
A Problem-, Quality-, and Aspect-Oriented
Requirements Engineering Method?

Stephan Faßbender, Maritta Heisel and Rene Meis

paluno - The Ruhr Institute for Software Technology University of Duisburg-Essen, Germany
{firstname.lastname}@uni-due.de

Keywords: Early Aspects, Problem Frames, Requirements Engineering

Abstract. Requirements engineers not only have to cope with the requirements
of various stakeholders for complex software systems, they also have to consider
several software qualities (e.g., performance, maintainability, security, and pri-
vacy) that the system-to-be shall address. In such a situation, it is challenging
for requirements engineers to develop a complete and coherent set of require-
ments for the system-to-be. Separation of concerns has shown to be one option
to handle the complexity of systems. The problem frames approach address this
principle by decomposing the problem of building the system-to-be into sim-
pler subproblems. Aspect-orientation aims at separating cross-cutting function-
alities into separate functionalities, called aspects. We propose a method called
AORE4PF, which shows that aspect-orientation can be integrated into the prob-
lem frames approach to increase the separation of concerns and to benefit from
several methods that exist on problem frames to develop a complete and coherent
set of requirements. We validated our method with a small experiment in the field
of crisis management.

1 Introduction

Keeping an eye on good and sufficient requirements engineering is a long-known suc-
cess factor for software projects and the resulting software products [17]. Nonethe-
less, larger software incidents are regularly reported, which originate in careless deal-
ing with, for example, security requirements. Beside reputation damage, loss of market
value and share, and costs for legal infringement [8,21], fixing defects that caused the
incident is costly. Fixing a defect when it is already fielded is reported to be up to
eighty times more expensive than fixing the corresponding requirements defects early
on [7,37]. Therefore, it is crucial for requirements engineers to identify, analyze, and
describe all requirements and related quality concerns. But eliciting good requirements
is not an easy task [14], even more when considering complex systems.

Nowadays, for almost every software system, various stakeholders with diverse in-
terests exist. These interests give rise to different sets of requirements. These diverse
? Part of this work is funded by the German Research Foundation (DFG) under grant number

HE3322/4-2



requirements not only increase the complexity of the system-to-be, but also contain
different cross-cutting concerns, such as qualities, which are desired by the stakehold-
ers. In such a situation, the requirements engineer is really challenged to master the
complexity and to deliver a coherent and complete description of the system-to-be.

One possible option to handle the complexity of a system-to-be is the concept of
separation of concerns [31]. In its most general form, the separation of concerns princi-
ple refers to the ability to focus on, and analyze or change only those parts of a system
which are relevant for one specific problem. The main benefits of this principle are a
reduced complexity, improved comprehensibility, and improved reusability [31].

Both, AORE (aspect-oriented requirements engineering) and the problem frame ap-
proach implement this principle, but for different reasons. The approach of AORE,
which originates from aspect-oriented programming, is to separate each cross-cutting
requirement into an aspect. Instead of integrating and solving the cross-cutting require-
ment for all requirements it cross-cuts, the aspect is solved in isolation. Hence, aspect-
orientation leads to a clear separation of concerns. To combine an aspect with a re-
quirement, an aspect defines a pointcut (set of join points), which describes how the
aspect and a requirement can be combined. The problem frames approach [18] gener-
ally also follows the separation of concerns principle. It decomposes the overall problem
of building the system-to-be into small sub-problems that fit to a problem frame. Each
sub-problem is solved by a machine, which has to be specified using the given domain
knowledge. All machines have to be composed to form the overall machine. We will
show that aspect-orientation gives guidance for the process of decomposing the overall
problem and especially for the composition of the machines. As both ways of separating
concerns seem to be complementary, it is promising to combine both. Hence, we pro-
pose the AORE4PF (Aspect-Oriented Requirements Engineering for Problem Frames)
method that provides guidance for classifying requirements, separating the different
concerns, modeling requirements for documentation and application of completeness
and interaction analyses, and weaving the reusable parts to a complete and coherent
system. Furthermore, AORE4PF provides tool support for most activities.

The rest of the paper is structured as follows. Section 2 introduces a smart grid sce-
nario, which is used as a case study. In Section 3, we introduce the problem frames
approach and UML4PF as background of this paper. Our method for the integration
of AORE into the problem frames approach is presented in Section 4. A small experi-
ment for validation is presented in Section 5. Work related to this paper is discussed in
Section 6. Finally, Section 7 concludes the paper and presents possible future work.

2 Case Study

To illustrate the application of the AORE4PF method, we use the real-life case study of
smart grids. As sources for real functional requirements, we consider diverse documents
such as “Application Case Study: Smart Grid” provided by the industrial partners of the
EU project NESSoS1, the “Protection Profile for the Gateway of a Smart Metering
System” [23] provided by the German Federal Office for Information Security2, and

1 http://www.nessos-project.eu/
2 www.bsi.bund.de



“Requirements of AMI (Advanced Multi-metering Infrastructure”) [30] provided by
the EU project OPEN meter3.

We define the terms specific to the smart grid domain and our use case in the fol-
lowing. The smart meter gateway represents the central communication unit in a smart
metering system. It is responsible for collecting, processing, storing, and communicat-
ing meter data. The meter data refers to readings measured by smart meters regarding
consumption or production of a certain commodity. A smart meter represents the device
that measures the consumption or production of a certain commodity and sends it to the
gateway. An authorized external entity can be a human or an IT unit that communicates
with the gateway from outside the gateway boundaries through a wide area network
(WAN). The WAN provides the communication network that interconnects the gateway
with the outside world. The LMN (local metrological network) provides the commu-
nication network between the meter and the gateway. The HAN (home area network)
provides the communication network between the consumer and the gateway. The term
consumer refers to end users of commodities (e.g., electricity).

We have chosen a small selection of requirements to illustrate our method. These
requirements are part of the 13 minimum use cases defined for a smart meter gateway
given in the documents of NESSoS and the open meter project. The considered use
cases are concerned with gathering, processing, and storing meter readings from smart
meters for the billing process. The requirements are described as follows:

(R1) Receive meter data The gateway shall receive meter data from smart meters.

