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Abstract. [Context] The ability to address the diverse interests of different stake-
holders in a software project in a coherent way is one fundamental software qual-
ity. These diverse and maybe conflicting interests are reflected by the require-
ments of each stakeholder. [Problem] Thus, it is likely that aggregated require-
ments for a software system contain interactions. To avoid unwanted interactions
and improve software quality, we propose a structured method consisting of three
phases to find such interactions. [Principal ideas] For our method, we use prob-
lem diagrams, which describe requirements in a structured way. The information
represented in the problem diagrams is translated into a formal Z model. Then
we reduce the number of combinations of requirements, which might conflict.
[Contribution] The reduction of requirements interaction candidates is crucial to
lower the effort of the in depth interaction analysis. For validation of our method,
we use a real-life example in the domain of smart grid.

Keywords: Requirements interactions, problem frames, feature interaction, Z
notation

1 Introduction

Nowadays, for almost every software system various stakeholders with diverse interests
exist. These interests give rise to different sets of requirements. The combination of
these sets leads to unwanted interactions among the requirements. Such interactions
among requirements cannot be detected easily.

In general, the deviation between the intended behavior and structure as formu-
lated by single requirements of a stakeholder and the overall behavior and structure of
the resulting system- or software-to-be is called requirement inconsistency [1,2]. Such
inconsistencies can stem from different sources. The first source is the different un-
derstanding of terms and different views on the system-to-be of different stakeholders.
Missing or misleading information also adds to this class of inconsistencies [1], [3]. A
second source are inconsistencies which stem from the transformation between differ-
ent kinds of representations and models [1]. Another important source are interactions
between requirements which lead to an unexpected behavior. For functional require-
ments this source is already known as feature interaction for a long time, e.g. in the
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domain of telecommunication [4,5]. For interactions, one can distinguish between un-
wanted and desirable interactions. The strongest type of interactions are conflicts in
which requirements deny each other, and dependencies where one requirement can be
only fulfilled when another requirement is also fulfilled. Between these extrema, there
are different shades of negative or positive influences [2], [6]. For this paper, we assume
that inconsistencies in terms of the first and second source are solved and we will focus
on conflicts. But our method also allows to find other kinds of interactions.

Requirements engineering is concerned with describing the problem that the soft-
ware has to solve in a precise way [7]. The problem is located in the environment in
which the machine will be integrated and not in the computer [8]. Therefore, reasoning
about the requirements involves reasoning about the environment and the assumptions
made about it [7]. Zave and Jackson define the three terms requirements (R), domain
knowledge (D), and specification (S) in their extensive work [9]. The requirements de-
scribe the desired system after the machine is built. The domain knowledge represents
the relevant parts of the problem world. The specifications describe the behavior of the
machine in order to meet the requirements. These three descriptions are related through
the entailment relationship D, S |= R, expressing that the specification within the con-
text of the domain knowledge should satisfy the requirements.

As a basis for requirements analysis, we use the problem frames approach [8] based
on the work of Zave and Jackson [9]. It suggests to decompose the overall software
problem into simple subproblems. Each subproblem is related to one or more require-
ments. The solutions of the subproblems will be composed to solve the overall software
problem. The composition will only be successful if there is a consistent set of require-
ments (subproblems). Therefore, the identification of interactions and inconsistencies
in the requirements analysis is essential to avoid costly modifications later on in the
software development life cycle and to improve the overall software quality.

In this paper, we propose a formal and structured method composed of three phases
to identify interactions among functional requirements involving the environment. We
start with a full set of requirements representing subproblems. In all three phases, we
narrow down the set of combinations of requirements which might interact. The nar-
rowing process is formally defined using the Z notation [10,11] for each step of our
method. The formal Z specification is the basis for the tool support of our method. We
developed our specifications using the Community Z Tools1. After the final phase, the
remaining candidates have to be analyzed in detail to choose appropriate measures to
avoid the interactions. The analysis of the remaining candidates is out of the scope of
this paper, but our method reduces the amount of candidates and thus the effort neces-
sary for further analysis.

The rest of the paper is organized as follows: Section 2 gives a brief overview of the
problem frames our method relies on. As running example, we introduce a sun blind
control system in Section 3. Our method to detect interacting requirements is described
and applied to the sun blind control system in Section 4. We validate our method by
using a real-life example of smart grids in Section 5. Section 6 presents related work,
while Section 7 concludes the paper and suggests recommendations for future work.

