Wasserchemie

Vorlesung (2 h) und Übung (2 h):

Dienstag 10¹⁵ - 12⁰⁰, S05 T00 B32 Donnerstag 16¹⁵ - 18⁰⁰, S05 T00 B32

Thema	٧L	Übung
		Christi Himmelfahrt 30.05., Fronleichnam
		20.06.
Konzepte/Organisation/Einführung	09.04.	
in die Wasserchemie I		
Konzepte/Organisation/Einführung	16.04.	
in die Wasserchemie II		
Chemisches	18.04.	Ü1 09.05
Gleichgewicht/Verteilung in		
wässrigen Systemen I		
Chemisches	23.04.	Ü2 16.05.
Gleichgewicht/Verteilung in		
wässrigen Systemen II		
Säure-Base-Chemie in wässrigen	25.04.	Ü3 23.05.
Systemen I		
Säure-Base-Chemie in wässrigen	30.04.	Ü4 28.05.
Systemen II		
Luft-Wasser-Verteilung/Henry-	02.05.	Ü5 06.06.
Konstante		
Kalk-Kohlensäure-System	07.05.	Ü6 13.06.
Auflösung und Fällung	14.05.	
Komplexierung	21.05.	Ü7 27.06.
Sorption	04.06.	Ü8 04.07.
Pfingstferien – keine VL	11.06.	
Redoxchemie I	18.06.	Ü9 09.07.
Redoxchemie II	25.06.	Ü10 11.07.
Wrap-Up/Klausurvorbereitung	02.07.	

Rot: VL am Donnerstag Grün: Übung am Dienstag

Dieser Zeitplan ist **vorläufig** und dient nur dem Überblick über die abgedeckten Themen.

Wesentliche **Ziele** der Veranstaltung:

- Qualitatives und quantitatives Verständnis von Prozessen, die die Chemie natürlicher wässriger Systeme bestimmt
- Grundlagen der Beurteilung des Verhaltens von (Schad)stoffen in natürlichen und technischen Systemen
- Erkennen von möglichen Vereinfachungen komplexer Systeme und der Überprüfung der getroffenen Annahmen

Organisation

Vorlesungen: Torsten Schmidt (torsten.schmidt@uni-due.de),
 Übungen: Wiebke Kaziur (wiebke.kaziur@uni-due.de)

- Gruppeneinteilung erfolgt durch Dozenten nach Einsenden einer e-mail an die Übungsleiterin mit folgenden Informationen: Name, Vorname, Matrikel-Nr., Studiengang bis zum 19.04..
 Nachtrag NUR nach Absprache mit der Übungsleiterin
- Jede Gruppe stellt in der Übung ihre Aufgabe entsprechend Übungszettel und den Lösungsweg vor, anschließend Diskussion (es geht *nicht* primär um das richtige Ergebnis!).
- Nur durch aktive Teilnahme an den Übungen im Sommer- und Wintersemester können Bonuspunkte im Modul Wasserchemie/-analytik (Water Science Studenten) bzw. im Sommersemester im Modul Wasserchemie (LA Studenten) erworben werden. Bonuspunkte werden für die Präsentation der in der Gruppe erarbeiteten Lösungsvorschläge in der Übung vergeben, niemand kann also an Ihrer Stelle Bonuspunkte erwerben. Sprechen Sie sich nach der Gruppenbildung ab, wer wann die Ergebnisse präsentiert. Beachten Sie dabei auch weitere Verpflichtungen im Semester (WS: PC-Praktikum, LA: vor allem OC-Praktikum). Wichtig: Bonuspunkte bleiben nur erhalten, wenn Sie einen der ersten drei Klausurtermine nach dem Semester des Erwerbs wahrnehmen und verlängern sich bei einem Fehlversuch jeweils um einen weiteren Termin.

Klausur:

Die Klausur wird als sogenannte Koffer-Klausur gestellt, das heißt, Sie dürfen alle Materialien außer elektronischen Geräten und Kopien von Altklausuren während der Klausur nutzen. Daher sollte Ihre Klausurvorbereitung neben der regelmäßigen Teilnahme an den Übungen (teilweise mit früheren Klausurfragen als Problemen) vor allem eine gute Organisation Ihrer Materialien wie der VL-Unterlagen und Ihrer Mitschriften beinhalten. Auch dieses Handout und einen Taschenrechner müssen Sie dabei haben. In der Klausur geht es vor allem darum, Ihr Verständnis des Stoffes zu prüfen, nicht, ob Sie gut auswendig lernen können. Kritisch bei Koffer-Klausuren ist vor allem der Zeitfaktor. Wenn Sie alles nachlesen wollen oder müssen, fehlt Ihnen die Zeit, um alle Aufgaben zu bearbeiten. Bitte verwechseln Sie eine Koffer-Klausur nicht mit einer, für die Sie nichts lernen müssen!

