Applying Performance Patterns for Requirements Analysis

Azadeh Alebrahim, paluno — The Ruhr Institute for Software Technology, Germany
Maritta Heisel, paluno — The Rubhr Institute for Software Technology, Germany

Performance as one of the critical quality requirements for the success of a software system must be integrated into software development
from the beginning to prevent performance problems. Analyzing and modeling performance demands knowledge of performance experts and
analysts. In order to integrate performance analysis into software analysis and design methods, performance-specific properties known as
domain knowledge have to be identified, analyzed, and documented properly. In this paper, we propose the performance analysis method
PoPeRA to guide the requirements engineer in dealing with performance problems as early as possible in requirements analysis. Our struc-
tured method provides support for identifying potential performance problems using performance-specific domain knowledge attached to
the requirement models. To deal with identified performance problems, we make use of performance analysis patterns to be applied to the
requirement models in the requirements engineering phase. To show the application of our approach, we illustrate it with the case study
CoCoME, a trading system to be deployed in supermarkets for handling sales.

Categories and Subject Descriptors: 1.5.2 [Pattern Recognition]: Design Methodology—pattern analysis; D.2.1 [Software Engineering]:
Requirements/Specifications—Methodologies; D.2.9 [Software Engineering]: Management—Software quality assurance (SQA); D.2.11
[Software Engineering]: Software Architectures—Patterns

General Terms: Design, Performance

Additional Key Words and Phrases: Performance patterns, problem frames, requirements engineering, software architecture,
UML

ACM Reference Format:

Alebrahim, A. and Heisel, M. 2015. Applying Performance Patterns for Requirements Analysis jn 2, 3, Article 1 (May 2010), 15 pages.

1. INTRODUCTION

Problems such as loss of productivity, loss of customers, cost overruns, etc. arise when software systems are
constructed without having performance in mind [Smith and Williams 2006]. Fixing such problems afterwards
might be costly or even hardly possible. The software after fixing such problems might be erroneous or might not
perform as well as software which has been constructed under performance considerations [Smith and Williams
1993|. Therefore, performance as one of the critical quality requirements to the success of a software system must
be integrated from the beginning of the software development to prevent performance problems.

Architecture solutions provide a means to satisfy quality requirements. Decisions made in the architecture phase
could constrain the achievement of initial requirements, and thus could change them. The sooner architectural
knowledge is involved in the process of requirements analysis, the less costly the changes will be. In this paper, we
aim at reusing such knowledge in the requirements engineering with regard to performance. There exist solutions
to performance problems such as performance patterns [Smith and Williams 2001 |Ford et al. 2008] to be applied
during the design and implementation phases. We make use of performance analysis patterns [Alebrahim 2015,

Author’s address: Azadeh Alebrahim, Oststrasse 99, 47057 Duisburg, Germany; email: azadeh.alebrahim@paluno.uni-due.de; Maritta Heisel,
Oststrasse 99, 47057 Duisburg, Germany; email: maritta.heisel@paluno.uni-due.de

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP’15, July 08-12, 2014, Irsee, Germany. Copyright 2015 is held by the author(s). ACM 978-1-4503-3416-7

which reuse conventional performance patterns and mechanisms and adapt them in a way that they can be used
in the requirements analysis.

In this paper, we propose a structured method for problem-oriented performance requirements analysis (PoPeRA)
that guides the requirements engineer in identifying potential performance-critical resources and their utilization.
It then provides a structured way for the treatment of the identified performance problems on the requirements
level by using performance analysis patterns. The proposed method relies on the problem-oriented requirements
engineering approach problem frames [Jackson 2001].

We use this approach, because 1) it allows decomposing the overall software problem into simple subprob-
lems, thus reducing the complexity of the problem, 2) it makes it possible to annotate subproblems with quality
requirements, such as performance requirements (e.g. [Alebrahim et al. 2011b]), 3) it enables various model
checking techniques, such as requirements interaction analysis and reconciliation [Alebrahim et al. 2014] due
to its semi-formal structure, and 4) it supports a seamless transition from requirements analysis to architectural
design (e.g. [Alebrahim et al. 2011al).

The benefit of the proposed PoPeRA method is manifold. 1) It supports requirements engineers in identifying
potential performance problems. 2) It provides guidance for refining performance problems located in the problem
space. 3) The elaborated performance requirement models can easily be transformed into a particular solution in
the software architecture. Thus, it bridges the gap between two domains, namely the requirements domain and
the software architecture & design domain. 4) It supports less experienced software engineers in applying solution
approaches early in the requirements analysis in a systematic manner.

The remainder of this paper is organized as follows. We present the background on which our approach is built
in Sect. |2l Our PoPeRA method and its application is described in Sect. (3] Related work is discussed in Sect.
and a conclusion is given in Sect.

2. BACKGROUND

In this section, we describe the problem frames approach briefly in Sect. and the concept of performance
analysis patterns in Sect.

2.1 Problem Frames

Problem frames proposed by Jackson [2001] are patterns for requirements analysis used to understand, describe,
and analyze software development problems. In this approach, each problem is decomposed into simple subprob-
lems that fit to a problem frame. An instantiated problem frame is a problem diagram which basically consists of
one submachine representing one part of the software to be built, relevant domains, interfaces between them, and
a requirement referring to and constraining problem domains. Domains represent parts of the environment which
are relevant for the problem at hand. The task is to construct a (sub-)machine that improves the behavior of the
environment (in which it is integrated) in accordance with the requirement.

We describe problem frames using UML class diagrams, extended by a specific UML profile for problem
frames (UML4PF) proposed by Hatebur and Heisel [2010]. A class with the stereotype <machine>> represents
the software to be developed. Jackson distinguishes the domain types biddable domains (represented by the
stereotype <BiddableDomain’>>) that are usually people, causal domains (< CausalDomain>>) that comply with
some physical laws, and lexical domains (<LexicalDomain>>) that are data representations. Figure [1| shows
the problem diagram for the requirement R3 (taken from the application example described in Sect. [3) which
is concerned with showing product info. It describes that the machine domain ShowProductinfoMachine must
present product info on the domain CashBoxDisplay through the domain CashBox using the domain /temld.

