
Aspect Frames – Describing Cross-Cutting Concerns in
Aspect-Oriented Requirements Engineering
RENE MEIS and MARITTA HEISEL, paluno – The Ruhr Institute for Software Technology,
University of Duisburg-Essen, Duisburg, Germany

Cross-cutting concerns often arise when non-functional requirements are operationalized, because non-functional requirements

are themselves cross-cutting. In the field of aspect-oriented requirements engineering (AORE), functional requirements that

cross-cut multiple other functional requirements are called aspects. An aspect describes in most cases a solution for a non-
functional requirement and how this solution can be integrated into the realization of the functional requirements it cross-cuts.

Examples for cross-cutting concerns are logging, encryption, and access control. We observed that aspects often share a basic

structure, behavior, and the way of how they have to be integrated into the realization of the functional requirements they
cross-cut. We propose in this paper aspect frames. An aspect frame is a kind of pattern for aspects that share a common

concern, behavior, and way how they are integrated into the realization of the functional requirements they cross-cut. These

aspect frames support requirements engineers to describe concrete aspects that fit to an aspect frame.

CCS Concepts: •Software and its engineering→ Patterns; Designing software;

Additional Key Words and Phrases: Patterns, Aspect-Oriented Requirements Engineering, Problem Frames

ACM Reference Format:
Rene Meis and Maritta Heisel. 2017. Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements
Engineering. EuroPLoP (July 2017), 28 pages.
DOI: 3147704.3147732

1. INTRODUCTION

The concept of aspect-orientation has its roots in aspect-oriented programming [Kiczales et al. 1997].
It was introduced as a means to decouple often reoccurring code that cross-cuts several other function-
alities into so called aspects. Prominent examples for aspects are the logging of events, encryption and
decryption, and access control. All these functionalities have to be considered during multiple other op-
erations. An aspect consists of the reoccurring code and a definition of a pointcut (that consists of join
points). The pointcut describes under which circumstances the aspect’s code shall be called during the
execution of the software. A pointcut can, e.g., define that an aspect shall be executed before or after a
specific operation call (join point) at run-time. The interpreter or compiler of the aspect-oriented pro-
gramming language automatically integrates an aspect’s code if a code part is executed that matches
the aspect’s defined pointcut. This process is called weaving.

Aspect-orientation was also transferred into the requirements engineering domain and is called
there aspect-oriented requirements engineering (AORE) [Moreira et al. 2013]. In AORE, aspects are
in most cases cross-cutting requirements. That is, aspects are requirements that are part of several

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
EuroPLoP ’17, July 12-16, 2017, Irsee, Germany
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-4848-5/17/07...$15.00
https://doi.org/10.1145/3147704.3147732

Proceedings of the 22nd European Conference on Pattern Languages of Programs

2 • R. Meis and M. Heisel

other requirements or related to several other requirements. The first step in AORE is to separate
the requirements into base requirements and aspects. Additionally, we need to document which base
requirements are cross-cut by which aspects to ensure that these are later correctly weaved.

In this paper, we introduce aspect frames as a means to support the description of cross-cutting
concerns in AORE. An aspect frame describes a class of aspects that share a common concern and
behavior. For example, encryption, anonymization, filtering, compression, and correction mechanisms
have in common that these often need to be applied on data before these are transmitted to a specific re-
ceiver. From these examples, we derived the Transform Before Transmission Aspect frame (introduced
in Section 4.3) that represents the class of all aspects that perform a transformation on data before
these can be transmitted to a specific receiver. We observed the aspect frames during our research on
the presentation of privacy enhancing technologies (PETs) as aspects [Meis and Heisel 2017].

We propose a pattern format to uniformly represent aspect frames as patterns. The idea of aspect
frames is similar to Jackson’s problem frames [Jackson 2001]. Namely, the definition of a class of
software development problems that share a common structure and behavior. This is the reason why
we use our extension of the problem frames approach for aspect-orientation [Faßbender et al. 2015] to
describe aspect frames. Note that we have observed the aspect frames only in our own research on the
presentation of PETs as aspects and not yet in other work. Hence, we do not claim that aspect frames
are patterns. They are rather pattern candidates.

The rest of the paper is structured as follows. Section 2 presents Jackson’s problem frames and
aspect-oriented requirements engineering for problem frames as background. The pattern format for
aspect frames is introduced in Section 3. Section 4 presents the four aspect frames Decision Aspect
(Section 4.1), Transform Received Data Aspect (Section 4.2), Transform Before Transmission Aspect
(Section 4.3), and Independent Behavior Aspect (Section 4.4). Guidance for the creation and usage of
aspect frames is given in Section 5. Section 6 discusses related work, while Section 7 concludes the
paper.

2. BACKGROUND

2.1 Problem Frames

The problem frames approach proposed by Jackson [2001] is a methodology for the analysis of software
requirements. Jackson states that a problem frame is a kind of pattern. A problem frame describes a
basic problem that exists in an environment described by a functional requirement that the machine

(the system-to-be) shall address. The environment is structured in domains. A domain can either
be biddable (a human), causal (a technical devices with a predictable behavior), or lexical (a
physical representation of data).

Figure 1 shows the simple workpieces problem frame. It shows the basic elements of which a problem
frame consists. On the right side, we see the functional requirement Command effects (oval) that de-
scribes the desired behavior of the environment. On the left, we see the machine Editing Tool (rectangle)
that shall be implemented in a way that the desired behavior described by the functional requirement
Command effects is guaranteed. In the middle, we see the relevant domains (rectangles) of the environ-
ment. For the simple workpieces problem, these are the biddable domain User and the lexical domain
Workpieces. The solid lines in the problem frame show the interfaces that exist between the domains.
An interface contains phenomena (e.g., events, commands, or data) shared between the involved do-
mains. Each phenomenon is controlled by exactly one of the domains. This is indicated, e.g., by the
notion U!E3, where U is the abbreviation of the domain User that controls (!) the phenomena of the set
E3. E3 contains the commands that the user can issue and the editing tool observes, e.g., commands
to request that the editing tool adds, deletes, or modifies a workpiece. Similarly, E1 contains the com-
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 3

mands issued by the Editing Tool and observed by the Workpieces. Y2 contains symbolic phenomena,
e.g, data and states, of the Workpiece that are observable by the Editing Tool. A dashed line between
a requirement and a domain expresses that the requirement references phenomena of that domain. If
the dashed line has an arrow head, this means that the desired behavior of the environment described
by the requirement constrains the behavior or state (phenomena) of that domain. The requirement
Command effects refers to the phenomena E3 controlled by the User and constrains the symbolic phe-
nomena Y4 of the Workpieces. Note that the sets of phenomena constrained by the requirement (Y4)
and the symbolic phenomena observable by the machine (Y2) may differ from each other. That is, there
can be a gap between the phenomena a requirement refers to or constrains and the phenomena the
machine is actually able to observe and control.