Zwei weitere wichtige Hinweise zur Klausur:

- Lesen Sie die Aufgaben genau durch, vor allem hinsichtlich der verlangten Ergebnisse und der angegebenen Randbedingungen.
- Geben Sie Zwischenschritte Ihrer Lösungen an. Mit lediglich richtigem Ergebnis erhalten Sie in der Regel nicht die volle Punktzahl und richtige Rechenwege können Ihnen auch bei falschem Endergebnis fast alle Punkte bringen.

Vorlesungs-Inhalte

Einführung/Konzepte/Organisation

Artikel: K. Roth (2007) Chem. Unserer Zeit 41: 118-126

Was ist Wasserchemie?
Organisation und Literatur

Wassereigenschaften

Wasser und Pseudowissenschaften

Wasserressourcen/Hydrologischer Kreislauf/Wasseraufbereitung

Konzentrationseinheiten

Hauptinhaltsstoffe im Wasser, Ionenbilanzen

(Umweltchemikalien)

Chemisches Gleichgewicht/Verteilung in wässrigen Systemen I+II

Freie Energie G (Gibbs Free Energy)

Gleichgewichtskonstanten K und Reaktionsquotienten Q

Aktivitäten a und Aktivitätskoeffizienten y

Ionenstärke I

Standard- und Referenzzustand

Umgang mit chemischen Gleichgewichten

Algebraische Lösungen

Graphische Lösungen und Randbedingungen für Gleichgewichte

Numerische Lösungen/Excel Solver

Temperaturabhängigkeit von K: van't Hoff-Beziehung

Säure-Base-Chemie in wässrigen Systemen I+II

Artikel: D. K. Nordstrom et al. (2000) Environ. Sci. Technol. 34: 254-258

pH als Mastervariable

pH-Wert-Berechnungen und Interpretieren von Speziationsdiagrammen

Puffer

Totalkonzentration

Protonenbilanzgleichung

Elektroneutralitätsbilanz

Organische Säuren und Basen: Übersicht, Bedeutung Speziation

pKs-Werte und Substituenteneffekte

Hammett-Beziehungen

Verteilung organischer Säuren und Basen

Luft-Wasser-Verteilung/Henry-Konstante

Artikel: H. P. H. Arp, T. C. Schmidt (2004) Environ. Sci. Technol. 38: 5405-5412

Raoult'sches und Henry-Gesetz

Thermodynamischer Zyklus: der Umgang mit Massenbilanzen

Bestimmung von Luft-Wasser-Verteilungskonstanten

Kalk-Kohlensäure-System

Artikel: T. Clarke (2001) Nature 409: 544-545

Säure-Base-Chemie im Kalk-Kohlensäure-System

Geschlossenes vs. Offenes System

Titration schwacher Säuren

Alkalinität

Auflösung und Fällung

Artikel: C. F. Harvey et al. (2002) Science 298: 1602-1606

Löslichkeitsprodukte

Löslichkeit einfacher Salze

Löslichkeit reaktiver Salze (pH-abhängig): Carbonate und Hydroxide

Wasserhärte

Komplexierung

Artikel: F.M.M. Morel, M.M. Price (2003) Science 300: 944-947

Konzept der Komplexierung

Natürliche und anthropogene Liganden

Komplexbildungkonstanten, Brutto-Konstanten, Hydrolysekonstanten

Aquo-Komplexe

Bedeutung für die Totalkonzentration von Metallen

(Komplexometrie)

Sorption

Artikel: H. K. Karapanagioti et al. (2000) Environ. Sci. Technol. 34, 406-414

Sorptionsprozesse

Natürliches organisches Material

Rolle des organischen Materials: Verteilung

Sorptionsisothermen und Bestimmung von Sorptionsparametern

Ionenaustausch

Redoxchemie

Artikel: F. Scholz, U. Schröder (2003) Nature Biotechnol. 21: 1152-1153

Oxidationszahlen, Redoxgleichungen (auch für organische Verbindungen)

Thermodynamik, Nernst-Gleichung, Elektrodenpotential, SHE

pe-Konzept

Vergleich Redox- und Säure-Base-Reaktionen

Redox-Leitern

Messungen des Redox-Potentials

Redox-Reaktionen als Grundlage des Stoffwechsels

Literatur

Howard, A. G., 1998: Aquatic Environmental Chemistry, Oxford University Press, Oxford (very brief introductory material, cheap)

