
Determining the Probability of Smart Grid Attacks by
Combining Attack Tree and Attack Graph Analysis∗

Kristian Beckers1, Maritta Heisel1, Leanid Krautsevich2,
Fabio Martinelli2, Rene Meis1, and Artsiom Yautsiukhin2

1 paluno – The Ruhr Institute for Software Technology – University of Duisburg-Essen
{firstname.lastname}@paluno.uni-due.de

2 Istituto di Informatica e Telematica – Consiglio Nazionale delle Ricerche
Via G. Moruzzi 1, Pisa 56124, Italy

{firstname.lastname}@iit.cnr.it

Abstract. Smart grid is an intelligent energy distribution system consisting of
multiple information and communication technologies (ICT). One of the chal-
lenges for such complex and heterogeneous system as smart grid is to unite secu-
rity analysis on a high level of abstraction and concrete behavioral attack patterns
that exploit low-level vulnerabilities. We provide a structured method that com-
bines the Si* language, which can express attacker motivations as a goal hierar-
chy, and vulnerability specific attack graphs, which shows every step available
for an attacker. We derive system specific information from the low-level repre-
sentation of the system for a high-level probabilistic analysis.

Keywords: smart grid, threat analysis, attack graphs, attack trees, Si* model.

1 Introduction

The smart grid is an electricity grid (or network) that intelligently manages the behavior
and actions of its participants. The benefit of this network is envisioned to be a more
economic, sustainable, and secure supply of energy. The part of the smart grid called
smart metering system meters the consumption or production of energy and forward
the data to external entities. This data is further used for billing and steering the energy
production. In this paper, we focus on the analysis of security issues in the smart grid to
help developers and administrators to protect their systems against possible attackers.

Running Example In our running example, we focus on attacks on an energy sup-
plier called Huntsville Consortium. The Huntsville Consortium requires information
about the prosumers energy consumption for billing purposes. The Huntsville Consor-
tium acquires this information via an ICT system in the smart grid (see Sect. 4 for
details). The energy supplier is interested in a protection against a certain group of at-
tackers, e.g., network attackers, which are considered the most relevant for the system.

∗
This research was partially supported by the EU FP7 Network of Excellence on Engineering
Secure Future Internet Software Services and Systems (NESSoS, no 256980) and SESAMO,
no 295354 projects.



2 Authors Suppressed Due to Excessive Length

There are high-level and low-level views on attacks execution. The analysis of at-
tacks often starts with determination of high-level attack scenarios [4, 7], e.g., determi-
nation of goals of attackers. There is the Si* framework for high-level describing and
analyzing the system from the viewpoint of actors. The Si* framework provides the
ability to model the actors, their relations and goals, as well as the technology needed
to fulfill the goals. We use the Si* framework [11] for modeling and decomposing at-
tackers goals. The result of decomposing goals is a usual attack tree [12, 18].

In addition to attack tree modeling notation, the Si* framework provides the means
to model a high-level abstraction of a system, which is related to goals in the attack
tree. Moreover, the Si* framework has been created to analyze secure socio-technical
systems by making their capabilities explicit. In particular, the framework allows to
express delegation and transfer of capabilities and the expected behavior of actors (in
our example the energy supplier delegates tasks and capabilities to subcontractors).
Thus, Si* provides the means to describe the context of the attacker goals in addition to
usual description and decomposition of goals. There are several examples of application
of Si* to the analysis of security in general [1, 10, 13] and smart grid in particular [2].

At the low level, an attacker realizes his/her attack plan by exploiting vulnerabilities
existing in a system. High-level attack trees usually do not considered these vulnerabili-
ties. Attack graphs are a low-level description of a system that organizes vulnerabilities
in such a way that denotes the propagation of gained privileges during an attack [6, 14].

Attack graphs are constructed by security personnel, while a real attacker does not
have this complete picture of the existing vulnerabilities. In contrast, the attacker has
only a rough plan (attack tree) and focuses only on the relevant parts of the system for
her plan. Therefore, our contribution proposes to limit the analysis of the attack graph
to the plan of the attacker represented in the attack tree. To achieve this, we propose
to map Si* attack trees to attack graphs and explicitly considers how the attacker may
satisfy his/her high-level goals by exploiting low-level vulnerabilities.

To sum up, we aim at an approach that connects two views on attacks execution in
the smart grid. We provide a mapping between a high-level view on attacks expressed
in the Si* language as an attack tree composed of sub-goals and a low-level view ex-
pressed as an attack graph consisting of vulnerabilities. This mapping helps us to ag-
gregate the information available at a low-level and to analyze attacker plans. We use
this aggregated information for a quantitative analysis, which allows the evaluation of
probabilities of attackers goals to be achieved analyzing vulnerabilities that should be
exploited while pursuing the goal. We suppose that such analysis allows more efficient
investment distribution to achieve a more secure smart grid system.

The paper is organized as follows. Section 2 reviews the related work. Section 3
describes our structured method and Sect. 4 exemplifies the application of our method
to our running example. Section 5 presents conclusions and the future work.

2 Related Work

Several methods were proposed for modeling an attacker during system engineering in
the past. The aim of such methods was to understand the socio-technical view of the
system and find the ways how an attacker may affect the work of the system.



Combining Attack Tree and Attack Graph Analysis 3

Liu et al. [10] presented an i*-based framework for agent-oriented software engi-
neering and requirements analysis. The framework is mainly focused on insider attack-
ers rather than on hackers threatening a system from the outside. Mouratidis et al. [13]
proposed a similar approach using scenarios to analyse a reaction of information sys-
tems on potential security attacks during the development process. The authors consider
a simple single attacker and model the attacker as an i* actor who is trying to achieve
her goal by completing sub-goals. Lamsweerde [19] considered attack scenarios during
the development of services on the application layer. He considered obstacles as anti-
goals for the system and, thus, as goals for the attacker. Asnar and Massacci [1] added
risks related to the goals of a system to the Si* framework. The work has no explicit
focus on the source of the risk (e.g., on attackers).