Editing Tool

Workpieces

User

Command
effects

ET!{E1}
W!{Y2}

U!{E3} {E3}

{Y4}

Fig. 1. Simple workpieces frame (based on [Jackson 2001])

In Jackson’s problem frames approach the overall problem of building the machine is decomposed
into simpler subproblems until these subproblems fit to a problem frame. An instance of a problem
frame is called problem diagram.

2.2 Aspect-Oriented Requirements Engineering for Problem Frames

We described a method to elicit cross-cutting concerns and to systematically integrate them into base
requirements of a system-to-be in previous work [Faßbender et al. 2014; Faßbender et al. 2015]. The
base requirements are modeled in problem diagrams and additionally, we create for each problem dia-
gram a sequence diagram that describes how the machine of the diagram shall lead to the satisfaction
of the corresponding requirement.

The cross-cutting functional requirements (also called aspects) are modeled in aspect diagrams.
An aspect diagram is similar to a problem diagram, but instead of a (base) functional requirement it
contains a cross-cutting functional requirement, also called aspect. Additionally, an aspect diagram
contains at least one join point. Join points are placeholders for domains and interfaces of the base
problems they can be integrated into. For each aspect diagram, we also create sequence diagrams that
describe how the aspect’s machine satisfies its cross-cutting requirement.

The join points are instantiated with domains and interfaces of the base problem when the aspect
is integrated into the base problem. This integration is also called weaving. The weaving of the as-
pect’s sequence diagram into the base problem’s sequence diagram can be performed systematically
[Faßbender et al. 2015].

An example for a cross-cutting concern is the authorization of users that want to access specific
resources. This authorization may be necessary in multiple base functionalities and is hence cross-
cutting. Figure 2 shows a typical solution for the non-functional requirement authorization. This so-
lution is access control based on an Access Policy. The machine Access Control provides an interface
to Base Machines to check whether Users are allowed to request a resource. Base Machine, User, and
the interface between them are the join points of the aspect. We indicate the join points using gray
background for domains and thick lines for interfaces. The join points indicate that this aspect can

Proceedings of the 22nd European Conference on Pattern Languages of Programs

4 • R. Meis and M. Heisel

be integrated into all subproblems in which the Base Machine receives requests of a User and has to
decide whether the User is authorized to perform the request. This decision is delegated to the aspect’s
machine Access Control that decides whether the User is authorized or not based on the Access Policy
that is available to the machine. The cross-cutting functional requirement Check Access Rights refers
to the request of the User and the Access Policy, and constrains the Base Machine to only provide the
requested resource to the User if the Access Policy allows this.

Access Control

Access Policy

Base Machine Check Access
Rights

User

AP!{accessPoliciy}

AC!{provideAuthorizationResult}
BM!{requestAuthorization}

U!{requestResource}
BM!{provideResource}

{requestResource}

{accessPoliciy}

{performOperation,
provideResource}

Fig. 2. Aspect diagram for an access control mechanism

In this paper, we introduce aspect frames. These aspect frames are patterns for functional cross-
cutting concerns (aspects), similar to Jackson’s problem frames that distill the essence of basic re-
occurring problems during software development. The access control aspect shown in Fig. 2 is an in-
stance of the Decision Aspect frame introduced in Section 4.1.

3. THE PATTERN FORMAT FOR ASPECT FRAMES

In this section, we describe the pattern format that we use to describe aspect frames. We base our
pattern format on the suggestions of Wellhausen and Fießer [2011]. For the sections Context and
Solution, we introduce subsections that are tailored to present aspect frames. In the following, we
show and discuss the sections of the pattern format. We refer to instances of aspect frames as aspects.

Name. The name of the aspect frame
Context.
The context of an aspect frame describes the base problems into which it shall be integrated. We
propose to present on the one hand a structural view on the base problem and the relevant behavior
of the aspect.

Structure.
The structure of a base problem is described by a (possibly incomplete) problem frame. This
problem frame has to contain the core domains of a problem into which instances of the aspect
frame might be integrated into. We permit that the domain types in the context description is
left open. That means that the context is not limited to base problems with domains of a specific
type. Additionally, it is allowed that a base problem contains more domains than described by
the provided kind of problem frame. This is, the provided problem frame does not need to be
complete.
Behavior.
The relevant behavior of the base problem is described in a sequence diagram. This sequence
diagram describes in most cases the behavior that needs or leads to the integration of an aspect.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 5

Problem.
A short phrase that describes the problem of the base requirement that is addressed by aspects
fitting to the aspect frame.

Forces.
A list of possibly conflicting properties that make it hard to address the aforementioned problem
existing in the base problem.

Solution.
The solution contains the actual aspect frame in the sense of Jackson’s problem frames. Similar
to the context, we divide the description of the solution into subsection that explain its structure,
behavior, and how it is integrated into the base problem.

Structure.
We describe the basic structure of the aspect frame as a high-level aspect diagram that contains
as join points the parts of the base problem that are relevant for the functionality of the aspect
and the domains that the aspect newly introduces to address the problem. We allow that domain
types are left out in the aspect frames. This leads in most cases to the definition of variants of
the aspect frame (see Variants.).
Behavior.
The behavior part shows when and how the machine of the base problem will integrate the
aspect and the aspect’s behavior to achieve the needed solution of the problem using a sequence
diagram.
Integration.
This part describes how the aspect’s behavior shall be integrated into the base problem, by
combining the sequence diagrams of the base problem and the aspect frame.
Variants.
This section is optional. In some cases, domains of the aspect frame are left out and can have
different types while the underlying concern of the aspect frame remains the same. In these
cases, we permit to describe variants that assign specific domain types to the general domains
of the aspect frame. These variants can then be referenced in the consequences to be more
precise on the benefits and liabilities of the different variants.
Formally, the variants are candidates for separate aspect frames, but we decided to allow the
descriptions of these in one pattern if they share the same context, problem, and solution.

Consequences.
The positive and negative impact of the integration of the aspect frame into the base problem shall
be discussed in the consequences section. The consequences shall be discussed based on the previ-
ously defined forces for all described variants of the aspect frame.

Benefits.
The positive consequences of instances of the aspect frame.
Liabilities.
The negative consequences of instances of the aspect frame.