Jensen, J. N., 2003: A Problem-solving Approach to Aquatic Chemistry, Wiley, NY (closest to the lecture concept)

Benjamin, M.M., 2002: Water Chemistry, McGraw-Hill, New York

Brezonik, P.L., Arnold, W.A., 2011: Water Chemistry, Oxford University Press, Oxford

Sigg, L. und Stumm, W.: Aquatische Chemie: Einführung in die Chemie natürlicher Gewässer, UTB, Stuttgart; 5. vollst. überarb. Aufl. 2011, ISBN-10: 3825284638

Stumm, W. and J.J. Morgan, 1996: Aquatic Chemistry, Wiley, NY (*the* authorative textbook but not well suited for learning purposes)

Schwarzenbach, R.P., Gschwend, P.M. and D. Imboden, 2017: Environmental Organic Chemistry, 3rd edition, Wiley, NY (is limited to processes relevant for organic compounds, covers much more than we can do in the bachelor course, will be useful in the master course as well)

Appendix 1: Thermodynamic Data

	∆ <i>G</i> ?	∆ <i>H</i> ⁰	S ^o	
Species	(kJ/mol)	(kJ/mol)	(J/mol·K)	Source
KCl (sylvite)	-408.6	-436.5	82.6	5
KAlSi ₃ O ₈	-3742.9	-3681.1	214.22	2
(microcline feldspar)		000111	211.22	-
KAl ₃ Si ₃ O ₁₀ (OH) ₂ (muscovite mica)	-5608.4	-5984.4	305.3	2
Mg ²⁺	-456.1	-468.6	-138.1	1
	-454.8	-466.85	-138.1	2
Mg(OH)2 (brucite)	-833.51	-924.54	63.18	2
MgCO ₃ (magnesite)	-1012.1	-1095.8		2
Mg ₂ SiO ₄ (forsterite)	-2056.7		65.7	
		-2175.7	95.2	6
MgSiO ₃ (enstatite)	-1459.9	-1546.8	67.8	6
Mg ₃ Si ₂ O ₅ (OH) ₄ (chrysotile, serpentine)	-4037.8	-4365.6	221.3	2
Mg ₃ Si ₄ O ₁₀ (OH) ₂ (tale)	-5523.7	-5903.5	260.7	7
Mg ₅ Al ₂ Si ₃ O ₁₀ (OH) ₈ (chlorite)	-8207.8	-8857.4	465.3	6
Mg ₄ Si ₆ O ₁₅ (OH) ₂ · 6H ₂ O (sepiolite)	-9251.6	-10116.9	613.4	6
An (metal)	0	0	32.0	2
An ²⁺	-228.1	-220.75	-73.6	
AnO	-362.90	-385.22		2
In(OH) ₂ (pyrochroite)	-616.5	-363.22	59.71	2
				2 8 8 2 2
AnO(OH) (manganite)	-133.3			8
In ₃ O ₄ (hausmannite)	-1283.2	-1387.8	155.6	2
In ₂ O ₃ (bixbyite)	-881.1	-959.0	110.5	2
InO ₂ (pyrolusite)	-465.14	-520.3	53.06	2
InO ₂ (birnessite)	-453.1			8
InCO ₃ (rhodochrosite)	-816.7	-894.1	85.8	2
InS (alabandite)	-218.0	-213.8	78.2	4
InSiO ₃ (rhodonite)	-1243.1	-1319.2	102.5	4
l ₂ (g)	0	0	191.6	2
TH ₃ (g)	-16.45	-46.11	192.5	2
H ₃ (aq)	-26.50	-80.29	111.3	2
H.	-79.31	-132.51	113.4	2
0.7	-108.74	-132.31	146.4	2
a ⁺				
a	-261.92	-240.29	58.4	1
aCI (ballan)	-261.91	-240.12	59.0	2
aCl (halite)	-384.14	-411.15	72.1	2
aHCO ₃ (nahcolite)	-851.9	-947.7	102.1	
aHCO ₃ ·Na ₂ CO ₃ ·2H ₂ O (trona)	-2386.6			9
a ₂ SO ₄ (thenardite)	-1269.8	-1387.8	149.6	5
a ₂ SO ₄ ·I0H ₂ O (mirabilite)	-3646.4	-4327.1	592.0	5
aSi ₇ O ₁₃ (OH) ₃ (magadiite)	-6651.9			10
aAlSi ₃ O ₈ (albite)	-3711.5	-3935.1	207.4	2
aAlSi ₂ O ₆ ·H ₂ O (analcite)	-3082.6	-3300.8	234.3	2