In this work we focus on goals of the attacker and their decomposition. In fact, this
goal decomposition is similar to the attack tree technique, introduced by B. Schneier
[18]. Since then, the attack trees have been acknowledged as a useful technique for
analysis of attacker behaviour [4, 12]. The usage of Si* from the attacker’s point of
view is similar to the attack tree technique, but allows modelling additional aspects of
possible attacks (e.g., attacker motivation).

An attack graph is a technique for security modelling and analysis of a system which
specifies states, related to the privileges the attacker may have, and transitions between
them. There are two types of attack graphs in the literature. The first type denotes every
state as a set of all privileges the attacker possesses at a certain stage of an attack [6].
The graph in this case is acyclic if we assume that an attacker cannot loose her priv-
ileges. The advantage of this model is that such type of analysis as Markov Decision
Process (MDP) may be applied to it [8, 9, 17]. The main drawback of this model is the
state-explosion problem. The second type was proposed by Noel and Jajodia [14] who
represented nodes as disjoint sets of privileges. An attacker possesses several privileges
at some stage of an attack, “owns” several nodes, i.e., the privileges she has is a union
of the privileges assigned to these nodes. A transition requires “owning” certain nodes
and leads to a new privilege. This model is free from the state explosion problem, but
requires handling cycles and cannot be used for analysis with MDP.

Several authors considered transformation of attack trees into models which allows
analysis of attacker steps as a sequence. Qin and Lee [16] proposed a conversion of at-
tack trees into causal networks representing an order of execution of steps contained in
the tree. Dalton et al. [5] and Piètre-Cambacédès and Boisou [15] proposed a transfor-
mation of attack trees into Petri Nets. The purpose of the transformation to Petri Nets
is to use simulation to determine the likelihood of particular sequences of steps of the
attacker, meaning paths in the attack tree. In contrast, we are proposing a mapping be-
tween an existing attack tree (expressed as a Si* model) and an existing attack graph.
We rely on the precise information and existing probabilities in the attack graph and
map these to the attack tree rather than determining probabilities via simulation.

3 A Method for Combining Attack Trees and Attack Graphs

Our approach is attacker centric, which means that we analyse a system against a cer-
tain type of an attacker (e.g., a network attacker). The attacker achieves high-level goals



4 Authors Suppressed Due to Excessive Length

 e
xt

er
na

l 
in

pu
t

m
et

ho
d

in
pu

t/
ou

tp
ut

1. Describe 
the System

Si* Model of 
the System to 
be Analyzed

2. Draw an 
Attack Tree

3. Annotate 
the Attack Tree 
with Privileges

Si* Attack Tree 
with Relations to 
the System 
Model

Si* Attack Tree 
with Annotated 
Privileges

4. Construct 
the Attack 

Graph

Si* 
Notation

Attack Graph that 
considers the 
Relations between 
the Vulnerabilities

5. Look Up the 
Subgraphs Relevant 
for the Attack Tree 

Nodes

List of Relevant 
Exploits for the 
Attacker

6. Calculate the 
Overall Attack 
Probabilities to 

Achieve the Attack 
Tree Goals

NIST 
Vulnerability 
Database …

openVAS

Si* Attack Tree 
with Attacker 
Actions and 
Probabilities

Fig. 1. An overview of our method for combining attack trees and attack graphs

executing low-level actions. For example, the attacker exploits vulnerabilities in an op-
erating system and database software installed on a server in order to get an access to
billing data. High-level goals of the attacker are usually described as an attack tree while
low-level actions as an attack graph. We aim at finding sequences of low-level actions
that an attacker needs to execute in order to achieve her high-level goals. We formalize
attack trees and attack graphs and then present a formal approach for mapping goals
to sequences of actions. This sequence is exploited latter for a probabilistic analysis
of the attacker’s plan. The analysis could be further exploited in the development of a
defensive strategy against the attacker of the selected type.

Figure 1 shows our security analysis method that is explained further in this section.
In the following we describe the steps of our approach in details.
Step 1. Describe the System Describe the system in a high level of abstraction using
the Si* notation. All stakeholders and electronic systems in the scope of the analysis
shall be in this system description. Ensure that all relations between elements of the
system are a part of the Si* diagram.
Step 2. Draw an Attack Tree Select a type of attacker for the analysis from the types:
network attacker, software attacker, social engineering attacker, or physical attacker
(c.f., [2, 3]). Elicit the main motivations of the attacker using Si* soft goals and a cor-
responding main goal of the attacker. Divide the main goal into subgoals until all leaf
goals of the tree concern a part of the system described in Step 1. Draw a relation from
each leaf goal to a part of the system. The attack tree is the overall plan of the attacker.

The Si* language provides three types of operators for goal decomposition: AND,
OR, and MEANS-END. The AND operator means that all subgoals must be satisfied to
fulfil the target goal. The OR operator means, that at least one subgoal must be satisfied.
The MEANS-END operator points out that the subgoals are required but they are not
enough to satisfy the target goal. We assume that goals are decomposed into subgoals
in a way that it is enough to achieve subgoals in order to fulfil target goal. Thus, we do
not consider the MEANS-END operator. A goal tree of an attacker formed with only
AND and OR operators is a well-known attack tree [18].

In our paper we use a formalization of attack trees described in [12]. The goal tree
of an attacker is T = (N , 7→,n0) where N is a set of goals, n0 ∈ N is a top goal, and



Combining Attack Tree and Attack Graph Analysis 5

7→ is a finite acyclic relation: 7→⊆ N ×M(N ), where M(N ) is a multiset3 of goals N .
Note, that if n 7→M(N ′), then n 6∈ N ′, because T is a tree.
Step 3. Annotate the Attack Tree with Privileges Firstly, annotate each leaf goal of
the tree with the initial (start) privileges that are required to start achieving the goals.
Secondly, determine the resulting (end) privileges that the attacker gains after achieving
each leaf goal.