In problem diagrams, interfaces connect domains and they contain shared phenomena. Shared phenomena
may, e.g., be events, operation calls or messages. They are observable by at least two domains, but controlled
by only one domain, as indicated by “I". The notation SPIM!{presentProductInfo} (between the domains
ShowProductinfoMachine and CashBox) in Fig.[1|means that the phenomenon presentProductinfo is controlled by

Applying Performance Patterns for Requirements Analysis — Page 2

<<prc|blemDiagram»
ShowProductinfo

«Reguirement: «Pasteps
text = Using the item identifier the system respT = [unit=ms , value=10, source=req , statQ=mean)]
presents the corresponding product description, «Requirements
price, and running total. text = Time for showing product info
____________________________ N, "\
«lexicalDornains: N 3
[I§iternld Content} Itemid . j<refersTo>> -\,\]
- N «requirements
«maching: R «causalDomain, connectionDomain:s R3
ShowProductinfoMachine]™ ooy resentProductinfo} CashBox R N .

Lt : =caomplements:t

CBDI{presentProductinfo)

é:_?cconstrainSx '
«displayDamain: L !

CashBoxDisplay «reguirement, paStep»

PerfR3

Fig. 1. Problem diagram for showing product info CoCoME

the domain ShowProductinfoMachine. When we state a requirement we want to change something in the world
with the machine to be developed. Therefore, each requirement expressed by the stereotype <requirement>>
constrains at least one domain. This is expressed by a dependency from the requirement to a domain with the
stereotype < constrains>>. A requirement may refer to several domains in the environment of the machine.
This is expressed by a dependency from the requirement to a domain with the stereotype <refersTo>>. The
requirement A3 in Fig.[T] constrains the domain CashBoxDisplay. It refers to the domain ltemld.

In the original problem frames approach the focus is on functional requirements. We extended the UML-based
problem frames approach by providing a way to attach quality requirements such as security and performance
requirements to problem diagrams [Alebrahim et al. 2011b]. This is achieved by providing a dependency from
the quality requirement to the functional one with the stereotype < complements>>. We represent performance
requirements as annotations in problem diagrams using the UML profile MARTE [UML Revision Task Force
2009|. Note that it is possible to have more than one performance requirement in one problem diagram. In
some cases, if more than one quality requirement is annotated in one problem diagram, conflicts among such
requirements might emerge. Therefore, such potential conflicts should be detected and resolved. We discuss this
in our previous work [Alebrahim et al. 2014]. In Fig. |1} the performance requirement PerfR3 complements the
functional requirement R3. It states that the time for showing product info should be 10 ms in average.

We believe that requirements engineering and architectural design must be integrated in such a way that the
knowledge gained in requirements analysis is used in a systematic way when developing a software architecture.
Incorporating solution approaches right from the beginning in requirements analysis facilitates the seamless
transition from requirements to architectural design. Hence, we extended the original problem frames approach
with solution approaches for quality requirements [Alebrahim et al. 2011a]. We not only provide annotations for
modeling quality requirements in the problem diagrams, but also incorporate solution approaches for the annotated
quality requirements.

2.2 Performance Analysis Patterns

Architectural patterns provide a means to fulfill quality requirements. Performance patterns convey essential
performance-specific information and principles for facilitating the reuse of performance knowledge. In our previous

Applying Performance Patterns for Requirements Analysis — Page 3

Table I. Template for performance analysis patterns

1) Name Name of the pattern

2) Description Brief description of the pattern

3) Also known as Other well-known names for the pattern, if any

4) Problem Situation and structure of the problem

5) Applicability Conditions under which the pattern can be applied

6) Solution Structure of the solution using stereotypes from UML4PF and MARTE
7) Collaboration Behavior Description of solution elements

8) Benefits Benefits of applying the pattern

9) Consequences Consequences and hints to be considered when applying the pattern
10) Related patterns Another pattern related to the pattern

work [Alebrahim 2015], we proposed an adaptation of existing performance patterns from the literature [Smith
and Williams 2001} |[Ford et al. 2008] to deal with performance problems in the requirements engineering phase.
We called the adapted performance patterns performance analysis patterns, which we use in this paper in the
PoPeRA method.

The original performance patterns only describe the principle of the solution. They do not provide any structure
of the problem. Our adaptation allows the use of such performance patterns in the requirements analysis for
analyzing performance problems and providing solution approaches for avoiding such problems. We adapted four
existing performance patterns, namely First Things First [Smith and Williams 2001], Flex Time [Smith and Williams
2001|, Master-Worker |Ford et al. 2008], and Load Balancer [Ford et al. 2008] for requirements analysis |[Alebrahim
2015]. These patterns provide solutions for the problem situation where an overload of the system is expected.

Performance analysis patterns encompass a generic template for describing performance patterns textually.
The template has to be instantiated for each performance pattern explicitly (see Table[l). It is inspired by the GOF
template [Gamma et al. 1995]. It, however, contains additional information for representing performance-specific
information. The fields problem and applicability describe when the pattern can be applied. They represent the
pre-conditions for the pattern at hand. The fields solution, collaboration, benefits, and consequences describe the
solution including its elements, their relationships, and their behavior. They represent the post-conditions for the
pattern at hand. The proposed template allows software engineers to define new performance analysis patterns
according to this structure as well. We describe each pattern as one instance of the template given in Table[l The
instantiations of the template for the First Things First (FTF), Flex Time (FT), Master Worker (MW), and Load
Balancer (LB) are shown in Tables Il} [lT} [V} and [V|

Table II. First Things First Pattern

1) Name First Things First (FTF)

2) Description FTF ensures that the most important tasks will be processed if not every task can be processed.