(R17) New firmware The gateway should accept a new firmware from authorized ex-
ternal entities. The gate shall log the event of successful verification of a new version
of the firmware.

(R18) Activate new firmware On a predetermined date the gateway executes the
firmware update. The gateway shall log the event of deploying a new version of the
firmware.

(R28) Prevent eavesdropping The Gateway should provide functionality to prevent
eavesdropping. The gateway must be capable of encrypting communications and data
by the safest and best encryption mechanisms possible.

(R29) Privacy and legislation Many countries protect customers’ and people’s rights
by laws, to ensure that personal and confidential information will not be disclosed easily
within communicating systems. Grid systems shall not be a way to reveal information.

3 UML-Based Problem Frames

Problem frames are a means to describe software development problems. They were
proposed by Jackson [18], who describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.” It is described by a frame
diagram, which consists of domains, interfaces between domains, and a requirement.

3 http://www.openmeter.com/



We describe problem frames using UML class diagrams extended by stereotypes as
proposed by Hatebur and Heisel [16]. All elements of a problem frame diagram act as
placeholders, which must be instantiated to represent concrete problems. Doing so, one
obtains a problem diagram that belongs to a specific class of problems.

Figure 1 shows a problem diagram in UML notation. The class with the stereo-
type�machine� represents the thing to be developed (e.g., the software). The classes
with some domain stereotypes, e.g., �biddableDomain� or �lexicalDomain� repre-
sent problem domains that already exist in the application environment. Jackson distin-
guishes the domain types causal domains that comply with some physical laws, lexical
domains that are data representations, biddable domains that are usually people, and
connection domains that mediate between domains.

Domains are connected by interfaces consisting of shared phenomena. Shared phe-
nomena may be events, operation calls, messages, and the like. They are observable by
all connected domains, but controlled by only one domain, as indicated by an excla-
mation mark. For example, in Figure 1 the annotation WAN!{forwardUpdateFirmware}
means that the phenomenon in the set {forwardUpdateFirmware} is controlled by the
domain WAN and observable by the machine domain SMGFirmwareStorage, which is
connected to it. These interfaces are represented as associations with the stereotype
�connection�, and the name of the associations contain the phenomena and the do-
mains controlling the phenomena.

In Figure 1, the lexical domain FirmwareUpdate is constrained and the Authorized-
ExternalEntity is referred to, because the machine SMGFirmwareStorage has the role to
store new FirmwareUpdates from AuthorizedExternalEntity for satisfying requirement
R17. These relationships are modeled using dependencies that are annotated with the
corresponding stereotypes.

The full description for Figure 1 is as follows: The biddable domain Authorized-
ExternalEntity controls the updateFirmware command, which is forwarded by the WAN
and finally observed by the machine domain SMGFirmwareStorage. The SMGFirmware-
Storage controls the phenomenon storeNewFirmware, which stores the received infor-
mation in the lexical domain FirmwareUpdate.

Software development with problem frames proceeds as follows: first, the environ-
ment in which the machine will operate is represented by a context diagram. Like a
problem diagram, a context diagram consists of domains and interfaces. However, a
context diagram contains no requirements. Then, the problem is decomposed into sub-
problems. If ever possible, the decomposition is done in such a way that the subprob-
lems fit to given problem frames. To fit a subproblem to a problem frame, one must
instantiate its frame diagram, i.e., provide instances for its domains, phenomena, and
interfaces. The UML4PF framework provides tool support for this approach. A more
detailed description can be found in [10].

Fig. 1. Problem Diagram R17: New firmware



Description
Informal

Requirements
Base

Diagrams
Problem
Base

Specifications
Problem
Base

Requirements
Quality

Relations
Cross−Cut
Preliminary

Requirements
Aspect
Preliminary

Requirements
Quality
Preliminary

Aspect
Requirements

Relations
Cross−Cut

Specifications
Problem
Weaved

Relations
Weaving

Diagrams
Problem
Aspect
Consolidated

Diagrams
Problem
Base
Consolidated

Specifications
Problem
Weaved
Consolidated

Relations
Weaving
Consolidated

Specifications
Problem
Aspect

Diagrams
Problem
Aspect

Document

Requirements

Classify Requirements
Base
Model

Qualities
Underlying

Identify

Analyse

Completeness Requirements
Aspect
Model Weave

Requirements

o
u
tp

u
t

in
p
u
t 
/

o
u
tp

u
t

in
p
u
t 
/

information flow control flow Activity generated automatically generated semi−automatically

Analyze

Interactions

p
ro

c
e
s
s

Fig. 2. The AORE4PF method

4 Method

An illustration of our method is given in Figure 2. The initial input for our method is a
textual informal description of the requirements the system-to-be shall fulfill. These re-
quirements are classified into preliminary aspect requirements (or short aspects), which
are functional and cross-cutting, preliminary quality requirements (or short qualities),
which are non-functional and cross-cutting, and base requirements (or short bases),
which are not cross-cutting. Additionally, the relations between requirements and as-
pects or qualities are documented as preliminary cross-cut relations. Then all identified
base requirements are modeled following the problem frames approach introduced in
Section 3, such that for each base requirement a base problem diagram is created. Ad-
ditionally, we create a sequence diagram for each problem diagram. The sequence dia-
grams serve as a base problem specification. To prepare the completeness analysis, we
identify for all preliminary aspect requirements the underlying qualities they address.
The already known preliminary quality requirements can aid the identification. As a
result, we get a set of quality requirements. Based on the identified quality and base
requirements, we can analyze whether there is a cross-cut relation between a quality
requirement and a base requirement not discovered yet. Thus, we analyze the complete-
ness of the preliminary cross-cut relations and update them if necessary. The results
are a set of cross-cut relations and also updated aspect requirements. Next, the aspect
requirements are modeled in a similar way as requirements using specialized problem
diagrams, called aspect problem diagrams. Again, we specify the machine behavior us-
ing sequence diagrams, which results in aspect problem specifications. For the next step,
weave requirements, the base problem specifications and aspect problem specifications
are weaved to fulfill the base and aspect requirements as defined by the base problem
diagrams and aspect problem diagrams. For the weaving, we have to accomplish two
activities. First, we define the weaving relations. These relations refine the cross-cut
relations. Then, we can automatically generate for each requirement a weaved problem
specification representing the weaved system behavior. Last, we have to analyze the
base and aspect problem diagrams for unwanted interactions, such as conflicts. The
weaving relations and the weaved problem specifications can support this activity. The
results of this step are consolidated base and aspect problem diagrams as well as con-
solidated weaving relations and problem specifications. We will discuss all steps of our
method in detail in the following sections.