Examples.
Known aspects that are instances of this aspect frame. If variants are defined, then examples for all
variants shall be given.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

6 • R. Meis and M. Heisel

4. THE ASPECT FRAMES

4.1 Decision Aspect Frame

Name. Decision Aspect
Context.

Structure.
You have base problems whose behavior shall depend on specific properties of the received re-
quest. The base problem’s essential structure is shown in Fig. 3. It consists of a Base Machine
that is concerned with handling requests of a domain Requester concerning a Resource that the
Base Machine manages.

Requester

Base Machine

Resource

Provide
Resource

Req!{requestResource}
BM!{provideResource}

BM!{performOperation}
Res!{operationResult}

{requestResource}

{operationActions}

Fig. 3. The base problem of Decision Aspects

Behavior. Figure 4 shows the relevant behavioral view on the base problem. It consists of a
before behavior, the request of the Requester to the Base Machine, and an after behavior.

Fig. 4. Relevant behavior of the base problem of Decision Aspects

Problem.
You want to integrate a mechanism that decides based on the Requester’s request whether the after
behavior shall occur or not.
Forces.
—Complexity of the implementation: The complexity to implement the mechanism should be kept to

the minimum needed.
—Integration into the base problem: It shall be possible to integrate the decision mechanism in a

way that the base problem is only affected in the desired manner.
—Response time of decision: The selected mechanism shall respond in a timely manner depending

on the needs of the base problem.
—Reliability of decision: The selected mechanism shall provide a reliable decision.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 7

—Security of decision process: It shall be as hard as possible to by-pass the decision mechanism by
malicious requesters.

Solution.
Structure.
A mechanism to decide whether a base machine shall initiate the after behavior or not has the
basic structure shown in Fig. 5. Figure 5 shows the Requester and the Base Machine as the
relevant parts of the base problem (join points) for the Decision Aspect. The Decision Machine is
the domain that provides a decision based on additional information provided by an Information
Source to the Base Machine. The Base Machine then uses this decision to determine whether
it shall proceed with its behavior or not. The cross-cutting requirement Provide Decision refers
to the request of the Requester and the used Information Source as basis to derive the decision,
and it constrains the Base Machine to consider the provided decision. Note that the provided
decision does not need to be Boolean. However, it shall be in a form that is easily accessable by
the Base Machine without much further (computational) effort.

Base Machine

Requester

Decision
Machine

Information
Source

Provide
Decision

Req!{requestResource}
BM!{provideResource}

BM!{requestDecision}
DM!{provideDecision}

DM!{requestInformation}
IS!{provideInformation}

{requestResource}

{provideInformation}

{performOperation}

Fig. 5. The structure of Decision Aspects

Behavior.
The behavioral part of the solution is shown in Fig. 6. The interaction is started by the join point
Requester that requests a resource from the join point Base Machine. The Base Machine then
requests a decision for this request from the aspect’s machine Decision Machine. The Decision
Machine provides a decision based on additional information that it retrieves from an Information
Source beforehand.

Fig. 6. Behavior of Decision Aspects

Proceedings of the 22nd European Conference on Pattern Languages of Programs

8 • R. Meis and M. Heisel

Integration.
How a Decision Aspect is integrated into a base problem is shown in Fig. 7. First, the Before
behavior of the base problem (cf. Fig. 4) happens. In reaction to the Requester’s request, the
aspect’s behavior is integrated (cf. Fig. 6). Based on the provided decision the base machine
has now to decide whether the base problem’s After behavior is executed or not. Optionally,
the base problem could also be extended to perform an Error behavior. Note that the message
provideDecision of the Decision Machine could provide helpful information for the error behavior,
for example, the information why the decision was not positive.

Fig. 7. Integration of Decision Aspects

Variants.
We can distinguish three variants of Decision Aspects depending on the type of the information
source.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 9

Data-based decision Service-based decision Human-based decision
If the information source is
lexical, this means that the
decision machine has to com-
pute the decision based on
the data contained in this lex-
ical domain.

If the information source is
causal, this means that an
external service is used that
provides necessary informa-
tion to derive the decision.

If the information source is
biddable, this means that the
decision machine needs input
of a human operator to pro-
vide a decision.

Consequences.

Benefits.

—Complexity of the implementation:

Data-based decision Service-based decision Human-based decision
- As the decision making is

outsourced, the implementa-
tion is only concerned with
the correct usage of the ser-
vice’s API.

In general, we do not ex-
pect complex algorithms to
be implemented if the deci-
sion making is based on hu-
mans.

—Integration into the base problem:

All: -

—Response time of decision:

Data-based decision Service-based decision Human-based decision
The response time of data-
based decisions benefits from
the local availability and au-
tomated evaluation of the de-
cision.

The computation of the de-
cision is delegated to an ex-
ternal service. This can be
an advantage if the computa-
tional capabilities of the ma-
chine are limited and it is not
reasonable for it to manage
the decision itself.

-

—Reliability of decision:

Data-based decision Service-based decision Human-based decision
The decision is under the
control of the machine.
Hence, its reliability is
controllable by it.

A certified external service
that is specialized on provid-
ing the needed decision can
be considered as reliable.

Trained humans are in sev-
eral situations the only op-
tion for reliable decisions.
Especially in cases where the
decision is based on requests
whose semantics are hardly
machine processable.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

10 • R. Meis and M. Heisel

—Security of decision process:

Data-based decision Service-based decision Human-based decision
The decision is under the
control of the machine.
Hence, its security is con-
trollable by it.

A certified external service
that is specialized on provid-
ing the needed decision can
provide the needed security.

Well trained personnel may
be harder to be by-passed
than automatic processes.

Liabilities.

—Complexity of the implementation:

Data-based decision Service-based decision Human-based decision
We have to manage the lexi-
cal information source that,
e.g, can be a database. The
management of the lexical
information source can intro-
duce additional base prob-
lems that are concerned with
adding, changing, or deleting
information from the source.
Depending on the mech-
anism, complex algorithms
have to be implemented to
derive the decision.

It has to be ensured that
a reliable connection to
the service exists and that
its API is suitable for the
needed purposes and cor-
rectly used.

A user interface has to be
created for the humans that
act as information source.
This interface has to provide
the humans all information
that they need to take the de-
cision and shall be usable.

—Integration into the base problem:

All: The phenomenon requestResource of the base problem has in most cases to be enhanced
in a way that it also transmits the information that is needed to decide whether the base
machine shall perform the after behavior or not. The base machine has then to consider the
provided decision. Optionally, an additional error behavior has to be implemented in the case
of a negative decision.