In this work by a “privilege” we mean access rights, possessed resources, informa-
tion, etc., required for or gained after an execution of an attack. Let P be a set of all
possible privileges in a system and P(P) be a powerset of this set.

We assume there are two functions for getting such sets:

tprivsbgn : N → P(P) (1)
tprivsend : N → P(P) (2)

The function tprivsbgn returns the set of privileges that the attacker needs to begin
achieving a certain goal n ∈ N . The function tprivsend returns the resulting set of
privileges that the attacker possesses after achieving the goal n .
Step 4. Construct the Attack Graph Conduct vulnerability scanning and derive avail-
able actions Act of the attacker using different scanning tools (e.g., openVAS4). This is
a usual procedure before construction of attack graphs although the procedure may be
a tedious and time consuming [6, 14]. Afterwards, construct an attack graph based on
the available actions.

In this work, we follow the model of attack graphs as it is presented in [6]. In order
to build an attack graph a set of possible actions Act is defined using different scanning
tools (e.g., openVAS5).

The result of a scanning is a set of vulnerabilities. Every action of an attacker a ∈
Act is a single exploit of a vulnerability where Act is a set of possible actions. Let also
Act ⊆ P(P)× P(P) be a relation such that:

(Pb ,Pe) ∈ Act .Pb ,Pe ∈ P(P),Pb ⊂ Pe (3)

Where Pb is a minimal set of privileges required to perform the action and Pe is the
resulting set of privileges. In a system, the execution of an action may require some
initial privileges. For example, an attacker needs to get root privileges on a server in
order to run an exploit against a database installed on the server. Please note that we
make the usual for attack graphs assumption that privileges once gained remain until
the end of an attack [6].

In the sequel, we use superscript b to indicate the initial privileges when e specifies
the ending privileges. We also use two special functions: fst and snd , which return the
first and the second element of a Cartesian product, i.e., fst a = Pb and snd a = Pe

for a = (Pb ,Pe). Finally, for the sake of brevity we define the privileges gained during
step ai = (Pb

i ,P
e
i ) ∈ Act as: ∆i = Pe

i \ Pb
i = snd ai \ fst ai .

3 In fact, Si* does not allow using the same subgoals in different parts of the tree, but we still
keep multiset of nodes (instead of a powerset) for compliance with [12].

4 http://www.openvas.org/
5 http://www.openvas.org/



6 Authors Suppressed Due to Excessive Length

Let seq Act be a set of all possible sequences of elements from Act and s ∈ seq Act
be a sequence of actions of an attacker:

s = a1 . . . an . ∀ i ∈ {1, . . . ,n}, ai ∈ Act , (4)

∀ j ∈ {2, . . . ,n}, fst aj ⊆
j−1⋃
k=1

snd ak , snd aj 6⊆
j−1⋃
k=1

snd ak

An i -th element of a sequence s is an action ai = s[i ], i ∈ {1, ...,n}, and n = #s
is the length of the sequence.

Definition 1. Let P be a set of all possible privileges and Act be a set of all possible at-
tacker actions found in the system. Then, the attack graph G ⊆ P(P(P)×Act × P(P))
associated to P and Act is defined as follows:

G := {(Pb , a,Pe) ∈ P(P)×Act × P(P) | (5)

1) fst a ⊆ Pb , 2)Pe = Pb ∪ snd a, 3) snd a \ fst a 6⊆ Pb}

In words, the attack graph is defined as a set of edges, which relate to actions and
allow an attacker to move from one set of privileges to a wider set. A vertex in the attack
graph is a set of privileges. The attack graph defined in Definition 1 is a direct acyclic
graph (DAG).

A path π in an attack graph is a sequence of edges. We may say that the π is also an
attack graph with ordered edges. We define sequential numbers for these edges π[i ] for
all i ∈ {1, . . . ,n} where n = #π. We assume that there is a function Paths(Pb ,Pe)
that returns all paths from Pb to Pe .

In our analysis we are interested in sequences of attacker’s actions that are required
to satisfy some goal of the attacker. We would like to derive these sequences from an
attack graph as a subgraph. However, there is the following issue with the graph in
Definition 1. One action in the real world can refer to multiple edges in the graph. Thus,
the multiple distinct paths can refer to the same sequence of actions in the real world.

To address this issue, we, first, define a relation between a sequence of actions and
a path.

Definition 2. Let Act be a set of actions, s ∈ seq Act be some sequence of these
actions, G be an attack graph, Π(G) be a set of paths π in G . Then, we define the
relation ⇒⊆ seq Act ×Π(G):

⇒:= {(s, π) | s ∈ seq Act , π ∈ Act , #s = #π, (6)

∀ i ∈ {1, . . . ,#π}, π[i ] = (Pb , s[i ],Pe),Pb ,Pe ∈ P(P)}

Second, we would like to show formally that it is enough to consider paths start-
ing from a single vertex with required amount of initial privileges, because paths from
other vertices containing the same amount of privileges will correspond to the same
sequences.



Combining Attack Tree and Attack Graph Analysis 7

Theorem 1. Let s be some sequence of actions and G be an attack graph. Then:

∀ P̃b ∈ P(P) . ∀ i ∈ {1, . . . ,#s}, (7)

1) fst ai \
i−1⋃
j=1

∆j ⊆ P̃b , 2)∆i \
i−1⋃
j=1

∆j 6⊆ P̃b ⇒

∃ π̂ ∈ Paths(P̃b , P̃e) . s ⇒ π̂

Where P̃e = P̃b ∪
#s⋃
i=1

∆i .