3) Also known as -

4) Problem A temporary overload of inbound requests is expected. This situation may overwhelm the processing capacity of a specific resource
(see the generic problem frame in Fig. [2].

5) Applicability FTF pattern is only applicable when there is a temporary overload. That is, the attribute overloadType of the stereotype <bottleneck>
in Fig. [2]should have the value temporary.

6) Solution The solution uses the strategy of prioritizing tasks and performing the important tasks with high-priority first. A new machine is introduced
that takes the responsibility for prioritizing the tasks and assigning them to corresponding domains.

7) Collaboration When requests are issued, they arrive through Domain1 at the newly introduced machine domain FTF/FT/MW/LB, which takes the
responsibility to prioritize the requests and forward them to the corresponding machine that performs the requests using the domain
Domain2 (see Fig@. Note that there exists only one machine domain Machine.

8) Benefits FTF reduces the contention delay for high-priority tasks.

9) Consequences In the case of a permanent overload, applying this pattern would cause the starving of low-priority tasks.

10) Related patterns LB pattern can be used to improve the processing capacity if the overload is not temporary.

Applying Performance Patterns for Requirements Analysis — Page 4

Table Ill. Flex Time Pattern

1) Name

Flex Time (FT)

2) Description

FT moves the load to a different period of time where the inbound requests do not exceed the processing capacity of the resource.

3) Also known as

4) Problem

An overload of the system is expected. The inbound requests exceed the processing capacity of a specific resource (see the generic
problem frame in Fig. [2].

5) Applicability

FT is only applicable when some tasks can be performed at a different period of time. That is, the attributes loadDistributionType and
overloadType of the stereotype <bottleneck>> in Fig.[ﬂhave the values temporally and permanent.

6) Solution

The solution uses the strategy of spreading the load at a different period of time. A new machine is introduced that takes the responsibility
for modifying the processing time of the tasks and assigning them to corresponding domains for processing in the specified time.

7) Collaboration

When requests are issued, they arrive through Domain1 at the newly introduced machine FTF/FT/MW/LB, which takes the responsibility
to spread the requests at a different period of time to be processed by the corresponding machine using the domain Domain2 (see
Fig{ﬁ]. Note that there exists only one machine domain Machine.

8) Benefits

FT pattern reduces the load of the system by spreading it temporally.

9) Consequences

The order of satisfying requirements will be changed. It has to be checked that this modification does not cause new bottlenecks.

10) Related patterns

LB pattern can be used to reduce the load if the tasks cannot be performed at a different period of time.

Table IV. Master Worker Pattern

1) Name

Master-Worker (MW)

2) Description

MW pattern makes it possible to serve requests in parallel. It distributes the load over two or more software resources.

3) Also known as

Computation replicating

4) Problem

An overload of the system is expected. The inbound requests exceed the processing capacity of a specific resource (see the generic
problem frame in Figure.

5) Applicability

MW pattern is only applicable when the resource which is the bottleneck is a software resource, the overload is permanent, and
the load can be spread spatially. That is, the attributes loadDistributionType and overloadType, and resourceType of the stereotype
< bottleneck> in Figure[ﬂhave the values spatially, permanent, and software.

6) Solution

The solution uses the strategy of spreading the load over several software resources.

7) Collaboration

When requests are issued, they arrive through Domain1 at the newly introduced machine FTF/FT/MW/LB, which takes the responsibility
to forward the request to one corresponding machine which is free (see Fig. The selected machine processes the request, creates a
response using the domain Domain2, and sends the response. Note that there exist at least two machine domains of the same type.

8) Benefits

MW pattern reduces the load of the system by spreading it spatially.

9) Consequences

Efficient algorithm for allocating the requests to responders is required to ensure that the newly introduced machine does not become
the new bottleneck.

10) Related patterns

LB pattern can be used to reduce the load if the bottleneck is a hardware resource. FT pattern can be used if the tasks can be performed
at a different period of time. FTF pattern can be used when there is a temporary overload.

Table V. Load Balancer Pattern

1) Name

Load Balancer (LB)

2) Description

LB pattern is used to distribute computational load evenly over two or more hardware resources. In contrast to MW pattern that uses
software resources, this pattern provides a hardware solution.

3) Also known as

4) Problem

An overload of the system is expected. The inbound requests exceed the processing capacity of a specific hardware resource (see the
generic problem frame in Fig.[?].

5) Applicability

LB pattern is only applicable when the resource which is the bottleneck is a hardware resource, the overload is permanent, and
the load can be spread spatially. That is, the attributes loadDistributionType and overloadType, and resource Type of the stereotype
<bottleneck>> in Fig.[z]have the values spatially, permanent, and hardware.

6) Solution

The solution uses the strategy of spreading the load over several hardware resources.

7) Collaboration

When requests are issued, they arrive through Domain1 at the newly introduced machine FTF/FT/MW/LB, which takes the responsibility
to forward the request to one corresponding machine which is free (see Fig. The selected machine processes the request, creates a
response, and sends the response using the domain Domain1.

8) Benefits

LB pattern reduces the load of the system by spreading it spatially.

9) Consequences

Efficient algorithm for allocating the requests to responders is required to ensure that the newly introduced LBMachine does not become
the new bottleneck.

10) Related patterns

MW pattern can be used to reduce the load if the bottleneck is a software resource. FT pattern can be used if the tasks can be performed
at a different period of time. FTF pattern can be used when there is a temporary overload.

Applying Performance Patterns for Requirements Analysis — Page 5

In addition to the template, we provide two problem diagrams describing the generic problem structure as
well as the generic solution structure. To describe the problem situation, we provide only one generic problem
structure, which fits all performance analysis patterns. The reason is that the lack of resources is the essence of
most performance problems. This is the case when more requests have to be processed at the same time than
the resources can process. Hence, there is only one problem diagram describing the generic problem structure.
Nevertheless, the conditions under which we apply the performance analysis patterns are different. This is captured
in the field applicability in the template as well [Alebrahim 2015]. The same holds for the solution. That is, the
structure of the solution is similar for all performance analysis patterns. Nevertheless, they behave differently to
solve problems that have the same structure but different applicability conditions.

