
A Structured Approach for Eliciting, Modeling, and
Using Quality-Related Domain Knowledge

Azadeh Alebrahim, Maritta Heisel, Rene Meis

Paluno – The Ruhr Institute for Software Technology, Germany
{firstname.lastname}@paluno.uni-due.de

Abstract. In requirements engineering, properties of the environment and as-
sumptions about it, called domain knowledge, need to be captured in addition to
exploring the requirements. Despite the recognition of the significance of cap-
turing and using the required domain knowledge, it might be missing, left im-
plicit, or be captured inadequately during the software development. This re-
sults in an incorrect specification. Moreover, the software might fail to achieve
its quality objectives because of ignored required constraints and assumptions.
In order to analyze software quality properly, we propose a structured approach
for eliciting, modeling, and using domain knowledge. We investigate what kind
of quality-related domain knowledge is required for the early phases of quality-
driven software development and how such domain knowledge can be systemati-
cally elicited and explicitly modeled to be used for the analysis of quality require-
ments. Our method aims at improving the quality of the requirements engineering
process by facilitating the capturing and using of implicit domain knowledge.

Keywords: Quality requirements, domain knowledge, problem frames, knowl-
edge management, requirements engineering

1 Introduction

The system-to-be comprises the software to be built and its surrounding environment
structured as a collection of domains such as people, devices, and existing software [1].
The environment represents the part of the real world into which the software will be
integrated. Hence, in requirements engineering, properties of the domains of the envi-
ronment and assumptions about them, called domain knowledge, need to be captured
in addition to exploring the requirements [2, 3]. Note that we do not mean application
domain under the term domain, but entities in the environment that are relevant.

Despite the recognition of the significance of capturing the required domain knowl-
edge, it might be missing, left implicit, or be captured inadequately during the software
development process [1]. Domain knowledge is often undocumented and tacit in the
minds of the people involved in the process of software development [4]. The common
ad-hoc nature of gaining domain knowledge is error-prone. Hooks and Farry [5] report
on a project where 49% of requirements errors were due to incorrect domain knowl-
edge. Capturing inadequate assumptions about the environment of the flight guidance
software led to the crash of a Boeing 757 in Colombia in December 1995 [6].

Several requirements engineering methods exist, e.g., for security. Fabian et al. [7]
conclude in their survey about these methods that it is not yet state of the art to consider
domain knowledge. The software development process involves knowledge-intensive



activities [8]. It is an open research question of how to elicit domain knowledge as
part of the software development process correctly for effective requirement engineer-
ing [9]. Lamsweerde [1] and Jackson [10] underline the importance of eliciting domain
knowledge in addition to the elicitation of requirements to obtain correct specifications.
However, there is sparse support in capturing and modeling domain knowledge.

In this paper, we propose a method for capturing implicit and quality-relevant do-
main knowledge, and making it explicit for reuse in a systematic manner during soft-
ware development. Our approach consists of a meta-process and an object-process
which are structured in the steps eliciting, modeling, and using domain knowledge. Both
processes are independent from any specific tool or notation. This facilitates the integra-
tion of the processes into requirements analysis and design processes. The meta-process
is applied for a given software quality together with a quality analysis method only once
to define how to elicit, model, and use the relevant domain knowledge for the specific
software quality and the given analysis method. Results of previous applications of the
meta-process for the same software quality together with a different analysis method
can be reused. The object-process is applied for a given software project. The domain
knowledge is elicited, modeled, and used using the principles that are output of the
meta-process for the software quality and quality analysis method under consideration.

We illustrate the application of the meta-process using three quality analysis meth-
ods that were already developed for eliciting, modeling and using quality-relevant do-
main knowledge. These methods are the Quality Requirements Optimization (QuaRO 1)
method [11], which analyzes and detects interactions between security and performance
requirements based on pairwise comparisons, the Problem-Oriented Performance Re-
quirements Analysis (POPeRA) method [12], which identifies and analyzes potential
performance problems, and the Problem-based Privacy Analysis (ProPAn) method [13,
14], which identifies privacy threats on the requirements analysis level. We will illus-
trate the object-process using a smart grid scenario as given application and our three
methods as output of the meta-process.

The benefit of our method lies in improving the quality of the requirements engi-
neering process. This is achieved by providing a systematic method that facilitates the
capturing and modeling of implicit domain knowledge as reusable artifacts.

In the following, Sect. 2 introduces the smart grid scenario and Sect. 3 the back-
ground of our work. Sections 4 and 5 describe the meta- and object-process, which are
our main contributions. Sect. 6 discusses related work, and Sect. 7 concludes.

2 Introducing the Smart Grid Application

In this section, we introduce the real-life case study “smart grids” adapted from the
NESSoS project 2. To use energy in an optimal way, smart grids make it possible to
couple the generation, distribution, storage, and consumption of energy. Smart grids use
information and communication technology (ICT), which allows for financial, informa-
tional, and electrical transactions. For the smart grid, different quality requirements have

1The QuaRO method is a comprehensive method for optimizing requirements according to
stakeholders’ goals. In this paper, we only focus on the part concerning requirements interaction
detection.

2http://www.nessos-project.eu/



Fig. 1. The context of a smart grid system based on [15]

Table 1. An excerpt of relevant terms for the smart grid

Gateway represents the central communication unit in a smart metering system. It is responsible for collecting,
processing, storing, and communicating meter data.