Na _{0,33} Al _{2,33} Si _{3,67} O ₁₀ (OH) ₂ (Na-beidellite)		(kJ/mol)	S ⁰ (J/mol·K)	Source
	-5382			Jour
O ₂ (g)	0	0	205.1	
S (rhombic)	0	0	31.8	
$H_2S(g)$	-33.56	-20.63	205.8	
H ₂ S (aq)	-27.83	-39.7	121	
SO ₂ (g)	-300.2	-296.8	248.1	
HS-	12.08	-17.6		
S ²	85.8	33.1	62.8	- 1
HSO ₄	-755.91		-14.6	2
SO ₄ ²⁻	-744.53	-887.34	131.8	2
SiO ₂ (quartz)	-856.64	-909.27	20.1	
SiO ₂ (amorph)	-849.28	-910.94	41.84	2
H ₄ SiO ₄ (aq)		-902.07	46.9	3
Sr ²⁺	-1308.1	-1439.5	180	7
SrCO ₃ (strontianite)	-563.83	-550.90	-31.5	11
SrSO ₄ (celestite)	-1144.73 -1340.9	-1225.77 -1453.1	97.2 117.	11
SOURCES 1. Nordstrom et al. (1984) 2. Wagman et al. (1982) 3. Haas et al. (1981) 4. Busenberg and Plummer (19 5. Robie et al. (1978) 6. Helgeson et al. (1978) 7. Adjusted by the author for ce 8. Bricker (1965)		ther values.		
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1988) Robie et al. (1978) Helgeson et al. (1978) Adjusted by the author for company.	onsistency with o	ther values.		
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		2
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		***
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		***
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		¥
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		¥
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values.		
Nordstrom et al. (1984) Wagman et al. (1982) Haas et al. (1981) Busenberg and Plummer (1958) Robie et al. (1978) Robie et al. (1978) Adjusted by the author for ci. Bricker (1965) Garrels and Christ (1965) Calculated from Bricker (196	onsistency with o	ther values,		

Saurce: Diever, 1977

Appendix 2: Dissociation constants of acids

Acid	НА	A ⁻	K a	pK _a
Hydroiodic acid	HI	I-	1011	-11
Perchloric acid	HClO ₄	ClO ₄ -	10^{10}	-10
Hydrobromic acid	HBr	Br-	109	-9
Hydrochloric acid	HCl	Cl ⁻	107	-7
Chloric acid	HClO ₃	ClO ₃ -	10 ³	-3
Sulfuric acid	H ₂ SO ₄	HSO ₄ -	10 ²	-2
Nitric acid	HNO ₃	NO ₃ -	10	-1
Hydronium-Ion (H ⁺ (aq))	H ₃ O ⁺	H ₂ O	1	0.0
Trichloroacetic acid	CI ₃ C-C OH	Cl3C-C,O	2.0•10-1	0.70
Oxalic acid	ноос-соон	H00C-C00	5.9•10-2	1.23
Dichloroacetic acid	Cl₂CH−C,O OH	HOOC-COO ⁻ Cl ₂ CH-C O	3.32•10 ⁻²	1.48
Sulfurous acid	H ₂ SO ₃	HSO ₃ -	1.5•10-2	1.81
Hydrogensulfate ion	HSO ₄ -	SO ₄ ²⁻	1.2•10-2	1.92
Phosphoric acid	H ₃ PO ₄	H ₂ PO ₄ -	7.5•10-3	2.12
Glycinium ion	H ₃ N-COOH	H ₃ N-COO	4.0•10-3	2.4
Pyruvic acid	H₃C COOH	H ₃ N-COO COO	3.24•10 ⁻³	2.49
Malonic acid	ноос Соон	H00C^C00-	1.49•10 ⁻³	2.83
Chloroacetic acid	CICH ₂ -C,OOH	CICH ₂ -C,O	1.36•10 ⁻³	2.87
Citric acid	но соон	HO COOH HOOC COO	7.45•10-4	3.13
Nitrous acid	HNO ₂	NO ₂ -	4.6•10-4	3.34
Hydrofluoric acid	HF	F-	3.5•10-4	3.45
Formic acid	н-с, он	H-C,O	1.8•10-4	3.75
Lactic acid	H₃C COOH H OH	H₃C COO H OH	1.4•10-4	3.86
Benzoic acid	СООН		6.46•10 ⁻⁵	4.19