4.1 Classify Requirements

As a first step, we have to identify and analyze the requirements contained in the in-
formal description. We have to separate and classify these requirements as they will be
treated differently afterwards. A requirement can be 1) a base, which is functional and
not cross-cutting, 2) an aspect, which is functional and cross-cutting, and 3) a quality,
which is non-functional and cross-cutting. Note that we see quality requirements as re-
quirements, which are not operationalized to an aspect right now. Hence, there is a clear
relation between qualities and aspects, and we will later on refine qualities to aspects.
Normally, statements in an informal description are not given that clear-cut as given
by the three discussed classes of requirements. Hence, one can find requirements mix-
ing different classes, for example, aspects are already combined with the corresponding
bases or qualities are mentioned in the according bases. In consequence, identifying
statements which constitute requirements is only half of the job, but also a separation
of mixed requirements has to be performed.

First, we separate functional and quality requirements. A tool like OntRep [28] can
support the requirements engineer in this step. This way we identify R29 as requirement
containing two quality requirements (R29A and R29B) and R28 containing one quality
(R28A) and one functional requirement (R28B):

(R28A) Security The Gateway shall be protected against external attacks.

(R29A) Privacy [. . . ] personal and confidential information will not be disclosed easily
within communicating systems. Grid systems shall not be a way to reveal information.

(R29B) Compliance Many countries protect customers’ and people’s rights by laws.

Thus, we have identified and separated the preliminary quality requirements.
Second, we have to analyze the functional requirements for aspects and separate

them. For this activity tools like EA-Miner [34], Theme/Doc [4] or REAssistant4 can
aid the requirements engineer. This way we identify the following two aspects:

(R28B) Network encryption [. . . ] The gateway must be capable of encrypting com-
munications and data by the safest and best encryption mechanisms possible.

(R30) Logging The gate shall log the occurring important events.

Note that while eavesdropping is already formulated as separate aspect, logging is in-
troduced as a new aspect that is extracted from R17 and R18 which both contain the
logging aspect:

(R17B) New firmware: Logging The gate shall log the event of successful verification
of a new version of the firmware.

(R18B) Activate new firmware: Logging The gateway shall log the event of deploying
a new version of the firmware.

These two requirements describe how the aspect R30 has to be integrated into the
corresponding base requirements. This information is used later on during the weaving
process. Thus, we have identified and separated the preliminary aspect requirements.

4 https://code.google.com/p/reassistant/



Table 1. Requirements (Cross-Cut) Relation Table for the Smart Grid Scenario

Quality Aspect

R28A R29A R29B R313 R28B
R30 (R17B,
R18B)

R324

Base R1 X4 X4 X4 X4 X4 X4

R17A X4 X3 X4 X
R18A X3 X

Aspect R28B
R30 X4 X4

R324

Quality R28A I7 I7 I7 X X4

R29A I7 I7 I7 X4 X4

R29B I7 I7 I7 X4 X4 X4

R313 I7 I7 I7 X3

The remaining functional requirements form the base requirements for our system:

(R1) Receive meter data The gateway shall receive meter data from smart meters.

(R17A) New firmware The gateway should accept a new firmware from authorized
external entities.

(R18A) Activate new firmware On a predetermined date the gateway executes the
firmware update.

We document the relations between the separated functional, quality, and aspect
requirements in a preliminary cross-cut relation table. These relations are given in Ta-
ble 1 with crosses in italic in the regions (Base,Quality), (Base,Aspect), and (Qual-
ity,Aspect). Note that everything given in bold is discovered later on in the annotated
step (x). Furthermore, the regions (Aspect,Quality) and (Aspect,Aspect) are considered
in step 4, and (Quality,Quality) in step 7. If a requirement is separated into a func-
tional requirement (base or aspect) and a quality, then we add a cross in the region
(Base,Quality) of the table if the functional requirement is a base requirement, repre-
senting that the quality has to be taken into account for the base requirement, and in
the region (Quality,Aspect) if it is an aspect requirement, representing that the aspect
requirement addresses the software quality. In Table 1, we documented that the aspect
R28B is related to the quality R28A. This kind of mapping will later on be used to pro-
vide guidance for the selections of mechanisms to address the quality requirements. If
functional requirements are separated into base and aspect requirements, then we also
add respective crosses in the upper right quadrant. In Table 1, we documented that the
aspect R30 cross-cuts the base requirements R17A and R18A.

4.2 Model Base Problems

In this step, we model the functional requirements identified in the previous step. For
each functional requirement, we create a problem diagram as proposed by the prob-
lem frames approach introduced in Section 3. For reasons of space, we only show the



Fig. 3. Problem Diagram for R1
Fig. 4. Sequence diagram for R1

problem diagrams for the requirements R1 and R17A, but these two problem diagrams
are sufficient to understand the rest of the paper, even though we use the five selected
requirements for exemplifying our method. The problem diagram for R17A is shown in
Figure 1 and explained in Section 3. Figure 3 shows the problem diagram for R1. The
problem described in this diagram is that the machine SMGReceiver shall requestData
via the LMN from the SmartMeter. In response, the SmartMeter will sendData that was
requested via the LMN back to the machine. The machine does then writeTemporaryData
received from the smart meter in the lexical domain TemporaryMeterData.