Figure 2| shows the problem diagram describing the generic problem structure. Domains contained in this
problem frame are:

(1) One domain Machine as a machine domain, which represents a resource expressed by the stereotype
<resource>>. The resource is expected to be the bottleneck which cannot complete all inbound requests
(see the stereotype <bottleneck:>)

(2) Two domains Domain1 and Domain2, which might be required for the subproblem at hand. Note that these
domains must not be instantiated necessarily.

(3) One requirement Requirement, which describes the functional requirement to be satisfied. It requires the
processing of the requests.

(4) One PerformanceReq, which describes the performance requirement. It requires the satisfaction of the
functional requirement Requirement within a specific time.

«problemFrames
GenericProblem
MitdoL), D1k contentl) wdomains = _ «refersTo, consiraing:
: ______,-/“f Domainl -
«machine, resource, bottleneck: - -
. 7 =reguirements
Machine A i
1 H\x“-_ﬁ wdamains ez - =77 - Requirement
D2l{contentz}, Midoz} Domain2 «constraing, refersTos " /i
) o I
\ - i
J__/<’<cnmp|ements>:
‘-,I «Requirements srequirement, pastep:

Y text = Requests should he processed. PerformanceReq |
«Bottleneck: «PaStep» 1
loadDistributionType = respT = [{unit=ms , value= given time, source=req , statQ=max)]

overloadType = «Requirements
resourceType = text = All requests should he processed within the given time.

Fig. 2. Problem diagram describing generic problem structure

Figure [3] shows the problem frame describing the generic solution structure. We introduce the new machine
domain FTF/FT/MW/LB to compose several machine domains that are bottlenecks (see machine domain Machine
in Fig.|2) in order to prevent the overload for each single machine domain. Domains contained in this problem
diagram are:

(1) One domain FTF/FT/MW/LB as a machine domain and as a resource.
(2) At least one domain as machine domain and as resource responsible for responding to the requests.

Applying Performance Patterns for Requirements Analysis — Page 6

(3) One domain Domain1, which transmits the requests to the machine domain Machine.
(4) One domain Domain2 required for processing the requests.

(5) One functional requirement Requirement, to be satisfied by the machine domains Machine (at least one
machine domain).

(6) One performance requirement PerformanceReq, to be satisfied by the machine domains Machine (at least
one machine domain).

sproblermFrames
GenericSolution

il

«domains

m{dol}, D1Ycontentl}

A

Domainl

«machine, resource:

«refersTo, constrains: « -
«raguiraments

FTFHfarwardRequest), Miresponse

D2Hcontent2), Ml do2}

«PaSteps
respT = [{unit=ms , value= given time, source=req , statQ=max J]

FTRHET/MWILE «Constraing, refersTo: - -|_Requirement
W s «machine, resources «domains e i !
Machine Domain2 I
|
|

«complements:

|
requiremnent, pasteps
“|PerformanceReq

«Requirements
text = All requests should he processed within the given time.

«Fequirement:

T

text = Fequests should be processed

Fig. 3.

3. THE POPERA METHOD AND ITS APPLICATION

Problem frame describing generic solution structure

In this section, we present our method for problem-oriented performance requirements analysis (PoPeRA). It is
concerned with identifying performance-specific resources, their capacity and utilization, how resources are shared,
where performance problems are located, and how they can be treated by applying appropriate performance
analysis patterns. Our proposed method is visualized in Fig. |4} The requirement models, namely the problem

diagrams (PD), are assumed to be available.

T 5 Performance Performance
32 Problem Domain Analysis
% £ Diagrams
) ! Knowledge Patterns
a3 Step 1: Step 2: Step 3: Step 4:
§ Frequently Occurring Performance-Critical Potential Performance Performance Analysis
s PD Identification Resource Identification Problem Identification /\ Pattern Selection at
H N : ' AR 1 1 M ; ' 7y T
: v 2 I y " v Vo y
=5 1 |Performance-I\ |Problem) |) Problem® 1 Selected Problem . -
a %‘ _____””____E Critical Diagrams _E H Potential Diagrams __i_,‘ Performance Diagrams H E Cpmposmon
£0 Resources |-————— " 1|Bottlenecks |L——""17)\ L\ oic patternsF------------- [Diagrams

Fig. 4. Overview of the PoPeRA method

Applying Performance Patterns for Requirements Analysis — Page 7

To illustrate the application of our method, we apply it to the trading system Common Component Modeling
Example (CoCoME) [Rausch et al. 2008|, a common example including properties of a real world system. Different
tasks can be performed using this trading system, such as scanning the products using a bar code scanner, paying
by cash or credit card taking place at a single cash desk as well as administrative tasks such as ordering products.
The cash desk is operated by the cashier who scans the products the customer wants to buy. The corresponding
product description, price, and running total are displayed on the cash box display. A store contains several cash
desks, called a cash desk line. Each cash desk is connected to a store server. The manager of each store (store
manager) can order goods, change the prices, view, and generate reports using the store client. All store servers
are connected to an enterprise server.

We consider the use case process sale containing several activities. We defined six functional requirements for
this use case. By means of the requirement R3, we illustrate the applicability of our method. The requirement R3
requires showing of product info (description, price, and running total) using the item identifier. In the following, we
describe the PoPeRa method followed by its application to the CoCoME example.

3.1 Step 1: Frequently Occurring PD Identification

To analyze the performance of the system-to-be, the performance analyst must know about performance critical
scenarios which are represented by those subproblems that occur frequently. Frequently occurring subproblems
could more likely cause a bottleneck in the system than those ones occurring rarely. Hence, the performance
analyst has to identify the frequency of occurrence of each subproblem in this step.