—Response time of decision:

Data-based decision Service-based decision Human-based decision
The decision machine needs
to have sufficient computa-
tional resources to compute
the decision based on the in-
formation source in a timely
manner.

To provide a timely deci-
sion, the external service has
to have an appropriate re-
sponse time and has to be
available.

The response time depends
on the availability of the
human resources, their effi-
ciency, and the number of re-
quests that they have to han-
dle. In general, we have to
expect significant higher re-
sponse times than for com-
pletely automatic decisions.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 11

—Reliability of decision:

Data-based decision Service-based decision Human-based decision
The reliability of a data-
based decision depends on
the correctness of the infor-
mation source. Hence, the
machine has to ensure that
it is accurate and up-to-date.

The external service has to
be trusted to provide reliable
information and decisions.

The humans involved in the
decision process have to be
trained to be able to provide
correct decisions. Depending
on the base problem it can be
reasonable to involve more
than one human in the deci-
sion process to improve the
reliability of the made deci-
sions.

—Security of decision process:

Data-based decision Service-based decision Human-based decision
The information source has
to be sufficiently secured
against unintended modifi-
cation.

We have to trust the secu-
rity claims of the used exter-
nal service and have to en-
sure that the communication
with the service is secure.

The humans involved in the
decision process need to be
trained in security to pre-
vent, e.g., social engineering
attacks and insecure behav-
ior.

Examples.

Data-based decision Service-based decision Human-based decision
Access control mechanisms,
e.g., role-based access control
(RBAC) and attribute-based
access control (ABAC), are ex-
amples for data-based deci-
sions.

Authentication or authoriza-
tion based on an external
service is an example for a
service-based decisions. Exam-
ples for these mechanisms are
“Login with Facebook” or “Pay
with Amazon”.

Examples for human-based de-
cisions are moderated internet
forums or a report function-
ality of posts on social media
sites. In moderated internet fo-
rums a moderator serves as in-
formation source and decides
whether a post is published or
not. For the report function-
ality of posts on social media
sites, one or several humans
have to decide whether the re-
port is grounded and which ac-
tion shall be performed.

4.2 Transform Received Data Aspect Frame

Name. Transform Received Data Aspect
Context.

Structure.
You have base problems in which the Base Machine needs to transform data received or retrieved
from a domain Sender to proceed to achieve its requirement (see Fig. 8).

Proceedings of the 22nd European Conference on Pattern Languages of Programs

12 • R. Meis and M. Heisel

Base Machine Sender Process data of
sender

S!{sendData} {sendData}

Fig. 8. The base problem of Transform Received Data Aspects

Behavior. Figure 9 shows the relevant behavioral view on the base problem. It consists of a
before behavior, the send event of the Sender to the Base Machine, and an after behavior.

Fig. 9. Relevant behavior of the base problem of Transform Received Data Aspects

Problem.
You want to integrate a mechanism that transforms the data received from the Sender in order to
proceed with the processing of that data (after behavior).
Forces.
—Complexity of the implementation: The complexity to implement the mechanism should be kept to

the minimum needed.
—Integration into the base problem: It shall be possible to integrate the transformation mechanism

in a way that the base problem is only affected in the desired manner.
—Response time of transformation: The selected mechanism shall respond in a timely manner de-

pending on the needs of the base problem.
—Reliability of transformation: The selected mechanism shall perform the transformation reliably.
Solution.

Structure.
A mechanism to transform data received from a sender to allow a further processing of this
data has the basic structure shown in Fig. 10. Figure 10 shows the Sender and the Base Ma-
chine as the relevant parts of the base problem (join points) for the Transform Received Data
Aspect. The Transformation Machine is the domain that performs the transformation of the re-
ceived data using a Transformation Resource (optional) and provides the transformed data to
the Base Machine. The Base Machine can then further process the transformed data. The cross-
cutting requirement Transform received data refers to the sending event of the Sender and the
Transformation Resource that is used to perform the transformation, and it constrains the Base
Machine to further process the transformed data.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 13

Base Machine

Sender

Transformation
Machine

Transformation
Resource

Transform
received data

TM!{requestTransformationResource}
TR!{provideTransformationResource}

TM!{provideTransformedData}
BM!{requestTransformation}

S!{sendData} {sendData}

{provideTransformationResource}

{processData}

Fig. 10. The structure of Transform Received Data Aspects

Behavior.
The behavioral part of the solution is shown in Fig. 11. The interaction is started by the join
point Sender that sends data to the join point Base Machine. The Base Machine then requests
the transformation of the received data from the aspect machine Transformation Machine. The
Transformation Machine then provides the transformed data that it computed using the Transfor-
mation Resource.

Fig. 11. Behavior of Transform Received Data Aspects

Integration.
How a Transform Received Data Aspect is integrated into a base problem is shown in Fig. 12.
First, the Before behavior of the base problem (cf. Fig. 9) happens. After the Sender sends data,
the aspects behavior is integrated (cf. Fig. 11). Using the transformed data, the base machine
executes the After behavior.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

14 • R. Meis and M. Heisel

Fig. 12. Integration of Transform Received Data Aspects

Variants.
We can distinguish three variants of transformation aspects depending on the type of the trans-
formation resource.

Data-based transformation Service-based transformation Human-based transformation
If the transformation re-
source is lexical, this means
that the transformation ma-
chine uses this information
as input for the transforma-
tion.

If the transformation re-
source is causal, this means
that an external service
exists that is used to perform
the transformation.

If the transformation resource
is biddable, this means that
the transformation machine
needs inputs from human op-
erators to transform the re-
ceived data.

Consequences.
Benefits.
—Complexity of the implementation:

Data-based transformation Service-based transformation Human-based transformation
- As the transformation is out-

sourced, the implementation
is only concerned with the
correct usage of the service’s
API.

In general, we do not expect
complex algorithms to be im-
plemented if the transforma-
tion is performed by humans.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 15

—Integration into the base problem:

All: -

—Response time of transformation:

Data-based transformation Service-based transformation Human-based transformation
The response time of a
data-based transformation
benefits from the local
availability and automatic
transformation.

The transformation is dele-
gated to an external service.
This can be an advantage
if the computational capabil-
ities of the machine are lim-
ited and it is not reasonable
for it to perform the transfor-
mation itself.

-

—Reliability of transformation:

Data-based transformation Service-based transformation Human-based transformation
The transformation is un-
der the control of the ma-
chine. Hence, its reliability
is controllable by it.