Meter data refers to readings measured by the meter regarding consumption or production of a certain commodity.
Meter represents the device that measures the consumption or production of a certain commodity and sends it to

the gateway.
Authorized
external
entity

could be a human or IT unit that communicates with the gateway from outside the gateway boundaries
through a WAN. The roles defined as external entities that interact with the gateway and the meter are, for
example, consumer, grid Operator, supplier, gateway operator, a gateway administrator.

WAN (Wide Area Network) provides the communication network that connects the gateway to the outside world.
Consumer refers to the end user or producer of commodities (electricity, gas, water, or heat).
CLS (Controllable Local Systems) are systems containing IT-components in the Home Area Network (HAN)

of the consumer that do not belong to the Smart Metering System but may use the Gateway for dedicated
communication purposes.

to be taken into account. Detailed information about the energy consumption of the con-
sumers can reveal privacy-sensitive data about the persons staying in a house. Hence,
we are concerned with privacy issues. A smart grid involves a wide range of data that
should be treated in a secure way. Additionally, introducing new data interfaces to the
grid (smart meters, collectors, and other smart devices) provides new entry points for
attackers. Therefore, special attention should be paid to security concerns. The number
of smart devices to be managed has a deep impact on the performance of the whole
system. This makes performance of smart grids an important issue. Figure 1 shows the
context of a smart grid system based on a protection profile that was issued by the Bun-
desamt für Sicherheit in der Informationstechnik [15]. First, define some terms specific
to the smart grid domain taken from the protection profile represented in Table 1.

Due to space limitations, we focus in this paper on the functional requirement “The
smart meter gateway shall submit processed meter data to authorized external entities.
(RQ4)”, security requirements “Integrity (RQ10)/Confidentiality (RQ11)/Authenticity
(RQ12) of data transferred in the WAN shall be protected”, performance requirement
“The time to retrieve meter data from the smart meter and publish it through WAN shall
be less than 5 seconds. (RQ24)”, and privacy requirement “Privacy of the consumer
data shall be protected while the data is transferred in and from the smart metering
system. (RQ17)”. We derived these requirements from the protection profile [15].

3 Problem-Oriented Requirements Engineering

This section outlines basic concepts of the problem frames approach proposed by Michael
Jackson [10]. We illustrate our process using quality analysis methods that are based on



problem frames as requirements engineering method. Note that our proposed process
can also be applied using any other requirements engineering approach.

Requirements analysis with problem frames proceeds as follows: to understand the
problem, the environment in which the machine (i.e., software to be built) will operate
must be described first. To this end, we set up a context diagram consisting of machines,
domains and interfaces. Domains represent parts of the environment which are relevant
for the problem at hand. Then, the problem is decomposed into simple subproblems that
fit to a problem frame. Problem frames are patterns used to understand, describe, and
analyze software development problems. An instantiated problem frame is a problem
diagram which basically consists of a submachine of the machine given in the context
diagram, relevant domains, interfaces between them, and a requirement. The task is to
construct a (sub-)machine that improves the behavior of the environment (in which it is
integrated) in accordance with the requirement.

We describe problem frames using UML class diagrams [16], extended by a specific
UML profile for problem frames (UML4PF) proposed by Hatebur and Heisel [17]. A
class with the stereotype �machine� represents the software to be developed. Jack-
son distinguishes the domain types biddable domains (represented by the stereotype
�BiddableDomain�) that are usually people, causal domains (�CausalDomain�)
that comply with some physical laws, and lexical domains (�LexicalDomain�)
that are data representations. To describe the problem context, a connection domain
(�ConnectionDomain�) between two other domains may be necessary. Connec-
tion domains establish a connection between other domains by means of technical
devices. Figure 2 shows the problem diagram for the functional requirement RQ4. It
describes that smart meter gateway submits meter data to an authorized external en-
tity. The submachine SubmitMD is one part of the smart meter gateway. It sends the
MeterData through the causal domain WAN to the biddable domain AuthorizedExter-
nalEntity. When we state a requirement we want to change something in the world with
the machine to be developed. Therefore, each requirement expressed by the stereotype
�requirement� constrains at least one domain. This is expressed by a dependency
from the requirement to a domain with the stereotype �constrains�. A requirement
may refer to several domains in the environment of the machine. This is expressed by a
dependency from the requirement to these domains with the stereotype �refersTo�.
The requirement RQ4 constrains the domain WAN, and it refers to the domains Meter-
Data and AuthorizedExternalEntity.

In the original problem frames approach, the focus is on functional requirements.
We extended the UML-based problem frames approach by providing a way to attach
quality requirements to problem diagrams [18]. We represent quality requirements as
annotations in problem diagrams. Since UML lacks notations to specify and model
quality requirements, we use specific UML profiles to add annotations to the UML
models. We use a UML profile for dependability [17] to annotate problem diagrams
with security requirements. For example, we apply the stereotypes �integrity�,
�confidentiality�, and �authenticity� to represent integrity, confidential-
ity, and authenticity requirements as it is illustrated in Figure 2. To annotate privacy
requirements, we use the privacy profile [13] that enables us to state that the privacy
of a stakeholder shall be preserved against a counterstakeholder using the stereotype
�privacyRequirement�. To provide support for annotating problem descriptions
with performance requirements, we use the UML profile MARTE (Modeling and Anal-



Fig. 2. Problem Diagram for submitting meter data to external entities

ysis of Real-time and Embedded Systems) [19]. We annotate each performance require-
ment with the stereotype �gaStep� to express a response time requirement. In the
problem diagram for submitting meter readings (Figure 2), the functional requirement
RQ4 is complemented by the following quality requirements: RQ10 (integrity), RQ11
(confidentiality), RQ12 (authenticity), RQ17 (privacy), and RQ24 (performance).