First, we specify the allocation of basic functions (subproblems) to the architectural elements. There is no
precise deployment possible in such an early phase. However, we provide a mapping of subproblems to the
physical environments and decompose the subproblems according to this allocation. For example, in a distributed
client-server system, we decompose the subproblems so that each subproblem is assigned only to the client or
to the server. Specifying such an allocation is essential when identifying the frequency of occurrence of each
subproblem. According to this decision, we split the subproblems. This supports us in eliciting and modeling
hardware resources as domain knowledge and subsequently determining the mapping of software parts to
hardware resources later on in step 3. As result of this step, we obtain a subset of problem diagrams which will be
executed more frequently than the others (see the output of step 1 in Fig. [4).

Application of Step 1: Frequently Occurring PD Identification

Figure [f]describes the overall problem showing product info. Figure [Blillustrates how this overall problem is split
into the three subproblems sending itemld to the server, requesting product info from the server, and presenting
product info. The first and third subproblems are allocated to the cash desk and the second one to the store
server. Functional requirement R3 is split into the functional requirements R3-1, R3-2, and R3-3. Performance
requirement PerfR3 is decomposed into the three performance requirements PerfR3-1, PerfR3-2, and PerfR3-3.
Performance requirement PerfR3 requiring 10 ms for showing product info must be achieved through these three
performance requirements. For more information regarding the decomposition of problem diagrams, we refer to
our previous work [Alebrahim et al. 2011Db].

Frequently occurring subproblems could more likely cause a bottleneck in the system than those occurring
rarely. In this step, we identify such subproblems. Considering all the subproblems related to the use case process
sale, we determine that the subproblems related to the requirements R3 and R5 occur more often than the others.
The reason is that these subproblems are concerned with selling products and logging product sales. Considering
the requirement R3, we identify the subproblems ShowProductinfoClientRequest, ShowProductinfoServer, and
ShowProductinfoClientResp as frequently occurring problem diagrams. This information supports the performance
analyst later on in identifying potential bottlenecks in the system.

Applying Performance Patterns for Requirements Analysis — Page 8

<problemDiagr am:
ShowProductinfoClientRequest

slexicalbomains

IIfitemidContent} Itemid == tefersTos
amachings / Treal 1 erequirements
ShowProductinfoClientReq \ A R31
Do -
SPICR{requestPradustinf) weausELamA A

= - i X
«CONstraings ! scomplementss

Hetwork
1
areguirement, paSteps
PerfR3-1
zproblemDiagrams
ShowProductinfoServer
SPISKrequestProductinfa}, PIproductinfoC antent) «lexicalDamain:
Productinfo %z srefersTos
amachings e arequirements
ShowProductinfoServer x - s
i | grausalbomain: ==~
M iternld Cantent}, SPISH sendProductinfo} Network P —

|
1complements:
|

erequirement, pasteps

PerfR3-2

sproblemDisgrams

ShowProdctinfoClientResp

acausallomain:

Network T\\-
v, wrefersTos

.
[

zcausalDomain: : arequirement, pasteps

ShowProductinfoClientResp [sricRypresentProductini; | CashBox R3-3

./ scomplementss
1

MNYproductinfoContent}

smachines

CBHpresentProductini}

’
Saconstraings !

- - i
stisplayDomain: f/{/ sreruirement, patteps

CashBoxDisplay PerfR33

Fig. 5. Allocation of the subproblem for showing product info CoCoME

3.2 Step 2: Performance-Critical Resource Identification

Performance is concerned with the workload of the system and the available resources to process the work-
load [Bass et al. 2003]. Each resource is expressed by its type in the system (such as CPU, memory, I/O device,
or network), its utilization, and its capacity (such as the transmission speed for a network). The system has to
process the requests (or satisfy the requirements) caused by the workload using available resources. If many
requests have to be processed at the same time by the same resource and the inbound requests exceed the
processing capacity of the resource, the resource will be in contention that leads to delays for some requests
and subsequently to not achieving the performance requirements. Typically, such resources are referred to as
bottlenecks. Identifying the location of bottlenecks is critical for the performance of a system.

Hence, in this step, we look for those problem diagrams whose corresponding machines consume the same
resource at the same time. Such problem diagrams might cause contention for a specific resource. We identify
resources that are used in several problem diagrams. We call such resources performance-critical resources.
In order to identify resources as critical, we have to elicit and model them in the problem diagrams as domain
knowledge [Alebrahim et al. 2014]. Domain knowledge for performance represents the important information about

Applying Performance Patterns for Requirements Analysis — Page 9

the system and the environment that affects the achievement of performance requirements. In order to identify
relevant resources required for the performance analysis systematically, we iterate over the domains in each
problem diagram. For each domain we have to check if it represents or contains any hardware device that the
machine is executed on or any resource that can be consumed by the corresponding performance requirement. In
this case, the domain is a performance-specific resource and has to be annotated as such a resource. To model
domain knowledge regarding resources (Memory, Network, Processor), we apply the stereotypes <HwMemory>>,
< HwMedia>>, and <HwProcessor>> [UML Revision Task Force 2009]. As a result, we obtain problem diagrams
that are annotated with performance domain knowledge.

To identify performance-critical resources, we iterate over the domains marked as resources in the problem
diagrams. Each resource has to be checked for its occurrence in other problem diagrams as well. If this is the
case, it has to be marked as a performance-critical resource.

Application of Step 2: Performance-Critical Resource Identification

For this step, we consider problem diagrams allocated to one physical environment. The server part of the system
has to process many requests at the same time, whereas the client part does not provide a critical physical
environment from the performance perspective. Therefore, we consider problem diagrams allocated to the server
part for the rest of this paper. We consider the problem diagram ShowProductinfoServer related to the requirement
R3-2 shown in Fig. [6l

The causal domain Network has to be annotated as a resource. We apply the stereotype <hwMedia>> for
this domain. We use the stereotype < storageResource> for the lexical domain Productinfo. The stereotype
<resource>> is used for annotating the machine domain ShowProductinfoServer. The hardware resource CPU
has to be modeled explicitly as a causal domain. It has to be annotated with the stereotypes <hwProcessor:>> and
< hwMemory>>. Figure[6]shows the problem diagram ShowProductinfoServer annotated with performance-specific
domain knowledge.