A certified external service
that is specialized on provid-
ing the needed transforma-
tion can be considered as re-
liable.

Trained humans are in sev-
eral situations the only option
for reliable transformations.
Especially in cases where the
transformation is based on re-
quests whose semantics are
hardly machine processable.

Liabilities.

—Complexity of the implementation:

Data-based transformation Service-based transformation Human-based transformation
We have to manage the
lexical transformation
resource that, e.g, can
be a database. The man-
agement of the lexical
transformation resource
can introduce additional
base problems that are
concerned with adding,
changing, or deleting
information from the
resource. Depending on
the mechanism, complex
algorithms have to be
implemented to perform
the transformation.

It has to be ensured that a
reliable connection to the ser-
vice exists and that its API is
correctly used.

A user interface has to be cre-
ated for the humans that act
as transformation resource.
This interface has to provide
the humans all information
that they need to perform the
transformation and shall be
usable.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

16 • R. Meis and M. Heisel

—Integration into the base problem:

All: The base machine has to use the provided transformed data instead of the received data
for the further processing.

—Response time of transformation:

Data-based transformation Service-based transformation Human-based transformation
The transformation ma-
chine needs to have
sufficient computational
resources to compute the
transformation based on
the transformation re-
source in a timely manner.

To provide the transformed
data timely, the external ser-
vice has to have a appropri-
ate response time and has to
be available.

The response time depends on
the availability of the human
resources, their efficiency, and
the number of requests that
they have to handle. In gen-
eral, we have to expect signif-
icant higher response times
than for completely automatic
transformations.

—Reliability of transformation:

Data-based transformation Service-based transformation Human-based transformation
The reliability of a data-
based transformation de-
pends on the correctness
of the transformation re-
source. Hence, the machine
has to ensure that it is ac-
curate and up-to-date.

The external service has to
be trusted to provide reliable
transformations.

The humans that perform
the transformation have to be
trained to be able to provide
correct transformations. De-
pending on the base problem
it can be reasonable to in-
volve more than one human
in the transformation process
to improve the reliability of
the made transformations.

Examples.

Data-based transformation Service-based transformation Human-based transformation
Decryption of data received
by a sender is an example for
a data-based transformation.
In this case the transforma-
tion resource is a key storage.

An optical character recogni-
tion (OCR) or face recogni-
tion software could be used
in a service-based transforma-
tion as information resource
to derive information that the
base machine needs for a fur-
ther processing.

Examples for human-based
transformations are spell-
checking or formatting of
provided texts.

4.3 Transform Before Transmission Aspect Frame

Name. Transform Before Transmission Aspect
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 17

Context.
Structure.
You have base problems in which the Base Machine needs to transform data (previously re-
trieved by the base machine) that shall be sent to or stored by a Receiver (see Fig. 13).

Base Machine Receiver Provide data to
Receiver

BM!{provideData} {receivedData}

Fig. 13. The base problem of Transform Before Transmission Aspects

Behavior. Figure 14 shows the relevant behavioral view on the base problem. It consists of a
before behavior, the event that the Base Machine provides data to the Receiver, and an after
behavior.

Fig. 14. Relevant behavior of the base problem of Transform Before Transmission Aspects

Problem.
You want to integrate a mechanism that transforms the data before these are provided to a Receiver.
Forces.
—Complexity of the implementation: The complexity to implement the mechanism should be kept to

the minimum needed.
—Integration into the base problem: It shall be possible to integrate the transformation mechanism

in a way that the base problem is only affected in the desired manner.
—Response time of transformation: The selected mechanism shall respond in a timely manner de-

pending on the needs of the base problem.
—Reliability of transformation: The selected mechanism shall perform the transformation reliably.
Solution.

Structure.
A mechanism to transform data to provide these transformed data to a receiver has the basic
structure shown in Fig. 15. Figure 15 shows the Receiver and the Base Machine as the rele-
vant parts of the base problem (join points) for the transform before transmission aspect. The
Transformation Machine is the domain that performs the transformation using a Transformation
Resource (optional) and provides the transformed data to the Base Machine. The Base Machine

Proceedings of the 22nd European Conference on Pattern Languages of Programs

18 • R. Meis and M. Heisel

can then provide the transformed data to the Receiver. The cross-cutting requirement Transform
before transmission refers to the Transformation Resource that is used to perform the transfor-
mation, and it constrains the Base Machine to provide this data to the Receiver and that the
Receiver will receive the transformed data.

Receiver

Base MachineTransformation
Machine

Transformation
Resource

Transform before
transmission

BM!{provideData}
BM!{requestTransformation}
TM!{provideTransformedData}

TM!{requestTransformationResource}
TR!{provideTransformationResource} {provideTransformationResource}

{provideData}

{receivedData}

Fig. 15. The structure of Transform Before Transmission Aspects

Behavior.
The behavioral part of the solution is shown in Fig. 16. The interaction is started by the join
point Base Machine that requests the transformation of the received data from the aspect’s
machine Transformation Machine. The Transformation Machine then provides the transformed
data that it computed using the Transformation Resource. Finally, the Base Machine provides
the transformed data to the Receiver.

Fig. 16. Behavior of Transform Before Transmission Aspects

Integration.
How a Transform Before Transmission Aspect is integrated into a base problem is shown in
Fig. 17. First, the Before behavior of the base problem (cf. Fig. 14) happens. Before the Base
Machine provides data to the Receiver, the aspects behavior is integrated (cf. Fig. 16). After
providing the transformed data to the Receiver, the After behavior is executed.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 19

Fig. 17. Integration of Transform Before Transmission Aspects

Variants.
We can distinguish the same three variants of transformation aspects as in Section 4.2 depend-
ing on the type of the transformation resource.

Consequences.
Most consequences of the Transform Before Transmission Aspect are the same as for the Transform
Received Data Aspect or apply analogously. Hence, we refer to Section 4.2 for the consequences of
this aspect frame.
Examples.

For examples, we also refer to Section 4.2

4.4 Independent Behavior Aspect Frame

Name. Independent Behavior Aspect
Context.

Structure.
You have base problems into which an additional behavior shall be integrated that does not
influence the behavior of the Base Machine in reaction of specific events caused by an Event
Source that the Base Machine observes (see Fig. 18).

Base Machine Event Source Process event
ES!{event} {event}

Fig. 18. The base problem of Independent Behavior Aspects

Proceedings of the 22nd European Conference on Pattern Languages of Programs

20 • R. Meis and M. Heisel

Behavior. Figure 19 shows the relevant behavioral view on the base problem. It consists of a
before behavior, the event that the Base Machine receives from the Event Source, and an after
behavior.