4 Structured Meta-Process for Eliciting, Modeling, and Using
Domain Knowledge

This section describes the meta-process composed of three steps for eliciting, model-
ing, and using domain knowledge for a specific software quality shown in Figure 3.
The starting point is the domain expertise that exists for the software quality at hand.
The meta-process is conduted for a specific software quality optionally together with a
quality analysis method. Once we have elicited and modeled domain knowledge for a
specific software quality in steps one and two, we use it in step three by extending the
given quality analysis method or defining a new one that uses the elicited and modeled
domain knowledge for analyzing quality requirements. The modularity of the meta-
process allows us to reuse the outputs from previous applications of the meta-process
for a meta-process that considers the same software quality. We consider three methods



ex
te

rn
al

in
pu

t
ou

tp
ut

in
pu

t /

Domain
Expertise

Method
Description

Step 2: 
Modeling NotationSelection/Extensionm

et
a

pr
oc

es
s

Step 3: 
MethodDefinition/Extension

Requirements
Modeling
Notation(s)

Domain Knowledge
Templates

Step 1:
Information Needs Elicitation

Elicitation
Principles

Modeling
Principles

Quality
Modeling
Notations

Selected Quality 
Modeling Notations

Defined/Extended
Method Description

Fig. 3. Meta-process for eliciting, modeling, and using domain knowledge

QuaRO [11], POPeRA [12], and ProPAn [13], as mentioned in Section 1. The artifacts
in the top of Figure 3 represent the external inputs for the steps of the method. Those
in the bottom of the figure represent the output of the steps providing input for further
steps and/or for the object-process (see Section 5). The rounded rectangles in the in-
put and output notes indicate that the artifact describes a procedure that later can be
executed. In the following, we describe each step of the meta-process followed by its
application to the software qualities performance, security, and privacy.

Step 1: Information Needs Elicitation This step is concerned with eliciting the
relevant information that has to be collected when dealing with specific software qual-
ities. The source of information is the domain expertise. This expertise can stem from
“developers of the software product, software engineering textbooks and other types of
documentation, external information which is available to the public (e.g. IEEE stan-
dards), existing documents in the organization, formal or informal (guidelines, books,
procedures, manuals), results of empirical work (controlled experiments, case studies),
and published experience reports (e.g. lessons learnt)” [20]. Optionally, a requirements
modeling notation that is used in the application, and a method description of a quality
analysis method that shall be extended could be further inputs if existing and needed.

We extract the information needs for the software quality from the domain expertise
with respect to the optionally given method description. We document these information
needs as structured templates called Domain Knowledge Templates. These templates
have later to be instantiated in the first step of the object-process. In addition to the
domain knowledge templates, the output of step 1 provides guidance how to elicit rel-
evant domain knowledge systematically. We call such guidance Elicitation Principles.
An optionally given requirements modeling notation can be used to be referred to in
the elicitation principles. Domain knowledge templates represent what domain knowl-
edge has to be elicited, and elicitation principles represent how this domain knowledge
has to be elicited. Elicitation principles are used as an input for the first step of the
object-process and describe how this step has to be carried out.

In the following, we show applications of the meta-process for the software qualities
performance, security, and privacy. In all shown applications, we use the UML-based
problem frames (see Section 3) as the requirements modeling notation.

Applying step 1 for performance To elicit the domain knowledge that performance
analysts require to analyze performance for early software development phases (POPeRA
and QuaRO methods), we make use of the Domain Expertise presented by Bass et
al. [21, 22]. Performance is concerned with the workload of the system and the avail-
able resources to process the workload [21]. The workload is described by triggers of
the system, representing requests from outside or inside the system. Workload exhibits



Table 2. Domain knowledge template for performance and mapping to the MARTE profile

Quality: Performance
Domain Knowledge Template Mapping to MARTE

Domain Knowledge Description Possible Values Value Property
For each Problem Diagram

Number of concurrent users Natural GaWorkloadEvent. pattern. population
Arrival pattern ArrivalPattern GaWorkloadEvent. pattern

Data size DataSize (bit, Byte, KB, . . . ) GaStep. msgSize
For each Causal Domain

Memory capacity DataSize (bit, Byte, KB, . . . ) HwMemory. memorySize
latency Duration (s, ms, min,hr, day) HwMemory. timing

Network bandwidth DataRate (b/s, Kb/s, Mb/s) HwMedia. bandWidth
latency Duration (s, ms, min,hr, day) HwMedia. packetTime

CPU speed Frequency (Hz, kHz, MHz, GHz) HwProcessor. frequency
Number of cores Natural HwProcessor. nbCores

the characteristics of the system use. It includes the number of concurrent users and
their arrival pattern. The arrival pattern can be periodic (e.g. every 10 milliseconds),
stochastic (according to a probabilistic distribution), or sporadically (not to capture by
periodic or stochastic characterization) [22]. Processing the requests requires resources.
Each resource has to be described by its type in the system, such as CPU, memory, and
network, its utilization, and its capacity, such as the transmission speed for a network.

The developed Domain Knowledge Template for performance is shown in Table 2.
The columns “Domain Knowledge Description” and “Possible Values” show the do-
main knowledge to be elicited for performance and its possible values. The column
“Value” has to be filled out in the first step of the object-process. Once we have cap-
tured the information needs for performance analysis as domain knowledge templates,
we have to give guidance how to elicit them (Elicitation Principles). The first part of
the domain knowledge template for performance contains information relevant for each
problem diagram that contains a performance requirement. The second part of the tem-
plate shows the domain knowledge to be elicited for each causal domain that is part of a
problem diagram with a performance requirement. We iterate over these causal domains
in the requirement models (lexical and machine domains are special types of causal do-
mains). For each domain, we have to check if it represents or contains any hardware
device that the system is executed on or any resource that can be consumed by the cor-
responding performance requirement. If this is the case, the resource has to be specified
as indicated in the domain knowledge template. For each resource type (CPU, network,
memory), we have to state if the resource is already existing in the requirement models
or it is not modeled yet.