For every problem diagram, we have to provide a reasoning, called frame con-
cern [18], why the specification of the submachine together with the knowledge about
the environment (domain knowledge) leads to the satisfaction of the requirement. To vi-
sualize how frame concern is addressed in the specific problems, we create at least one
sequence diagram for each problem diagram. These sequence diagrams describe the
specification (behavior of the machine) and the domain knowledge (behavior of the do-
mains) which is necessary to satisfy the requirement. How to systematically create the
sequence diagrams is out of scope of this paper, but the approach presented by Jackson
and Zave [19] can be used for this task. Figure 4 shows the sequence diagram for the
sub-problem Receive meter data. The interaction is started the sub-machine SMGRe-
ceiver causing the phenomenon requestData (specification). This request is forwarded
via the LMN to the SmartMeter (domain knowledge). The smart meter then answers
the request and sends the meter data (requirement) using the phenomenon sendData
(domain knowledge). The data is forwarded via the LMN to the sub-machine (domain
knowledge). In the case of a successful check of the received data, the received data is
stored in the lexical domain TemporaryMeterData (specification). Hence, the gateway
stores the meter data received from smart meters (requirement).

4.3 Identify Underlying Qualities

In order to check whether the cross-cut relation is complete, we identify for all aspects
the software qualities they address. Note that the relationship between aspects and qual-
ities is many-to-many. That is, an aspect can address multiple software qualities. For
example, the logging of system events possibly addresses the software qualities ac-



countability, transparency, maintainability, performance, and traceability. On the other
hand, a software quality can be addressed by multiple aspects, for example, the software
quality confidentiality could be addressed by the following aspects: encryption, authen-
tication and authorization, and data minimization. For the identification of underlying
qualities tools such as QAMiner [32] can be used. This way we discover that in our case
the aspect R30 has the underlying quality maintainability:

(R31) Maintainability All events which are useful to trace a malfunction of the gate-
way shall be logged.

We document the relation between the aspect and the identified underlying quality
in cross-cut relation table. In Table 1, we added the bold cross X3 in the lower right
quadrant. Furthermore, we add the relations between the identified quality to the base
requirements which are implied by the relations of the corresponding aspect. For our
smart grid scenario, we added the bold crosses X3 in the upper left quadrant of Table 1.
The consideration of the underlying qualities allows requirements engineers to access
whether the selected mechanisms (aspects) sufficiently address the respective quality.

4.4 Analyze Completeness

Based on the identified qualities, we can re-use quality-dependent analysis techniques
on problem frames to check the completeness of the cross-cut relation. For example, for
privacy one can use the ProPAn method [6], the law (identification) pattern method [11]
provides guidance for compliance, security is covered by the PresSuRE method [13],
and so forth. These analysis techniques identify for a given problem frames model and
the respective quality in which functional requirements the quality has to be considered.
At this point of our method, we have all inputs that the analysis techniques need. Using
the results of the analysis techniques, we can update the cross-cut relation and check
whether the selected aspects together with the defined cross-cut relation guarantee the
intended software qualities.

In this way, we identify that, for example, several qualities are relevant for R1. Pri-
vacy (R29A) is relevant as the consumption data metered by the smart meters enables
one to analyze what the persons in the household are currently doing. Hence, the con-
sumption data is an asset which has to be protected. As result, the security analysis also
shows that the consumption data has to be protected against eavesdropping (R28A).
Maintainability (R31) is also relevant for R1, as a malfunction can also occur while
receiving consumption data. The compliance analysis (R29B) reveals and strengthens
the importance of privacy because of different data protection acts. Additionally, the
logging mechanism is not only relevant for maintainability but also for compliance as
several laws require the fulfillment of accountability requirements whenever there is a
contractual relation between different parties. This information is used to update the
cross-cut relation table (see bold crosses X4 in Table 1). The already existing aspect
requirements are sufficient to cover the newly found relations.

Furthermore, we have to check whether a software quality that was identified as
relevant for a base requirement is also relevant for an aspect requirement that cross-
cuts the base requirement. E.g., we have to check whether the logs written for the base
requirements R1 and R17B contain confidential information that has to be protected



against an external attacker. For presentation purpose, we assume that such an attacker
has to be considered in the smart grid scenario and add an aspect requirement for the
encryption of persistent data that cross-cuts the logging aspect.

(R32) Data encryption Persistent data shall be stored encrypted on the gateway.

We update the regions (Aspect,Quality) and (Aspect,Aspect) of the cross-cut rela-
tion table (see Table 1) to document that the quality R28A has to be taken into account
for the aspect R30 (cross in region (Aspect,Quality)), and that the aspect R30 is cross-
cut by the newly introduced aspect R32 (cross in region (Aspect,Aspect)).

4.5 Model Aspect Requirements

To model aspect requirements in a similar way as base requirements, we extended the
UML profile of the UML4PF tool with aspect-oriented concepts. To differentiate aspect
requirements, the machines that address them, and the diagram they are represented
in, from base requirements and their machines and diagrams, we introduce the new
stereotypes�Aspect�,�AspectMachine�, and�AspectDiagram� as specialization
of the stereotypes �Requirement�, �ProblemDiagram�, and �Machine�, respec-
tively. In addition to problem diagrams, an aspect diagram has to contain a set of join
points, which together form a pointcut. These join points can be domains and inter-
faces. Hence, we introduced the new stereotype �JoinPoint�, which can be applied
to all specializations of the UML meta-class NamedElement. During the weaving, join
points are instantiated with domains of the diagrams the aspect cross-cuts.