Fig. 19. Relevant behavior of the base problem of Independent Behavior Aspects

Problem.
You want to integrate a mechanism that performs a task in reaction to an event caused by an Event
Source and this event shall not further influence the behavior of the Base Machine.

Forces.

—Complexity of the implementation: The complexity to implement the mechanism should be kept to
the minimum needed.

—Integration into the base problem: It shall be possible to integrate the independent behavior in a
way that the base problem is not affected by it.

—Reliability of independent behavior: The selected mechanism shall perform the independent be-
havior reliably.

Solution.
Structure.
A mechanism to perform an independent behavior in reaction to an event caused by an Event
Source is shown in Fig. 20. Figure 20 shows the Event Source and the Base Machine as the
relevant parts of the base problem (join points) for the independent behavior aspect. The Inde-
pendent Machine is the domain that performs the independent behavior by influencing the Influ-
enced Domain. The cross-cutting requirement Independent behavior refers to the Event Source
that issues an event and the Base Machine that triggers the Independent Machine. The behavior
of the Influenced Domain is constrained by the cross-cutting requirement.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 21

Event Source

Base MachineIndependent
Machine

Influenced
Domain

Independent
behavior

ES!{event}

BM!{triggerBehavior}

IM!{causeBehavior}

{triggerBehavior}

{event}

{behavior}

Fig. 20. The structure of Independent Behavior Aspects

Behavior.
The behavioral part of the solution is shown in Fig. 21. The interaction is started by the join
point Event Source that issues an event that the join point Base Machine observes. The Base Ma-
chine then triggers the Independent Machine to cause the additional behavior that the Influenced
Domain shall perform.

Fig. 21. Behavior of Independent Behavior Aspects

Integration.
How an Independent Behavior Aspect is integrated into a base problem is shown in Fig. 22.
First, the Before behavior of the base problem (cf. Fig. 19) happens. In reaction to the Event
Source’s event, the aspect’s behavior is integrated (cf. Fig. 6). In parallel to the aspect’s behavior,
the base problem’s After behavior is executed.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

22 • R. Meis and M. Heisel

Fig. 22. Integration of Independent Behavior Aspects

Variants.
We can distinguish three variants of Independent Behavior Aspects depending on the type of
the influenced domain.

Influenced data Influenced service Influenced human
If the influenced domain is
lexical, this means that the
data managed by this domain
shall be modified.

If the influenced domain is
causal, this means that tech-
nical device, service or the
like shall be controlled.

If the influenced domain is
biddable, this means that in-
formation shall be provided
to humans such that they be-
have in a desired way.

Consequences.
Benefits.
—Complexity of the implementation:

All: -

—Integration into the base problem:

All: Outsourcing the independent behavior to the independent machine allows to parallelize
the after behavior of the base machine and the independent behavior.

—Reliability of independent behavior:

All: -
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 23

Liabilities.

—Complexity of the implementation:

Influenced data Influenced service Influenced human
The complexity varies based
on the complexity of the de-
sired independent behavior.
An independent behavior as-
pect about influencing data
could only be about adding
a single entry to a database,
or additionally involve more
complex operations like con-
sistency checks.

It has to be ensured that
a reliable connection to the
service exists and that its
API is correctly used.

An appropriate interface to
the humans has to be chosen.
This interface has to be de-
signed in a way that the as-
pect machine is sufficiently
be able to influence the hu-
mans in the desired way. For
example, if the independent
behavior is to display infor-
mation to humans, then the
interface could be a GUI on
a computer. This GUI has to
be designed in a way that the
human notices the displayed
information.

—Integration into the base problem:

All: The base machine has to provide sufficient information to allow the independent machine
to perform the independent behavior. Additionally, it has to be ensured that the behavior of
the independent machine and the influenced domain does not influence the base machines
behavior, e.g., due to side-effects caused by the usage of shared resources.

—Reliability of independent behavior:

Influenced data Influenced service Influenced human
If data is influenced, the
reliability depends on the
correctness of the indepen-
dent machine’s implementa-
tion and the consistency of
the influenced data.

The external service has to
be reachable and comply to
its specification.

To influence humans in the
desired way, actuators (refin-
ing the interface between the
independent machine and
the influenced humans) have
to be chosen that are noticed
by the humans and cause
them to behave in the de-
sired way. In general, it is
necessary to explain to the
humans how, when, and why
they are informed and what
their reaction to this infor-
mation shall be.

Proceedings of the 22nd European Conference on Pattern Languages of Programs

24 • R. Meis and M. Heisel

Examples.

Influenced data Influenced service Influenced human
Logging of specific events is
an example for an independent
behavior that influences data.
In this case, the influenced do-
main is a log file or database,
to which the new event with
additional information, e.g. a
timestamp, is added.

All examples of independent
behavior aspects that influ-
ence humans are at some point
refined to aspects that in-
fluence a service. For exam-
ple, if we consider an alarm
system in a hospital that
informs nurses about criti-
cal vital signs of patients
(event), then the interface to
the nurses will be refined with,
e.g., a display and/or speaker
in the nurse’s station. The
independent machine is then
only concerned with influenc-
ing this display and/or speaker
in the desired way.

An example for an indepen-
dent behavior that influences
humans is an alarm system in
a hospital that informs nurses
about critical vital signs of pa-
tients (event).

5. GUIDANCE FOR CREATING AND USING ASPECT FRAMES

In this section, we provide further guidance on how aspect frames shall be created and how they can be
used. We discuss the lessons that we learned during the creation of the four aspect frames presented
in the previous Section.

5.1 Name

As usual, the name of a pattern should be carefully selected. An aspect frame’s name shall provide a
clear intuition about the kinds of problems the aspect frame’s instances shall address. For example,
the shown Decision Aspect is concerned with providing decisions.

5.2 Context

The specification of the aspect frame’s context is not easy. The base problem description has, on one
hand, to be general enough to fit to all base problems instances the aspect frame shall be integrated
into. On the other hand, it should be as specific as possible to ensure that aspects of the frame are
only integrated into fitting base problems and to support requirements engineers to decide whether
the aspect they want to model fits to the aspect frame.

For example, we decided that the base problem of Decision Aspects consists of a base machine, a
resource, and a requester (cf. Figure 3). The later two have no fixed domain type assigned. That is,
they possibly be instantiated with biddable, causal, or lexical domains.

