
Problem-based Security Requirements Elicitation and
Refinement with PresSuRE?

Stephan Faßbender, Maritta Heisel and Rene Meis

University of Duisburg-Essen, paluno - The Ruhr Institute for Software Technology
firstname.lastname@paluno.uni-due.de

Abstract. Different reports on cybercrime, which were published recently, indi-
cate an ever-increasing number of security incidents related to IT systems. Many
attacks causing the incidents abuse (in)directly one or more security defects. Fix-
ing the security defect once fielded is costly. To avoid the defects and the sub-
sequent need to fix them, security has to be considered thoroughly when devel-
oping software. The earliest phase to do so is the requirements engineering in
which security threats should be identify early on and treated by defining suffi-
cient security requirements. In a previous paper [1], we introduce a methodology
for Problem-based Security Requirements Elicitation (PresSuRE). PresSuRE pro-
vides a computer-aided security threat identification. The identification is based
on the functional requirements for a system-to-be. Still, there is a need for guid-
ance on how to derive security requirements once the threats are identified. In
this work, we provide such guidance extending PresSuRE and its tool support.
We illustrate and validate our approach using a smart grid scenario provided by
the industrial partners of the EU project NESSoS.

Key words: security analysis, problem frames, requirements elicitation

1 Introduction

Recently, there has been an increase of reported security incidents hitting large software
systems. For example, in the report on cybercrime for the year 2013 published by the
federal criminal police office of Germany, the authors state that 64426 security incidents
were reported in Germany [2]. This is an increase by 70 percent with respect to 2008[3].
Moreover, particular types of attacks which aim at companies increased much more. For
example, data manipulation and computer sabotage incidents in companies increased by
18 percent with respect to 2012 and 578 percent with respect to 2008. These numbers
are limited to Germany, but, for example, Norton reports a world wide damage of 113
billion US dollar in 2013 due to security incidents [4]. Hence, the need for secure IT
systems is staggering.

? Part of this work is funded by the German Research Foundation (DFG) under grant number
HE3322/4-2 and the EU project Network of Excellence on Engineering Secure Future Internet
Software Services and Systems (NESSoS, ICT-2009.1.4 Trustworthy ICT, Grant No. 256980).

2 Stephan Faßbender, Maritta Heisel and Rene Meis

Not all of the security incidents are directly related to security defects in an IT sys-
tem, but many attacks abuse indirectly or directly one or more security defects. Hence,
these security defects need to be fixed. But fixing the security defect causing the incident
is costly. Fixing a defect when it is already fielded is reported to be up to eighty times
more expensive than fixing the corresponding requirements defects early on [5,6]. Thus,
security issues should be detected as early as possible for a system-to-be. Therefore, it
is crucial for requirements engineers to identify security threats, and to refine the threats
into security requirements. But eliciting good requirements is not an easy task [7], even
more with regard to security, as most requirements engineers are not security experts in
the first place.

In an previous work of ours, we propose a method called problem-based security
requirements elicitation (PresSuRE), which guides a requirements engineer through the
process of eliciting a set of security requirements in collaboration with the stakeholders
of the system-to-be and security experts [1]. PresSuRE has several benefits. It does not
require the requirements engineer to have a security background. It does not require
any preliminary security requirements and security relevant information. It lowers the
effort by providing tool support for semi-automated modeling and an automated secu-
rity analysis. And PresSuRE is completely guided by a detailed process.

PresSuRE is based on the same idea of deriving information flows from functional
requirements like the problem-based privacy analysis (ProPAn) [8], but changes the
analysis to be suitable for security. The analysis and elicitation is based on a complete
set of functional requirements for a system-to-be. The method is accompanied with
tool-support1. PresSuRE is based on the problem frame notation introduced by Jack-
son [9]. Problem frames are suitable as input for a semi-automated analysis, as they
have a predictable structure, underlying semantics, and support focusing on parts of the
system-to-be.

But PresSuRE, as reported in the previous work, only gives guidance in detail for
steps necessary for analyzing the system-to-be for security threats. But a description
how to derive and model initial security requirements, and how to analyze if the security
requirements are sufficient regarding the found threats is still missing. Hence, in this
paper we provide such guidance by extending PresSuRE.

We briefly describe the case study (Section 2) we use for the running example and
the validation. The problem frame notation is explained in Section 3. Section 4 in-
troduces the running example, which is used for the rest of the paper. The PresSuRE
method as introduced in [1] is briefly explained in Section 5. In Section 6, we describe
the our new extension for deriving security requirements and in Section 7 PresSuRE is
validated. In Section 8 related work is discussed, and the final conclusion is drawn in
Section 9.

2 Case Study

To illustrate the application of the PresSuRE method, we use the real-life case study of
smart grids. As sources for real functional and quality requirements, we consider diverse

1 http://www.uml4pf.org/ext-pressure/installation.html

Security Requirements Elicitation and Refinement with PresSuRE 3

documents such as “Application Case Study: Smart Grid” provided by the industrial
partners of the EU project NESSoS2, the “Protection Profile for the Gateway of a Smart
Metering System” [10] provided by the German Federal Office for Information Security
, and “Requirements of AMI (Advanced Multi-metering Infrastructure”) [11] provided
by the EU project OPEN meter3.

To use energy in an optimal way, smart grids make it possible to couple the gen-
eration, distribution, storage, and consumption of energy. Smart grids use information
and communication technology (ICT), which allows for financial, informational, and
electrical transactions.

We define the terms specific to the smart grid domain and our use case in the fol-
lowing. The smart meter gateway represents the central communication unit in a smart
metering system. It is responsible for collecting, processing, storing, and communicat-
ing meter data. The meter data refers to readings measured by smart meters regarding
consumption or production of a certain commodity. A smart meter represents the device
that measures the consumption or production of a certain commodity and sends it to the
gateway. An authorized external entity can be a human or an IT unit that communicates
with the gateway from outside the gateway boundaries through a wide area network
(WAN). The WAN provides the communication network that interconnects the gateway
with the outside world. The LMN (local metrological network) provides the commu-
nication network between the meter and the gateway. The HAN (home area network)
provides the communication network between the consumer and the gateway. The term
consumer refers to end users of commodities (e.g., electricity).