To create an aspect diagram, we have to identify the join points which are necessary
to combine the aspect with the problems it cross-cuts and to understand the problem of
building the aspect machine. In most cases, we have a machine, besides the aspect ma-
chine, as join point in an aspect diagram. This machine will be instantiated during the
weaving with the machine of the problem that the aspect is weaved into. The interface
between this join point and the aspect machine describes how a problem machine can
utilize an aspect and which context information is needed by the aspect machine. We
have to derive the join points important for the problem described by the aspect from its
description and the requirements it cross-cuts. Besides the specialized stereotypes for
the machine and the requirement, and the definition of join points for the later weaving,
the process of building an aspect diagram is similar to the process of building problem
diagrams. As for problem diagrams, we also create sequence diagrams for each aspect.
The sequence diagrams contain two kinds of information. First, the messages annotated
with the stereotype �JoinPoint� describe the pointcut scenario. I.e., these messages
describe when during the behavior necessary to accomplish the cross-cut requirement
the behavior of the aspect can be integrated. Note that we can represent the common
pointcut definitions used, e.g., in AspectJ, such as before, after and around, by a se-
quence diagram with the behavior description for the aspect before, after, or around the
pointcut scenario, respectively. Second, all other messages describe the internal behav-
ior necessary to accomplish the aspect requirement.

For reasons of space, we will only discuss the aspect requirement R30 in detail. The
aspect R28B and the sequence diagram for the decryption of received data is described



Fig. 5. Aspect diagram for aspect R30
Fig. 6. Sequence diagram for aspect R30

Fig. 7. Sequence diagram for aspect R28B Fig. 8. Sequence diagram for aspect R32

in [12]. R30 covers the logging of important events in the system. The correspond-
ing aspect diagram is presented in Figure 5. It contains the aspect machine SMGLog,
which is able to record events in the EventStorage. Furthermore, the aspect diagram
contains two domains as join points. The machine SMGRequester will be instantiated
by a problem machine and the domain Source by the origin of the event to be logged.
The machine SMGRequester observes the phenomenon event1 of Source and is able
to issue the phenomenon event2. These phenomena represent the events that shall be
logged and need to be instantiated during the weaving. If an event that has to be logged
is observed, then SMGRequester instructs the aspect machine SMGLog to log that event
(logEvent). In general, we have to distinguish four cases for the event to be logged. The
event could be issued using a synchronous or asynchronous message of the Source,
or a synchronous or asynchronous message from the machine SMGRequester to the
Source. For the sake of simplicity, we only consider the case shown in the sequence
diagram in Figure 6. This sequence diagram shows the case that SMGRequester sends
a synchronous message to Source and receives a result (requirement). Then SMGRe-
quester asks SMGLog to log the observed event (requirement). The machine SMGLog
then records the event (specification). Hence, the observed event is logged (require-
ment). Figure 7 and 8 show the sequence diagrams for the behavior of aspect R28B for
sending encrypted data via a network and aspect R32 for encrypting data that shall be
stored persistently.

4.6 Weave Requirements

For each base requirement, we now create a sequence diagram that describes how the
aspect requirements have to be weaved into it to address the cross-cut relations. The
basis for the weaving sequence diagram is the sequence diagram of the requirement. The
behavior of the sub-machine is extended with the invocation of the aspects given by the
row of the base requirement in the cross-cut relation table (see Table 1). Furthermore,



Fig. 9. Weaved sequence diagram for R17A

we have to consider whether the base requirement is cross-cut by an aspect a1 that is
itself cross-cut by another aspect a2. If this is the case, we have to weave the aspect a2
into the base requirement after the aspect a1 was weaved into it.

The cross-cut relations are not sufficient to weave the aspect requirements into the
base requirement. The reason is that the cross-cut relation does not define how and when
an aspect has to be integrated into the base problem. Nevertheless, we can identify the
situations during the dynamics of the base problem where an aspect could be integrated
using the pointcut scenarios described in the sequence diagrams of the aspect. For each
base requirement, we create a table that defines the weaving relations, i.e., how and in
which order the aspects have to be integrated into the base problem. A row in the table
consists of the aspect sequence diagram that shall be weaved into the requirement, and
the instantiation of the join points of the aspect with the domains and messages of the
base sequence diagram. An instantiation of a join point j by a domain or message b of
the base problem is denoted by b/j. The instantiated messages uniquely describe how
and when the aspect is integrated into the base sequence diagram. Table 2 shows the
weaving relations for base requirement R1.

Because of the aspect requirement R28B all communications have to be encrypted
to prevent eavesdropping attacks. This implies that all external messages that a sub-
machine sends have to be encrypted and the ones it receives have to be decrypted.
Hence, we have to integrate the aspect R28B twice into the base requirement R1. The
pointcut scenarios in the two sequence diagrams R28B (Out) (shown in Fig. 7) and
R28B (In) can only be instantiated in one way, because in the sequence diagram for R1
(see Fig. 4) there is only one communication from the machine via a network (LMN)
to a receiver (SmartMeter) and one back from the sender (SmartMeter) via the network
(LMN). The first two lines of Table 2 describe these integrations. The pointcut scenario
of the aspect R30 matches for all synchronous message calls with a reply (see Fig. 6).
Hence, we have two possible situations in the sequence diagram for R1where the aspect



Table 2. Weaving relations for base requirement R1

Aspect Domain Instantiations Message Instantiations
R28B (Out) SMGReceive/SMGRequester, requestData/sendDataOut,

LMN/Network, SmartMeter/Receiver forwardRequest/forwardDataOut
R28B (In) SMGReceive/SMGRequester, sendData/sendDataIn,

LMN/Network, SmartMeter/Sender forwardData/forwardDataIn
R30 SMGReceive/SMGRequester, check/event2, fail/event1

SMGReceive/Source
R32 SMGLog/SMGRequester,EventStorage/Storage recordEvent/storeData

Table 3. Effort spent (in person-hours/minutes) for conducting the method

Number of items

Ø per item 11min 36min 7min 7min 34min 23min 6min
Total 5h 00min 6h 3min 45min 1h 15min 2h 51min 3h 53min 1h 45min

Classify 
Requirements

Model Base 
Requirements

Identify 
Underlying 
Qualities

Analyze 
Completeness

Model Aspect 
Requirements

Weave 
Requirements

Analyze 
Interactions

27 
requirements

10 base 
requirements

6 aspect 
requirements

10 base 
requirements

5 aspect 
requirements

10 base 
requirements

16 functional 
requirements

could be integrated. The event to be logged is a failed check of the received meter data
and hence, we integrate aspect R30 as described by the third line in Table 2. Finally,
we have to integrate aspect R32 that cross-cuts aspect R30. The pointcut scenario for
R32 (see Fig. 8) has to be instantiated with the recording of the event (see Fig. 6) as
described in line four of Table 2.