Thus, an attacker can execute the sequence where for each next step she either
has the privileges at the beginning or she gains the privileges during earlier steps of
the sequence (condition 1). Moreover, in any step of the sequence the attacker must
gain something she did not have at the beginning and did not gain during earlier steps
(condition 2) .

Proof. We prove by induction that there is a path from some P̃b ∈ P(P) which satisfies
the conditions of Theorem 1. To do that, we need to show, that for every action ak , k ∈
{1, ...,n}, n = #s there is always an edge related to this action. This edge starts
with P̃b

k to which there is a path from P̃b related to the sequence of actions from s
predeceasing ak . We use Definition 1 to prove the existence of such edge.

First, we always can reach P̃0 = P̃b with an empty s .
Second, lets assume, that there is a path π̂k−1 from P̃b to P̃b

k , which relates to a se-
quence sk−1 formed with k −1 first actions of s (i.e., sk−1 ⇒ π̂k−1). Using Equation 5
we prove that there is always an edge (P̃b

k , ak , P̃
b
k+1) ∈ G .

The amount of privileges an attacker gains after executing some action ai is ∆i .
Therefore, the set of privileges P̃b

k is equal to the privileges P̃b plus all privileges gained

after executing k−1 steps, i.e., P̃b
k = P̃b∪

k−1⋃
i=1

∆i . Now according to the first condition

in the theorem, we have:

P̃b
k = P̃b ∪

k−1⋃
i=1

∆i ⊇ (

#s⋃
i=1

fst ai \
i−1⋃
j=1

∆j ) ∪
k−1⋃
i=1

∆i ⊇ (8)

(fst ak \
k−1⋃
j=1

∆j ) ∪
k−1⋃
i=1

∆i = fst ak

Thus, fst ak ⊆ P̃b
k , which is the first conditions in Equation 5.

The second condition of Equation 5 is satisfied because both P̃b
k , snd ak ∈ P(P),

therefore there is always a set of privileges P̃b
k ∪ snd ak ∈ P(P).

According to the second condition of the theorem we see that P̃b
k = P̃b ∪

k−1⋃
i=1

∆i 6⊇

∆k , thus, snd ai \ fst ai 6⊆ Pb
k . Therefore, the third condition of Equation 5 is satisfied

and the edge (P̃b
k , ak , P̃

b
k+1) exists in the graph G .



8 Authors Suppressed Due to Excessive Length

To conclude the step we define an auxiliary function front(P ′) which gives a mini-
mal set of vertices where a set of privileges P ′ is achieved:

Definition 3. Let P ′ ⊆ P be some set of privileges and G be an attack graph. Then,
the function front : P(P)→ P(P(P)) is defined as follows:

front(P ′) := {P f ∈ P(P) | ∃(Pb , a,P f ) ∈ G , P ′ 6⊆ Pb , P ′ ⊆ P f } (9)

According to Theorem 1, the same sequences, that require initial privileges P ′, start
from every vertex in front(P ′).
Step 5. Look Up the Subgraphs Relevant for the Attack Tree Nodes Query the graph
from the set of the initial privileges of a leaf goal to the resulting privileges. Derive the
further subgraphs for each node to refine the high level attacker goals to concrete attack
actions.

Before we start mapping goals from a goal tree with parts of an attack graph we
must make some assumptions. First, we assume that an attack graph and a goal tree
were created separately but for the same system. Therefore, they must correspond to
each other. We assume that the attacker behaves only according to the plan and use
only the privileges specified in the goal tree. Another important aspect of goal tree is
that its leaves should be independent from each other, i.e., the way of execution of one
goal should not affect another one apart of the sequence of actions. Usually, quantitative
analysis of attack trees makes the same assumption (see for example [18]).

In particular, these assumptions mean the following.

– We ignore the paths which require more privileges than specified by the starting
privileges assigned to a goal (assumption of correspondence).

– The actions which do not lead the attacker to his goal are possible but they should
not affect our analysis (assumption of “useless” actions).

– The attacker heads towards the states where only the target privileges are satisfied
(plus some irrelevant privileges). In other words, no privileges to be obtained on
the later steps should be gained at early ones (assumption of independence).

The later assumption, which follows from the independence of goals, shows that we
have to consider every goal in the context of the whole tree.

Let us have a complete attack graph G for a system and a goal tree T of an attacker.
And let us aim at finding a subgraph corresponding to a leaf goal n from the tree. In
fact, we are interested only in a part of the complete attack graph. The complete graph
created in Definition 1 is usually huge and most parts are not considered in the plan of
the attacker (the tree) and, thus, are not relevant for us. Therefore, we purge the graph as
most attack graph techniques do (e.g., [6]). We consider only the part of the graph which
can be potentially exploited by the attacker. Thus, we consider an attacker with initial
set of privileges P i and the target set of privileges P t . Therefore, we are interested only
in the part of G which is built by all paths from front(P i) to all nodes from front(P t).
This selection does not affect the following discussion, but reduces the computational
power required to implement our method.

In order to find the subgraph Gn which realizes the leaf goal n from the tree we need
to know the initial privileges Pb of an attacker and final privileges Pe corresponding to



Combining Attack Tree and Attack Graph Analysis 9

the goal. According to Equations 1 and 2:

Pb = tprivsbgn(n) (10)
Pe = tprivsend(n) (11)

Next we look for the set of vertices (sets of privileges) P fb in the graph from which
the attacker may start achieving the goal n and vertices P fe where this goal is achieved.

First, we select all possible sequences of actions which lead an attacker from starting
privileges to end privileges and which require only Pb as starting set of privileges.