3 Problem-Oriented Requirements Engineering

Jackson [9] introduced the concept of problem frames, which is concerned with de-
scribing, analyzing, and structuring software development problems. A problem frame
represents a class of software development problems. It is described by a frame dia-
gram, which consists of domains, interfaces between them, and a requirement. Domains
describe entities in the environment. Jackson distinguishes the domain types biddable
domains that are usually people, causal domains that comply with some physical laws,
and lexical domains that are data representations. Whenever we have influence on the
design of a domain it is a designed domain. To describe the problem context, a con-
nection domain between two other domains may be necessary. Connection domains
establish a connection between other domains by means of technical devices. Examples
are video cameras, sensors, or networks. Note that one domain can have more than one
type, for example a domain can be a connection and causal domain at the same time.

Interfaces connect domains, and they contain shared phenomena. Shared phenom-
ena may be events, operation calls, messages, and the like. They are observable by at
least two domains, but controlled by only one domain, as indicated by the abbreviation
of that domain and “!”. For example, the shared phenomenon MeterData in Figure 1
is observable by the domains SMGSubmitter and PersistentMeterData, but controlled
only by the domain PersistentMeterData (abbreviation PMD).

2 http://www.nessos-project.eu/
3 http://www.openmeter.com/

4 Stephan Faßbender, Maritta Heisel and Rene Meis

Fig. 1: Problem Diagram RQ 4 : Submit Meter Data

The objective is to construct a machine (i.e., software) that controls the behavior
of the environment (in which it is integrated) in accordance with the requirements.
Problem-oriented requirements analysis relies on a decomposition of the overall prob-
lem into sub-problems, which are represented by problem diagrams. Problem diagrams
contain the requirements belonging to the sub-problem. When we state a requirement,
we want to change something in the environment. Therefore, each requirement con-
strains at least one domain in the environment. A requirement may also refer to several
domains in the environment of the machine.

The problem frames approach distinguishes between the requirements (R), the do-
main knowledge (D), and the specification (S). The requirements describe the desired
system after the machine is built. The domain knowledge represents the relevant parts
of the problem world. The specifications describe the behavior of the software in order
to meet the requirements.

We describe problem frames using UML class diagrams, extended by stereotypes,
as proposed by Hatebur and Heisel [12]. Figure 1 shows a problem diagram in UML
notation. The biddable domain (UML class with stereotype�biddableDomain�) Au-
thorized External Entity controls the request billing data phenomenon (Name of the
UML association with the stereotype �connection� between the classes Authorized
External Entity and WAN), which is observed by the causal connection domain WAN
(UML class with stereotype �causalDomain, connectionDomain�). The SMGSub-
mitter controls the read data phenomenon, which is observed by the lexical domain
PersistentMeterData (UML class with stereotype �lexicalDomain�). Additionally,
the SMGProvider submits the data. The Persistent Meter Data controls the meter data
it contains. The WAN forwards the data and commands it observes. The requirement
RQ 4 (for a textual description see Section 4) constrains the WAN and refers to the
Authorized External Entity, and the PersistentMeterData.

4 Running Example: Billing

We chose the use case Meter Reading for Billing given in the documents of NESSoS and
the open meter project to exemplify our method. This use case is concerned with gath-
ering, processing, and storing meter readings from smart meters for the billing process.

Security Requirements Elicitation and Refinement with PresSuRE 5

Beside the billing use case, there are 13 use cases described for the minimal features of
a smart meter gateway in total, which we all considered for our validation. The func-
tional requirements for this use case are defined as follows:
(RQ 1) Receive meter data The smart meter gateway shall receive meter data from
smart meters.
(RQ 2) Process meter data The smart meter gateway shall process meter data from
smart meters.
(RQ 3) Store meter data The smart meter gateway shall store meter data from smart
meters.
(RQ 4) Submit billing data The smart meter gateway shall submit processed meter
data to authorized external entities.
(RQ 5) Provide consumption data to consumer The smart meter gateway shall pro-
vide meter data for consumers for the purpose of checking the consistency of bills.
The problem diagram for RQ 4 was already shown in Figure 1 and explained in Sec-
tion 3. Figure 2 shows the problem diagram for RQ 1. The causal domain smart meter
controls the send data pehomenon, which is forwarded by the LMN and finally observed
by the machine domain SMGReceiver. The SMGReceiver controls the phenomenon
writeTemporaryData, which stores the received information in the lexical domain tem-
porary meter data. Additionally, the SMGReceiver can request data which is forwarded
by the LMN to the smart meter. The causal connection domain LMN forwards the data
and commands it observes. The requirement RQ 1 constrains the temporary meter data
and refers to the smart meter. These two problem diagrams are sufficient to understand
the rest of the paper, nevertheless we use all five functional requirements for our method.

Note that we will even simplify this example in the following. We will not elaborate
on all security elements but restrict ourselves to one example for each element, for
example one asset, to improve the comprehensibility for the reader and for reasons of
space. Nevertheless, for the validation we elaborated the full case study in means of 27
requirements and all possible assets and attackers.

Fig. 2: Problem Diagram RQ 1: Receive Meter Data

6 Stephan Faßbender, Maritta Heisel and Rene Meis

5 The PresSuRE Method

The PresSuRE method as introduced in [1] consists of four phases and nine steps, which
we will briefly explain in the following. For a detailed view we refer the reader to [1].

5.1 Model functional requirements

We assume that the functionality of the system-to-be is described completely, coher-
ently and unambiguously. The functional requirements are a good starting point for a
security analysis as the requirements engineer is used to deal with them, they are often
already well defined, they already contain everything which has to be protected, and
they also contain the entry points for possible attack vectors an adversary can use.

Model Problem Diagrams In the first step of the PresSuRE method, the functional
requirements have to be modeled using the problem frame notation. This can be done
by the requirements engineer alone, based on a textual description of the functional re-
quirements. The result is a set of problem diagrams as well as an automatically gener-
ated connection domain discovery table. The functional requirements and correspond-
ing problem diagrams are presented in Section 4.

Adjust Problem Diagrams As setting up problem diagrams allows some degree of free-
dom, adjustments might be needed to prepare the problem diagrams. For the PresSuRE
analysis, connection domains are specifically important. But as connection domains are
not of central relevance for fulfilling the functional requirements, they are often left out.
Hence, one has to make sure that all connection domains are explicitly modeled.