Acid	НА	A ⁻	K_{a}	pK _a
Ascorbic acid (vitamin C)	OH OH OH	OH OH OH	6.3•10 ⁻⁵	4.2
Succinic acid	HOOC	HOOC COO-	6.21•10 ⁻⁵	4.21
Dihydrogencitrate ion	HO COOH HOOCCOO	HO COO COO	4.0•10 ⁻⁵	4.4
Anilinium ion		NH ₂	2.3•10-5	4.63
Acetic acid	H₃C−C,O OH	H ₃ C-C, _ O	1.8•10-5	4.75
1-Butanoic acid	COOH		1.5•10-5	4.82
Propionic acid (propanoic acid)	СООН	<u></u> _coo_	1.4•10-5	4.87
Pyridinium ion	*NH	N	5.6•10-6	5.25
Hydrogenmalonate ion	H00C C00	_00C_C00_	2.03•10-6	5.69
Hydrogencitrate ion	HO COO	HO COO	2.0•10 ⁻⁶	5.7
Carbonic acid	H ₂ CO ₃	HCO ₃ -	4.3•10 ⁻⁷	6.37
Hydrogen sulfide	H_2S	HS-	9.1•10-8	7.04
Dihydrogenphosphate ion	H ₂ PO ₄ -	HPO ₄ ²⁻	6.2•10-8	7.21
Hydrazinium ion	H_2N-NH_3	H ₂ N-NH ₂	5.9•10-9	8.23
Boric acid	B(OH) ₃	B(OH) ₄ -	7.2•10 ⁻¹⁰	9.14
Ammonium ion	NH ₄ , ⁺	NH ₃	5.6•10 ⁻¹⁰	9.25
Hydrogen cyanide	HCN	CN ⁻	4.9•10 ⁻¹⁰	9.31
Trimethylammonium ion	H _N	\\	1.6•10-10	9.81
Phenol	ОН		1.3•10-10	9.89
Bicarbonate ion	HCO ₃ -	CO ₃ ²⁻	4.8•10 ⁻¹¹	10.32
Hydrogen peroxide	H ₂ O ₂	HOO-	2.4•10-12	11.62
Hydrogenphosphate ion	HPO ₄ ² -	PO ₄ ³⁻	2.2•10-13	12.67
Water	H ₂ O	HO ⁻	1.0•10 ⁻¹⁴	14.0

Appendix 3: List of oxidation states in common compounds (Ref.: Pankow 1991)

Molecule		
or	Name to	12 70 7
Ion .	Name	Oxidation States
O ₂	molecular, elemental oxygen	O(0)
H_2O_2	. hydrogen peroxide	O(-I), H(I)
H ₂ O	water	O(-II), H(I)
OH-	hydroxide	O(-II), H(I)
H ⁺	proton	H(I)
HOCI	molecular hypochlorous acid	Cl(I), O(-II), H(I)
OCI-	hypochlorite ion	Cl(I), O(-II)
	molecular, elemental chlorine	Cl(0)
ŀČl	molecular hydrochloric acid	Cl(-I), H(I)
CI-	chloride ion	Cl(-I)
$I_2CO_3^*$	carbonic acid	C(IV), O(-II), H(I)
ICO_3^-	bicarbonate ion	C(IV), O(-II), H(I)
$2O_3^{2-}$	carbonate ion	C(IV), O(-II)
ICOO-	formate ion	C(II), $O(-II)$, $H(I)$
CH ₃ -CH ₂ -OH	ethanol	C(H), $O(-II)$, $H(I)$
(s)	elemental carbon,	C(0)
W 0	e.g. graphite or diamond	G(A)
CH ₂ O	formaldehyde	C(0)
6H ₁₂ O ₆	glucose	C(0)
H ₃ -CH ₃	ethane methane	C(-III)
H ₄	molecular sulfuric acid	C(-IV) S(VI), O(-II), H(I)
2SO ₄	bisulfate `	
SO_4^- O_4^{2-}	sulfate	S(VI), O(-II), H(I)
	molecular, elemental sulfur	S(VI), O(-II) S(0)
B(s)	hydrogen sulfide	S(-II), H(I)
I ₂ S		
S- -	bisulfide sulfide	S(-II), H(I)
NO,	molecular nitric acid	S(-II)
3		N(V), O(-II), H(I)
O ₃	nitrate	N(V), O(-II)
NO ₂	molecular nitrous acid	N(III), O(-II), H(I)
O_2^-	nitrite	N(III), O(-II)
2	molecular, elemental nitrogen	N(0)
H ₃	ammonia	N(-III), H(I)
H_4^+	ammonium	N(-III), H(I)

SoSe2019, Wasserchemie

Appendix 4: Equilibrium constants for environmentally relevant redox processes (Ref.: Pankow 1991)

TABLE 19.2. Data for selected redox reactions at 25°C/1 atm in order of increasing pe^{0} and E_{H}° . (Data from Bard et al. (1985) and Stumm and Morgan (1981).) The reducing strength of the RED species tends to increase towards the top of the table, and the office of the OX species tends to increase towards the bottom of the table.