For each domain annotated as a resource, we check if it is used to achieve more than one requirement at the
same time. This is the case when the domain occurs in more than one problem diagram. This condition holds
for the causal domain CPU, as it is used by all the machines on the server side. CPU therefore represents a
performance-critical resource. The causal domain Network represents a performance-critical resource as well, as
it is used by several subproblems.

3.3 Step 3: Potential Performance Problem Identification

This step has to be supported by a performance analyst to analyze whether the processing capacity of existing
resources (modeled as domain knowledge) suffices to satisfy performance requirements for each subproblem with
regard to the existing workload and frequency of occurring problem diagrams (identified in step 1). The workload
has to be modeled as domain knowledge as well. To annotate the workload, we make use of the stereotype
< gaWorkloadEvent > (see the MARTE profile for more information [UML Revision Task Force 2009)).

As a result of this step, those resources, in which the inbound requests might exceed the processing capacity
of the resource, are identified. That is, from the set of performance-critical resources we retain those resources
whose problem diagrams exhibit a high usage. We mark such resources as bottlenecks using the stereotype
<K bottleneck>>.

Application of Step 3: Potential Performance Problem Identification

Using the results obtained from the previous steps, we have to identify potential bottlenecks. To this end, we have
to model workload and behavior scenarios. According to the CoCoME description, 8 customers are at the same
time in the system for the subproblem ShowProductinfoServer. The workload for this subproblem is shown in
Fig.[6l

Applying Performance Patterns for Requirements Analysis — Page 10

eproblemDiagrams
ShowProductinfoServer

«Bottlenacks «PaSteps
loadDistributionType = spatially cause = WorkloadEvent
ovetloadType = permanent meg3ize = [(unit= KB | value= 1, source= est | statQ= max)]

resourceType = hardware

Y #lexicalDomain, storageResource:s !
BRI requestPraductinfal, PI{praductinfoContent ! H
\ {red PP i Productinfo = erefersTos i
«machine, bottleneck, resources Tl srequirements ;
ShowProductinfoServer \ - R3.2 :
MifiternldCortent, SIS s endProductin ahaedia: =" Mo
Network sCOnstraings [

oy

wtausalDomain, bwProcessor, hveMemarys ! : :"

CPU | scomplementss | |

! | i

\ T, [

M eHwhiediaz sreguirement, pasStep:
L bandWidth = {unit=Kb/s value= B4 | source=est | statQ=min) PerfR3-2
I\\. N

4| «HwProcessors

nbCaores = (value= 1 | source= est | statl= max)

frequency = (unit= GHz, walue= 1, source= est, statQ= max)
eHwhilemarys

memorySize = (unit= GB , walue= 1, source= est, statll= max)

egavorkloadEve. .
WorkloadEvent

pattern = (closed(population= (value=3), extDelay= (unit= ms, value= 1000.0, statQ= max)))

«GaWorkloadEvents j

Fig. 6. PD ShowProductinfoServer annotated with performance-specific domain knowledge

The subproblem ShowProductinfoServer (see Fig.[6) is the most critical. It exhibits high usage as identified in
step 1 and high workload (see WorkloadEvent in Fig.[6). It might not be able to satisfy its performance requirement.
Therefore, we mark it as potential bottleneck. We defined the three attributes loadDistributionType, overloadType,
and resourceType for the stereotype <bottleneck> to further specify the characteristics of the bottleneck. This
supports us in the next step in selecting the appropriate performance pattern:

—the type of the overload for the subproblem ShowProductinfoServer is permanent (overloadType=permanent),
—the subproblem cannot be moved to a different period of time (loadDistributionType=spatially), and
—the resource (CPU) in contention is a hardware resource (resource Type=hardware) (see Fig.[6).

3.4 Step 4: Performance Analysis Pattern Selection

After identifying potential bottlenecks, we select appropriate performance analysis patterns that we introduced
in Sect. in order to prevent such potential performance problems. The field applicability in the template for
performance analysis patterns represents the pre-conditions each subproblem has to fulfill before applying the
specific pattern. To this end, we consider the identified potential bottlenecks. For each subproblem containing
a resource marked as bottleneck, we have to determine whether the specific subproblem fulfills the required
pre-conditions by answering the questions 1) Does the subproblem exhibit a permanent or a temporary high
usage?, 2) Can the subproblem be satisfied at a different time (spatially or temporally)?, and 3) Does the resource
causing the bottleneck provide a software or a hardware resource?

Table [Vl shows the conditions under which the performance analysis patterns can be applied. It provides support
in selecting the appropriate analysis pattern. As an example, the Load Balancer pattern can be applied if the

Applying Performance Patterns for Requirements Analysis — Page 11

Table VI. Performance analysis patterns and their selection criteria

selection criteria
type of load distribution type of overload type of resource
First Things First (FTF) spatially / temporally temporary software / hardware
Flex Time (FT) temporally permanent software / hardware
Load Balancer (LB) spatially permanent hardware
Master-Worker (MW) spatially permanent software

resource causing the bottleneck is a hardware resource, the subproblem cannot be satisfied at a different period
of time (spatially), and a permanent overload of the subproblem is expected.

Application of Step 4: Performance Analysis Pattern Selection

In this step, we select appropriate performance analysis patterns for those subproblems containing bottlenecks. We
can apply patterns to the subproblems only when subproblems are valid instances of the problem frame describing
the generic problem structure given in Fig.[2| We can apply patterns to the subproblem ShowProductinfoServer
(see Fig.[6), as it represents a valid instance of the problem frame describing the generic problem structure. The
instance contains the following elements:

(1) One machine domain ShowProductinfoServer responsible for responding to the requests. The bottleneck
is a hardware resource that is modeled explicitly (CPU).

