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The exponential function ... it looks easier than what it is.

Introduction and the Research Field

Growth of mathematical understanding is the result of a comprehensive mental
restructuring process. Thus observing and understanding growth first necessitates
grasping the accompanying transformation process, which then implies taking stock
of the respective initial and final states. Based on such analysis, one is capable of esti-
mating and probably designing the results of possible learning supporting measures
(or activities).

A central claim of the philosopher Wittgenstein is that thought is limited by lan-
guage. Mathematics can be understood as elaborated language, whereby graphic ele-
ments are viewed as integral parts of this language. Development in this expert lan-
guage is insofar relevant for mathematical thought and, vice versa, mode of use of
this language presents us with insight into such thought. As Davis (1992) stressed,
the ‘study of mental representations’ is a paramount didactical research task: “... One
knows very little about how someone thinks if one has no knowledge at all of his or her
mental representations...” In light of the above-mentioned background this thought is
of central importance. It is beyond dispute that not too many results are available in
the research literature, especially for topics of higher mathematics. Of course, mental
representations can only be opened indirectly on the macro level. Inasmuch, even the
adequate methodology of data gathering is a research topic of its own. Whereas subject
matter knowledge of the persons in question can be observed through tests, such a data
gathering can only provide limited results on the underlying representations. But how
should we observe them?

Mental representations of mathematical objects are part of the comprehensive
(student) conceptions on these objects. We distinguish between a microstructure and
a macrostructure of mental representations. The papers in Confrey (1991) represent
a comprehensive research contribution towards possible (micro-) mental representa-
tions of exponential functions; we however are primarily interested in researching the
macro-view of the subject-specific network structures and their links to the outside.
Besides criticism occasionally expressed here, we employ on the whole Pines’ (1985,
p. 101) idea of conceptual structure, namely that ... the emphasis here is not on the ele-
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ments, although they are important to a structure, but on the way those elements are
bound together.

Research Hypotheses and Research Questions

Our research is based on several initial hypotheses:

(A) The interrelationship of knowledge and beliefs. Mental representations are
not primarily tied to ‘hard’ knowledge, but have substantial reference to ‘soft’ informa-
tion (see e.g., Confrey, 1990). In this context, the open question of the interweaving
of knowledge and beliefs becomes more important. . Our dualistic knowledge — belief
view is probably reflected in the opposition of formal versus informal knowledge.
Once again, it becomes evident that every separation of knowledge components from
belief components must be considered artificial. Ernest (1989) considers the belief
variable ‘why what we do what we do’ especially significant for the quality of any
mathematics education program. When we accept Schoenfeld’s (1998) definition of
‘beliefs’ as ‘mental constructs that represent the codification of people’s experiences
and understandings’, the correlation to mental representations is obvious.

If one asks for models of individual mental representations, then the guiding met-
aphor that serves our purpose well seems to us to be a mathematical graph. Both
vertices and edges can represent subject-matter knowledge as well as corresponding
beliefs. However, we do not believe that we are able to describe the ‘mental land-
scape’ by this alone. We cannot ignore that mathematical contents are perceived by
prospective teachers on the background of (still virtual) classroom teaching situa-
tions.

(B) Subject-matter knowledge and pedagogical content knowledge. Accord-
ing to Shulman (1986), one differentiates between subject-matter content knowledge,
pedagogical content knowledge and curricular knowledge. This approach has been
scrutinized and improved by additional researchers (see in particular Cooney, 1994
and Bromme, 1994). The concept of pedagogical content knowledge has also been
questioned by some researchers who have suggested that it is not a discrete category
of knowledge at all, but inextricable from content knowledge itself. We consider it
important to understand which role pedagogical content knowledge plays and, refer-
ring to the above-mentioned metaphor, it can be a vertice as well as an edge.

Pedagogical content knowledge is in some sense ‘knowledge about’, and there
are many arguments (see (A)) for also considering again the respective beliefs, thus
including pedagogical content beliefs from the beginning. One notes that mathemat-
ical subject-matter knowledge about exponential functions has a multiple-directed
structure: What is a definition? What is the consequence? What is a sentence? What
is a corollary? What is an application? Pedagogical content knowledge however can
draw together various aspects, because they are equivalent. The proposition of a theo-
rem can also serve as a definition, through which the previous definition receives the
character of a theorem itself.
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Following the categorization in Torner (2000), subject-specific information can
be distinguished according to its content extension (C); the levels to be given here are
insofar global, domain specific and content-related.