A more general description of the Decision Aspect could have left out the resources that the requester
wants to access. This would not even have much impact on the other diagrams of the Decision Aspect,
because the aspect’s behavior is not concerned with interacting with the resource (cf. Figure 6). How-
ever, the decision is based also on the kind of resource that the requester wants to access. Hence, it is
important that the base problems contain the resource that shall be accessed.

A too specific description of the Decision Aspect could, e.g., limit the join point requester to be a
biddable domains and the resource to be a lexical domain. This would limit the application of Decision
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 25

Aspects to base problems in which humans want to access data which is controlled by the machine.
Such a restriction would be too strong, because the types of the requester and resource are not relevant
to provide the decision for most aspects that fit to the Decision Aspect.

The behavioral view on the base problem shall explicitly specify the situation in which the frame’s
aspects shall be integrated into it. This can be a, e.g., a single message, a specific sequence of messages,
or situations described by a state predicate. In aspect-oriented programming, this situation descrip-
tion is called the aspect’s pointcut. The behavior before and after the pointcut may be introduced as
references (cf. Figure 4). The before and after behavior can then be used in the weaving to specify a
modification of the base problem’s behavior in reaction to the aspect’s behavior. For Decision Aspects,
the pointcut consists only of the requester’s request to get access to the resource (cf. Figure 4), because
a decision about the access to a resource shall be questioned if and only if the resource is requested.

5.3 Problem

The problem shall be a short statement that condenses the intention that all instances of the aspect
frame share. This problem statement shall help requirements engineers to decide whether their aspect
addresses the described problem and is potentially an instance of the frame.

5.4 Forces

The forces of an aspect frame summarize issues that make it difficult to solve the problem existing in
the described context. The forces help to further understand the properties of instances of an aspect
frame. During the development of four aspect frames, we identified two forces that are relevant for
all aspect frames. These are the complexity of the implementation and the integration into the base
problem that are obviously relevant for all kinds of aspects. Additionally, it may be worth it to discuss
the software qualities that instances of an aspect frame should have. For example, we identified issues
concerning the response time, reliability, and security as relevant for Decision Aspects.

5.5 Solution

Similar to the description of the base problems, it is important to describe the aspect frame general
enough, but not too general. For example, if the requester would be left out in Figure 5, then the rel-
evant interface for the decision machine to the base machine that is needed to request the decision
and to provide the result of the decision is still contained, but the original request on which the base
machine reacts would no longer be part of the aspect and we would miss the original trigger (point-
cut) of the interaction the aspect needs to be integrated into (cf. Section 5.2). The pointcut is needed
to clearly specify when the aspect’s behavior shall be weaved into the base problem’s behavior. Con-
sequently, the Decision Aspect’s behavior description (see Figure 6) contains the pointcut described
in Figure 4, namely the message requestResource. This message is the first message in the aspect’s
behavior description, i.e., the aspect’s behavior shall be performed after this message.

It would be reasonable to add the requested resource to Figure 5, because the decision is likely to
depend on both the requester and the resource. However, the information which resource is requested
is implicitly encoded in the phenomenon requestResource and the resource itself is not an actor in the
aspects behavior (cf. Figure 6). Hence, we decided to leave out the resource in Figure 5 to keep the
diagram as simple as possible.

The integration description shall explain how the aspect’s behavior shall be added to the base prob-
lem’s behavior. Ideally, the aspect’s behavioral view contains the base problem’s pointcut and the aspect
can respectively be integrated into the base problem. For example, the Decision Aspect’s behavioral de-
scription contains the base problem’s pointcut as first message. Hence, we just need to add the aspect’s
behavior after this message (see Figure 7).

Proceedings of the 22nd European Conference on Pattern Languages of Programs

26 • R. Meis and M. Heisel

Additionally, the sequence diagram for the integration of aspects may describe deviations of the base
problem’s behavior in reaction to the aspect. For Decision Aspect, we specified that the base problem’s
after behavior shall only be executed if the provided decision is positive. If the decision is negative,
then optionally an error behavior may be performed by the base machine. This error behavior strongly
depends on the concrete context of the base problem and does itself not belong to the Decision Aspect.

We introduce the concept of variants to aspect frames to be able to discuss different flavors of an
aspect. A variant assigns specific types to domains without specified type. Variants should be used if
the aspect’s structure, behavior, and integration do not depend on the type of an involved domain, but
the benefits and liabilities may vary for different types of it. For example, the information source in
Decision Aspects has no specific type and the structure, behavior, and integration of Decision Aspects
do not depend on its type. However, the properties of the Decision Aspects, i.e., the benefits and lia-
bilities, are different depending on the information source’s concrete type. Hence, we distinguish the
Decision Aspect variants data-based decision, service-based decision, and human-based decision. If a
domain without specified type shall not be instantiated with a specific type, this can also be specified
by declaring that this variant is not allowed or possible. Note that it is not mandatory to describe vari-
ants for all domains without specified type. For example, the requester and the resource have both no
specified type in the decision aspect and they are not mentioned in the variants. This means that there
are no restrictions on the type of these domains and that the benefits and liabilities are not expected
to vary for different types of these.

5.6 Consequences

The positive and negative consequences should discuss all stated forces for all defined variants. If a
consequence is identified that has not yet a corresponding force, this indicates that a corresponding
force is missing and that it should be added.

The consequences of an aspect frame shall help requirements engineers to specify the relevant prop-
erties of the concrete mechanism they want to express as aspect. These properties can also be used to
compare aspects that are instances of the same aspect frame with each other.

5.7 Examples

The examples shall help requirements engineers to understand the kind of problems that belong to the
aspect frame and consequently, to decide whether the mechanism they want to express as aspect fits
to the class described by the aspect frame. If variants are specified, then at least one example should
be provided for each variant.

6. RELATED WORK

In this section, we provide an overview of the work related to this paper. In Section 6.1, we discuss
literature that considers both aspect-orientation and patterns. Section 6.2 briefly discusses the AORE
literature.

6.1 Aspect-orientation and Patterns

Clarke and Walker [2001] present an approach to model design patterns as composition patterns. They
propose UML templates that capture the structure and behavior of the design patterns independently
from the design elements it may cross-cut. Additionally, they show how their proposed composition
patterns can be translated to the aspect-oriented programming language AspectJ. While Clarke and
Walker express aspects in the design phase, we consider aspects in the requirements phase. Further-
more, we provide with the aspect frames pattern candidates that help to describe aspects that fit into
the class of aspects described by the frame.
Proceedings of the 22nd European Conference on Pattern Languages of Programs

Aspect Frames – Describing Cross-Cutting Concerns in Aspect-Oriented Requirements Engineering • 27

Garcia et al. [2006] performed a quantitative study that investigates the advantage of using aspects
to implement 23 Gang-of-Four patterns [Gamma et al. 1995], which have shown to be cross-cutting in
several cases. The authors found out that an aspect-oriented implementation of design patterns leads
to a better separation of concerns, but introduces also issues like more complex operations and more
lines of code in some cases.