(2) One domain Network transmitting the requests to the machine domain ShowProductinfoServer and one
domain Productinfo required for the subproblem.

(3) One requirement R3-2, which describes the functional requirement.

(4) One performance requirement PerfR3-2, which describes the performance requirement corresponding to
the functional requirement R3-2.

Furthermore, each specific pattern can be applied to a subproblem if the subproblem fulfills all pre-conditions
of the specific pattern given in the field applicability of the pattern template. In the previous step, we specified
the characteristics of each bottleneck using the attributes loadDistributionType, overloadType, and resourceType,
which correspond to the pre-conditions for the application of performance analysis patterns. This helps us to find
the appropriate pattern by using the Table [V given in Sect.[3] According to the table, we select Load Balancer for
the subproblem ShowProductinfoServer, as

—the hardware resource CPU is the bottleneck,

—the load is spatial, and

—the overload is permanent.
That is, we have to replicate the subproblem and its related hardware, which is the bottleneck, namely the CPU.

3.5 Step 5: Performance Analysis Pattern Application

In this step, selected performance analysis patterns are applied to the subproblems containing a resource marked
as bottleneck. Such subproblems are instances of the problem frame describing the generic problem structure
introduced in Sect. (see Fig.[2). The fields solution and collaboration in the template for performance analysis
patterns describe how the selected pattern can be applied. Figure [3|exemplifies the composition of subproblems
as a problem frame describing the generic solution structure. Several patterns can be applied to a subproblem if
the subproblem and its related resource fulfill the required pre-conditions shown in Table V1|

Applying Performance Patterns for Requirements Analysis — Page 12

«problemDiagram:
CompositionDiagramLB

scausalDomain, hwhiedias

mitemldContent), LEYsendProductinfo’

Hetwork

«constraing:

é _____________________

1

SFIZNrequestProductinfo}, P productinfoContent) !

«machine, resources

«lexicalDomain, storageResources
Productinfo

ShowProductinfoServer
/ "5': -
LBKfonwarditernldCantent}, SPIS=sendProductinfo
«causalDomain, wProcessor, hwhlemory:
CPU

srmaching, resources

LB

BlforwardtemldContent), SPISKsendProductinfo’

wrefersTos === - _

wrefersTos -

T

«machine, resources

ShowProductinfoServer

«lexicalDomain, storagefResaources
Productinfo

«causabomzin, wProcessar, whemory
CPU

SPISHreguestProductinfo}, PIYproductinfoContent}

“requirements

R32
A

«camplements:
|

“requirement, pasteps
PerfR3-2

Fig. 7. Load Balancer application to the subproblem ShowProductinfoServer

Application of Step 5: Performance Analysis Pattern Application

In this step, we apply the selected patterns to the subproblems. For the subproblem ShowProductinfoServer, we

selected the Load Balancer pattern. Figure [7] shows the application of this pattern to the subproblem ShowPro-
ductinfoServer.

It is a valid instance of the composition frame describing the generic solution structure illustrated in Fig. [3] It
contains the following elements:

(1) One domain LB as a machine domain and as a resource.

(2) Several domains ShowProductinfoServer from the same type as machine domains and as resources.

(3) Several domains Productinfo, one for each machine domain. Such domains are used by the machine
domain for processing the requests.

(4) One domain Network, which is responsible for transmitting the requests.
(5) One functional requirement R3-2 to be satisfied by several machines ShowProductinfoServer.

(6) One performance requirement PerfR3-2, which represents the performance requirement to be satisfied by
several machines ShowProductinfoServer.

In this way, we performed a performance requirements analysis by applying our PoPeRA method to the trading
system CoCoME. We identified locations of potential bottlenecks in the system right from the beginning of the
software development. Furthermore, we applied performance analysis patterns to the problematic subproblems
to deal with such potential bottlenecks. The PoPeRA method helps requirements engineers and performance
analysts finding potential performance problems already in the requirements engineering phase. Complementary

performance analysis methods can be used in the further phases of software development when more design
details are available.

Applying Performance Patterns for Requirements Analysis — Page 13

4. RELATED WORK

A number of approaches that contributed to software performance development have focused on architectural so-
lutions. Nevertheless, information and knowledge needed for dealing with performance issues have to be collected
and analyzed early in the software development process. Similar to our approach, Williams and Smith [1995]
explore the information needed to construct and evaluate performance models. They define a similar set of infor-
mation required for early life cycle software performance engineering. They use the terms “execution environment”
for resource capacity and “resource requirement” for resource utilization and resource type.

In a later work [Smith and Williams 2004] they present the process software performance engineering (SPE). It
relies on use cases and scenarios that describe them. After identifying critical use cases and scenarios, execution
graphs are used to determine performance requirements. In further steps, the constructed execution graphs are
evaluated to identify performance problems. Although use cases and scenarios build the starting point of the SPE
process, it takes in further steps an architectural perspective. While the SPE process uses use cases and scenarios,
the PoPeRA method is based on problem frames. In contrast to our PoPeRA method that focuses on performance
requirements analysis, the SPE process requires detailed information regarding system resources that are not
available in the requirements engineering phase. Hence, the SPE process can be used as complementary to the
PoPeRA method afterwards when performance requirements analysis is performed.

Bass et al. [2000] analyze how architectural mechanisms such as fixed priority scheduling and caching help
achieving performance as one specific quality requirement. They introduce three strategies: resource allocation,
resource arbitration, and resource use for the achievement of performance requirements. Each strategy provides
a set of performance mechanisms. Fixed priority scheduling that prioritizes processes to a fixed priority uses
the strategy resource arbitration. The authors only describe two mechanisms. This corresponds to our proposed
performance analysis patterns. However, they do not provide a systematic method on how to identify performance
problems and how to apply such mechanisms.