For each connection between domains, the requirements engineer and the system
stakeholders have to check if there is a connection domain in between. The requirements
engineer and the system stakeholders use a table containing the connected domains
pairwise, the phenomena in between and a standard questionnaire, which helps to elicit
the missing connection domains. For an example of such a table see [1] The result of this
step are adjusted problem diagrams, which are modeled by the requirements engineer
using semi-automated wizards. For our example, using the table and answering the
questions, we see that our problem diagrams have to contain WAN, HAN and LMN
as connection domains. This information is already reflected by the problem diagrams
shown in this paper.

5.2 Security Knowledge Elicitation

Before starting the security analysis, some security-specific knowledge has to be elicited.
This information is crucial for the success of the analysis, as in most cases the functional
requirements do not contain enough information for considering security thoroughly.
The knowledge about assets in the system-to-be and attackers which might tamper with
the system has to be made explicit. As this knowledge is not or only partially available
for requirements engineers, they have to collaborate with the stakeholders of the system
and security experts.

Security Requirements Elicitation and Refinement with PresSuRE 7

Prepare Knowledge Elicitation Even though the functional requirements do not con-
tain the information for security analysis, they do already contain some information,
which is the starting point for eliciting the additional domain knowledge. We use secu-
rity element elicitation tables, and attacker elicitation tables to elicit this information.
Examples of such tables are given in [1]. The tables are automatically generated from
the problem diagrams.

Identify assets, authorized entities and rights The baseline questions for this step are
“What has to be protected?” (asset), “Who is eligible to access the asset?” (authorized
entities), and “Which actions are allowed for a stakeholder regarding an asset?” (rights).
We use the previously generated security element elicitation tables to elicit this infor-
mation. These tables are completed by the stakeholders of the system-to-be using the
following description, while the requirements engineer models the results.

Assets Identify those domains, which have to be protected. Every domain beside the
machine is an asset candidate. Most likely one wants to protect a lexical domain repre-
senting information or a causal domain. For our example, we only select the persistent
meter data as an asset, which contains information about the electricity consumption
of the consumer. This information has to be protected for privacy reasons, as it, for
example, allows to monitor the consumer. The full case study contains 13 further assets
(see Section 7).

Authorized Entities An authorized entity to an asset is every domain which has an
eligible interest in knowing the state / reading, or controlling / writing the asset. Eligi-
ble entities of the meter data are the smart meters, which produce the meter data, the
external entities, who need the consumption information for billing, and the consumer,
who wants to check his/her electricity consumption.

Rights Authorized entities have different rights to access the asset. In case of a
lexical domain, the rights are to read or write the information in the domain. In case of
the causal domain, the rights are to control or know the state of the causal domain. For
each right and authorized entity, one has to state if the entity is allowed to have the right
or if the entity must have the right. The smart meters must have the right to write the
information, while the consumer and external entities must have the right to read the
information. The smart meters do not need to read the stored consumption data, and
the external entities and the consumer are not allowed to modify the consumption data.

The elicited information has to be added to the model. For this purpose, we use do-
main knowledge diagrams. In domain knowledge diagrams additional knowledge about
domains and relations between domains can be modeled. To support modeling security-
related domain knowledge we developed UML profiles. The modeling is explained in
detail in [1]. The diagrams are generated in the background while the requirements en-
gineer completes a wizard which is similar to the security element elicitation table. The
result of the step are asset knowledge diagrams.

Attacker(s) Elicitation In this step, the requirements engineer and a security expert
have to collaborate to define those attackers who might attack our system-to-be. While
the requirements engineer has a deeper understanding of the system-to-be and its do-
main, the security expert adds his/her vital knowledge about attackers, attacker abilities,

8 Stephan Faßbender, Maritta Heisel and Rene Meis

possible attack vectors, and so forth. Hence, it is not mandatory that the requirements
engineer has a security background.

Beckers et al. [13] enumerate different types of attackers: physical attacker, soft-
ware attacker, network attacker, and social attacker. Regarding their abilities, we have
chosen the abilities as described by Dolev and Yao [14]: read (read message / get state
of domain), write (write message / change state of domain), interfere (intercept mes-
sage / prevent the change of state). For the purpose of eliciting the information about
attackers, we use the generated attacker elicitation tables.

Attacker First, we have to reason for each domain and type of attacker about the
question if this type of attacker might exist for the domain at hand. For simplicity’s
sake, we assume for the running example that we only have to defend against network
attackers. We distinguish between two network attackers: The internal network attacker,
who has access to the HAN and LMN, where the smart meters reside, and the external
network attacker, who can attack via the WAN. Note that for the full case study we found
and modeled 7 attackers in total, including all kinds of attackers.

Abilities For each attacker and each domain the attacker has access to, we have to
state which abilities the attacker has. Whenever there is no detailed information about
the attackers and their abilities regarding a domain they have access to, one should
assume the strongest attacker. This might lead to an overestimation of the threats after-
ward. But adding an unnecessary security requirement is not so much of an issue, while
missing one is critical. After an assessment of all attackers of our example and their
abilities, we could not exclude any of the basic abilities. Hence, our attackers have all
abilities regarding the domains they have access to.

The elicited information has to be added to the model to be available for our analy-
sis, too. Again, the modeling can be done semi-automatically using the wizards our tool
provides. The result are attacker knowledge diagrams (see [1] for more details).

5.3 Graph Generation

The automated part of the security analysis relies on graphs, which visualize informa-
tion flows and access flows. The attacker asset access graphs, which contain the poten-
tial security threats towards the functional requirements, are generated stepwise. The
steps and intermediate graphs are explained in the following.

Global Access Graph All graphs (V, E) that we use for our security analysis in the
PresSuRE method are labeled and directed. The set of vertices is a subset of the domains
occurring in the model, formally V ⊆ Domain. An edge is annotated with a diagram
and a type. The diagram can be a problem diagram or a domain knowledge diagram.
The type can be required (req), implicit (imp) or attack (att) (Type ::= req|imp|att).
The type indicates if the edge is required or implicitly given by the problem diagram or
if it shows a possible attack relationship defined in a domain knowledge diagram. The
edges point from one domain to another, formally E ⊆ Domain×Diagram×Type×
Domain. For the rest of the paper we will regard such an edge as an access flow. In the
following, we describe a graph (V, E) only by its edges E .