Applying step 1 for security To guarantee security, we need domain knowledge about
the type of possible attackers that influence the restrictiveness of a security require-
ment. Different types of attackers can be considered. For example, a software attacker
targets at manipulating the software, whereas a network attacker aims at manipulating
the network traffic. To describe the attacker we use the properties as described by the
Common Methodology for Information Technology Security Evaluation (CEM) [23]
(Domain Expertise) for vulnerability assessment of the TOE (target of evaluation i.e.,
system-to-be). The properties to be considered (according to CEM) are given in the
Domain Knowledge Template shown in the first column of Table 3.



Table 3. Domain knowledge template for security and mapping to the dependability profile

Quality: Security
Domain Knowledge Template Mapping to profile

Domain Knowledge Description Possible Values Value Property (Dependability
profile)

Preparation time one day, one week, two weeks, . . . Attacker.preparationTime
Attack time one day, one week, two weeks, . . . Attacker.attackTime
Specialist expertise laymen, proficient, expert, . . . Attacker.specialistExpertise
Knowledge of the TOE public, restricted, sensitive, critical Attacker.knowledge
Window of opportunity unnecessary/unlimited, easy, . . . Attacker.opportunity
IT hardware/software or other equipment standard, specialized, bespoke, . . . Attacker.equipment

Now, we describe the Elicitation Principles that support us in capturing domain
knowledge. One attacker should be identified for each modeled security requirement. It
should be checked if such an attacker for each security requirement exists. If not, we
have to identify a suitable attacker according to the related security requirement. The
domain knowledge template has to be instantiated for each attacker.

Applying step 1 for privacy One limitation of the Problem-based Privacy Analysis
method (ProPAn) [13] (Method Description) is that it can only reason about stakehold-
ers and counterstakeholders that are part of the requirement model. But often stake-
holders of personal information are not directly interacting with a software and hence
maybe overlooked by the requirements engineer. Thus, there is the need to elicit privacy
relevant domain knowledge, namely, the indirect (counter)stakeholders of the domains
of the context diagram. Therefore, we performed the meta-process (see Figure 3) for
the ProPAn-method (method description). Due to the fact that ProPAn is based on the
problem frames approach, we have it as a requirements modeling notation in the meta-
process. Based on the stakeholder analysis literature [24, 25] (Domain Expertise), we
developed domain knowledge templates in the form of extensible questionnaires [14].
The questionnaires shall help the requirements engineer in cooperation with domain
experts to identify indirect (counter)stakeholders and indirect or implicit relationships
between domains. An indirect stakeholder is a biddable domain that is not already part
of the context diagram and from whom personal information is possibly stored or pro-
cessed in the system-to-be. An indirect counterstakeholder is also a biddable domain
that is not already part of the context diagram and may gain information about entities
through a domain of the context diagram. Table 4 contains the questionnaire for causal
and lexical domains. The Elicitation Principle means that one has to answer for each
domain of the requirement model the questions of the corresponding questionnaire.

Step 2: Modeling Notation Selection/Extension The aim of this step is to select
a suitable notation for modeling quality-relevant domain knowledge in a way that it
can be used for the requirements analysis and integrates into the optionally given re-
quirements modeling notation. According to the elicited domain knowledge from the
previous step, we investigate whether there are existing Quality Modeling Notations for
the software quality that are sufficient for integrating the domain knowledge into the
existing requirement models. In such a case, we select an appropriate notation. Other-
wise, we have to extend existing notations with required artifacts or define a new one.
The Selected Quality Modeling notation will be applied to the requirement models in
the object-process in order to support the modeling of domain knowledge. In addition,
we obtain Modeling Principles as output of this step. They provide guidance for the



Table 4. Domain knowledge elicitation questionnaire for causal and lexical domains

No. Question
1 Elicitation of Counterstakeholders
1.1 Is there a competitor that also uses the domain?
1.2 Could the domain be attacked by a hacker?
1.3 Does the domain provide information to legislators or law enforcement agencies?
1.4 Is the domain also used in other systems? State possible counterstakeholders that have access to the domain in

these systems.
2 Elicitation of Stakeholders
2.1 Is the domain also used in other systems? State possible stakeholders of these systems from whom information

is accessible through the domain.
2.2 Is initially personal information of stakeholders stored in the domain?
2.3 Does the domain store or process personal information of stakeholders directly, indirectly, or implicitly con-

nected to it?

translation of the domain knowledge elicited in the domain knowledge templates of the
previous step into the selected quality modeling notation.

Applying step 2 for performance We selected the UML profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE) [19] adopted by OMG con-
sortium for modeling performance-related domain knowledge (Selected Quality Mod-
eling Notation). It extends the UML modeling language to support modeling of per-
formance and real-time concepts. They make use of the stereotypes from the MARTE
profile to express the domain knowledge that was elicited in the first step of our method.
Expressing domain knowledge as stereotypes helps us to integrate domain knowledge
in the existing requirement models. In the case that we are concerned with a hidden
resource, the hidden resource has to be modeled explicitly as a causal domain. It addi-
tionally has to be annotated with a performance relevant stereotype from the MARTE
profile representing the kind of resource it provides. The column “Mapping to MARTE”
in Table 2 shows how the domain knowledge elicited in step one can be mapped to the
MARTE stereotypes and attributes (Modeling Principles).