1 http://czt.sourceforge.net/
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2 Background

We use the problem frames [8] approach proposed by Jackson to build our requirements
interaction method on. Jackson introduces the concept of problem frames, which is
concerned with describing, analyzing, and structuring software problems. According
to Jackson, the computer and the software represent the solution, called machine. The
requirements and the environment are called system.

A problem frame represents a class of software problems. It is described by a frame
diagram, which consists of domains, interfaces between them, and a requirement. Do-
mains describe entities in the environment. Jackson distinguishes the domain types bid-
dable domains that are usually people, causal domains that comply with some physical
laws, and lexical domains that are data representations. Interfaces connect domains, and
they contain shared phenomena. Shared phenomena may be events, operation calls,
messages, and the like. They are observable by at least two domains, but controlled
by only one domain, as indicated by the name of that domain and “!”. For instance, the
shared phenomena openCommand, closeCommand, and stopCommand in Fig. 1 are ob-
servable by the domains UserOpenControl and User, but controlled only by the domain
User. When we state a requirement, we want to change something in the world with
the machine (i.e., software) to be developed. Therefore, each requirement constrains at
least one domain. Such a constrained domain is the core of any problem description be-
cause it has to be controlled according to the requirements. Hence, a constrained domain
triggers the need for developing a new machine which provides the desired control. A
requirement may refer to several domains in the environment of the machine.

We describe problem frames using UML class diagrams, extended by stereotypes as
proposed by Hatebur and Heisel [12]. All elements of a problem frame act as placehold-
ers which must be instantiated to represent concrete problems. In doing so, one obtains
a problem diagram that belongs to a specific class of problems. Figure 1 shows a prob-
lem diagram in UML notation. It describes that the UserOpenControl machine pulls
up, lowers or stops the sun blind on behalf of user commands openCommand, closeC-
ommand, or stopCommand. The requirement R4 constrains the SunBlind domain. This
is expressed by a dependency with the stereotype �constrains�. It refers to the
User, as expressed by a dependency with the stereotype�refersTo�.

3 Running Example

We demonstrate our approach using a sun blind control system. A sun blind is made
up of metallic fins which are attached to the outer side of the window. Additionally,
we have a sun sensor which measures the sun intensity, a wind sensor which measures
the wind speed, and a display which is suitable to display the current sun intensity and
wind speed. The sun blind is sensitive to sun and wind. A machine shall be built that
lowers the sun blind on sunshine and pulls it up on strong wind. For individual settings
it shall be possible to control the sun blind manually, too. The following requirements
are given:

(R1) If there is sunshine for more than one minute, the sun blind will be lowered.
(R2) If there is no sunshine for more than 5 minutes, the sun blind will be pulled up.
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Fig. 1. Problem diagram for the requirement R4

(R3) If there is strong wind for more than 10 seconds, the sun blind will be pulled up, to
avoid destruction of the sun blind.

(R4) If the user issues an open/close/stop command, the sun blind will be pulled up/-
lowered/stopped.

(R5) If the user interacts with the sun blind, then sunshine and no sunshine are ignored
within the next 4 hours.

(R6) If the user deactivates the holiday mode, then the sun blind is turned on.
(R7) If the user activates the holiday mode, the sun blind is pulled up and turned off.
(R8) Sunshine intensity and wind speed shall be displayed on the weather display.

We modeled the requirements as problem diagrams, which are used as input for our
method. The problem diagram for the requirement R4 is shown in Fig. 1. The other
requirements are modeled in a similar way. Throughout the paper we will refer to this
example to describe the proposed method.

4 Interaction detection method

Our method starts with a set of problem diagrams. Based on the information provided
by these problem diagrams, the structure-based pruning (phase one) takes place and
removes all requirements for which the structure of problem diagrams already implies
that they will not interact. The result is a first set of interaction candidates. In the second
phase, those candidates can be further reduced using the information if requirements
have to be satisfiable in parallel (phase two). The sets of requirements that have to be
satisfiable in parallel have to be known beforehand and these are an external input to
our method. The remaining interaction candidates are finally reduced in the last phase
(phase three) by checking whether the conjunction of preconditions of possibly inter-
acting requirements is satisfiable. Our formalization is built on the following sets and
relations that can be derived from the given problem diagrams.

Requirement is the set of all requirements occurring in at least one problem diagram.
Domain is the set of all domains occurring in at least one problem diagram.
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Phenomenon is the set of all phenomena which are referred to or constrained by at least
one requirement in a problem diagram.

constrains : Requirement × Domain→ PPhenomenon is the function that assigns to a
pair of requirement r and domain d the set of phenomena P that r constrains on d.

refersTo : Requirement × Domain→ PPhenomenon is the function that assigns to a
pair of requirement r and domain d the set of phenomena P that r refers to on d.