The weaving relations are used to generate the weaving sequence diagrams from the
sequence diagrams of the problem and aspect diagrams. These automatically generated
sequence diagrams have then to be adjusted, such that the overall behavior satisfies the
weaving requirement. The generated sequence diagram for R1 is shown in Figure 9.
For the sake of readability, we use a bold font for messages from the original problem
specification of R1. In accordance with Table 2, the date sent to the smart meter is en-
crypted before sending and the received data is decrypted when received. Furthermore,
in the case of a failed check of the received data an encrypted log is recorded.

4.7 Analyze Interactions

For reasons of space, we do not go into detail for this step. Alebrahim et al. provide
methods for interaction analysis using problem frames. In [2] functional requirements
are treated, and [1] describes how to analyze quality requirements for interactions. Both
works use the smart grid as a case study. Hence, we re-used the methods and results also
for this work. The results are documented in Table 1 using bold I.

5 Validation

To validate our method, we applied it to the crisis management system (CMS) [22] that
Kienzle et al. proposed as a case study for aspect-oriented modeling. We derived an
informal scenario description and the textual use case descriptions from the original as



Table 4. Requirements identified

1)
 F

un
ct

io
na

l

2)
 A

va
ila

bi
lit

y

3)
 R

el
ia

bi
lit

y

4)
 P

er
si

st
en

ce

5)
 R

ea
l-T

im
e

6)
 S

ec
ur

ity

7)
 M

ob
ili

ty

8)
 S

ta
tis

tic
 L

og
gi

ng

9)
 M

ul
ti-

A
cc

es
s

10
) 

S
af

et
y

11
) 

A
da

pt
ab

ili
ty

12
) 

A
cc

ur
ac

y

13
) 

M
ai

nt
ai

na
bi

lit
y

14
) 

P
er

fo
rm

an
ce

15
) 

S
ca

la
bi

lit
y

S
u

m

S
am

e 
C

la
ss Identified 100% 33% 50% 0% 0% 67% 0% 0% 0% 75% 0% 0% 30%

Partly 0% 0% 0% 0% 0% 33% 0% 0% 0% 0% 0% 0% 3%

Not Identified 0% 0% 0% 0% 0% 0% 33% 0% 0% 25% 0% 75% 13%

O
th

er
 C

la
ss Identified As 13) 2) 1) 14) 1) 1) 15) 1) 1)

Identified 0% 67% 50% 100% 67% 0% 67% 100% 100% 0% 25% 25% 45%

Partly 0% 0% 0% 0% 33% 0% 0% 0% 0% 0% 75% 0% 10%

A
g

g
re

g
at

ed Identified 100% 100% 100% 100% 67% 67% 67% 100% 100% 75% 25% 25% 75%

Partly 0% 0% 0% 0% 33% 33% 0% 0% 0% 0% 75% 0% 13%

Not Identified 0% 0% 0% 0% 0% 0% 33% 0% 0% 25% 0% 75% 13%

input for our method5. The method was executed by a requirements expert, who did not
know the case beforehand. From the information provided to the requirements analyst,
he identified 13 base requirements that he modeled using 10 problem diagrams, 8 aspect
requirements that he modeled using 5 aspect diagrams, and 6 quality requirements.

The effort spent for conducting our method on the CMS is summarized in Table 3.
It took 5 hours to classify the requirements. Note that for the case study this step was
done manually. The reason was that tools such as, for example, OntRep [28] or EA-
Miner [34] require some additional input like training documents or an existing ontol-
ogy. But unfortunately, such inputs were not available. Hence, the first step can be sped
up significantly using these tools. Another big block of effort is the modeling of base
and aspect requirements. Here the tool support already helps to speed up the modeling,
but is subject for further improvement. Note that the modeling steps do not only include
the modeling itself, but also the analysis and improvement of the original requirements,
which make the requirements more precise and unambiguous. Therefore, parts of the
effort spent on the modeling steps are unavoidable even when using another method
or notation. The modeling itself pays off as it allows the usage of the broad spectrum
of methods and tools which need problem frame models as input. For example, the
analysis of completeness uses these models and takes about an hour for different kinds
of qualities. The weaving of aspects is quite time consuming right now. Here the tool
support is on an experimental level, but the observations taken during the case study
imply that a full fledged tool support will significantly drop the effort. The interaction
analysis takes round about two hours, which is significantly below the effort of doing
such an analysis without a problem frame model (see [2] for further information). All
the effort spent sums up to 21,5 person hours, which is significant but reasonable with
regards to the results one gets. And compared to efforts other authors report, the effort

5 For the inputs and the results see
http://imperia.uni-due.de/imperia/md/content/swe/aore4pf cms report.pdf



spent for our method seems to be even low. For example, Landuyt et al. [24] report an
effort spent of 170 hours for the requirements engineering related activities.

To asses the sufficiency of the method and the used tools, the requirements and qual-
ities found within our method were compared to the original document as described by
Kienzle et al. Table 4 shows the comparison. Overall, the results are satisfying as most
requirements were found and classified in the correct class (30%) or in another, also
correct, class (45%). The high amount of requirements classified differently are due to
specific classes given in the original documents. For example, persistence and statis-
tical logging were completely described as functional requirements in the documents
but treated as qualities. For such requirements it is a more general discussion if they
are quality requirements or not. Hence, we accepted both views as correct. For some
specific qualities, such as mobility or accuracy, the overall observation cannot be ac-
knowledged. The reasons are subject to further investigations.

