your "What" Is My "How": Iteration and Hierarchy
in System Design,” IEEE Software, vol. 30, no. 2, 2013, pp. 54–60.

[4] A. Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

[5] M. Jackson, “The meaning of requirements,” Ann. Softw. Eng., vol. 3,
Jan. 1997, pp. 5–21.

[6] ——, Problem Frames. Analyzing and structuring software development
problems. Addison-Wesley, 2001.

[7] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Trans. Softw. Eng. Methodol., vol. 6, 1997, pp. 1–30.

[8] B. Fabian, S. Gürses, M. Heisel, T. Santen, and S. Schmidt, “A com-
parison of security requirements engineering methods,” Requirements
Engineering – Special Issue on Security Requirements Engineering,
vol. 15, 2010, pp. 7–40.

[9] I. F. Hooks and K. A. F., Customer-centered Products: Creating Success-
ful Products Through Smart Requirements Management. AMACOM,
2001.

[10] F. Modugno, N. Leveson, J. Reese, K. Partridge, and S. Sandys, “In-
tegrated safety analysis of requirements specifications,” Requirements
Engineering, 1997, pp. 65–78.

[11] L. Bass, M. Klein, and F. Bachmann, “Quality attributes design primi-
tives,” Software Engineering Institute, Tech. Rep., 2000.

[12] R. C. de Boer and H. van Vliet, “Controversy corner: On the similarity
between requirements and architecture,” J. Syst. Softw., vol. 82, no. 3,
Mar. 2009, pp. 544–550.

[13] R. Ferrari and N. H. Madhavji, “The Impact of Requirements Knowl-
edge and Experience on Software Architecting: An Empirical Study,”
in Proceedings of the 6th Working IEEE/IFIP Conference on Software
Architecture (WICSA), 2007, p. 16.

[14] Z. Durdik, A. Koziolek, and R. Reussner, “How the understanding of
the effects of design decisions informs requirements engineering,” in
2nd International Workshop on the Twin Peaks of Requirements and
Architecture (TwinPeaks), 2013, pp. 14–18.

[15] A. Koziolek, “Research preview: Prioritizing quality requirements based
on software architecture evaluation feedback,” in Requirements En-
gineering: Foundation for Software Quality. Springer, 2012, vol.
LNCS7195, pp. 52–58.



[16] J. Miller, R. Ferrari, and N. Madhavji, “Architectural effects on re-
quirements decisions: An exploratory study,” in Proceedings of the 7th
Working IEEE/IFIP Conference on Software Architecture (WICSA),
2008, pp. 231–240.

[17] E. Woods and N. Rozanski, “How Software Architecture can Frame,
Constrain and Inspire System Requirements.” in Relating Software
Requirements and Architectures. Springer, 2011, pp. 333–352.

[18] M. Ali Babar, I. Gorton, and R. Jeffery, “Capturing and Using Software
Architecture Knowledge for Architecture-Based Software Develop-
ment,” in Proceedings of the 5th International Conference on Quality
Software, ser. QSIC ’05. IEEE Computer Society, 2005, pp. 169–176.

[19] H. Kreutzmann, S. Vollmer, N. Tekampe, and A. Abromeit, “Protection
profile for the gateway of a smart metering system,” BSI, Tech. Rep.,
2011.

[20] Remero et al., “D1.1 Requ. of AMI,” OPEN meter proj., Tech. Rep.,
2009.

[21] L. Bass, P. Clemens, and R. Kazman, Software architecture in practice.
Addison-Wesley, 2003.

[22] A. Alebrahim, M. Heisel, and R. Meis, “A structured approach for
eliciting, modeling, and using quality-related domain knowledge,” in
Proceedings of the 14th International Conference on Computational
Science and Its Applications (ICCSA), ser. LNCS. Springer, 2014,
vol. 8583, pp. 370–386.

[23] UML Revision Task Force, UML Profile for MARTE: Mod-
eling and Analysis of Real-Time Embedded Systems, 2011,
http://www.omg.org/spec/MARTE/1.0/PDF [retrieved: 2014-08-07].

[24] A. Alebrahim, C. Choppy, S. Faßbender, and M. Heisel, “Optimizing
functional and quality requirements according to stakeholders’ goals,”
in System Quality and Software Architecture (SQSA). Elsevier, 2014,
pp. 75–120.

[25] A. Alebrahim, S. Faßbender, M. Heisel, and R. Meis, “Problem-Based
Requirements Interaction Analysis,” in Proceedings of the International
Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ), ser. LNCS, vol. 8396. Springer, 2014,
pp. 200–215.

[26] C. Ford, I. Gileadi, S. Purba, and M. Moerman, Patterns for Performance
and Operability. Auerbach Publications, 2008.

[27] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security patterns: integrating security and systems
engineering. John Wiley & Sons, 2005.


	Introduction
	Related Work
	Smart Grid Example
	Interplay of Requirements, Architecture, and Domain Knowledge
	Interplay of Requirements and PSDK
	Interplay of Design Decisions and SSDK

	Conclusion and Future Work
	References