Please note that constrains and refersTo are total functions. If a requirement does not
constrain or refer to a domain, then the value of the respective function is an empty set
of phenomena. In Z notation [10,11], we define the above sets and relations as follows:

[Requirement,Domain,Phenomenon]

constrains : Requirement × Domain→ PPhenomenon
refersTo : Requirement × Domain→ PPhenomenon

4.1 Phase One: Structure-Based Pruning

In phase one, we make use of the structure of the problem diagrams. The steps for select-
ing the requirements which are candidates of a requirements interaction are described
as follows:

Step One: Initial Setup First, we define a Z schema Interaction consisting of three
variables, which we will use to describe the actual state of our method. The sets Relevant-
Domain and RelevantRequirement contain all domains and requirements which are con-
sidered to be relevant for an interaction. The function MinReqInteraction returns for
each relevant domain the minimal sets of requirements that may interact with each
other. A set of requirements is considered as minimal interacting if each strict subset of
it does not contain a possible interaction [2].

Interaction
RelevantDomain : PDomain
RelevantRequirement : PRequirement
MinReqInteraction : Domain 7→ PPRequirement

dom MinReqInteraction = RelevantDomain⋃
(
⋃
(ran MinReqInteraction)) = RelevantRequirement

∀ d : RelevantDomain • ∀R : MinReqInteraction(d) •
#R ≥ 2 ∧ ∀Q : MinReqInteraction(d) | R 6= Q • ¬ Q ⊆ R

Initially, we assume that all pairs of requirements which constrain the same domain
possibly cause an interaction on it. Formally, we define the initial interaction schema
Init as follows:

Init
Interaction

RelevantDomain = Domain
∀ d : Domain • MinReqInteraction(d) =

{r1, r2 : Requirement | r1 6= r2 ∧
constrains (r1, d) 6= ∅ ∧ constrains (r2, d) 6= ∅ • {r1, r2}}
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Table 1. Initial requirements interaction table

Requirement /
Domain

SunSensor
(CausalDomain)

SunBlind
(CausalDomain)

WindSensor
(CausalDomain)

User (Biddable-
Domain)

WeatherDisplay
(CausalDomain)

R1 sunshine lowered
R2 no sunshine pulled up
R3 pulled up heavy wind
R4 pulled up, low-

ered, stopped
openCommand ,
closeCommand ,
stopCommand

R5 on, off openCommand,
closeCommand,
stopCommand

R6 off, pulled up activateHoliday
R7 on deactivate-

Holiday
R8 sun intensity wind speed displayed sun-

shine intensity,
displayed wind
speed

We will visualize our method using so called requirement interaction tables (see Ta-
ble 1). In these tables, we represent the functions constrains and refersTo with the re-
stricted domain RelevantRequirement×RelevantDomain. We highlight the phenomena
P of a cell (r, d) in bold font if requirement r constrains phenomena P of the domain
d. If r refers to phenomena P, then they are written in italic font. The initial interaction
table for our running example is given in Table 1. We start with 21 possible combina-
tions of interacting requirements because we have to assume that each combination of
the seven requirements constraining the sun blind causes an interaction.

Step Two: Reducing Relevant Domains We check for each column, and therefore for
each domain, if the domain is constrained at least by two requirements (at least two
cells with bold entries). If this is not the case, then the domain is not relevant. The
reason is that interactions only occur on domains which are constrained by at least two
requirements. Formally, we can define this step with the following Z operation schema.

P1S2
∆Interaction

RelevantDomain′ = {d : Domain | ∃ r1, r2 : Requirement | r1 6= r2 •
constrains (r1, d) 6= ∅ ∧ constrains (r2, d) 6= ∅}

MinReqInteraction′ = RelevantDomain′ CMinReqInteraction

From Table 1 we can see that no requirements interactions can occur on the sun
sensor, wind sensor and user because these domains are only referred to by the re-
quirements in the problem diagrams. Since there is only one requirement constraining
the weather display, we also do not expect any requirements interactions on it. On the
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Table 2. Requirements interaction table after step 2 of phase 1

Requirement / Domain SunBlind (CausalDomain)
R1 lowered
R2 pulled up
R3 pulled up
R4 pulled up, lowered, stopped
R5 on, off
R6 off, pulled up
R7 on

sun blind domain, we expect requirements interactions from the table because every
requirement besides R8 constrains this domain. Hence, after the second step of phase
one, we only identify domain SunBlind as relevant for interactions. When we apply
the operation schema P1S2 on the initial interaction schema (Init o