For the analysis of the threats towards an asset we will use the global access graph.
This graph contains the information about access flows between domains, and which

Security Requirements Elicitation and Refinement with PresSuRE 9

problem diagrams are the source of these flows. For the flows, we distinguish between
required flows as stated by the requirement and implicit ones which are modeled due to
the given environment. To set up the global access graph we use the problem diagrams
as an input. The predicates constrains, refersTo : P(Domain × Diagram) and
controls : P(Domain×Domain×Diagram) can be derived from the problem frame
model and are used to generate the global access graph. We have (d, p) ∈ constrains
and (d, p) ∈ refersTo iff a requirement or domain knowledge in diagram p constrains
the domain d or refers to it, respectively. (d1, d2, p) ∈ controls is true iff the domain
d1 controls an interface that d2 observes in the diagram p.

Using these predicates, we create the global access graph G, which is an overap-
proximation of the access flows occurring in the system-to-be. An edge (d1, p, req, d2)
is in G iff the domains d1 and d2 are not equal, and the domain d1 is referred to and the
domain d2 is constrained in p. For example, the problem diagram for RQ 1 (see Fig-
ure 2) contains the smart meter and the temporary storage. The smart meter is referred
by RQ 1 and the temporary storage is constrained by RQ 1. Hence, we add a required
access flow edge (solid arrow) between smart meter (node with name SmartMeter) and
temporary meter data (node with name TemporaryMeterData) annotated with RQ 1
(see graph shown in Figure 3).

Additionally, an edge (d1, p, imp, d2) is in G iff the (d1, p, req, d2) is not already in
G, the domains d1 and d2 are not equal, and d2 observes an interface controlled by d1
in p. Note that machines are treated as transitive forwarders in this case. This means
that whenever a machine m observes an interface controlled by d1 and d2 observes an
interface controlled by m, we assume that d2 observes an interface of d1. For example,
the domain LMN controls a phenomenon forwardMeterData which is observed by the
machine (see Figure 2). The domain temporary meter data observes a phenomenon
writeTemporaryData from the machine. Hence, an implicit access flow edge (dotted
edge) is added between the LMN and the temporal meter data annotated with RQ 1
(see Figure 3). The full formal definition is given in [1]

Because of the annotation of the edges we keep the information which problem
diagram causes the access flow. Thus, our global access graph contains traceability
links that are used in our further analysis. The semantics of an edge (d1, p, t, d2) ∈ G
is that in problem diagram p there is possibly a required or implicit (depending on t)
access flow from domain d1 to domain d2.

Asset Access Graph As the global access graph can be huge for a complex system-
to-be, we introduce an asset access graph which focuses the view on one asset only. It
only contains access flows given by the requirements directly or indirectly concerning
the asset. Thus, we get one asset access graph per asset. The asset access graph makes

TemporaryMeterData PersistentMeterData
RQ3

SmartMeter

RQ1

LMN
RQ1

HAN
Consumer

RQ5

RQ5

RQ5

RQ3

RQ5

WAN

RQ4 AuthorizedExternalEntity
RQ4RQ4

RQ4RQ1

RQ1

Fig. 3: Global Access Graph (also Asset Access Graph for Persistent Meter Data)

10 Stephan Faßbender, Maritta Heisel and Rene Meis

the information for the requirements engineer easier to comprehend. Hence, it improves
the scalability of our method. An edge (d1, p, t, d2) is in Gasset iff p is in Paccess. A
problem diagram p is in Paccess iff there is an edge (d1, p, t, d2) which is required and
d1 and d2 are both in Daccess. Daccess is a union of Dactive and Dpassive. A domain d1
is in Dactive iff there is a required access flow which starts at d1 and the target domain
d2 is already in Dactive. Initially, only the asset is in Dactive. Hence, Dactive contains
all domains which have a required direct or indirect (via another domain) access flow
towards the asset. A domain d2 is in Dpassive iff there is a required access flow which
ends at d2 and the source domain d1 is already in Dpassive. Initially, only the asset is
in Dpassive. Hence, Dpassive contains all domains which are the target of a required
direct or indirect (via another domain) access flow from the asset. The effort for using
PresSuRE was reported in detail in [1].

The resulting asset access graph for the persistent meter data is shown in Figure 3, as
for our small example the global and the asset access graph do not differ. For a complex
scenario the asset access graph is significantly smaller than the global access graph.
The asset access graph can be used to check if a stakeholder can gain more rights than
he/she should. For reasons of space, we do not go into detail on this matter.

Attacker Asset Access Graph For each asset, we generate the attacker asset access
graph, which visualizes the information and control flows from attackers to the asset
and from the asset to the attackers. At this point, we focus on the basic information
security goals confidentiality, integrity, and availability (short CIA), which are sug-
gested by the Common Criteria [15] and ISO 27000 family of standards [16]. The
problematic access flows are annotated with the information which CIA property(ies)
are threatened (CIA ::= C|I|A|ε). First, the domains which are directly connected to
attackers are identified. Note that for this purpose we use the information given in do-
main knowledge diagrams created during the step Identify assets, authorized entities
and rights described in Section 5.2. From these diagrams, we can derive the predi-
cates read,write, interfere : P(Domain × Diagram). We have (d, dk) ∈ read,
(d, dk) ∈ write, and (d, dk) ∈ interfere iff domain knowledge in diagram dk has a
read, write, or interfere dependency, respectively, to the domain d.

A domain d can be object to be attacked if it is in Daccess for the asset at hand.
That is, an attacker can access or influence information on the asset through the domain
d. We define the sets Dw, Di, and Dr as the sets of all domains for which an attacker
has the ability to write, interfere, or read it, respectively. A domain d is in Dw iff there
exists an attacker a and a domain knowledge diagram dk, in which d is written and a is
referred to by the domain knowledge. The domain d is in Di iff there exists an attacker
a and a domain knowledge diagram dk in which d is interfered and a is referred as
sources of the interference. The domain d is in Dr iff there exists an attacker a and a
domain knowledge diagram dk in which the information in d is referred to and a reads
this information. Based on the three sets of domains which might be attacked, the asset
threat graph Gthreat can be set up. Dw, Di, and Dr are formally defined as follows.