Applying step 2 for security We chose the dependability profile (Selected Qual-
ity Modeling Notation) proposed by Hatebur and Heisel [17] for modeling security-
related domain knowledge identified in the previous step. We make use of the stereotype
�attacker� and its attributes to express the attackers and their characteristics. Each
identified attacker has to be modeled explicitly as a biddable domain. The stereotype
�attacker� has to be applied to it. The attacker is then assigned to the correspond-
ing security requirements which are also provided by the dependability profile. The
column “Mapping to profile” in Table 3 shows how the elicited security-specific do-
main knowledge can be integrated in the requirement models using the stereotypes and
attributes from the dependability profile (Modeling Principles).

Applying step 2 for privacy For the domain knowledge extension of ProPAn as pre-
sented in [14], we do not need to select or extend a Quality Modeling Notation. We
are able to represent the possible information flows stemming from indirect stakehold-
ers and possible access relationships of counterstakeholders using domain knowledge
diagrams, which are already provided by the UML4PF profile. To assist the model-
ing process of the privacy-relevant domain knowledge, we identified two “domain
knowledge frames” (shown in Figure 4) for the two types of questions in the ques-
tionnaire. These can easily be instantiated using the answers of the questionnaires. The



Fig. 4. Domain knowledge patterns for the modeling of privacy-relevant domain knowledge

Domain is instantiated with the domain for which the questionnaire was answered and
the (Counter)Stakeholder with the elicited (counter)stakeholder (Modeling Principles).

Step 3: Method Definition/Extension This step aims at defining or extending a
method for quality requirements analysis. The methods QuaRO and POPeRA are ex-
amples for newly defined methods, where quality-relevant domain knowledge has to be
considered from the beginning of the analysis process. The ProPAn method is an exam-
ple for extending an existing method with quality-relevant domain knowledge. In case
of extending an existing method, the Method Description has to be considered as input.
Additionally, we take the selected quality modeling notations into account for defining
a new method or extending an existing one.

Applying step 3 for performance We defined the POPeRA method [12] (Defined
Method Description) for detecting and analyzing potential performance problems. The
method first identifies performance-critical resources using the modeled performance-
relevant domain knowledge. Next, it identifies problem diagrams, where the inbound
requests exceed the processing capacity of the performance-critical resource because of
a high workload. These resources represent potential bottlenecks.

Applying step 3 for security and performance The QuaRO method (Defined Method
Description) uses the structure of problem diagrams to identify the domains, where
quality requirements might interact. When the state of a domain can be changed by
one or more sub-machines at the same time, their related quality requirements might
be in conflict. Modeling domain knowledge regarding security and performance allows
us to detect additional domains, where security and performance might conflict. Re-
sources modeled by domain knowledge represent such conflicting domains. The reason
is that the achievement of security requirements requires additional resources affecting
the achievement of performance requirements negatively. Modeling the attacker and its
characteristics determines the strength of the security mechanism to be selected, which
affects the resource usage. Please note that the modularity of the proposed meta-process
allowed us to reuse the results of step 1 and step 2 of the meta-process for performance
for the definition of the QuaRO method.

Applying step 3 for privacy The domain knowledge diagrams created by instantiation
of the domain knowledge patterns are integrated into the graph generation algorithms of
ProPAn. Analogously to the graph generation rules based on problem diagrams, there is
also possibly an information flow from a referred to each constrained domain in domain
knowledge diagrams. Additionally, counterstakeholders that are constrained in a do-
main knowledge diagram may be able to access information from the referred domains
(Extended Method Description). Thus, more possible privacy threats can be detected as
in the original ProPAn method.



Domain
Knowledge Models

ob
je

ct
pr

oc
es

s
ou

tp
ut

in
pu

t /

Step 1: 
Domain Knowledge Elicitation

Step 2: 
Domain Knowledge Modeling

ex
te

rn
al

in
pu

t

Instantiated Domain
Knowledge Templates

Step 3:
Method Application

Elicitation
Principles

Modeling
Principles

Defined/Extended
Method Description

Domain Know-
ledge Templates

Requirement
Model(s)

Selected Quality 
Modeling Notation

Method
Application Results

Fig. 5. Object-process for eliciting, modeling, and using domain knowledge

5 Structured Object-Process for Eliciting, Modeling, and Using
Domain Knowledge

In this section, we describe the object-process composed of three steps for eliciting,
modeling, and using domain knowledge for selected software qualities and a specific
software application. We use the outputs of the meta-process (see Section 4) as inputs
of the corresponding steps of the object-process to analyze the respective quality prop-
erties. Figure 5 illustrates the steps of the object-process.

In the following, we describe each step of the object-process followed by its ap-
plication to the software qualities performance, security, and privacy and the concrete
software application smart grid that we introduced in Section 2.

Step 1: Domain Knowledge Elicitation To elicit quality-relevant domain knowl-
edge for a specific software application to be developed, we instantiate Domain Knowl-
edge Templates (output of the first step of the meta-process). For the instantiation, we
make use of the Elicitation Principles (also output of the first step of the meta-process)
and the given Requirement Model of the specific software application. The elicitation
principles provide guidance for the instantiation of the domain knowledge templates
for the given requirement models. As output, we obtain Instantiated Domain Knowl-
edge Templates that serve as input for the modeling step (step 2).