9 P1S2), we get the
interaction table shown in Table 2.

Step Three: Reducing Relevant Requirements Third, we have to check for each
phenomenon of a relevant domain if it is interacting with a combination of phenomena
of the interaction table which refer to or constrain the same domain. A set of phe-
nomena is interacting if it is not possible to observe them or different characteristics
of them at the same time. Please note that different characteristics of a phenomenon
could not be observable at the same time. In such cases, we consider these phenom-
ena as self-conflicting. For each combination, we have to decide whether we can reject
the assumption that there is an interaction or not. If we cannot reject this assumption
for sure, we have to consider this combination of phenomena as interacting. We are
interested in the interactions of phenomena of a domain because these are the source
of interactions between requirements that refer to or constrain them. We define the
set of the minimal interacting sets of phenomena for each domain using the function
MinPhenInteraction : Domain→ PPPhenomenon. A set P ∈ MinPhenInteraction(d)
contains a number of interacting phenomena of the domain d - at least two - and each
strict subset Q ⊂ P is free of interactions [2]. This is expressed in the Z notation as
follows:

MinPhenInteraction : Domain→ PPPhenomenon

∀ d : Domain • ∀P : MinPhenInteraction(d) •
P 6= ∅ ∧ ∀Q : MinPhenInteraction(d) | P 6= Q • ¬ Q ⊆ P

We have to define the function MinPhenInteraction manually for the given problem
frames model. For this step it is sufficient to define it for the relevant domains of the
interaction schema after step two of phase one ((Init o

9 P1S2).RelevantDomain′). For
the precondition analysis in phase three, we also need the interacting requirements on
the other domains. For our running example, we identify the following sets of minimal
interacting phenomena.
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Sunblind, SunSensor,WindSensor,User : Domain
lowered, pulledUp, stopped, on, off , sunshine, noSunshine : Phenomenon
strongWind, openCommand, closeCommand, stopCommand : Phenomenon

MinPhenInteraction(Sunblind) =
{{lowered, pulledUp}, {lowered, stopped}, {pulledUp, stopped}, {on, off}}

MinPhenInteraction(SunSensor) = {{sunshine, noSunshine}}
MinPhenInteraction(WindSensor) = MinPhenInteraction(User) = ∅

Using the minimal interacting sets of phenomena, we can update the function Min-
ReqInteraction from the interaction schema, which maps a relevant domain to the sets
of requirements that possibly interact on the domain. We distinguish two cases. First,
two requirements are interacting on a domain if there is a self-conflicting phenomenon
where both requirements refer to or constrain. Second, if we can define a bijection
between a set of at least two requirements and a set of interacting phenomena, with the
property that if the bijection maps a requirement to a phenomenon then the requirement
also refers to or constrains it, then these requirements may interact with each other.
Formally, we define the following operation schema:

P1S3
∆Interaction

MinReqInteraction′ = λ d : RelevantDomain •
{r1, r2 : Requirement | r1 6= r2 ∧ ∃ p : Phenomenon •

{p} ∈ MinPhenInteraction(d) ∧
p ∈ constrains (r1, d) ∪ refersTo (r1, d) ∧
p ∈ constrains (r2, d) ∪ refersTo (r2, d) • {r1, r2}}∪

{R : PRequirement | ∃P : MinPhenInteraction(d) • ∃F : R�→ P •
∀ r : R; p : P • F(r) = p⇒ p ∈ constrains (r, d) ∪ refersTo (r, d)}

RelevantDomain′ = RelevantDomain \ dom(MinReqInteraction′ B {∅})

Based on the updated function MinReqInteraction′, also the interaction table is re-
duced by the above operation schema. All requirements that are not in one of the in-
teracting sets can be left out because they are irrelevant. Furthermore, all domains for
which no set of possible interacting requirements exists are also irrelevant.

With the above definition of MinPhenInteraction(Sunblind), we get the following
sets of possibly interacting requirements for our running example:

R1,R2,R3,R4,R5,R6,R7 : Requirement

(µ S : Init o
9 P1S2 o

9 P1S3).MinReqInteraction′(Sunblind) =
{{R1,R3}, {R1,R4}, {R1,R2}, {R1,R6}, {R2,R4}, {R3,R4}, {R4,R6},

{R5,R6}, {R5,R7}, {R6,R7}}

In this step, we have reduced the 21 initial combinations of possibly interacting require-
ments to 10.

