Systematic optimization of the thermal reactivation of activated carbon for water treatment using statistical methods

Karthik Rathinam^{*1}, Volker Mauer², Christian Bläker², Christoph Pasel², Dieter Bathen², Stefan Panglisch¹

¹ Chair for Mechanical Process Engineering / Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany ² Chair for Thermal Process Engineering, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Motivation & Targets

The widespread use of activated carbons (ACs) for various industrial purposes has led to a steady increase in the demand for fresh ACs worldwide. An energy efficient way to tackle this problem is the regeneration of exhausted ACs, whereas thermal regeneration is considered as one of the most efficient regeneration processes. Therefore, this work aims at the systematic optimization of the process parameters influencing the thermal reactivation process of ACs for water purification. In order to assess the reactivation

success, the regenerated ACs (RC) should be analyzed for their structural as well as physical-chemical properties and compared with the respective fresh (FC) and loaded ACs (LC). Finally, the software Design-Expert should be used to establish empirical, mechanistic relationships between the influencing variables and the respective quality characteristics, to perform a sensitivity analysis of the individual influencing variables and to determine the optimum reactivation parameters.

Experimental & Methods

Thermal reactivation process

Fig. 1. Reactivation experiments using a rotary kiln

Reactivation protocol:

- Rotary kiln is first heated up to 300°C in each test
- Final temperature at the end of the tests varied between 450°C and 900°C 450°C ○ Below reactivation the success is too low
 - Above 900°C the pore system collapses, or too high mass loss occurs
- No holding plateaus

Design of experiment

Table 1: Variable factors and their step values

Factors	Step 1	Step 2
Heating rate [°C/h]	225	450
Holding time [min]	40	80
H_2O/N_2 ratio	0	0.3
CO_2/N_2 -ratio	0	0.3

Targeted responses:

- Inner surface area (m^2/g) (**R**₁)
- Energy consumption (kW/h) (**R**₂)
- RAC yield (%) (\mathbf{R}_3)
- Adsorption capacity (m^2/g) (\mathbf{R}_{4})

Structural and chemical characterization

Fig. 2. Adsorption isotherm Targeted variables:

- Inner Surface Area (BET)
- Pore Volume
- Micropore Volume
- Pore Size Distribution (PSD)

Fig. 3. Boehm bases and assigned surface groups Boehm titration:

- Chemical method for quantitative the acidic oxidic surface determination of groups on activated carbons
- Selective neutralization of functional groups with bases of different acidity
- Amount of surface groups can be correlated with the respective base consumptions

Results & Discussion

	[m²/g]	volume [cm ³ /g]	volume [cm ³ /g]	rate [°C/h]	time [min]	Temperature [°C]	ratio	ratio
FC	842.7	0.544	0.299	-	-	-	-	-
LC	419.3	0.313	0.139	-	-	-	-	-
RC1	698.9	0.484	0.244	337.5	60	637.5	0.15	0.15
RC2	690.5	0.445	0.250	337.5	60	637.5	0.15	0.15
RC3	769.1	0.523	0.273	450	80	900	0.3	0.3
RC4	596.8	0.414	0.212	225	40	450	0.3	0
RC5	643.5	0.435	0.227	225	40	450	0.3	0.3
RC6	734.7	0.492	0.261	450	80	900	0	0.3
RC7	699.9	0.472	0.247	337.5	60	637.5	0.15	0.4

Fig. 4. Pore size distributions from N₂ (dark) and CO₂ (bright) isotherms

- Micro- and mesopores
- Pores blocked in process
- Blocking removed during reactivation (restoration of pore structure)
- No shift in pore size distribution
- Fig. 5. Total amount of phenol and lactone / lactol groups
- Highest amount of groups for LC
- RC amount of groups close to the FC
- Acidic oxidic surface groups are created in

760 A

в

The proximity of R² value to 1 implied the the developed adequacy of regression qualitative model showing and а the actual and agreement between predicted values

Fig. 7. Pareto chart of the standardized effects for inner surface area

- Inner surface area is significantly influenced by both heating rate and holding time followed by H_2O/N_2 ratio
- CO_2/N_2 ratio showed no effects on surface area

Fig. 8. Pareto chart of the standardized effects for energy consumption

Energy consumption is greatly influenced by the holding time followed by heating rate

■ FC ■ LC ■ RC2 ■ RC3

Summary & Outlook

- Restoration of the inner surface area up to 91% of the FC was achieved
- Pore volume increases with rising inner surface area \checkmark
- Higher final temperature leads to larger inner surface area \checkmark
- Heating rate and holding time played the most significant roles on all the targeted responses

Heating Rate (°C/h) Holding Time (min) H2O/N2 CO2/N2 Standardized Effect

Factor Name

Standardized Effect

• H_2O/N_2 ratio and CO_2/N_2 ratio showed almost no

influence on the energy consumption

 \checkmark CO₂/N₂ ratio did not show any influence on the targeted responses In line with low cost, low energy and low CO_2 footprint, this study also reduced the \checkmark dependency on fresh AC and minimized the waste disposal \checkmark It is anticipated that this study might be helpful for the AC manufactures to adjust their operating parameters of reactivation furnaces

ğΖ

Grant I 20617

*Corresponding author karthik.rathinam@uni-due.de Acknowledgement +49 203 379 2869

Term

AB