Applying step 1 for performance For each performance requirement, we instantiate
the Domain Knowledge Template for performance (see Table 2) according to the in-
formation contained in the existing documents for the smart grid application [15, 26].
We exemplify the instantiation of the template for the performance requirement RQ24,
which complements the functional requirement RQ4.

According to the elicitation principles (see Section 4), we have to iterate over the
causal domains that are part of a problem diagram containing the respective perfor-
mance requirement to identify relevant resources. In Figure 2, the causal domain WAN
represents a performance-specific resource, namely a network resource. The machine
domain SubmitMD contains the hidden resource CPU, which is not modeled yet. To
fill the properties for the column “value” in Table 2, we need additional information
that is missing in the Protection Profile [15] and Open Meter [26] documents. Hence,
we looked for the necessary domain knowledge in the existing literature such as [27].
Based on this search, we assume that there are almost 50 electricity providers 3 in Ger-
many that receive meter readings from the gateway. As the number of concurrent users
is not further specified in the documents under consideration, we take the worst case,
which is 50 concurrent users as “value” for the number of concurrent users and closed

3http://www.strom-pfadfinder.de/stromanbieter/



as “value” for the arrival pattern. Data size of meter readings to be transmitted to the
gateway is relevant for the property data size. It can be between 1 KB and 16 MB [27].
It varies according to the period of time, in which meter data has to be sent to autho-
rized external entities. It amounts to 1 KB by immediate sending of meter data after
reading and 16 MB by sending meter data every two hours. This would be between
40 KB and 640 MB for 40 smart meters. Hence, the “value” is 640 MB. According to
the documents from the Open Meter project, for the external communication a Power
Line Communication (PLC) can be used. In this case, the minimum speed must be 2.4
Kbps for a reliable communication (“value” for the property bandWidth). The rest of
properties is either unknown or irrelevant for the requirement RQ24.

Applying step 1 for security For eliciting security-relevant domain knowledge, we
have to instantiate the Domain Knowledge Template for each identified attacker once
(Elicitation Principle). We identified three network attackers for three security require-
ments RQ10, RQ11, and RQ12. The reason is that the meter data to be transmitted
through the network WAN can be manipulated by a network attacker (see Figure 2).
There is no information in the Protection Profile [15] about the attacker that the sys-
tem must be protected against. Therefore, we assume that the system must be protected
against the strongest attacker. Hence, we select for each property in the domain knowl-
edge template for security the strongest one to obtain values for the column “Value”.
By doing this, we obtain instances of the domain knowledge template shown in Table 3.

Applying step 1 for privacy We answered the questionnaires (Domain Knowledge
Templates) for all domains of the context diagram of the smart grid (Elicitation Princi-
ple) and identified various indirect stakeholders and counterstakeholders. For example,
due to questions 1.2 and 1.4 we found out that controllable local systems (CLS) could
be attacked by hackers or provide personal information to malicious producers of CLS,
e.g. usage profiles of e-cars.

Step 2: Domain Knowledge Modeling In this step, we model the domain knowl-
edge that we elicited in the previous step. For modeling domain knowledge and inte-
grating it in the existing requirement models, we make use of the Instantiated Domain
Knowledge Templates. By means of Modeling Principles, we annotate the Requirement
Models with elicited domain knowledge. We use the Selected Quality Modeling No-
tation for annotating requirement models. As a result, we obtain Domain Knowledge
Models which ideally are integrated into the existing requirement model.

Applying step 2 for performance We use the MARTE stereotypes �hwMedia�,
�gaStep�, �hwProcessor�, and �gaWorkloadEvent� (Selected Quality Mod-
eling Notation) for modeling the performance-specific domain knowledge captured in
the Instantiated Domain Knowledge Template. This is done according to the Modeling
Principles given by the mapping shown in Table 2. The modeled domain knowledge is
shown in Figure 2.

Applying step 2 for security In this step, we model the network attacker and its char-
acteristics according to the Instantiated Domain Knowledge Template, if it is not mod-
eled yet. We model the network attacker explicitly as a biddable domain for the con-
fidentiality requirement RQ11 (Modeling Principles). Then, we apply the stereotype
�attacker� from the dependability profile which is the Selected Quality Modeling
Notation selected in step 2 of the meta-process. We assign the attributes of the stereo-
type �attacker� using mapping provided by Table 3 (Modeling Principles). The
attacker and its properties are shown in Figure 2.



Applying step 2 for privacy Because of ProPAn’s tool support4, the elicited indirect
(counter)stakeholders (Instantiated Domain Knowledge Templates) of the smart grid
scenario are automatically modeled by instantiating the domain knowledge patterns
according to the answers of the questionnaires (Modeling Principles).

Step 3: Method Application The third step is concerned with applying a specific
quality analysis method (Defined/ Extended Method Description), we defined or ex-
tended in the third step of the meta-process. The given Requirement Models and the
Domain Knowledge Models obtained from the previous step are used as inputs.

Applying step 3 for performance By applying the POPeRA method (Defined/ Ex-
tended Method Description) we identified CPU as a performance-critical resource (see
Figure 2). Such resources are modeled as domain knowledge in the problem diagrams
(Domain Knowledge Models) where the software might fail to achieve the performance
requirements. Then, using the identified performance-critical resource CPU, we ana-
lyzed whether the processing capacity of CPU suffices to satisfy the performance re-
quirement RQ24 and other requirements that have to be achieved using this resource
with regard to the existing workload (modeled as domain knowledge). We identified
CPU as potential bottleneck.

Applying step 3 for security and performance By applying the QuaRO method (De-
fined/ Extended Method Description), we identified potential interactions among secu-
rity and performance requirements. Performance requirement RQ24 might be in conflict
with security requirements RQ10, RQ11, and RQ12 (see Figure 2).