4.2 Phase Two: Check for Parallel Requirements

We now investigate whether the possibly interacting requirements have to be satisfiable
at the same time. In the case that they do not have to be satisfiable all at the same time,
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we do not expect interactions among them. Hence, we need a set of sets of requirements
parallelReq as input for this phase. This set has to be set up manually and shall contain
the maximal sets of requirements that have to be satisfiable at the same time, i.e. if we
add a new requirement to a set, then there is a requirement in the set that has not to be
satisfiable at the same time with the new requirement.

parallelReq : PPRequirement⋃
parallelReq ⊆ (µ S : Init o

9 P1S2 o
9 P1S3).RelevantRequirement′

For our running example, we see that R6 and R7 are exclusive requirements that do
not have to be satisfiable at the same time with others. Furthermore, R4 and R5 have
not to be satisfiable at the same time because R5 refers to the user interaction of R4 as
precondition. The requirements R1, R2, and R3 that are concerned with the observation
of the environment have all to be satisfiable at the same time, together with R4 or R5.
Hence, we get the following sets of parallel requirements:

parallelReq = {{R1,R2,R3,R4}, {R1,R2,R3,R5}}

We can now use the set of sets of parallel satisfiable requirements to reduce the
sets of minimal interacting requirements. A set of requirements is only interacting if all
requirements of it have to be satisfiable at the same time. We get the following operation
schema:

P2
∆Interaction

MinReqInteraction′ = λ d : RelevantDomain • {R : MinReqInteraction(d) |
∃P : parallelReq • R ⊆ P}

RelevantDomain′ = RelevantDomain \ dom(MinReqInteraction′ B {∅})

For our running example, we get the following reduced set of sets of minimal interacting
requirements.

(µ S : Init o
9 P1S2 o

9 P1S3 o
9 P2).MinReqInteraction′(Sunblind) =

{{R1,R3}, {R1,R4}, {R1,R2}, {R2,R4}, {R3,R4}}

Beginning from the 21 combinations of possibly interacting requirements, we have now
reduced the number of relevant combinations to 5.

4.3 Phase Three: Precondition-based Pruning

We now have a reduced set of sets of possibly interacting requirements (Init o
9 P1S2 o

9

P1S3 o
9 P2).MinReqInteraction′. For each of these sets, we investigate whether there

is a system state that fulfills the preconditions of all requirements of this set. We only
consider those parts of the preconditions that are not influenced by the software to
be built, i.e. phenomena of domains that are only referred by requirements. We only
consider those parts of the precondition because two requirements with contradicting
preconditions can interact in the case that one requirement establishes the precondition
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of the other requirement, such that the postconditions of both requirements could not
be satisfied.

As argued in Section 1, requirements have to be expressed in terms of the environ-
ment. Therefore, they are normally written according to the general textual pattern: “If
the environment is like this, then it shall be changed like that.” Hence, a requirement has
a pre- and a postcondition, both talking about phenomena of the environment [13]. We
formalize the textual description of each relevant requirement to a formula pre⇒ post.
The formula pre describes the system state in terms of the referred to and controlled
phenomena of the requirement when the requirement has to be fulfilled, and the for-
mula post describes the system state to be achieved by the requirement.

For example, the requirement R3 states “If there is strong wind for more than 10
seconds, the sun blind will be pulled up, [...]”, and we can express it with the formula
strong wind ⇒ pulled up.

To determine whether a set of requirements is satisfiable, we have to define the
function precondition : Requirement → PPPhenomenon that returns the phenomena
of only referred domains (see above) occurring in the precondition of the requirement
in disjunctive normal form (DNF). E.g., a precondition (a ∧ b) ∨ c ∨ (d ∧ e ∧ f ) is
represented as {{a, b}, {c}, {d, e, f}}. We assume that the preconditions of all require-
ments in isolation are free of interaction. Otherwise the requirement is not satisfiable
and can be left out.

precondition : Requirement→ PPPhenomenon

∀ d : Domain; r : Requirement •
∀ I : MinPhenInteraction(d); P : precondition(r) | #I ≥ 2 • ¬ I ⊆ P ∧

∀ p : P • ∃1 d : ran(dom(constrainsB∅)) • p ∈ refersTo(r, d)

We define the precondition function as following for our running example.

precondition(R1) = {{sunshine}}
precondition(R2) = {{noSunshine}}
precondition(R3) = {{strongWind}}
precondition(R4) = {{openCommand}, {closeCommand}, {stopCommand}}

For each relevant domain d ∈ (Init o
9 P1S2 o

9 P1S3 o
9 P2).RelevantDomain′, we

now consider each set of possibly interacting requirements R ∈ (Init o
9 P1S2 o

9 P1S3 o
9

P2).MinReqInteraction′(d) and combine the preconditions of the requirements in R by
conjunction and restore the disjunctive normal form using the generic function dunion.