S b := {s ∈ seq Act | ∃π ∈ Paths(P̃b , P̃e), P̃b ∈ front(Pb), (12)

P̃e ∈ front(Pe), s ⇒ π, ∀ i ∈ {1, . . . ,#s}, fst ai ⊆ Pb ∪
i−1⋃
j=1

∆j}

We need also a set of sequences of actions from end privileges to target privileges,
since our tree must be independent from the perspective of future steps.

S e := {s : seq Act | ∃π ∈ Paths(P̃e , P̃ t), P̃e ∈ front(Pe), (13)

P̃ t ∈ front(P t), s ⇒ π, ∀ i ∈ {1, . . . ,#s}, fst ai ⊆ Pe ∪
i−1⋃
j=1

∆j}

Second, we are able to filter fronts for Pb and Pe to remove the sets of privileges,
which already have the privileges scheduled to be obtained on the later steps (assump-
tion of independence).

P fb := {P fb ∈ P(P) | P fb ∈ front(Pb), ∀ s ∈ S b , (14)

∀ i ∈ {1, . . . ,#s}, ∆i 6⊆ P fb}
P fe := {P fe ∈ P(P) | P fe ∈ front(Pe), ∀ s ∈ S e , (15)

∀ i ∈ {1, . . . ,#s}, ∆i 6⊆ P fe}

The subgraph Gn corresponding to the goal n consists of paths from vertices in P fb

to vertices in P fe . However we may consider only one arbitrary vertex P fb ∈ P fb and
look for paths to all P fe ∈ P fe since all sequences of actions corresponding to paths
from other vertices in P fb are the same due to Theorem 1:

Gn =
⋃

∀P fe∈P fe

{π ∈ Π(G) | π ∈ Paths(P fb ,P fe), (16)

@(P ′, a,P ′′) ∈ π, P ′,P ′′ ∈ Pb
f , P

′,P ′′ ∈ P fe ,

∃ s ∈ S b , s ⇒ π}

Equation 16 gives us a subgraph formed with an aggregated set of paths from Pb
f

to Pe
f (first line), which do not contain any other nodes from these sets, apart of Pb

f



10 Authors Suppressed Due to Excessive Length

and Pe
f (second line), and which do not use additional privileges that are gained on the

further steps (third line). The attacker will follow one of the paths specified in Gn in
order to achieve the goal n .

We would like to make a small remark. Some goals in a goal tree state what the
attacker should achieve (e.g., “get login and password”) when other goals also define
how to achieve the goal (e.g., “eavesdrop login and password” or “bribe an employee
to get login and password”). The goals of the second type restrict the ways for getting
to the desired state. In order to address this restriction someone can define a function
which assigns a set of essential actions for every goal in a goal tree:

esseqs : N → P(seq Act) (17)

This function should be further used to filter the set of sequences S b in order to obtain
only sequences relevant to the way of achieving the goal.
Step 6. Calculate the Overall Attack Probabilities to Achieve the Attack Tree Goals
Analyze obtained subgraphs and calculate the probabilities of achieving corresponding
subgoals. Annotate the attack tree with the probabilities. Derive the overall probability
for the attacker to achieve the main goal.

To find the probability of successful achievement of a goal n (denoted as pr[n]) we
need to find the probability to get from an initial vertex Pb

f of Gn to one of the target
vertices from Pe

f (see Equation 15). We assume that an attacker may fail to exploit a
vulnerability (e.g., when it is already patched or it is too hard) and, thus, for every action
we have a probability of successful exploitation, denoted as pr[a].

We consider a greedy attacker who would like to execute the attack with the highest
probability of success. Thus, the attacker tries the most probable path to achieve the
goal. Since the attacker may fail to make an action and thus, to complete the most
probable path, the attacker will try an alternative path, and so on until she reaches her
goal (or fail all paths). We assume, that we have an adapted algorithm of Edsger Dijkstra
for a search of the shortest path Pb

f to Pe
f , called here as shortestPath.

Although, one action cannot be used in one attack several times, the same action
may be used in different attacks. Thus, if an attacker successfully performs an action
during execution of one attack but then switches to another attack, then there is no need
to perform the same step again. We assign the probability of all edges referring to the
successfully performed action to one. Once failed an action cannot be used in other
attacks and we change its probability to zero. Algorithm 1 shows a recursive function
computeProbability which consists of two parts. The first part contains a search for a
shortest path (line 2), computation of the probability of successful exploitation of the
path (line 4), computation of the probability to reach a certain amount of privileges
(line 5), and changing of the probability associated with an action to 1 (as successfully
performed).

The second part follows the path backwards assuming that an action failed to suc-
ceed. In this case the attacker should find an alternative path. Thus, she is going back
to the last set of privileges, where alternatives are possible, called a fork (step 8). Note,
that only the nearest fork should be considered, since it contains all privileges of the
vertexes down in the path, and thus all possible alternatives for the considered failure
are rooted in this vertex. Since the attacker considers alternatives only in case of a fail-
ure of the shortest path, then we compute the probability of such failure (line 10). Then



Combining Attack Tree and Attack Graph Analysis 11

Input : Ps – starting vulnerability
Output: pr[n] – probability of successful exploitation
Global : G – associated graph

Pe – set of target privileges
Data: pr[P ] – probability to reach a certain vertex
pr[a] – probability to perform action a successfully
prfail – probability to fail at a certain step
P f – a fork, i.e., a vulnerability with several outgoing edges
Gp – a shortest path

1 function computeProbability(Ps)
2 pr[n] = 1;
3 Find Gp = shortestPath(Ps ,Pe );
4 for ∀(P ′, a,P ′′) ∈ Gp forward do
5 pr[n] = pr[n] · pr[a];
6 pr[P ′′] = pr[n];
7 pr[a] = 1;
8 for ∀(P ′, a,P ′′) ∈ Gp backward do
9 Find nearest fork at P f or exit;

10 Restore pr[a], where a ⇒ x̃ ;
11 prfail = pr[P ′] · (1− pr[a]);
12 pr[a] = 0;
13 pr[n] = pr[n] + prfail ·computeProbability(P f );
14 Restore pr[a];
15 return pr[n];

Algorithm 1: Computation of probabilities for a goal

we put to 0 the probability of the action which is considered as failed. After that, we add
the probability to re-consider the course of action to the overall probability (line 12).
Finally, we restore the initial value of the probability of the considered action (since in
the next round of the cycle we will assume another action to fail).