Applying step 3 for privacy As mentioned in the application of step 2 for privacy,
we identified hackers and malicious producers of CLS as indirect counterstakeholders
of the CLS (Domain Knowledge Models) and analyzed the privacy threats that possibly
exist in the smart grid scenario for the stakeholder customer and counterstakeholder
hacker (Defined/Extended Method Description). The analysis shows that there is pos-
sibly a privacy threat originating from a hacker or a malicious producer via the HAN
using a CLS. This privacy threat is not covered by an assumption or threat in the pro-
tection profile [15]. Hence, our extended method now finds relevant privacy threats that
previously have been overlooked.

6 Related Work

There exist only few approaches dealing with capturing and representing knowledge
needed for a successful consideration of software qualities in software development.

Zave and Jackson [2] identify four areas in which the foundation of the require-
ments engineering discipline is weak. One of these areas is domain knowledge. Among
others, the authors emphasize the importance of capturing domain knowledge for the
satisfaction of requirements. However, they do not provide a structured way or specific
notations to model domain knowledge, and only consider functional requirements.

According to Probst [28], the goal of knowledge management (KM) is the improve-
ment of processes and capabilities by utilizing knowledge resources such as skills,
experience, routines, and technologies. The author proposes a KM model that struc-
tures the KM process as activities identification, acquisition, development, distribution,
preservation, and use of knowledge, called building blocks of KM. The steps of our

4available at http://www.uni-due.de/swe/propan.shtml



method can be easily mapped to these building blocks. Knowledge identification iden-
tifies which knowledge and expertise exists. This is a prerequisite for conducting our
method. It leads to identify the need for capturing, modeling, and using domain knowl-
edge. Knowledge acquisition is concerned with obtaining knowledge from involved
stakeholders, domain experts, or using documents. This activity corresponds to the step
information needs elicitation in our meta-process. Knowledge development aims at pro-
ducing new knowledge. It can be related to the step domain knowledge elicitation in the
object-process. The objective of knowledge distribution is to make the knowledge avail-
able and usable. This activity corresponds to the step modeling notation selection in the
meta-process. Knowledge preservation avoids the loss of gained expertise by preserv-
ing the knowledge after it has been developed. This building block can be mapped to
the step domain knowledge modeling which stores the captured domain knowledge in
requirement models. Consequently, the knowledge has to be deployed in the production
process (knowledge use). This is achieved in our method in the steps method definition
and method application. The mapping of the steps of our method to the KM building
blocks shows that we followed successfully the concepts involved in the field of KM.

There exist several approaches for the elicitation of domain knowledge in the field of
domain engineering [29, 30]. These approaches focus on the development of reusable
software and therefore also on the analysis of the application domain. During the do-
main analysis phase, domain knowledge is systematically collected and documented. In
the field of domain engineering the term “domain” corresponds to the term “system” in
Jackson’s terminology. In this paper, we collect and document domain knowledge in a
more fine-grained way which allows us analyzing software quality requirements.

Peng et al. [31] present a method for the analysis of non-functional requirements
based on a feature model. This method elicits the domain knowledge before the analysis
of non-functional requirements. In contrast, we suggest to elicit the required domain
knowledge for a specific software quality. We think that our method leads to a more
complete and targeted elicitation of domain knowledge.

In the NFR framework [32], knowledge about the type of NFR and the domain has to
be acquired before using the framework. This knowledge is captured to understand the
characteristics of the application domain and to obtain NFR-related information to be
used for identifying the important NFR softgoals. Examples of such domain knowledge
are organizational priorities or providing terminologies for different types of NFRs.
This kind of domain knowledge differs from ours, as it is used as initial information to
identify the goals and requirements. The knowledge we capture and model is more fine-
grained and is required in addition to the quality requirements. Moreover, we provide
a systematic method for capturing and modeling domain knowledge, whereas the NFR
framework does not provide any guidelines on how to acquire such knowledge.

7 Conclusions

For an adequate consideration of software quality during requirements analysis, we
have to identify and to take into account the quality-specific domain knowledge. By
means of three different requirement analysis methods, we have pointed out the need
for eliciting, modeling, and using domain knowledge. Hence, to avoid requirements
errors due to incorrect domain knowledge, domain knowledge should be considered
with the same emphasis as requirements during requirements analysis.



In this paper, we proposed a structured method consisting of a meta-process and an
object-process for eliciting, modeling, and using quality-specific domain knowledge at
the requirements analysis level.

The meta-process is quality-dependent. It therefore has to be carried out once for
each kind of quality requirement to be considered. To facilitate the reuse of captured and
modeled domain knowledge, we provide individual templates and guidelines suitable
for each kind of quality requirement. These templates and guidelines are reusable if the
same quality shall be considered, but in a different notation or for a different analysis
method. Additionally, all outputs of the meta-process can be reused by instantiation of
the object-process and applying it to a concrete software application.

We instantiated the first two steps of the meta-process for three kinds of quality
requirements, namely performance, security, and privacy. Then, we showed how the
elicited and modeled domain knowledge can be used in the three methods POPeRA,
QuaRo, and ProPAn in the third step of the meta-process. We instantiated the object-
process with the corresponding outputs of the meta-process to apply our methods POPe-
RA, QuaRo, and ProPAn on the concrete software application smart grid.

Our approach is independent from any specific tool or notation. Hence, it can easily
be integrated into existing requirement analysis methods. Our proposed method helps
requirements engineers to develop processes for the consideration of quality require-
ments in a structured way and independently of the tools or notations they use.