[X]
dunion : PPPX → PPX

dunion = λ S : PPPX •
{T : PX | ∃ f : S→ PX | ∀ s : S • f (s) ∈ s • T =

⋃
(ran f )}

For our running example, we get the following combined preconditions in disjunc-
tive normal form.
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dunion(precondition(| {R1,R2} |)) = {{sunshine, noSunshine}}
dunion(precondition(| {R2,R3} |)) = {{sunshine, strongWind}}
dunion(precondition(| {R1,R4} |)) = {{sunshine, openCommand},

{sunshine, closeCommand}, {sunshine, stopCommand}}
dunion(precondition(| {R2,R4} |)) = {{noSunshine, openCommand},

{noSunshine, closeCommand}, {noSunshine, stopCommand}}
dunion(precondition(| {R3,R4} |)) = {{strongWind, openCommand},

{strongWind, closeCommand}, {strongWind, stopCommand}}

A set of interacting requirements can now be rejected if all phenomena sets in the
combined disjunctive normal form contain a set of interacting phenomena, because then
there is no system state that leads to an interaction between the requirements. Formally,
we can specify this step using the following operation schema.

P3
∆Interaction

∀ d : RelevantDomain • MinReqInteraction′(d) =
{R : MinReqInteraction(d) | ∃P : dunion(precondition(| R |)) •

∀ I :
⋃
(ran MinPhenInteraction) • ¬ I ⊆ P}

From the above equations, we see that R1 and R2 have interacting phenomena in
their combined precondition because there cannot be sunshine and noSunshine at the
same time. Hence, we remove {R1,R2} from the set of sets of interacting requirements.
For all other requirement sets, we can find system states that satisfy the combined pre-
conditions because there can be sunshine and strong wind at the same time and the user
can issue commands independently from the actual weather.

The remaining sets of interacting requirements have to be further analyzed to de-
termine if the requirements are interacting and which measures (such as prioritization)
shall be chosen to cope with the interactions.

From our running example we see that our method reduced the 21 initial combina-
tions of requirements that may interact to 4 combinations.

5 Validation

The proposed method was used for analyzing requirements of a real-life example in the
domain of smart grids. To use energy in an optimal way, smart grids make it possible to
couple the generation, distribution, storage, and consumption of energy. Smart grids use
information and communication technology, which allows financial, informational, and
electrical transactions. The gateway represents the central communication unit between
a household and the grid in a smart metering system. It is responsible for collecting,
processing, storing, and communicating meter data, and for controlling a household,
e.g., energy supply.

As information sources, we considered diverse documents such as “Application
Case Study: Smart Grid” and “Smart Grid Concrete Scenario” provided by the industrial
partners of the EU project NESSoS2. As sources for functional requirements for such a

2 http://www.nessos-project.eu/
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Table 3. Effort spent for conducting the method and resulting reduction

Method Step
Modeling of

Problem
Diagrams

Initial Setup
Reducing
Relevant
Domains

Set up
MinPhen

Reducing
Relevant

Requirements

Check for
Parallel

Requirements

Precondition-based
Pruning

Effort ∅ Per
Item

28 min. per
Problem
Diagram

2.5 min. per
Problem
Diagram

0.5 min. per
Domain

9.5 min.
per

Domain

0.5 min. per
Requirement

6.85 min. per
Problem
Diagram

8 min. per
Requirement

Number
of Items

27 Problem
Diagrams

27 Problem
Diagrams 19 Domains 4 Domains 27

Requirements
27 Problem
Diagrams 5 Requirements

Total 12.5 person
hours

1.125
person hour

0.16 person
hour

0.6 person
hour

0.225 person
hour 3 person hours 0.67 person hour

Potential
Interactions

% of
Initial 100% 100% 49% 49% 2.8% 2.8% 1.7%

Left
% of

Remain-
ing

100% 100% 49% 100% 5.8% 100% 60%

gateway, we considered “Requirements of AMI (Advanced Multi-metering Infrastruc-
ture]” [14] provided by the EU project OPEN meter3. We refined the 13 minimum uses
cases as described by this document to 27 requirements and modeled them as problem
diagrams using the UML4PF tool [15].

The general effort of preparing the problem diagrams and executing our method is
shown in Table 3. The steps of our method are added as columns. The rows are divided
into 2 main parts. First, the effort per item and the total effort regarding the number of
items. Second, the reduction of possible interactions within one step with regards to the
total number of interactions or with regards to the interaction left by the previous step.
This way, Table 3 provides the information about the effort and the resulting reduction
for each step.