Reduction Half Reaction	$\log K$	pe ^o	peo(W)	$E_{ m H}^{ m o}$
$OX + ne^- = RED$	$\frac{\{\text{RED}\}}{\{\text{OX}\}\{e^-\}''}$	$\frac{1}{n}\log K$	ре ^о — <u>та</u> 7	0.05916 pe ^o
$Na^+ + e^- = Na_{(s)}$	-46.0	-46.0	-46.0	-2.71
$Zn^{2+} + 2e^{-} = Zn_{(s)}$	-26.0	13.0	-13.0	-0.76
$FeCO_{3(s)} + 2e^{-} = Fe_{(s)} + CO_3^{2-}$	-25.58	-12.79	-12.79	-0.76
$Fe^{2+} + 2e^{-} = Fe_{(s)}$	- 14.9	-7.45	-7.45	0.44
$CO_{2(g)} + H^+ + 2e^- = HCOO^-$	-9.66	-4.83	-8.33	-0.29
$CO_{2(g)} + 4H^+ + 4e^- = CH_2O + H_2O$	-4.8	-1.2	-8.2	-0.071
$CO_{2(g)} + 4H^+ + 4e^- =$	-0.8	-0.2	-7.2	-0.012
$\frac{1}{6}$ C ₆ H ₁₂ O ₆ (glucose) + H ₂ O	0.0	0.0	7.0	0.00
$2H^+ + 2e^- = H_{2(g)}$	0.0	0.0	-7.0 5.42	0.00
$N_{2(g)} + 6H^+ + 6e^- = 2NH_3$	9.5	1.58	-5.42	0.093
$S_{(s)} + 2H^+ + 2e^- = H_2S$	4.8	2.4	-4.6	0.14
$Cu^{2+} + e^- = Cu^+$	2.7	2.7	2.7	0.16
$HCOO^{-} + 3H^{+} + 2e^{-} =$ $CH_{2}O + H_{2}O$	5.64	2.82	-7.68	0.17
$CO_{2(g)} + 8H^{+} + 8e^{-} = CH_{4(g)} + 2H_{2}O$	23.0	2.87	-4.13	0.17
$AgCl_{(s)} + e^{-} = Ag_{(s)} + Cl^{-}$	3.7	3.7	3.7	0.22
$CH_2O + 2H^+ + 2e^- = CH_3OH$, , . 8.0	4.0	-3.0	0.24
$SO_4^{2-} + 9H^+ + 8e^- = HS^- + 4H_2O$	34.0	4.25	-3.63	0.25
$Hg_2Cl_{2(s)} + 2e^- = 2Hg_{(1)} + 2Cl^-$	9.06	4.53	4.53	0.268
$N_{2(g)} + 8H^+ + 6e^- = 2NH_4^+$	28.1	4.68	-4.65	0.28
$SO_4^{2-} + 10H^+ + 8e^- = H_2S + 4H_2O$	41.0	5.13	-3.62	0.30
$Cu^{2^{+}} + 2e^{-} = Cu_{(s)}$	11.4	5.7	5.7	0.34
$HSO_4^- + 7H^+ + 6e^- = S_{(s)} + 4H_2O$	34.2	5.7	-2.47	0.34
$SO_4^{2-} + 8H^+ + 6e^- = S_{(s)} + 4H_2O$	36.2	6.03	-3.3	0.36

TABLE 19.2. (continued)