Dw ={d : Daccess | ∃a : Attacker; dk : Diagram • (d, dk) ∈ write

∧ (a, dk) ∈ refersTo}
Di ={d : Daccess | ∃a : Attacker; dk : Diagram • (d, dk) ∈ interfere

∧ (a, dk) ∈ refersTo}

Security Requirements Elicitation and Refinement with PresSuRE 11

Dr ={d : Daccess | ∃a : Attacker; dk : Diagram • (a, dk) ∈ read ∧ (d, dk) ∈ refersTo}

Gthreat contains all edges, and therefore problem diagrams, of the corresponding asset
access graph which might allow an attacker to successfully attack the asset at hand. An
access flow (d1, p, t, d2) ∈ Gasset represents that information is transferred from d1 to
d2 that possibly comes from the asset or that possibly will be stored in the asset. Hence,
such an access flow is a possible threat to the confidentiality of an asset if an attacker has
the ability to read one of the domains d1 or d2 (d1 ∈ Dr∨d2 ∈ Dr). In this case, we add
the edge (d1, p, t,C, d2) to Gthreat. An access flow (d1, p, t, d2) ∈ Gasset is a possible
threat to the integrity of an asset if an attacker has the ability to write the source d1 of the
access flow (d1 ∈ Dw), because an attacker could change the information of the asset
or the information sent to the asset at domain d1, which forwards it to domain d2. In
this case, we add the edge (d1, p, t, I, d2) to Gthreat. We have to consider an access flow
(d1, p, t, d2) ∈ Gasset as a possible threat to the availability of an asset if an attacker
has the ability to interfere one of the domains d1 or d2 (d1 ∈ Di ∨ d2 ∈ Di), because
an attacker is then able to threaten the availability of information flowing from or to the
asset through the domains d1 and d2. In this case, we add the edge (d1, p, t,A, d2) to
Gthreat. Gthreat is defined as follows.

Gthreat ={(d1, p, t, cia, d2) : Domain×Diagram× Type× CIA×Domain |
(d1, p, t, d2) ∈ Gasset ∧ [(d1 ∈ Dr ∨ d2 ∈ Dr) ∧ cia = C

∨ d1 ∈ Dw ∧ cia = I ∨ (d1 ∈ Di ∨ d2 ∈ Di) ∧ cia = A]}

The full attacker asset access graph Gattack is an extension of Gthreat ⊂ Gattack. We add
an edge (d1, p, t, ε, d2) to Gattack iff (d1, dk, t, d2) is in Gasset but not in Gthreat. These
edges visualize how the attacks on the access flows in Gthreat might be propagated over
the system due to the functional requirements. Additionally, the attackers are added to
the attacker asset access graph. Gattack contains an edge (a, dk, att, cia, d) if a is an
attacker and a domain knowledge diagram dk exists, in which d is referred to and d
is written (cia = I) or interfered (cia = A). Additionally, Gattack contains an edge
(a, dk, att,C, d) if a is an attacker and a domain knowledge diagram dk exists in which
d is referred to and a is read. Formally, we define Gattack as follows.

Gattack ={(d1, p, t, ε, d2) : Domain×Diagram× Type× CIA×Domain

| (d1, p, t, d2) ∈ Gasset ∧ ∀st : CIA • (d1, p, t, st, d2) /∈ Gthreat}∪
{(a, dk, att, cia, d) : Attacker ×Diagram× Type× CIA×Domain |
(d, dk) ∈ refersTo ∧ [(a, dk) ∈ read ∧ cia = C ∨ (a, dk) ∈ write ∧ cia = I

∨ (a, dk) ∈ interfere ∧ cia = A]} ∪ Gthreat

The generated attacker asset access graph for the persistent meter data is shown in Fig-
ure 4. Note that for reasons of readability, the PresSuRE tool merges edges and their
annotation if they have the same source and target, and are of the same type. The asset
is now visualized as ellipse with bold border and the asset name (PersistentMeterData)
is written in bold. The attackers internal and external network attacker are also added
as ellipses with dashed borders and in italic font. Their attack flow edges are shown as
dashed edges, which are annotated with the domain knowledge diagram they are de-
scribed in and the security goals they may threaten. A bold (both, edge and annotation)
access flow indicates a flow for which a security property might be threatened by an

12 Stephan Faßbender, Maritta Heisel and Rene Meis

PersistentMeterData

WANRQ4 (C)

TemporaryMeterData

RQ3

HAN

RQ5 (C)

ExternalNetworkAttackerWANAttacker (C,I,A)

InternalNetworkAttacker

LMN

LMNAttacker (C,I,A)HANAttacker (C,I,A) RQ1 (A,C,I)

SmartMeter

RQ1 (I,A,C)

RQ4 (C,I,A)

AuthorizedExternalEntity
RQ4 (C,I,A)

RQ4 (C)

RQ3

RQ1 (C)

RQ1

Consumer
RQ5 (C)

RQ5 (A,C,I)
RQ5 (C,I,A)

Fig. 4: Attacker Asset Access Graph for Persistent Meter Data

attacker. The threatened security property is annotated in brackets. For example, the
implicit access flow edge between the nodes LMN and TemporaryMeterData is anno-
tated with RQ1 (A,C,I). Hence, it might be possible that for RQ1 the confidentiality,
integrity and availability of persistent meter data is threatened.

6 Extending PresSuRE

For the last step of PresSuRE we have to analyze the attacker asset access graphs and
derive initial security requirements. The input to this step are the attacker asset access
graphs. As this step is sparsely described in [1], we elaborate this step and describe
the extended the tool support in the following.The attacker asset access graph contains
all information regarding access flows to and from the asset at hand. And it contains
the information where the asset might be threatened by an attacker. For each asset we
identified previously, we check if we have to augment the original requirements related
to the asset with security requirements. For each attacker asset access graph, we have
to do the following as long as not all problematic access flows are treated:

Select edge First, select a problematic access flow (bold edge with bold annotation)
not considered yet. We select the implicit access flow edge between the nodes LMN and
TemporaryMeterData annotated with RQ1 (A,C,I)

Check confidentiality If there is a (. . . , C, . . .) annotated, we have to check whether
there is a threat to the confidentiality of the asset or not. If the threat can occur for the
annotated requirement, we have to augment this requirement with a confidentiality re-
quirement. Indeed, the confidentiality is threatened by internal network attackers. If
they are able to learn all data sent by the smart meters, they can derive the informa-
tion contained in the persistent meter data by themselves. Hence, we have to add a
confidentiality requirement complementing RQ1.