The problem diagrams modeling the 27 requirements given by the 13 minimum use
cases served as an input to Phase 1, Step 1, resulting in 351 possible requirements in-
teractions. The initial requirements interaction table consisted of 19 domains and 27
requirements. A number of 64 phenomena were documented as relevant, because the
requirements mentioned them. In the second step, the number of domains on which an
interaction could happen was reduced to 4, and 7 requirements were removed from the
set of candidates, which could cause an interaction. At this point, the number of pos-
sible interactions was already reduced by more than fifty percent to 171 (see Table 3).
The involved number of possibly involved phenomena was cut down to 19. Three of
the phenomena were identified as possibly interacting phenomena. As a result, only 1
domain and 5 requirements remained after Step 3. Thus, at the end of Phase 1, we al-
ready reduced the number of possible interactions to 10, which makes a reduction by
more than 95 percent (see Table 3). Since all of the requirements left may have to be
fulfilled in parallel, no further reduction was possible in Phase 2. While checking the
preconditions in Phase 3, one more requirement could be rejected to be a candidate for
an interaction. In the end, 4 requirements, sources for 6 possible interactions, had to be
analyzed in depth.

The analysis revealed that the requirements left caused 2 interactions. One of the
original use cases in [14] described a process where the energy provider is able to

3 http://www.openmeter.com/
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disconnect a household from the grid by ordering the gateway to cut off the electricity
supply. One reason could be unpaid bills. On the other hand, the provider can order
the gateway to reconnect the household. A second use case describes that the customer
is able to define a power consumption threshold. If the threshold is reached by the
actual power consumption, the household is also cut off the grid by the gateway. But
for this case, the consumer is allowed to override the cut-off manually, reconnecting the
household. The two use cases, and therefore also the requirements, did not refer to each
other, allowing the customer to override a cut-off ordered by the provider. Or the other
way round, the provider could reconnect a household which was taken off the grid on
demand of the customer. Hence, we found 2 real interactions.

To sum up, the effort to investigate requirements for interactions in depth was re-
duced by more than 95 percent. For the interactions left over to the in-depth analysis,
the precision was 33 percent (2 real interactions / 6 possible interactions), which is ac-
ceptable considering the overall reduction. For calculating the recall, we made a full in
depth analysis of all requirements and found no additional interactions which makes a
perfect recall of 100 percent. In general, when looking for interactions, it is favorable
to have a high recall rather than having a high precision. The reason is that missing one
real interaction makes any effort reduction worthless.

For the smart grid case study, especially the effort spent for phase one payed off (see
Table 3). Phase 2 and 3 resulted only in a minor reduction of possible interactions. This
result should be subject to further research, as it may depend on the special structure of
the smart grid case study. But overall, the effort of executing our method is reasonable
with regards to the reduction.

6 Related Work

Although the problem of interaction between requirements has been known for a long
time, there exist only few approaches dealing with this problem.

Egyed and Grünbacher [16] introduce an approach based on software quality at-
tributes and traces between requirements. They assume that two requirements are con-
flicting only if their quality attributes are conflicting and there is a dependency between
them. The authors do not consider the case of conflicting requirements due to their
functionality and not their quality.

The approach proposed by Alférez et al. [17] finds candidate points of interaction.
The authors first analyze the dependencies between use cases to identify potential can-
didates of conflict. Then they determine whether the detected use cases are related to
more than one feature. In contrast to our method, it is not formally defined. Furthermore,
this approach is based on use cases, whereas we rely on problem frames.

Kim et al. [18] propose a process for detecting and managing conflicts between
functional requirements expressed in natural language. After identifying, documenting,
and prioritizing requirements using goals and scenarios in the first phase, the require-
ments are classified through the requirements partitioning criteria in the second step.
In the third phase, conflicts are detected using a syntactic method to identify candidate
conflicts and a semantic method to identify actual conflicts. Step four manages the de-
tected conflicts according to the priorities. Similar to our method, this process reduces

13



the scope of requirements to be considered by performing a syntactic analysis. The
semantic analysis is performed manually by the analyst to check and answer a list of
questions. As opposed to our method, this method is not formally specified.

In contrast to our problem-based method, Hausmann et al. [19] introduce a use case-
based approach to detect potential inconsistencies between functional requirements. A
rule-based specification of pre- and postconditions is proposed to express functional
requirements. The requirements are then formalized in terms of graph transformations
that enable expressing the dependencies between requirements. Conflict detection is
based on the idea of independence of graph transformations. The authors provide tool
support to represent the results of the analysis. Similar to our method, the results of the
conflict detection method have to be analyzed further manually. Our method detects a
set of interaction candidates that need to be analyzed further for real interactions. This
approach detects dependencies that represent errors or conflicts to be decided by the
modeler. This is due to the incomplete nature of use cases.