When the probabilities for leaf goals are computed and assigned, we can find the set
of leaf goals, which lead an attacker to target goal with highest probability of success.
The countermeasures should be applied against the vulnerabilities from the subgraphs
corresponding to these leaf goals.

4 Application of our Method to a Smart Grid Scenario

We illustrate the application of our method to a smart grid example in the following.
Step 1. Describe the System. Figure 2 (upper part) presents the part of an Si* dia-
gram of our smart grid scenario, which we would like to use as an illustrative example.
The actor Huntsville Consortium plays the role of the Energy Supplier (circles in the
Fig. 2). The Huntsville Consortium has the main goal Sell Energy for which the sub-
goals Collect Prosumer Data and Calculate Bill need to be fulfilled (rounded rectan-
gles in Figure 2). Various resources (represented as rectangles) are required for achiev-
ing these goals, Prosumer Information is required for Collect Prosumer Data goal and
Aggregated Billing Data is required for the goal Calculate Bill. Another goal of the
consortium is to Provide Grid Services, which also can be broken down into the three
subgoals: Manage ESS, Manage EMS, and Manage Smart Meters.

The energy supplier server (ESS) collects metering data from the smart meters, as
well as stores and aggregates this data. The Manage ESS goal requires obviously an



12 Authors Suppressed Due to Excessive Length

ESS. The ESS uses a specific ESS Network Gateway to communicate with the smart
meters and authorized external entities, e.g., the Billing Operator uses the Billing Op-
erator’s Laptop to get billing data, which are stored in the ESS Database (DB). The
Billing Operator requires this data to fulfill the goal Calculate Bill, which is also dele-
gate from the Huntsville Consortium.

The home energy management system (EMS) controls the smart appliances in the
smart home. It is a computer system that visualizes the prosumers energy consumption
and support the selection of offers for buying and selling energy. The EMS relies upon
a Network Gateway to communicate with authorized external parties. The goal Man-
age EMS is delegated to the Meter Point Operator, who conducts the maintenance for
the EMS. The Meter Point Operator has also been delegated the goal Manage Smart
Meters, meaning he/she conducts the maintenance for Smart Meters. The maintenance
can be conducted partially from a remote location, which makes this goal also reliant
on the Network Gateway. We focus on attacks on the energy supplier, i.e., Huntsville
Consortium. Note that we include the entire scope (large oval with all the actor’s goals
inside) of the actor Huntsville Consortium. In particular, goals that are delegated to
other actors, as well. For the sake of brevity, we show only the threats involving the
goal Manage ESS.
Step 2. Draw an Attack Tree. We show exemplary our threat analysis for a network
attacker (the discussion on other types of attackers and their intentions could be found
in [2, 3]). The network attacker is of interest for this scenario, because the smart home
scenario relies on a secure ICT network. The grid is not usable anymore when data
cannot be transmitted over it. Figure 2 (bottom part) describes the possible plan of a
network attacker as an attack tree in Si*. The network attacker (see Fig. 2) is motivated
by Financial Gain, Self Interest, and Curiosity. Driven by these motivations the attacker
forms the goal to Change Metering Data. This goal represents a threat that can harm
Aggregated Billing Data, Prosumer Information and others. There are different ways to
achieve this goal. For example, the attacker may Change Metering Data during Trans-
mission or Get Local Access to ESS, Gain Access to Database Locally and directly
change data in the ESS database.

The attack tree is designed with the scope of the analysis in mind, meaning the
scope of the Huntsville Consortium (Fig. 2 top part). This is reflected by the relations
from each leaf goal to a resource in the scope. For example, the leaf goal Gain Access
to Database Locally has a relation to the resource ESS Database. This resource is ex-
ploited by the attacker to satisfy the leaf goal. It represents an entry point of the attacker
into the scope.

Hence, our Si* diagram contains: the scope of the analysis, the motivations of the
attacker, the subsequent goals, and resulting entry points of the attacker from leaf goals
to the scope. In the future, we will use all these information to check of our threat
analysis for completeness with validation conditions. For example, we can check if all
leaf goals exploit at least one resource in the scope. In addition, we could check if there
are resources in the scope that do not represent entry points.

Remember that this diagram (Fig. 2) represents the high-level plan of the attacker.
Later we enrich the information in the plan with low-level details existing in the system
related attack graph (Fig. 3).



Combining Attack Tree and Attack Graph Analysis 13

Network 
Attacker

Financial 
Gain

Self Interest

Curiosity

Change 
Metering 

Data

+
+

+

Change 
Metering 

Data during 
Transmission

Change 
Metering 

Data in ESS

OR

Compromise 
DB through 

Server
Compromise 
DB remotely

OR

Gain Access 
to DB 

Remotely

Get Access to 
Billing Operator’s 

Laptop

AND

Get Local 
Access to 

ESS
Gain Access 
to DB Locally

AND

Energy 
Supplier

Huntsville 
Consortium

Sell Energy

Collect 
Prosumer 

Data
Calculate Bill

AND

Aggregated 
Billing Data

Prosumer 
Information

Manage ESS

Provide Grid 
Services

Manage EMS

Manage 
Smart MetersAND

ESS Network 
Gateway

ESS

ESS 
Database

Network 
Gateway

Play

Dp
De

Dp

De

Dp De

Dp De

Billing 
Operator

Meter Point 
Operator

Billing 
Operator’s 

Laptop

Fig. 2. Si* model for a network attacker in our smart grid example

Step 3. Annotate the Attack Tree with Privileges. We show the privileges relevant
for our running example in Tab. 1. The table lists the initial and resulting privileges for
each leaf goal in the tree. The initial privileges are the ones required to start a sequence
of actions to achieve the goal. The resulting privileges contain the gained privileges by
the sequence of actions in addition to the initial privileges.
Step 4. Construct the Attack Graph. The Billing Operator has an infrastructure in
order to achieve the goal Manage ESS. We assume that the infrastructure consists of a
laptop and a workstation that are used by an administrator in order to manage the ESS.