Check integrity If there is an (. . . , I, . . .) annotated, we have to check whether there
is a threat to the integrity of the asset or not. If the threat can occur for the annotated
requirement, we have to augment this requirement with an integrity requirement. The
integrity is threatened by internal network attackers. If they are able to add data or
change data sent by the smart meters, they can change the information contained in
the persistent meter data. This is a threat as the persistent meter data is the basis for
billing. Hence, we have to add an integrity requirement complementing RQ1.

Security Requirements Elicitation and Refinement with PresSuRE 13

Input
domain accessed by the attacker, the attacker, and threatened security property

Precondition
Precondition 1: Domain accessed by the attacker is a connection domain
Precondition 2: Security property threatened is integrity or confidentiality

Template
Title: Secure access flows via [domain accessed by the attacker]
Text: The access flows via the [domain accessed by the attacker] must be secured in a way that the [the attacker] is not able
to threaten the [threatened security property] of the access flows.

Table 1: SR Template for Connection Domains, and Integrity and Confidentiality

Check availability If there is an (. . . , A, . . .) annotated, we have to check whether
there is a threat to the availability of the asset or not. If the threat can occur for the
annotated requirement, we have to augment this requirement with an availability re-
quirement. The availability is threatened by internal network attackers. If they are able
to deny the service of the LMN, no data can be sent by the smart meters. Thus, the per-
sistent meter data cannot be computed and used for billing. Hence, we have to add an
availability requirement complementing RQ1.

The iteration over the assets, and the iteration over the edges in an according at-
tacker asset access graph for the asset at hand, is guided by the tool. It indicates the
asset and the edge in question and shows the according attacker asset access graph. The
requirements engineer and security expert have to do the reasoning and provide the re-
sult to the tool. From this information we collected for an edge, we can derive initial
security requirements. The initial security requirements can be generated automatically,
using templates. For example, the template for a security requirement regarding a con-
nection domain which can be accessed by an attacker to threaten the security properties
confidentiality and integrity is shown in Table 1. Such a template defines the inputs for
filling the templates. In this case, we need the attacker, the domain he/she can access
and the security property threatened by the access. To instantiate the template in a rea-
sonable way some preconditions must be fulfilled. First, the domain accessed by the
attacker must be a connection domain. Second, the security property threatened must
be integrity or confidentiality. The template itself is given as gap-text in which the gaps
are indicated by brackets. Within a bracket the input element is referenced which will
later on replace the bracket when instantiating the template. Such a template also con-
tains the modeling rules to add the security requirement to the problem frames model.
For sake of brevity we do not show and discuss these rules in detail. An example model
is shown in Fig. 5. In general, we stick the profile and rules as defined in [17].

The templates for the different cases are implemented in the tool. Hence, for our
example we can generate the following requirement regarding confidentiality: SRQ
1.1 Secure access flows via LMN The access flows via the LMN must be secured in
a way that the InternalNetworkAttacker is not able to threaten the confidentiality of
the access flows. Figure 5 shows the according modeling, in which the confidential-
ity requirement SRQ1.1 (UML class with stereotypes�requirement, confidentiality�)
complements (UML dependency with stereotype�complements�) RQ 1 (UML class
with stereotype �requirement�). SRQ1.1 constrains (UML dependency with stereo-
type�constrains�) the LMN (UML class with stereotypes�connectionDomain,

14 Stephan Faßbender, Maritta Heisel and Rene Meis

Fig. 5: Snipped from the Problem Diagram for RQ 1 Augmented with SRQ1.1

causalDomain�). SRQ1.1 considers the InternalNetworkAttacker (Property attackers
of SRQ1.1). We treat the integrity and availability threat for the selected edge in the
same way.

Every newly added security requirement has an impact on the attacker asset access
graph at hand. But but it also has an impact on other attacker asset access graphs when-
ever an attacker asset access graph contains edges, which appear due to the functional
requirement that is complemented by the newly added security requirement. Hence,
it is necessary to reduce all attacker asset access graphs to ensure that one only ana-
lyzes edges which are not treated already by an security requirement. For the specifica-
tion of the reduction of attacker asset access graphs, we need two additional predicates
The predicate complements : P(Requirement × CIA × Attacker) can be derived
from the problem frame model. We have (r, cia, a) ∈ complements iff a security re-
quirement of the security property cia, which refers to attacker a, complements the
requirement r. The predicate models : P(Requirement ×Diagram) can be derived
from the problem frame model. We have (r, p) ∈ models iff a requirement r is part
or the diagram p. Additionally, we need the set Raccess. Raccess contains the tuples
(r, cia, a) : Requirement × CIA × Attacker which relate the requirement r to the
attacker a who exploits r to threaten the security property cia. A tuple (r, cia, a) is
in Raccess iff there is an access flow (d1, p, t, cia, d2) part of the attacker asset access
graph Gattack for which the requirement r is part of the diagram p and if Gattack con-
tains an edge (a, dk, att, cia, d1) or an edge (a, dk, att, cia, d2).