Reduction Half Reaction	log K	pe ^o	$pe^{o}(W)$	$E_{ m H}^{ m o}$
$OX + ne^- = RED$	$\frac{\{\text{RED}\}}{\{\text{OX}\}\{\text{e}^-\}^n}$	$\frac{1}{n}\log K$	$pe^{o} = \frac{n_{H}}{n_{e}}7$	0.05916
$CH_2O + 4H^+ + 4e^- = CH_{4(g)} + H_2O$	27.8	6.94	- 0.06	0.41
$Cu^+ + e^- = Cu_{(s)}$	8.8	8.8	8.8	0.52
$CH_3OH + 2H^+ + 2e^- = CH_{4(g)} + H_2O$	19.8	9.88	2.88	0.58
$Fe^{3+} + e^{-} = Fe^{2+}$	13.0	13.0	13.0	0.77
$Ag^+ + e^- = Ag_{(s)}$	13.5	13.5	13.5	0.80
$NO_2^- + 7H^+ + 6e^- = NH_3 + 2H_2O$	81.5	13.58	5.41	0.80
$NO_3^- + 2H^+ + 2e^- = NO_2^- + H_2O$	28.3	14.15	7.15	0.84
$NO_3^- + 10H^+ + 8e^- = NH_4^+ + 3H_2O$	119.2	14.9	6.15	0.88
$NO_2^- + 8H^+ + 6e^- = NH_4^+ + 2H_2O$	90.8	15.14	5.82	0.90
$MnO_{2(s)} + HCO_3^- + 3H^+ + 2e^- = MnCO_{3(s)} + 2H_2O$	25.8	15.9	5.4	0.94
(α)FeOOH _(s) + HCO ₃ ⁻ + 2H ⁺ + e ⁻ = FeCO _{3(s)} + 2H ₂ O	13.15	13.15	-0.85	0.78
(α)FeOOH _(s) + 3H ⁺ + e ⁻ = Fe ²⁺ + 2H ₂ O	13.5	13.5	-7.5	0.80
$(am)Fe(OH)_s + 3H^+ + e^- = Fe^{2+} + 3H_2O$	16.2	16.2	-4.8	0.96
$O_{2(g)} + 4H^+ + 4e^- = 2H_2O$	83.1	20.78	13.78	-1.23
$NO_3^- + 6H^+ + 5e^- = \frac{1}{2}N_{2(g)} + 3H_2O$	105.3	21.05	12.65	1.25
$MnO_{2(s)} + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	43.6	21.8	7.8	1.29
$Fe^{3+} + CO_3^{2-} + e^{-} = FeCO_{3(s)}$	23.68	23.68	23.68	1.40
$Cl_2 + 2e^- = 2Cl^-$	47.2	23.6	23.6	1.40
$HOCl + H^{+} + e^{-} = \frac{1}{2}Cl_{2} + H_{2}O$	26.9	26.9	19.9	1.59
$ClO^{-} + 2H^{+} + 2e^{-} =$ $Cl^{-} + H_{2}O$	57.8	28.9	21.8	1.71
$H_2O_2 + 2H^+ + 2e^- =$	59.6	29.80	22.80	1.76

Appendix 5: Equilibrium constants for redox reactions of selected environmentally relevant organic compounds (Ref.: Schwarzenbach et al. 2002)

Table 14.3 Standard Reduction Potentials and Average Standard Free Energies of Reaction (per Electron Transferred) at 25° C of Some Organic Redox Couples in Aqueous Solution (The reactions are ordered in decreasing $E_H(W)$ values.) ^a

	Halfreactio	n				
C	oxidized Species		Reduced Species	$E_{\rm H}^{ m 0}$ (V)	$E^0_{ m H}({ m W})^{\ b}$ $({ m V})$	$\frac{\Delta_{\rm r} G_{\rm H}^{\rm O}({\rm W})/{\rm n}^{\rm c}}{({\rm kJ\cdot mol^{-1}})}$
(1)	CCI ₃ — CCI ₃ + 2 e ⁻		Cl₂C=CCl₂ + 2Cl⁻	+ 0.95	+ 1.13	- 109.0
(2)	CBr ₄ + H ⁺ + 2e ⁻	=	CHBr ₃ + Br	+ 0.89	+ 0.83	- 80.1
(3)	CCl ₄ + H ⁺ +2e ⁻	=	CHCI ₃ + Cl ⁻	+ 0.79	+ 0.67	- 64.7
(4)	OHBr ₃ + H ⁺ + 2e ⁻	=	CH ₂ Br ₂ + Br	+ 0.67	+ 0.61	- 58.9
(5)	Cl ₂ C=CCl ₂ + H* + 2e ⁻	=	Cl₂C≕CHCl + Cl*	+ 0.70	+ 0.58	- 56.0
(6)	CHCl ₃ + H ⁺ + 2e ⁻		CH ₂ Cl ₂ + Cl ⁻	+ 0.68	+ 0.56	- 54.0
(7)	Cl ₆ + H ⁺ + 2e ⁻	c=	CI ₅ + CI ⁻	+ 0.68	+ 0.56	- 54.0
(8)	CI + H* + 2e-	=	+ Cl*	+ 0.54	+ 0.42	- 40.5
(9)	NO ₂ + 6H+ + 6e-	=	NH ₂ +2H ₂ O	+ 0.83	+ 0.42	- 40.5
(10)	O + 2H+ + 2e ⁻		но-Он	+ 0.70	+ 0.28	-27.0
(11)	O II H ₃ C—S—CH ₃ +2H ⁺ +2e ⁻	=	H ₆ C — S — CH ₈ + H ₂ O	+ 0.57	+ 0.16	- 15.4
(12)	N=N-\ +4H* + 4e-	=	2 NH ₂	+ 0.31	-0.10	+ 9.7
(13)	○ [[CH ₃ —S—CH ₃ +2H*+2e ⁻ []	=	$\begin{matrix} \bigcirc \\ II \\ H_8\text{C} - \text{S} - \text{CH}_8 \ + H_2\text{O} \end{matrix}$	+ 0.17	-0.24	+23.2
(14)	R-S-S-R + 2H* + 2e* (cystine)		2R-SH (cysteine)	+ 0.02	-0.39	+ 37.6