Approaches that deal with performance in the early software development use mostly use cases and scenarios
for analyzing and understanding requirements. The original problem frames approach does not support quality
requirements. Some work has been done on security requirements analysis [Schmidt et al. 2011};|Hatebur et al|
2008] and dependability requirements analysis [Hatebur and Heisel 2009] based on problem frames. To the best
of our knowledge, there has been no research regarding performance requirements analysis based on problem
frames.

5. CONCLUSION

In this paper, we proposed our comprehensive method, which is based on problem frames for analysis performance
requirements. The PoPeRA method helps the performance analyst identifying potential performance problems as
early as possible in the software development process using performance-specific domain knowledge. Furthermore,
it provides support for selecting appropriate performance analysis patterns to solve the identified potential
performance problems. We showed the application of our method to the case study CoCoME.

To summarize, the PoPeRA method 1) uses problem diagrams to elicit and model performance-specific domain
knowledge, 2) uses the modeled performance-specific domain knowledge to identify potential bottlenecks, 3)
selects appropriate performance analysis patterns using annotated problem diagrams, 4) applies the selected
performance analysis patterns to resolve identified performance problems, and 5) guides the requirements engineer
in stepwise analysis of performance requirements.

UMLA4PF already supports creating requirement models and annotating them with performance information. We
strive for extending the UML4PF tool in order to provide support for the PoPeRA method. UML4PF automatically
checks the model for semantic errors as well. We extended the list of OCL validation conditions to ensure the
integrity and coherency of the model regarding performance-related artifacts that we identified and used in the

Applying Performance Patterns for Requirements Analysis — Page 14

PoPeRA method. In addition, we strive for validating our method with another case study to determine the effort
spent for executing the method and to further improve it.

6. ACKNOWLEDGMENTS
We would like to thank our shepherd Lise Hvatum for her valuable feedback to improve this paper.

REFERENCES

ALEBRAHIM, A. 2015. Performance analysis patterns for requirements analysis. In Proceedings of Student Research Forum Papers and
Posters, the 41st International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM). CEUR Workshop
Proceedings Series, vol. 1326. CEUR-WS.org, 54—66.

ALEBRAHIM, A., CHOPPY, C., FASSBENDER, S., AND HEISEL, M. 2014. Optimizing functional and quality requirements according to
stakeholders’ goals. In System Quality and Software Architecture (SQSA). Elsevier, 75—120.

ALEBRAHIM, A., HATEBUR, D., AND HEISEL, M. 2011a. A method to derive software architectures from quality requirements. In APSEC. IEEE
Computer Society, 322—-330.

ALEBRAHIM, A., HATEBUR, D., AND HEISEL, M. 2011b. Towards systematic integration of quality requirements into software architecture. In
ECSA. LNCS 6903. Springer, 17-25.

ALEBRAHIM, A., HEISEL, M., AND MEIS, R. 2014. A structured approach for eliciting, modeling, and using quality-related domain knowledge.
In ICCSA. LNCS 8583. Springer, 370-386.

BAss, L., CLEMENS, P., AND KAzMAN, R. 2003. Software architecture in practice Second Ed. Addison-Wesley.

BAss, L., KLEIN, M., AND BACHMANN, F. 2000. Quality attributes design primitives. Tech. rep., Software Engineering Institute.

FoRD, C., GILEADI, |., PURBA, S., AND MOERMAN, M. 2008. Patterns for Performance and Operability. Auerbach Publications.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of Reusable Object-Oriented Software. Addison
Wesley.

HATEBUR, D. AND HEISEL, M. 2009. A foundation for requirements analysis of dependable software. In SAFECOMP. LNCS 5775. Springer,
311-325.

HATEBUR, D. AND HEISEL, M. 2010. Making Pattern- and Model-Based Software Development more Rigorous. In ICFEM. Springer, 253-269.

HATEBUR, D., HEISEL, M., AND SCHMIDT, H. 2008. Analysis and component-based realization of security requirements. In AReS. IEEE
Computer Society, 195-203.

JACKSON, M. 2001. Problem Frames. Analyzing and structuring software development problems. Addison-Wesley.

RAUSCH, A., REUSSNER, R., MIRANDOLA, R., AND PLASIL, F. 2008. The Common Component Modeling Example: Comparing Software
Component Models 1st Ed. LNCS 5153. Springer.

SCHMIDT, H., HATEBUR, D., AND HEISEL, M. 2011. Software Engineering for Secure Systems: Academic and Industrial Perspectives. 1G|
Global, 32-74.

SMITH, C. AND WILLIAMS, L. G. 2004. Software Performance Engineering. In UML for Real. Springer, 343-365.

SMITH, C. U. AND WILLIAMS, L. 2001. Performance solutions, a practical guide to creating responsive, scalable software. ADDISON WESLEY.

SMITH, C. U. AND WILLIAMS, L. G. 1993. Software performance engineering: A case study including performance comparison with design
alternatives. |EEE Trans. Software Eng. 19, 7, 720-741.

SMITH, C. U. AND WILLIAMS, L. G. 2006. Five steps to establish software performance engineering. In Int. CMG Conf. 507-516.

UML REVISION TASK FORCE. 2009. UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems.
http://www.omg.org/spec/MARTE/1.0/PDF.

WILLIAMS, L. G. AND SMITH, C. U. 1995. Information requirements for software performance engineering. In Computer Performance
Evaluation. Springer, 86—101.

EuroPLoP’15, July 08-12, 2014, Irsee, Germany. Copyright 2015 is held by the author(s). ACM 978-1-4503-3416-7

Applying Performance Patterns for Requirements Analysis — Page 15

	Introduction
	Background
	Problem Frames
	Performance Analysis Patterns

	The PoPeRA Method and its Application
	Step 1: Frequently Occurring PD Identification
	Step 2: Performance-Critical Resource Identification
	Step 3: Potential Performance Problem Identification
	Step 4: Performance Analysis Pattern Selection
	Step 5: Performance Analysis Pattern Application

	Related Work
	conclusion
	Acknowledgments