Raccess ={(r, cia, a) : Requirement× CIA×Attacker | ∃(d1, p, t, cia, d2) ∈ Gattack•
r ∈ p ∧ (∃(a, dk, att, cia, d1) ∈ Gattack ∨ ∃(a, dk, att, cia, d2) ∈ Gattack}

Based onRaccess and GthreatOld, which is equal to Gthreat calculated before we intro-
duce a new security requirement, we can now update Gthreat. Gthreat now contains all
edges, and therefore problem diagrams, of the corresponding asset access graph which
might allow an attacker to successfully attack the asset at hand and this attack isnot
mitigated by an according security requirement. An access flow (d1, p, t, cia, d2) ∈
GthreatOld is also contained in Gthreat iff there exists an requirement r and an attacker
a for which the requirement r is modeled in the diagram p and the requirement r enables
the attacker a to threaten cia and this access is still not mitigated by a complementing
security requirement. Formally, we define the new Gthreat as follows:

required GthreatOld

Gthreat ={(d1, p, t, cia, d2) : Domain×Diagram× Type× CIA×Domain |
(d1, p, t, cia, d2) ∈ GthreatOld ∧ (∃r : Requirement, a : Attacker•
(r, p) ∈ models ∧ (r, cia, a) ∈ Raccess \ complements)}

Security Requirements Elicitation and Refinement with PresSuRE 15

PersistentMeterData

WANRQ4 (C)

HAN

RQ5 (C)

ExternalNetworkAttacker
WANAttacker (C,I,A)

InternalNetworkAttackerHANAttacker (C,I,A)

RQ4 (C,I,A) AuthorizedExternalEntity

RQ4 (C,I,A)

RQ4 (C)

Consumer
RQ5 (C)

RQ5 (A,C,I)
RQ5 (C,I,A)

Fig. 6: Attacker Asset Access Graph for Persistent Meter Data After Reduction

The updated threat graph Gthreat leads to an updated and reduced attacker asset access
graph Gattack . Hence, the tool can ensure that only edges are analyzed which are not
already treated. Additionally, the tool is now able to detect that an asset is not threatened
anymore as Gattack is gradually reduced till it is empty. As we have added security
requirements for integrity, confidentiality, and availability complementing RQ 1, the
attacker asset access graphs can be reduced now. Figure 6 shows the attacker asset
access graph for the persistent meter data after the reduction (the initial graph is shown
in Fig 4). Now the smart meters, the LMN, and the temporary meter data are not part
of the graph, as the threats which made them relevant are already considered.

7 Validation

We validated PresSuRE using two real-life case studies, the already introduced smart
meter and a voting system. The voting system requirements were obtained from a Com-
mon Criteria profile for voting systems [18]. For more details on the voting system case
study, see [19]. The results for applying PresSuRE are reported in the following in detail
for the Smart Grid. The original functional requirements were obtained from [11] and
the NESSoS case studies provided by the industrial partners of the project. For conduct-
ing our method, we selected 13 minimum uses cases, which embody 27 requirements
in total. For these requirements, 14 assets and 7 attackers of all kinds, as described in
Section 5.2, were identified. Based on this information, the graphs were generated, and
the initial security requirements elicited.

We analyzed each attacker asset access graph for assessing the tool support, and we
also analyzed the initial security requirements found for assessing the overall method.

Table 2: Results of the assessment for the smart meter case study
Confidentiality Integrity Availability

Precision per attack asset access edges 36.14% 66.35% 62.52%
Recall per attack asset access edges 100.00% 100.00% 100.00%

Aggregated precision per attack asset access edges 55.00%
Aggregated recall per attack asset access edges 100.00%

Precision per requirement 92.59% 96.30% 96.30%
Recall per requirement 100.00% 100.00% 100.00%

Aggregated precision per requirement 95.06%
Aggregated recall per requirement 100.00%

16 Stephan Faßbender, Maritta Heisel and Rene Meis

For the graph, we checked for each edge in the attacker asset access graph at hand if
the annotated threats are existing according to the threats and security requirements of
the original documents (e.g. [11,10] for smart meter). We also looked for threats and
security requirements which are defined in such documents, but which were not iden-
tified using PresSuRE. In this way we were able to measure the precision and recall of
our method. Unfortunately, we do not know which security analysis was used for elicit-
ing the security requirements reported in those documents. But we assume that security
experts were involved in writing the documents and the documents were reviewed thor-
oughly. Hence, these documents are a good benchmark.

Next, we aggregated the results of the edges of the attacker asset access graph for
each requirement. Thus, we derived for each requirement the information if the require-
ment has to be complemented by security requirements according to PresSuRE. Again,
we also checked if the found security requirements are compliant with the original doc-
uments. Last, we measured the precision and recall of PresSuRE on the requirements
level.

The results of this analysis for the smart meter is shown in Table 2. Speaking of
the precision on the level of edges of the attacker asset access graph, we have many
false positives, especially for confidentiality. This is because the original documents do
not demand a high level of confidentiality. Additionally, PresSuRE discovered potential
indirect information flows between assets which will not occur in the system later on.
Thus, PresSuRE is very strict and defensive, which is not appropriate in every case.
Note that even though the indirect flows often turned out to be irrelevant, they have
to be checked anyway. Often attacks use such indirect relations to tamper with a sys-
tem. Overall, the precision on the level of edges of the attacker asset access graph is
acceptable (55%), but should be improved. The recall is perfect (100%) as we did not
find any false negatives. On the requirements level, our results are satisfying. When-
ever PresSuRE suggested to add a complementing security requirement for a functional
requirement, this suggestion was correct with a precision of 95%, and no security re-
quirment was missed (recall 100%).

Similar results were obtained for the voting system case study. The precision on
the level of edges of the attacker asset graph is slightly higher, as the voting system
documents are very strict regarding confidentiality. This fact is also reflected on the
requirements level, but the difference to the smart meter case study is not significant.
For the attacker asset access edge and the requirements level the recall was 100% again.

Speaking of the effort, we spent 43 person hours, which is a significant effort, but
seems to be reasonable.The effort for using PresSuRE was reported and discussed in
detail in [1].

8 Related Work

Schmidt and Jürjens [20] propose to integrate the SEPP method, which is based on prob-
lem frames, and UMLSec [21], which is based on a UML profile and allows tool-based
reasoning about security properties. In this way, they can express and refine security
requirements and transfer the security requirements to subsequent design artifacts. A
similar method is described by Haley et al. [22], which also relies on problem frames

Security Requirements Elicitation and Refinement with PresSuRE 17

for security requirements analysis. The first method [20] starts after the initial security
requirements are already known, while the latter one already embodies a step for se-
curity requirements elicitation. But this particular step is described very sparsely and
informally. Hence, our work can complement and improve these works.