^a Estimated from thermodynamic data Dean (1985); Vogel et al. (1987); Krop et al. (1994); Roberts et al. (1996); Totten and Roberts (2001). ^b [H+] = 10^{-7} , {Cl⁻} = 10^{-3} , {Br⁻} = 10^{-3} . ^c n = number of electrons transferred.

Appendix 6: Cation exchange capacities (CEC) of various environmental materials found in the colloidal size fraction (Ref.: van Loon/Duffy 2005)

Material	CEC range (average) /cmol(+) kg ⁻¹	
Kaolinite	3-15 (8)	
Halloysite	4-10 (8)	
Montmorillonite	80-150 (100)	
Chlorite	10-40 (25)	
Vermiculite	100-150 (125)	
Hydrous iron and aluminium oxides	Ca. 4	
Feldspar	1-2 (2)	
Quartz	1-2 (2)	
Organic matter	150-500 (200)	

Appendix 7: A few useful relationships (Ref.: Stumm&Morgan 1996)

Table 2.6. Basic Relationships for Equilibria: Fixed T and p Systems

able 2.6. Basic Relationships for	$\mu_i = \mu_i^{\circ} + RT \ln \{i\} = \mu_i$
1. Chemical potential of a species	$=\mu_i^{\circ} + RT \ln c_i \gamma_i$
2. Reference states for γ_i	$\gamma_i \to 1 \text{ as } x_i \to 1 \text{ or } x_i \to 0$ $\gamma_i \to 1 \text{ as } \sum m_j \to 0 \text{ or } \gamma_i \to 1 \text{ as } m_i \to 0$
3. Standard states for c_i 4. Reaction $\sum v_i M_i = 0$	$\gamma_i = 1 \text{ and: } x_i = 1 \text{ or } m_i = 1$ $\Delta H = \sum_i \nu_i \overline{H}_i, \Delta V = \sum_i \nu_i \overline{V}_i,$ $\Delta S = \sum_i \nu_i \overline{S}_i \Delta G = \sum_i \nu_i \mu_i$
5. State function relationship6. Equilibrium constant	$egin{aligned} \Delta G &= \Delta H - T \Delta S \ K &= \prod\limits_{i} \; \left\{i ight{\mathrm{eq}}^{ u_{i}} \ Q &= \prod\limits_{i} \; \left\{i ight{\mathrm{p}i}^{ u_{i}} ight. \end{aligned}$
7. Reaction quotient	1
8. Standard free energy and K	ΔG° (kJ mol ⁻¹) = -5.71 log K at 25°C
9. Free energy and Q	$\Delta G = RT \ln \frac{Q}{K}$
10. K , m_i , and ν_i	$K = \left(\prod_{i} \left(\frac{m_{i}}{m^{\circ}}\right)^{\nu_{i}} \prod_{i} \gamma_{i}^{\nu_{i}}\right)_{\text{eq}}$
11. K and T	$\log \frac{K_{T_2}}{K_{T_1}} = \frac{\Delta H^{\circ}}{2.3R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
12. K and P	$\log \frac{K_{P_2}}{K_{P_1}} = -\frac{\Delta V^{\circ}(P_2 - P_1)}{2.3RT}$

A simple help with large logarithms:

$$ln10^x = x \ ln10$$