To asses the aspects identified, we compared the results of our method to the results
given in other publications considering aspect-oriented requirements engineering using
the same scenario [24,29]. The set of requirements identified with our method includes
all requirements which are treated as aspects in the other works. 83% of the aspects
found and separated in [24] and 75% of those in [29] were also separated as aspects by
our method. The other 17% of aspects in [24] and 25% in [29] were identified as base
requirements by our method. A detailed investigation showed that both views on these
requirements are reasonable. Some of the aspects our method found were not mentioned
in the other works. 38% and 25% of the requirements identified by our method where
not mentioned in [24] and [29], respectively. Reasons for the missing requirements
might be that they were not reported due to lack of space or that they were not found.

We could not asses our completeness analysis quantitatively as the other works
using the scenario stick to the original requirements. But the qualitative investigation
of the completeness analysis showed reasonable results. This observation is also true
for the cross cut relations. We also compared the weaved specification with sequence
diagrams or state machines given by the original document and works in [22]. Here
we observed that the specifications produced by our method were at least as good as
the chosen assessment artifacts. Again, the interaction analysis could not be assessed
quantitatively due to missing benchmarks. But the found interactions seemed to be real
problems which have to be resolved in a real case.

6 Related Work

There are many works considering early aspects [33,38,20,36,35,27,15]. Most of these
approaches deal with goal-oriented approaches and use-case models. But goal or use-
case models are of a higher level of abstraction than problem frames. Additionally,
goal and use-case models are stakeholder-centric, while problem frames are system-
centric. Therefore, refining functional requirements taking into account more detail of
the system-to-be and analyzing the system-to-be described by the functional require-
ments is reported to be difficult for such methods [3]. Recently, there were papers which
reported a successful integration of goal- and problem-oriented methods [26,5]. Hence,
one might benefit from integrating goal-models in our method.



Conejero et al. [9] present a framework alike the method presented in this paper.
Their process also starts with unstructured textual requirements. Then different tools
and modeling notations are used along the frame work to identify and handle aspects.
In difference to our process, they do not consider a completeness or interaction analysis
and especially for the modeling of aspects they lack tool support.

Only few approaches consider the integration of early aspects in the problem frames
approach. Lencastre et al. [25] also investigated how early aspects can be integrated into
problem frames. Their method to model aspects in the problem frames approach differs
from ours. For an aspect, the authors first select a problem frame as PF Pointcut Sce-
nario. This pointcut scenario defines into which problems the aspect can be integrated.
The pointcut scenario is then extended to the PF Aspectual Scenario, which is similar
to our aspect diagrams, with the difference that the pointcut always has to be a problem
frame. This reduces flexibility, because an aspect (e.g., logging of all system events)
may have to be integrated into different problem diagrams.

7 Conclusions

In this paper, we presented the AORE4PF method which integrates aspect-orientation
into the problem frames approach and utilizes many quality analysis method based on
problem frames to be a problem-, quality-, and aspect-oriented requirements engineer-
ing method. We extended the UML4PF profile with stereotypes that allow us to create
aspect diagrams. We further introduced a structured methodology to separate aspects
from requirements, to model aspects, and to weave aspects and requirements together.
We considered both the static and the behavioral view on the requirements, aspects,
and their weaving. We exemplified our method using a smart grid scenario from the
NESSoS project as case study and validated it using a crisis management system.

The contributions of this work are 1) the integration of aspects into the problem
frames approach, 2) a structured way of separating base, quality and aspect require-
ments, starting from a textual description, 3) the detection of implicit qualities given by
aspects, 4) identification of all base requirements relevant for a quality and the related
aspects, 5) a structured method to weave base and aspect requirements, and 6) the inte-
gration of an interactions analysis between the resulting requirements. The AORE4PF
method is 7) tool-supported in most steps. The resulting requirements model not neces-
sarily leads to an aspect-oriented implementation of the software. The identified aspects
can also help to define the structure of a component-based implementation.

For future work, we plan to improve the tool support. More steps of our method,
such as the instantiation of pointcut scenarios during the weaving, can be automated to
a higher degree and we want to provide an integrated tool chain for the requirements
separation. Additionally, we will investigate how architectures can be derived from the
aspect-oriented requirements model.

References
1. Alebrahim, A., Choppy, C., Faßbender, S., Heisel, M.: Optimizing functional and quality re-

quirements according to stakeholders’ goals. In: System Quality and Software Architecture.
Elsevier (2014)



2. Alebrahim, A., Faßbender, S., Heisel, M., Meis, R.: Problem-based requirements interaction
analysis. In: Requirements Engineering: Foundation for Software Quality. LNCS, vol. 8396,
pp. 200–215. Springer (2014)

3. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements from goal
models. In: IEEE 31st International Conference on Software Engineering. pp. 265–275.
IEEE Computer Society (2009)

4. Baniassad, E., Clarke, S.: Finding aspects in requirements with Theme/Doc. In: Early
Aspects: Aspect-Oriented Requirements Engineering and Architecture Design. pp. 15–22
(2004), http://trese.cs.utwente.nl/workshops/early-aspects-2004/workshop papers.htm

5. Beckers, K., Faßbender, S., Heisel, M., Paci, F.: Combining goal-oriented and problem-
oriented requirements engineering methods. In: Availability, Reliability, and Security in In-
formation Systems and HCI. LNCS, vol. 8127, pp. 178–194. Springer (2013)

6. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for computer
aided privacy threat identification. In: Privacy Technologies and Policy. LNCS, vol. 8319,
pp. 1–16. Springer (2014)

7. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE Transac-
tions on Software Engineering 14(10), 1462–1477 (1988)

8. Cavusoglu, H., Mishra, B., Raghunathan, S.: The effect of internet security breach announce-
ments on market value: Capital market reactions for breached firms and internet security
developers. International Journal of Electronic Commerce 9(1), 70–104 (2004)

9. Conejero, J.M., Hernandez, J., Jurado, E., van den Berg, K.: Mining early aspects based on
syntactical and dependency analyses. Science of Computer Programming 75(11) (2010)

10. Côté, I., Hatebur, D., Heisel, M., Schmidt, H.: UML4PF - a tool for problem-oriented re-
quirements analysis. In: Proceedings of the 19th IEEE International Requirements Engineer-
ing Conference. pp. 349–350. IEEE Computer Society (2011)

11. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering using model-
transformation. In: ICSOFT ’13. pp. 447–458. SciTePress (2013)

12. Faßbender, S., Heisel, M., Meis, R.: Aspect-oriented requirements engineering with problem
frames. In: ICSOFT-PT 2014 - Proc. of the 9th Int. Conf. on Software Paradigm Trends. pp.
145–156. SciTePress (2014)

13. Faßbender, S., Heisel, M., Meis, R.: Functional requirements under security PresSuRE. In:
ICSOFT-PT 2014 - Proc. of the 9th Int. Conf. on Software Paradigm Trends. pp. 5–16.
SciTePress (2014)

14. Firesmith, D.: Specifying good requirements. Journal of Object Technology 2(4), 77–87
(2003), http://www.jot.fm/issues/issue 2003 07/column7

15. Grundy, J.C.: Aspect-oriented requirements engineering for component-based soft-
ware systems. In: Proceedings of the IEEE International Symposium on Require-
ments Engineering. pp. 84–91. IEEE Computer Society, Washington, DC, USA (1999),
http://dl.acm.org/citation.cfm?id=647646.731259

16. Hatebur, D., Heisel, M.: A UML profile for requirements analysis of dependable software. In:
Computer Safety, Reliability, and Security. LNCS, vol. 6351, pp. 317–331. Springer (2010)

17. Hofmann, H., Lehner, F.: Requirements engineering as a success factor in software projects.
IEEE Software 18(4), 58–66 (Jul 2001)

18. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.
Addison-Wesley (2001)

19. Jackson, M., Zave, P.: Deriving specifications from requirements: an example. In: ICSE,
USA. pp. 15–24. ACM Press (1995)

20. Jacobson, I., Ng, P.W.: Aspect-Oriented Software Development with Use Cases. Addison-
Wesley Professional (2004)



21. Khansa, L., Cook, D.F., James, T., Bruyaka, O.: Impact of HIPAA provisions on the stock
market value of healthcare institutions, and information security and other information tech-
nology firms. Computers & Security 31(6), 750 – 770 (2012)

22. Kienzle, J., Guelfi, N., Mustafiz, S.: Crisis management systems: A case study for aspect-
oriented modeling. In: Katz, S., Mezini, M., Kienzle, J. (eds.) Transactions on Aspect-
Oriented Software Development VII, LNCS, vol. 6210, pp. 1–22. Springer (2010)

23. Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile for the gateway
of a smart metering system. Tech. rep., BSI (2011)

24. Landuyt, D., Truyen, E., Joosen, W.: Discovery of stable abstractions for aspect-oriented
composition in the car crash management domain. In: Transactions on Aspect-Oriented Soft-
ware Development VII, LNCS, vol. 6210, pp. 375–422. Springer (2010)

25. Lencastre, M., Moreira, A., Araújo, J., Castro, J.: Aspects composition in problem frames.
In: Proceedings of the 16th IEEE International Requirements Engineering Conference. pp.
343–344. IEEE Computer Society (2008)

26. Mohammadi, N.G., Alebrahim, A., Weyer, T., Heisel, M., Pohl, K.: A framework for com-
bining problem frames and goal models to support context analysis during requirements en-
gineering. In: Availability, Reliability, and Security in Information Systems and HCI. LNCS,
vol. 8127, pp. 272–288. Springer (2013)

27. Moreira, A., Arajo, J., Rashid, A.: A concern-oriented requirements engineering model. In:
Pastor, O., Falco e Cunha, J. (eds.) Advanced Information Systems Engineering, LNCS, vol.
3520, pp. 293–308. Springer (2005)

28. Moser, T., Winkler, D., Heindl, M., Biffl, S.: Requirements management with semantic tech-
nology: An empirical study on automated requirements categorization and conflict analysis.
In: Advanced Information Systems Engineering, LNCS, vol. 6741, pp. 3–17. Springer (2011)

29. Mussbacher, G., Amyot, D., Araújo, J., Moreira, A.: Requirements modeling with the aspect-
oriented user requirements notation (AoURN): A case study. In: Transactions on Aspect-
Oriented Software Development VII, LNCS, vol. 6210, pp. 23–68. Springer (2010)

30. OPEN meter project: Requirements of AMI. Tech. rep., OPEN meter project (2009)
31. Parnas, D.L.: On the criteria to be used in decomposing systems into modules. Communica-

tions of the ACM 15(12), 1053–1058 (Dec 1972)
32. Rago, A., Marcos, C., Diaz-Pace, J.A.: Uncovering quality-attribute concerns in use case

specifications via early aspect mining. Requirements Engineering 18(1), 67–84 (2013)
33. Rashid, A.: Aspect-oriented requirements engineering: An introduction. In: Proceedings

of the 16th IEEE International Requirements Engineering Conference. pp. 306–309. IEEE
Computer Society (2008)

34. Sampaio, A., Rashid, A., Chitchyan, R., Rayson, P.: Ea-miner: Towards automation in aspect-
oriented requirements engineering. In: Transactions on Aspect-Oriented Software Develop-
ment III, LNCS, vol. 4620, pp. 4–39. Springer (2007)

35. Sutton, Jr., S.M., Rouvellou, I.: Modeling of software concerns in cosmos. In: Proceedings
of the 1st International Conference on Aspect-oriented Software Development. pp. 127–133.
AOSD ’02, ACM, New York, NY, USA (2002)

36. Whittle, J., Araujo, J.: Scenario modelling with aspects. IEE Proceedings Software 151(4),
157–171 (Aug 2004)

37. Willis, R.: Hughes Aircraft’s Widespread Deployment of a Continuously Improving Soft-
ware Process. AD-a358 993, Carnegie-Mellon University (1998)

38. Yu, Y., Cesar, J., Leite, S.P., Mylopoulos, J.: From goals to aspects: Discovering aspects from
requirements goal models. In: Proceedings of the 12th IEEE International Requirements En-
gineering Conference. pp. 38–47. IEEE Computer Society (2004)