As future work, we plan to develop further quality analysis methods using the pro-
posed meta-process. Furthermore, we want to investigate to which extent the outputs
of meta-processes carried out for different modeling notations differ and how they are
related. In addition, we strive for empirically validating our method to determine the
effort spent for exceuting the method and to further improve the elicitation templates.

References

1. Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Soft-
ware Specifications. Wiley (2009)

2. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans. Softw.
Eng. Methodol. 6 (1997) 1–30

3. Lamsweerde, A.: Reasoning about alternative requirements options. In Borgida, A.,
Chaudhri, V., Giorgini, P., Yu, E., eds.: Conceptual Modeling: Foundations and Applications.
Volume LNCS 5600. Springer (2009) 380–397

4. Prieto-Dı́az, R.: Domain analysis: an introduction. SIGSOFT Softw. Eng. Notes 15(2) (April
1990) 47–54

5. Hooks, I.F., Farry, K.A.: Customer-centered Products: Creating Successful Products Through
Smart Requirements Management. AMACOM (2001)

6. Modugno, F., Leveson, N., Reese, J., Partridge, K., Sandys, S.: Integrated safety analysis of
requirements specifications. Requirements Engineering (1997) 65–78

7. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security re-
quirements engineering methods. Requirements Engineering – Special Issue on Security
Requirements Engineering 15 (2010) 7–40

8. Robillard, P.N.: The Role of Knowledge in Software Development. Commun. ACM 42
(1999) 87–92

9. Niknafs, A., Berry, D.M.: The impct of domain knowledge on the effectiveness of require-
ments idea generation during requirements elicitation. In: Proc. of the 20th IEEE Int. RE
Conf. (2012) 181–190



10. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley (2001)

11. Alebrahim, A., Choppy, C., Faßbender, S., Heisel, M.: Optimizing functional and quality
requirements according to stakeholders’ goals. In Mistrik, I., ed.: Relating System Quality
and Software Architecture. Elsevier (2014) 75–120

12. Alebrahim, A., Heisel, M.: A problem-oriented method for performance requirements engi-
neering using performance analysis patterns. FGCS (2014) submitted.

13. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for com-
puter aided privacy threat identification. In: Privacy Technologies and Policy. LNCS 8319,
Springer (2014) 1–16

14. Meis, R.: Problem-Based Consideration of Privacy-Relevant Domain Knowledge. In: Pri-
vacy and Identity Management for Emerging Services and Technologies. Volume 421 of IFIP
Advances in Information and Communication Technology. Springer (2014)

15. Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile for the gateway
of a smart metering system. Technical report, BSI (2011)

16. UML Revision Task Force: OMG Unified Modeling Language (UML), Superstructure.
(2009) http://www.omg.org/spec/UML/2.3/Superstructure/PDF.

17. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable software. In:
Proc. of the Int. Conf. on Computer Safety, Reliability and Security (SAFECOMP). LNCS
6351, Springer (2010) 317–331

18. Alebrahim, A., Hatebur, D., Heisel, M.: Towards systematic integration of quality require-
ments into software architecture. In: Proc. of the 5th Europ. Conf. on Software Architecture
(ECSA). LNCS 6903, Springer (2011) 17–25

19. UML Revision Task Force: UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems. (2011) http://www.omg.org/spec/MARTE/1.0/PDF.

20. Land, L., Aurum, A., Handzic, M.: Capturing implicit software engineering knowledge. In:
Software Engineering Conference, 2001. Proceedings. 2001 Australian. (2001) 108–114

21. Bass, L., Klein, M., Bachmann, F.: Quality attributes design primitives. Technical report,
Software Engineering Institute (2000)

22. Bass, L., Clemens, P., Kazman, R.: Software architecture in practice. Addison-Wesley (2003)
23. International Organization for Standardization (ISO) and International Electrotechnical

Commission (IEC): Common Evaluation Methodology 3.1. ISO/IEC 15408 (2009)
24. Sharp, H., Finkelstein, A., Galal, G.: Stakeholder Identification in the Requirements Engi-

neering Process. In: DEXA Workshop. (1999) 387–391
25. Alexander, I.F., Robertson, S.: Understanding Project Sociology by Modeling Stakeholders.

IEEE Software 21(1) (2004) 23–27
26. Remero, G., Tarruell, F., Mauri, G., Pajot, A., Alberdi, G., Arzberger, M., Denda, R., Giub-

bini, P., Rodrguez, C., Miranda, E., Galeote, I., Morgaz, M., Larumbe, I., Navarro, E., Lass-
che, R., Haas, J., Steen, A., Cornelissen, P., Radtke, G., Martnez, C., Orcajada, ., Kneitinger,
H., Wiedemann, T.: D1.1 Requ. of AMI. Technical report, OPEN meter proj. (2009)

27. Deconinck, G.: An evaluation of two-way communication means for advanced metering in
Flanders (Belgium). In: Instrumentation and Measurement Technology Conference Proceed-
ings (IMTC). (2008) 900–905

28. Probst, G.J.B.: Practical Knowledge Management: A Model that Works. Prism (1998)
29. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical report, Carnegie-Mellon University Software
Engineering Institute (November 1990)

30. Frakes, W., Prieto-;Diaz, R., Fox, C.: DARE: Domain analysis and reuse environment. An-
nals of Software Engineering 5(1) (1998) 125–141

31. Peng, X., Lee, S., Zhao, W.: Feature-Oriented Nonfunctional Requirement Analysis for
Software Product Line. Journal of Computer Science and Technology 24(2) (2009)

32. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering. Kluwer Academic Publishers (2000)