There are many publications concerning goal-oriented security requirements analy-
sis (e.g. [23,24,25,26]). But goal models are of a higher level of abstraction than prob-
lem frames. Goal models are stakeholder-centric, while problem frames are system-
centric. Therefore, refining functional requirements taking into account more detail of
the system-to-be and analyzing the system-to-be described by the functional require-
ments is reported to be difficult for goal-oriented methods [27]. Alrajeh et al. try to
tackle this problem by introducing refinement steps which rely on heavy weight for-
malizations. We offer an alternative way of bridging the this gap. Thus, even though
the goals of an attacker and their implication for the goals of stakeholders are already
known, one might benefit from using our method.

9 Conclusion

In this paper, we extended a methodology for Problem-based Security Requirements
Elicitation (PresSuRE). PresSuRE is a method for identifying security needs during the
requirements analysis of software systems using a problem frame model. Our extension
now enables a guided analysis of found threats. In consequence, security requirements
can be derived in a structured way. In summary, the PresSuRE method extension has
the following advantages: It introduces a method to reduce attacker asset access graphs
successively by adding security requirement, which 1) allows to visualize the impact
of an security requirement on the attacker asset access graphs, 2) visualizes the unmit-
igated threats, and 3) avoids analysis of threats which are not relevant anymore. And
it is a re-usable requirements security analysis method which 1) relies on only single
access flow which the analyst can be easily comprehend, 2) allows to derive security
requirements in a structured way, 3) eases the formulation and modeling of the secu-
rity requirements, 4) is applicable to different domains, and 5) is tool supported to ease
analysis, and modeling necessary for the method.

We validated our method and tool with two real-life case studies in the fields of
smart grid and voting systems. The results show the suitability of our method to detect
initial security requirements. For the future, we plan to investigate how the basic CIA
properties can be refined further systematically into more fine-grained security require-
ments such as authentification and authorization.

References

1. Faßbender, S., Heisel, M., Meis, R.: Functional requirements under security pressure. In:
ICSOFT-PT 2014 - Proceedings of the 9th International Conference on Software Paradigm
Trends, Vienna, Austria, 29-31 August, 2014. (2014)

2. Bundeskriminalamt (federal criminal police office): Bundeslagebild Cybercrime 2013 (re-
port on cybercrime 2013). Technical report, Germany (2014)

3. Bundeskriminalamt (federal criminal police office): Bundeslagebild Cybercrime 2012 (re-
port on cybercrime 2012). Technical report, Germany (2013)

18 Stephan Faßbender, Maritta Heisel and Rene Meis

4. Norton: Norton Report 2013. Technical report, Norton (2013)
5. Willis, R.: Hughes Aircraft’s Widespread Deployment of a Continuously Improving Soft-

ware Process. AD-a358 993. Carnegie-mellon university (1998)
6. Boehm, B.W., Papaccio, P.N.: Understanding and controlling software costs. IEEE Transac-

tions on Software Engineering 14(10) (1988) 1462–1477
7. Firesmith, D.: Specifying good requirements. Journal of Object Technology 2(4) (2003)
8. Beckers, K., Faßbender, S., Heisel, M., Meis, R.: A problem-based approach for computer

aided privacy threat identification. In: APF ’12, Springer (2013) 1–16
9. Jackson, M.: Problem Frames. Analyzing and structuring software development problems.

Addison-Wesley (2001)
10. Kreutzmann, H., Vollmer, S., Tekampe, N., Abromeit, A.: Protection profile for the gateway

of a smart metering system. Technical report, BSI (2011)
11. : Requirements of AMI. Technical report, OPEN meter project (2009)
12. Hatebur, D., Heisel, M.: Making pattern- and model-based software development more rig-

orous. In: ICFEM ’10, Springer (2010) 253–269
13. Beckers, K., Hatebur, D., Heisel, M.: A problem-based threat analysis in compliance with

common criteria. In: ARES ’13, IEEE Computer Society (2013)
14. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions on Infor-

mation Theory 29(2) (1983) 198–207
15. ISO/IEC: Common Criteria for Information Technology Security Evaluation. ISO/IEC

15408, International Organization for Standardization (ISO) and International Electrotech-
nical Commission (IEC), Geneva ,Switzerland (2009)

16. ISO/IEC: Information technology - Security techniques - Information security management
systems - Overview and Vocabulary. ISO/IEC 27000, International Organization for Stan-
dardization (ISO) and International Electrotechnical Commission (IEC), Geneva ,Switzer-
land (2009)

17. Hatebur, D., Heisel, M.: A UML Profile for Requirements Analysis of Dependable Software.
In Schoitsch, E., ed.: Proc. of the Int. Conf. on Computer Safety, Reliability and Security
(SAFECOMP). LNCS 6351, Springer (2010) 317–331

18. Volkamer, M., Vogt, R.: Common Criteria Protection Profile for Basic set of security require-
ments for Online Voting Products. Bundesamt f”ur Sicherheit in der Informationstechnik.
(April 2008)

19. Faßbender, S., Heisel, M.: From problems to laws in requirements engineering using model-
transformation. In: ICSOFT ’13, SciTePress (2013) 447–458

20. Schmidt, H., Jürjens, J.: Connecting security requirements analysis and secure design using
patterns and UMLsec. In: CAiSE ’11, Springer (2011) 367–382

21. Jürjens, J.: Secure Systems Development with UML. Springer (2005)
22. Haley, C.B., Laney, R., Moffett, J.D., Nuseibeh, B.: Security requirements engineering: A

framework for representation and analysis. IEEE Transactions on Software Engineering
34(1) (2008) 133–153

23. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. In: RE ’03. (2003) 151–161

24. Mouratidis, H., Giorgini, P.: Secure Tropos: a security-oriented extension of the tropos
methodology. International Journal of Software Engineering and Knowledge Engineering
17(2) (2007) 285–309

25. Salehie, M., Pasquale, L., Omoronyia, I., Ali, R., Nuseibeh, B.: Requirements-driven adap-
tive security: Protecting variable assets at runtime. In: RE ’12. (2012) 111–120

26. Van Lamsweerde, A.: Elaborating security requirements by construction of intentional anti-
models. In: ICSE ’04. (2004) 148–157

27. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Learning operational requirements from goal
models. In: ICSE ’09. (2009) 265–275