Thus the theoretical framework of our research question has been mapped out in
outlines, namely registering possible mental representations of mathematical objects
and, when possible, describing phenomena pointing to areas beyond the singular
mathematical object.

Methodology and the Interview Participants

As the mathematics objects under consideration, the topic of ‘exponential func-
tions’ was selected. This topic is first-semester subject matter, namely in the first-year-
calculus lecture, and in other introductory courses, e.g., linear algebra and numerical
analysis, exponential functions are dealt with again from different perspectives. In
addition, exponential functions are taught in German school mathematics curriculum.
The theme is ‘exceedingly rich’ (Confrey, 1995) (‘ideal critical research site’) and fea-
tures a high degree of networking possibilities to other mathematical themes.

The information collection was the result of phenomenological and qualitative
research. For this, open interviews were chosen. Interviews were recorded on video
and later, result protocols were sent to the interviewees for comment.

Hluminating for the behavior of teachers for Schoenfeld (1998) are ‘teaching-in-
context’ situations in which in particular original influence factors for teaching math-
ematics arise. We were therefore interested in a comparable ‘replying-in-context’ situ-
ation, whereby we deliberately kept the interviewees uninformed about the intended
interview. It was therefore not possible for the students to prepare themselves for the
interview. To prevent the impression of an examination situation however, we pointed
out the advantages of experiencing such a situation as a test without having to fear
adverse consequences.

The persons who had volunteered to be interviewees were six prospective teacher
students of the upper secondary grade level who were already in their third-year-
course and had passed an intermediate examination after their fourth semester. It
therefore can be assumed confidently that they will reach their teaching qualifications
within three additional semesters.

Data Gathering

The six interviews were held in 2000. The participating students were presented
the scope of the actual research beforehand in order to relieve especially the 45 minute
conversation of the character of an exam. The contents of questions intended to initiate
conversation and induce narrative reports were of the following topics:

* Where were you confronted with exponential functions for the first time? (type
of introduction)
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* In what way were exponential functions defined? At school? At university? What
do you think of e*?

* What do you understand by e? Which decimals of e are you familiar with?
+ Name some defining properties of exponential functions (characteristics)!
* Compare the treatment of this theme in school and at university.

* Report on the inner-mathematical and outer-mathematical importance of
exponential functions.

¢ Which historical aspects of exponential functions are you aware of?
* Are there information gaps about exponential functions that would like to fill in?

Along these technical guidelines intended to illuminate the network around the
e-functions, prompting questions were asked for that were intended to provide sponta-
neous responses. We believe that students’ conceptions can be confirmed only through
methods that encourage students to be expressive and predictive:

» To what extent was each respective learning phase demonstrative from an
affective perspective resp. to what extent are emotionally-charged memories
noticeable in hindsight?

* What is each respective assessment based on? (through teaching personal,
independent confrontation)

* Which evaluation motive in combination with the meaning of exponential
functions are significant for them, and which central? Usefulness of exponential
functions? Beauty of the relevant mathematical features? Mathematical
centrality? High complexity?

¢ Did they experience the process of knowledge acquisition organically?

Following the reference in Calderhead (1996) that teachers’ knowledge may be
better represented in terms of metaphors and images, leeway for metaphoric assess-
ment was provided. Thus we asked the following question:

» If the different functional classes were comparable with animals in a zoo, which
species would be assigned to exponential functions?

Results

For the sake for brevity, only a few results can be referred to and summarized.
For the same reason we abstain from relating the results to the 6 individual interview
partners. The classification of the results into the terminology of concept images from
Tall and Vinner (1981) can also not be responded to here. According to the above
mentioned steps (A) and (B), we exemplary refer to the individual observed results;
to prevent repetitions of the observations we categorize the comments according to
content criteria whereby we limit ourselves to just a few positions.
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The Euler number e. In particular the categories (A) and (B) are very strongly
interwoven. Alone the decimal number e =2.71 82 82... is known by all the students up
to the numeral before the decimal point, two further students name two further numer-
als after the point. It is commented that there must be further numerals behind the
point, one of the students gets tangled up in the infinity of decimal quotient devel-
opment with the transcendental properties of e, which points to deficiencies in the
understanding of real numbers. Vaguely represented is also information about equiva-
lent mathematical definitions of the number e. The importance of this number is not
doubted as such, nevertheless this circumstance is only indirectly reached: “... Euler
must have discovered this, he is famous...“, without stating any precise details as to his
historic achievement or as to his personal biography: “... Don’t ask me for dates.”