14 Authors Suppressed Due to Excessive Length

Table 1. Available privileges considered in our running example

Goal name Initial privileges Resulting privileges
Change data during the transmission ∅ {ruggedcom}
Get access to billing operator’s laptop ∅ {laptop}
Gain access to the DB remotely {laptop} {laptop,mysql}
Get local access to ESS ∅ {server}
Gain access to the DB locally {server} {server,mysql}

Table 2. Actions available for the attacker in our example

CVE code Software Initial privileges Resulting privileges
CVE-2011-3108 Chrome browser ∅ {laptop}
CVE-2009-4781 TUKEVA Pass.Man. {laptop} {laptop, database}
CVE-2012-2369 Pidgin ∅ {workstation}
CVE-2011-4862 FreeBSD {workstation} {workstation, server}
CVE-2012-0173 Windows {workstation} {workstation, laptop}
CVE-2011-4913 Linux {laptop} {workstation, laptop}
CVE-2013-6926 Rugged OS ∅ {ruggedcom}
CVE-2012-0114 MySQL {server} {server , database}

We assume that the laptop has Windows OS installed and the workstation has Linux OS
installed. The laptop and the workstation are connected by VPN. There is the ESS itself
with a database server installed. The server runs FreeBSD OS and the database server is
Oracle MySQL. The server and the workstation are connected by LAN. Clients access
the server via network that is based on the RuggedCom equipment with RuggedCom
OS installed.

The vulnerabilities related to the infrastructure are listed in Tab. 2. The table con-
tains CVE vulnerability codes, software that contains a vulnerability, and sets of initial
and resulting privileges for each vulnerability. The privilege values mean the root ac-
cess to the specified network node. These vulnerabilities are obtained from the NIST
Vulnerability Database6.

An attack graph related to the infrastructure is presented in Fig. 3 and the list of
privileges for each vertex is presented in Tab. 3. The edges of the graph are labeled by
CVE vulnerability codes from Tab. 2. In this graph we show only one edge related to the
action CVE-2013-6926 for simplicity’s sake. We use the names of vertices from Tab. 3
such as v1 and v3 instead of the full set of privileges, i.e. such that {workstation} and
{workstation, server , database}.
Step 5. Look Up the Subgraphs relevant for the Attack Tree Nodes. The main priv-
ilege to achieve is to have possibility to modify metering data, which could be seen as a
subset of vertices where root access to RuggedCom or database (e.g., to reach v3, v5, v8,
v9 or v10). There are three alternative ways to achieve the main goal for the attacker (see
corresponding subgoals on Fig. 2). The first one is to fulfill the subgoal Change Meter-
ing Data during Transmission (ntran ) compromising RuggedCom equipment. The goal
in this case specifies the way, how the goal should be achieved, i.e., “during transmis-
sion”, and esseqs(ntran) = {〈CVE-2013-6926〉}. The mapping is straightforward: one
goal to a subgraph Gntran = {(v0,CVE-2013-6926, v8)}.

6 NIST Vulnerability Database: http://nvd.nist.gov/



Combining Attack Tree and Attack Graph Analysis 15

v0

v8
CVE-2013-6926

v1
CVE-2012-2369

v6

CVE-2011-3108

v2CVE-2011-4862

v7

CVE-2011-3108

CVE-2011-4913

CVE-2012-2369

v9

CVE-2009-4781

v3CVE-2012-0114

v4

CVE-2012-0173

CVE-2012-3108

CVE-2012-4862

v10

CVE-2009-4781

v5
CVE-2012-0114

CVE-2009-4781

Fig. 3. A part of the attack graph for our smart grid example

Other ways require either getting root access to the server or to a workstation and
then getting root access to the database. Consider Get Local Access to ESS goal (nESS ).
In our example, tprivsbgn(nESS ) = ∅ and tprivsend(nESS ) = {freebsd} and:

esseqs(nESS ) = {〈CVE-2012-2369,CVE-2011-4862〉, (18)
〈CVE-2012-2369,CVE-2011-3108,CVE-2011-4862〉,
〈CVE-2011-3108,CVE-2011-4913,CVE-2012-4862〉,
〈CVE-2011-3108,CVE-2011-2369,CVE-2012-4862〉}

Thus, the attacker should move from v0 to v2 or v4 and, by Equation 16, GnESS
includes

vertices v0, v1, v2, v4, v6, v7 and the edges between them, apart of CVE-2012-0173 and
CVE-2012-3108 which are eliminated by the second line of Equation 16. We see that
the next subgoal Gain Access to DB locally (nDBl ) can be achieved by the same action
CVE-2012-0114 from v2 and v4, when vulnerability CVE-2009-4781 is not considered
in this case, since the attacker decided to get Remote Access to ESS using the privileges
from the earlier steps. I.e.:

GnDBl
= {(v2,CVE-2012-0114, v3), (v4,CVE-2012-0114, v5)} (19)