6.2 Aspect-Oriented Requirements Engineering

There are several AORE approaches based on different requirements engineering approaches, such
as use cases, viewpoints, and goals. A more detailed literature overview is provided by Singh and
Gill [2011]. The work of Lencastre et al. [2008] also integrates aspect-orientation into the problem
frames approach similar to our method presented in [Faßbender et al. 2015] that we use to support the
description of the aspect frames. However, Lencastre et al. [2008] do not propose frames for reoccurring
cross-cutting concerns. Alebrahim et al. [2012] show how role-based access control (RBAC) can be
integrated into specific problem frames in an aspect-oriented way.

To the best of our knowledge, there is not yet any research on patterns to express classes of aspects
in the field of AORE.

7. CONCLUSION

In this paper, we introduced aspect frames that represent classes of aspects (cross-cutting concerns)
that share a common concern and behavior. The aspect frames are described in a pattern format that
summarizes the shared problem and the common solution provided by aspects of the frame’s class.
Aspect frames are a means to support the description of aspects in AORE, because requirements en-
gineers can use the aspect frames as blueprints for aspects and fit their cross-cutting concerns to an
aspect frame. The aspect frame provides the requirements engineers with further information about
forces of the problem, and the benefits and liabilities that aspects fitting to the frame might have.

We described a pattern format that can be used to describe aspect frames in a structured way. Us-
ing this pattern format, we introduced the aspect frames Decision Aspect, Transform Received Data
Aspect, Transform Before Transmission Aspect, and Independent Behavior Aspect as an examples of
aspect frames. Finally, we summarized our lessons learned to provide guidance on how to create and
use aspect frames.

In future work, we want to further elaborate on aspect frames. For example, we want to study
whether there are additional classes of cross-cutting concerns that could be represented as aspect
frames and evaluate how much aspect frames help requirements engineers to specify cross-cutting
concerns.

ACKNOWLEDGMENTS

We want to thank our shepherd Eden Burton for the valuable feedback that helped us to improve
the quality of this paper. We also thank Uwe Zdun, Victor Sauermann, Eva Schön, Frank Frey, Olaf
Zimmermann, and Eduardo Fernandez who all provided enlightening feedback and constructive im-
provement suggestions during the writer’s workshop. This feedback and the suggestions helped us to
further improve this paper.

REFERENCES

Azadeh Alebrahim, Thein Than Tun, Yijun Yu, Maritta Heisel, and Bashar Nuseibeh. 2012. An Aspect-Oriented Approach
to Relating Security Requirements and Access Control. In Proceedings of the CAiSE’12 Forum at the 24th International
Conference on Advanced Information Systems Engineering (CAiSE) (CEUR Workshop Proceedings), Vol. 855. CEUR-WS.org,
15–22. http://ceur-ws.org/Vol-855/paper2.pdf

Proceedings of the 22nd European Conference on Pattern Languages of Programs

28 • R. Meis and M. Heisel

Siobhán Clarke and Robert J. Walker. 2001. Composition Patterns: An Approach to Designing Reusable Aspects. In
Proceedings of the 23rd International Conference on Software Engineering, ICSE 2001, 12-19 May 2001, Toronto, On-
tario, Canada, Hausi A. Müller, Mary Jean Harrold, and Wilhelm Schäfer (Eds.). IEEE Computer Society, 5–14.
DOI:http://dx.doi.org/10.1109/ICSE.2001.919076

Stephan Faßbender, Maritta Heisel, and Rene Meis. 2014. Aspect-oriented Requirements Engineering with Problem Frames.
In ICSOFT-PT 2014 - Proc. of the 9th Int. Conf. on Software Paradigm Trends. SciTePress, 145–156.

Stephan Faßbender, Maritta Heisel, and Rene Meis. 2015. A Problem-, Quality-, and Aspect-Oriented Requirements Engi-
neering Method. In Software Technologies - 9th International Joint Conference, ICSOFT 2014, Vienna, Austria, August 29-
31, 2014, Revised Selected Papers (Communications in Computer and Information Science), Vol. 555. Springer, 291–310.
DOI:http://dx.doi.org/10.1007/978-3-319-25579-8 17

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Alessandro Garcia, Cláudio Sant’Anna, Eduardo Figueiredo, Uirá Kulesza, Carlos Lucena, and Arndt von Staa. 2006. Mod-
ularizing Design Patterns with Aspects: A Quantitative Study. Springer Berlin Heidelberg, Berlin, Heidelberg, 36–74.
DOI:http://dx.doi.org/10.1007/11687061 2

Michael Jackson. 2001. Problem Frames. Analyzing and structuring software development problems. Addison-Wesley.
Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc Loingtier, and John

Irwin. 1997. Aspect-Oriented Programming. In ECOOP. Springer, 220–242. DOI:http://dx.doi.org/10.1007/BFb0053381
Maria Lencastre, Ana Moreira, João Araújo, and Jaelson Castro. 2008. Aspects Composition in Problem Frames. In Proceedings

of the 16th IEEE International Requirements Engineering Conference. IEEE Computer Society, 343–344.
Rene Meis and Maritta Heisel. 2017. Pattern-based Representation of Privacy Enhancing Technologies as Early Aspects.

In Trust, Privacy, and Security in Digital Business (LNCS), Vol. 10442. Springer International Publishing, Cham, 49–65.
DOI:http://dx.doi.org/10.1007/978-3-319-64483-7 4

Ana Moreira, Ruzanna Chitchyan, Joo Arajo, and Awais Rashid. 2013. Aspect-Oriented Requirements Engineering. Springer
Publishing Company.

Narender Singh and Nasib Singh Gill. 2011. Aspect-Oriented Requirements Engineering for Advanced Separation of Concerns:
A Review. IJCSI International Journal of Computer Science Issues 8, 5 (September 2011), 288–297.

Tim Wellhausen and Andreas Fießer. 2011. How to write a pattern?: a rough guide for first-time pattern authors. In 16th Euro-
pean Conference on Pattern Languages of Programs, EuroPLoP 2011. ACM, 5. DOI:http://dx.doi.org/10.1145/2396716.2396721

Proceedings of the 22nd European Conference on Pattern Languages of Programs