What is further emphasized below is the interwoven nature of factually correct
information by the students and quite reservedly expressed imprecise knowledge fea-
turing on the whole belief character. Concerning pedagogical content knowledge, the
statement of only one student strikes the core of this issue: “... the Euler number is not
really defined, it is constructed, it is a kind of natural constant in mathematics.”

Definition of the exponential function to the basis e from a mathematical
view. The graphic representation of the e-function does not present a problem to any
of the students. However, three students have to correct their statements after the inter-
viewer made objecting comments referring to the graph of the general exponential
function a*, with respect to the variance of the basis a, and to some characteristic func-
tion points. Only one of the students pointed out that the function e is qualitatively
something different than 2*. The response of the interviewer as to the function value
at a prominent argument, e.g., the circle constant Pi, is answered by all the students
as question easily solved by a (not available) pocket computer (if only it were avail-
able!). It does not appear to the interviewees to be particularly exciting that in-depth
and historically relevant mathematical definition processes (the fundamental research
aspect) underlie this (e.g., in the case of e® for the basis e as well as for the exponent
one is dealing with infinite decimal series).

Representation of the exponential function. The observations make clear that
the students uncritically associate the e-function with a monotone increasing graph
(iconic representation). The answers become uncommiting when it comes to stating
characteristic parameters for the specific growth behavior (‘exponential growth’)!
This representation is insofar of only limited evaluation reliability (for solving math-
ematical tasks for students).

Not one student articulates that exponential growth on the one side stands in con-
trast to exponential convergence towards zero on the other side.

All students share the reassuring view that there exists a tool, namely a pocket cal-
culator, which represents the function (enactive representation). This rather comfort-
able representation entails the danger of an almost negligent simplification of viewing
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the exponential function e* in a naive sense as an exponential function with simply a
slightly more complicated basis. It is less this naive representation as such which has
to be categorized as reserved but moreover the uncritical, mathematically insensitive
use of such a reductionistic view.

The observations feature another form of representation of the exponential func-
tion: the symbolic representation via f* = f. A students states: “... This occurs only
once...” All test persons (two candidates however only after prompting) recalled the
property of derivation f* = f. None independently noted that this differential equation
could possibly characterize the e-function axiomatically, thus providing a sensible
symbolic representation.

The mathematical observer is however sobered when viewing very subjective rea-
sons associated with this property. It is the mnemotechnical simple structure of the
differential equation, which remains in the mind: “... I will be able to tell this to my
grandchildren in fifty years...” Thus, it is not the mathematical centrality, the beauty
of the presentation or similar assessment criteria, which is predominant. “...You simply
cannot make a mistake when differentiating...”, was one comment.

The mentioned three representations of the test persons are only weakly inter-
locked. Only two students explain the relation between the central differential equa-
tion property f* = f and the limit value definition of the Euler number e.

The equivalent approaches usually dealt with in the academic study of mathemat-
ics on the series definition or the limit value definition, possibly through an axiomatic
characteristic, do not play a primary role in the reports. It is only of secondary impor-
tance to the students that mathematics makes possible various different terminological
approaches for the definition of its objects.

Pedagogical content knowledge. From the author’s perspective, an integral role
is played by the pedagogical content knowledge as well as the pedagogical content
beliefs. These pedagogical content beliefs have a networking function, they represent
orientation information extending beyond the mathematical context. In particular the
relevance aspect of exponential functions is to be mentioned here. It appears that in the
presentation of mathematical contexts on the exponential functions, this aspect is only
partially taken into account. Only one test person, who had however enrolled for phys-
ics as a second major proved an incomparable comprehensive and highly networked
pedagogical content knowledge concerning the relevance of exponential functions.

On the relevance of the exponential function. One hardly needs to present any
evidence here on the importance of the exponential function for other fields within
mathematics in the narrow sense (inner-mathematical aspect) and also for other sci-
ences drawing heavily on mathematics (outer-mathematical aspect). Inner-mathemat-
ical centrality is hardly mentioned in the statements. Due to the fact that the exponen-
tial function in school is “... a completely different one...” than the one in academic
studies (“... that was the e-function from school...”, we conclude that the integration
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has not yet been sufficiently consolidated yet. ... As Euler, who achieved a lot in math-
ematics, developed the exponential function, it should be allocated a central role in
mathematics”.

All the participants initially emphasize the outer-mathematical relevance aspect,
but further statements here remain often non-committing when it comes to exactly
describing facts. This observation is based on the unconventional question of naming
a zoo animal as a representative of the function class of all functions in the zoo.