Table 3. Privileges corresponding to the nodes of the attack graph

Node Set of privileges
v0 ∅
v1 {workstation}
v2 {workstation, server}
v3 {workstation, server , database}
v4 {workstation, server , laptop}
v5 {workstation, server , laptop, database}
v6 {laptop}
v7 {laptop,workstation}
v8 {ruggedcom}
v9 {laptop, database}
v10 {laptop,workstation, database}



16 Authors Suppressed Due to Excessive Length

which are equivalent from the point of view of applied actions. Thus, their probability is
the same. Similar reasoning could be applied to the third alternative, which leads from
v0 to v4, v6 or v7 and then CVE-2009-4781 is the last action for Gain Access to DB
remotely.
Step 6. Calculate the Overall Attack Probabilities to Achieve the Attack Tree Goals.
The shortest path in GnESS

is 〈CVE-2012-2369,CVE-2011-4862〉. If the probabilities
of the actions are pr1 = 0.6 and pr2 = 0.9, then the overall probability to execute only
this path is 0.54. Note that, in case CVE-2011-4862 is patched, there is no way for the
attacker to achieve his goal (since the same vulnerability must be used to follow from
v7 to v4). In case of CVE-2012-2369 patched, there is a path to achieve the goal and the
attacker should add its probability (let it be 0.36) to the overall computation. Thus, the
attacker first tries CVE-2012-2369, fails, and then she follows the only available path.
The probability to Get Access to ESS is (1− 0.6) ∗ 0.36 + 0.54 = 0.684.

5 Conclusions

We contributed a structured method for threat analysis that concerns the mapping of
the plan of the attacker (represented as an attack tree) to concrete vulnerabilities of a
system (documented in an attack graph). We showed that it is possible to extract a part
of a complex graph, which relates to a specific goal in the attack tree. We found that the
complexity of the analysis of attack graphs can be significantly reduced because for a
specific attacker we can consider only a part of the whole attack graph. We proposed an
algorithm that computes the overall probability of success of an attacker on the basis of
the mapping. Finally, we illustrated our method on a smart grid example.

In the future, we will consider in detail how the method can be used to identify the
most appropriate countermeasures. Furthermore, we plan to identify further attacker
motivations and provide a more extensive application of our approach in collaboration
with industrial partners. Finally, we are planing to refine our method for creating an ISO
27001 compliant Information Security Management System.

References

1. Y. Asnar and F. Massacci. A method for security governance, risk, and compliance (grc): A
goal-process approach. In FOSAD Tutorial Lectures, pages 152–184. Springer, 2011.

2. K. Beckers. Goal-based establishment of an information security management system com-
pliant to iso 27001. In SOFSEM, LNCS 8327, pages 102–113. Springer, 2014.

3. K. Beckers, I. Côté, D. Hatebur, S. Faßbender, and M. Heisel. Common Criteria CompliAnt
Software Development (CC-CASD). In Proceedings of 28th SAC, pages 937–943. ACM,
2013.

4. S. Bistarelli, F. Fioravanti, and P. Peretti. Defense trees for economic evaluation of security
investments. In Proceedings of the 1st ARES, pages 416–423, 2006. IEEE.

5. G. C. Dalton II, J. M. Colombi, R. F. Mills, and R. A. Raines. Analyzing attack trees using
generalized stochastic petri nets. In Proceedings of the IAS, pages 116–123. IEEE, 2006.

6. S. Jha, O. Sheyner, and J. Wing. Two formal analyses of attack graphs. In Proceedings of
the 2002 IEEE CSF, page 49, 2002. IEEE.



Combining Attack Tree and Attack Graph Analysis 17

7. J. Jürjens. Using UMLsec and goal trees for secure systems development. In Proceedings of
the 2002 SAC, pages 1026–1030. ACM Press, 2002.

8. L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Towards modelling adaptive attacker’s
behaviour. In Proceedings of 5th FPS, pages 357–364. Springer, 2012.

9. E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke. Model-based security
metrics using adversary view security evaluation (advise). In Proceedings of the 8th QEST,
pages 191–200. IEEE, 2011.

10. L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social
setting. In Proceedings of the 11th RE, pages 151–161. IEEE, 2003.

11. F. Massacci, J. Mylopoulos, and N. Zannone. Security requirements engineering: The si*
modeling language and the secure tropos methodology. In Z. Ras and L.-S. Tsay, editors,
Advances in Intelligent Information Systems, volume 265 of Studies in Computational Intel-
ligence, pages 147–174. Springer, 2010.

12. S. Mauw and M. Oostdijk. Foundations of attack trees. In Proceedings of the 8th ICISC,
Lecture Notes in Computer Science. Springer-Verlag, 2005.

13. H. Mouratidis, P. Giorgini, and G. Manson. Using security attack scenarios to analyse secu-
rity during information systems design. In Proceedings of ICEIS, pages 10–17, 2004.

14. S. Noel and S. Jajodia. Managing attack graph complexity through visual hierarchical ag-
gregation. In Proceedings of the VizSEC/DMSEC, 2004.

15. L. Piètre-Cambacédès and M. Bouissou. Beyond attack trees: Dynamic security modeling
with boolean logic driven markov processes (bdmp). In Proceedings of the EDCC, pages
199–208. IEEE, 2010.

16. X. Qin and W. Lee. Attack plan recognition and prediction using causal networks. In Pro-
ceedings of the 20th ACSAC, pages 370–379. IEEE, 2004.

17. C. Sarraute, G. Richarte, and J. L. Obes. An algorithm to find optimal attack paths in nonde-
terministic scenarios. In Proceedings of the 4th AISec, pages 71–80. ACM, 2011.

18. B. Schneier. Attack trees: Modelling security threats. Dr. Dobb’s journal, December 1999.
19. A. van Lamsweerde. Elaborating security requirements by construction of intentional anti-

models. In Proceedings of the 26th ICSE, pages 148–157. IEEE, 2004.