Lamsweerde et al. use different formal techniques for detecting conflicts among
goals based on KAOS [2]. One technique to detect conflicts is deriving boundary condi-
tions by backward chaining. Boundary conditions refer to combination of circumstances
causing inconsistency in among different goals. Every precondition yields a boundary
condition. The other technique is selecting a matching generic pattern. Our method for
finding conflicts among requirements can be seen as complementary to this approach
that provides techniques for detecting goal conflicts and resolving them. However, to
use our method in connection with this approach, requirements as refinement of goals
have to be modeled as problem diagrams.

Heisel and Souquières [13] developed a formal and heuristic method to detect re-
quirement interactions. Each requirement consists of a pre- and a postcondition. The
authors analyze whether the postconditions are contradictory by sharing common pre-
conditions. They also determine postcondition interaction candidates by looking for
incompatible postconditions. As opposed to our approach, the authors formalize the
whole set of requirements, which is costly and time-consuming. Our approach utilizes
the structure of problem diagrams to reduce the effort for the formalization.

An approach to detect feature interactions in the software product line (SPL) is pro-
posed by Classen et al. [20]. The authors link feature diagrams used in the SPL to the
problem frames approach by redefining the notions of feature and feature interaction
based on the entailment relationship D, S |= R [8,9]. This enables the authors to con-
sider the environment in addition to the requirements, similar to our method. To detect
feature interactions, four algorithms are presented based on a set of consistency rules.
This work is complementary to our work. Using our approach, the sets of requirements
and domains that have to be considered for interactions can be reduced and therefore
the modeling and formalization effort is reduced.

7 Conclusions and Future work

In this paper, we investigated how to identify requirements interaction using a problem-
based method. We described a structured method to identify requirements interactions
between functional requirements. The method is formalized using Z and this specifi-
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cation serves as basis for the tool support of the proposed method. For the first phase,
we explained how to identify candidates for an interaction among a set of requirements
modeled as problem diagrams. In the second phase, we showed how to reduce this set
of candidates further using the information whether requirements have to be fulfilled in
parallel or not. In the third phase we further reduced the possibly parallel requirements
by checking their precondition. For the paper, we explained our method using a run-
ning example. For validation, we applied the method to a real example in the smart grid
domain. The main contributions are:

– A re-usable requirements interaction detection method which provides structured
guidance for a software engineer.

– A significant reduction of the initial set of requirements to be analyzed in depth
which makes the use of heavy weight analysis methods, such as formal methods,
practicable.

– A formal basis which enables tool-support that eases the execution of our method.4
– Identifying interactions among more than two requirements.

Considering the scalability of our method, we experienced a less than linear increase
in effort for a rising number of requirements regarding the pruning steps. The reason
is that the size of the requirements interaction table depends on the number of require-
ments and the number of domains. Even for a large amount of requirements, in most
cases, the number of involved domains remains stable. And even for a large table, each
decision can be done based on the information of one entry of the table. The table itself
can be generated automatically and tool support is existent or developed right now for
each pruning step. Hence, for the pruning the most effort stems from the modeling of
the requirements themselves (see Table 3). But this is a necessary and unavoidable step
when analyzing requirements in a structured way. By applying our method to a real-life
case study in this paper, we showed the feasibility and usefulness of the method.

For the problem frames approach itself, we experienced a linear increase in ef-
fort for each additional requirement (see Table 3). Thus, the scalability is acceptable.
Note that our method can be applied to any other requirements notation as long as it
provides all involved domains in the environment, the constrains or refers relations be-
tween functional requirements and domains, and the phenomena for the constrains and
refers relations. This also means that we do not use all information given by problem
diagrams. But from our point of view the full problem frames approach is a natural so-
lution for collecting this information as it is system centric, considers the environment
with its domains, and provides a structured method to deal with functional requirements
and refine them in the needed way.

For the future, we plan to add support for considering quality requirements. Addi-
tionally, we strive for extending the tool support. For example, we will implement the
possibility to express the concurrence of the fulfillment of requirements in graphical
way, e.g. using UML interaction overview diagrams. This enables the automatic gen-
eration of sets of parallel requirements. Finally, we plan to work on a method which
will guide the process of interactions resolving and the according modification of the
requirements.

4 Tool-support for generating the initial requirements table is available under
http://www.uml4pf.org/rit/rit.html.
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