By means of relating a zoo animal to an exponential function, information was
intended to be elicited on the role of this function in comparison to other functions.
The answers of the students are: “... no small animals since the growth of the function
is large... but, one could also imagine rabbits, which increase their population quickly!
Isn’t there the famous mathematical problem [Fibonacci problem]... * or “... maybe
the human being, who exists everywhere...” Another student proposed: “... the lion!”
Then he hesitated: “... But the lion does however not occur everywhere, only in Asia
and Africa...” Finally it was remarked: “... the giraffe with its long steeply rising neck
reminds me of graphs... or maybe also a bird which can rise above everything else...”

It is common practice to speak of the so-called exponential growth, which links
onto a differential equation condition. Ideas that alterations can be measured by deri-
vations are not evident and point to a weakly developed basic understanding of this
mathematical term. “...The exponential function stands for exponential growth... what
that exactly means I cannot say...” The information presented here is almost wholly
of belief character, e.g., when one refers to the statements of other persons or bases
one own statement on the basis of another person: “..Mr. S. [a university lecturer]
reported once in an preparatory university mathematics course on growth of fish popu-
lations during the First World War... My fellow-student, who studies engineering, often
employs the exponential function in the complex rabbit task of Fibonacci.” Some nar-
rations also have almost episodic character: “...Our teacher always says: Look there
comes an e-function again”.

Emotional loadings of mathematical topics. Through the description of the
interview topic at the beginning of the interview, a spontaneous situation comparable
to that of a test was created. All participants confirmed that the information about
the topic of the interview immediately caused emotional reactions within them which
encompassed the entire spectrum, from ‘dismay’ to relief; the mean of such a qualita-
tive distribution can more likely be accounted in the negative range.

The candidates all only had vague memories of the introduction of the subject
‘exponential functions’ in school curriculum. The visual image of the run of curves
remained, whereas the term e* primarily played the role of indicating a special function
in their memories. Besides this iconic representation, the enactive representation of e*
as the name of a calculator button is often referred to, especially when asking about
e?. Two test persons mentioned the correlation to natural logarithms as the respective
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inverse function in reference with the symbolic representation. Here it cannot be over-
looked that ‘mathematical bridges’ also emit lasting ‘negative affective charges’ (from
the context of logarithms) onto the e-functions.

Conclusion

Overall the results the author was sobered by the interviewees’ weak and modest
subject matter knowledge of exponential functions. The same applies to detailed
information: precise definitions, characterizing properties, importance for application,
importance of the Euler number e, correct sketching of the graph a* dependent on the
basis a, the asymptotical behavior at infinity, intersection with the y-axis, etc.

When the fact that beliefs are held with varying degrees of conviction is deemed
constitutive, the information that was hesitantly presented by the test persons has
overtly belief character. Additional questioning tended to increase uncertainty and it
is often left unanswered how possible doubts could be cleared up in a mathematically
uncritical fashion. Very often, it is related to authority figures (“...we learned that in
our course..”; “... a student told me...”). This indicates that the knowledge is from
unreliable non-academic sources or justified by reference to learning phases in which
one vaguely experienced the contents.

The experiment exposed again that the difference between knowledge and beliefs
is rather theoretical, in analysis, dividing lines can hardly be drawn, even the inter-
viewees themselves did not articulate differences between provable, theoretically pres-
ent mathematical facts and approximate, imprecise memories. Gaps registered as defi-
cits in the eye of the observer were accepted as natural by the test persons and not
considered disturbing, even the fuzzy character of some information did not cause
uncertainty. Inasmuch a discussion about subject matter knowledge always includes
inventory taking of subject matter beliefs.

Metaphorically speaking, the experiment however provides evidence that the
knots in a cognitive knowledge network carry emotional charge in which the previ-
ous experience of knowledge acquisition are stored. Cognitively neighboring elements
appear to radiate onto one another with respect to their affective charges. One student
interestingly reported of the e-function being burdened by the even more complicated
logarithm function: “... this pair are inseparably linked...”

When teaching mathematics (in a beginners lecture), a generally understood ‘ped-
agogical context knowledge’ apparently is normally only allocated to a minimal role.
Mathematically constituted networks which are substantial for experts (e.g., test devel-
opers) are only taught weakly. Networks receive supplementary stability only through
interdisplinary work or through a specific changes of perspective. Students having
multi-modal (mathematically equivalent) representations of the mathematical object
‘exponential function’ is the exception to the rule. The action character of knowledge
(enactive representation) is often dominant. Possibly the deficits in subject matter
knowledge are not only covered by an insufficient pedagogical content knowledge, but
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even favored because respective gaps in the metaknowledge do not result in some pres-
sure in further questioning.
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