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Starting point is the hypothesis that spontaneous retrieval of knowledge graphs (=
concept maps) entails relevant information on the organization, abstractness and
the accessibility of mental representations of mathematical objects and allows con-
clusions on the structure of human long-term memory. In the following case study
knowledge graphs on exponential functions from prospective teachers in their third
academic year were spontaneously created and recorded, then concluded with inter-
views in which predominantly the steps of creating the graphic representations were
retrieved. Comparison of the concept maps with the interview data revealed structures
of the generation process of the knowledge maps, pointing to the meaning creation
process of the original mathematical terms.

Objectives and Theoretical Framework

The fact that for the past 10 years — declared by the Congress of the United States
as the ‘Decade of the Brain’ — cognitive science has been ‘beginning to understand
how the brain works and how it gives rise to the mind’ (Kosslyn &, Koenig, 1995)
is not least due to the contributions that the rapidly developing discipline of cogni-
tive neuroscience has been making to this field. As the central concern of didactics is
describing, understanding and influencing cognitive processes, we believe that theo-
retical cognitive research (Sigel, 1999), also in the framework of mathematics didac-
tics, cannot ignore the ‘neuronal dimension’. As this ‘hardware level’ is not accessible
for classroom research, we believe that at least the ‘software level’ should be given
more attention. This central research dimension entails, amongst other aspects, the
question of the mental representation of mathematical contents (Davis, 1987).

Our starting point, which brings mental representations immediately into play,
is the basic hypothesis that the data collected in our observations entail more or less
clear traces of active independent mental constructs from the long-time memory of
our research subjects (prospective teachers). If learning is linked to mental rearrange-
ment processes, then we can assume that a ‘new order’ is based on subjective consis-
tent logic at least partially shaped or even controlled by these learning processes. Of
course, autonomous processes may also have influenced rearrangement results. Our
research interest focuses on these autonomous processes. Which retrieval processes
are initiated under spontaneous access appears to us to be an open research question.

The number of contributions in mathematics education on mental representations
has reached a two-figured number, but a uniform definition for mental representations
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is not in view. After all, context-dependent (see Ball & Bass, 2000) as well as subjec-
tive experiences within and outside of mathematics (science, technology, everyday
life etc.), which constitute the basis for mental representations, increase the difficulties
in striving for a uniform approach. In the last instance individual research questions
determine the favored model. Whereas Confrey (1991) views representations more as
microstructures, we are more interested in the macrostructure aspect (cf. Pines, 1985).
In agreement to this last approach we attempt to understand mental representations
of mathematical knowledge as ‘network structures’ (directed or non-directed graphs)
of knowledge that individually guide human information processing (Hasemann &,
Mansfield, 1995; Williams, 1998).

Thus, our data gathering process focuses on what may be described in terms
of graph nodes together with vertices producing relations between these nodes. We
thereby adopt the tool of concept maps developed by Novak & Gowin (1984) (also
known in the literature as conceptual graphs), whereby we linguistically prefer the
term ‘knowledge graphs’ (Zwanefeld, 2000). Novak & Gowin wanted to have an
external representation of the way people store information in their minds. In the pres-
ent study, a knowledge graph is viewed as a structured representation of acquired and
(by the investigation) retrieved mathematical knowledge and skills. In the German
academic world similar graphic representations (however with more limiting direc-
tives) are described as ‘mind maps’.

It is clear to us that the structures described here as mental representations are
scientific constructs, i.e. models with certain inherent basic assumptions. A description
can furthermore only be undertaken indirectly, as we conclude the original representa-
tion from the information reproduction. It would be of great interest here to gain data
from nuclear magnetic resonance tomography. The quality criteria for our approach
are adequacy and viability of the chosen model, which subsequently justifies the
approach or rejects it as unsuitable.

We will, however, extend this static ‘two-dimensional’ graph structure by a
dynamic ‘third dimension’, namely time. Just as informative as the structure of the
graph (the mind map) appears to us the process of its (re-)production in the interview
context (when creating the mind map). Indeed our observations point to the assump-
tion that the elements of an individual graph (a person’s mind map) belong to different
(background-) levels, and that these come into the foreground step by step, i.e. enter
the consciousness level of the individual (generic aspect). It is hereby interesting to
note whether, and if so, which patterns recognizably appear in these processes.

The chosen theme of exponential functions appears to us to be particularly suit-
able, and even to be of a high degree of relational content for this purpose, and to be
an ‘ideal critical research site’ (Torner, 2001). If we understand the term exponential
function as the ‘conceptual root’ of the mind map — as an ‘evocational starting point’
initiating an individual (re-)production process of a complex knowledge-network -,
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then this reproduction stemming from the various nodes and vertices — so our hypoth-
esis — follows certain ‘priority rules’. Such rules have already been postulated by
Green (1971) in relation to beliefs, where he discusses the functional-generative cat-
egories ‘primary versus derivative’ beliefs as well as the ego involvement categories
‘central versus peripheral’ beliefs.

Our research objectives within the context of mathematical knowledge can thus
be summarized into the following research questions: What are observable represen-
tations? What are patterns of representation on the background of the reproduction
(retrieval) processes? How is then human long-term memory retrieved? It hereby
remains an open question insofar this retrieval process is controlled by an object-inde-
pendent retrieval program, or already contains context-dependent information pack-
ages which are unpacked when spontaneously activated (comparable to the memory of
a zip file). Through our observation window the arguments seem to point more to the
first alternative. The contributions from Sigel (1999) are partially devoted to related
questions; only one contribution, however, is specific to mathematics (Lesh, 1999).

Methods of Inquiry — Data Sources

Our data sampling integrates two corresponding data sources from voluntary test
persons: knowledge graphs and open interviews (45-60 minutes, video-taped) on the
theme of exponential functions. The survey was undertaken in 2001. Both authors
jointly — in the form of a mutual ‘peer debriefing’ — did the work of data collection
and evaluation. The interview partners were prospective teachers (upper secondary
grades) in their third university year, so that one can principally assume they possess
sufficient familiarity with exponential functions. We would like to point out that that in
Germany it is obligatory for a prospective teacher to study two school subjects at the
same level and scope. We will call the 6 students (2. academic discipline in brackets)
Andrew (social sciences), Berta (chemistry), Chris (chemistry), David (physics), Ed
(physics) and Fred (history).

An open interview style was chosen and carefully designed to avoid the impres-
sion of an examination situation. The interview participants were familiar with the
concept-mapping method. We presented them for a short time a graphic representation
of the Pythagoras theorem. We deliberately did not inform them of the theme of this
survey beforehand. After revealing this theme to the students, they then had 10 min-
utes time to produce (unobserved) a knowledge graph on our theme in question (cf.
appendix). As we were concerned with the macro-structuring of this subject matter, we
deliberately did not give the candidates ample time to produce their knowledge graphs.
We wanted to ensure that each candidate would be able to reconstruct the steps of the
knowledge graph generation in the subsequent interview. Moreover, the produced
graphic representations would have become too complex and thus their spontaneous
quality would have been suppressed.
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Following this, in the videotaped interviews the students were questioned in detail
on the creation of their knowledge graphs (cf. the numbering of the nodes in the con-
cept maps). We specifically questioned the students about the aspects: definition and
application of exponential functions, their relations to logarithm functions, and their
graphic representations — had they not commented on these aspects themselves.

Results

The results presented here focus on the discussion of the graphic representa-
tions as a data source; we only marginally refer to the detailed transcriptions of the
interviews. It would go beyond the scope of this paper to discuss the complementary,
however not contrary, interview results here. We agreed in future to relate the name of
the student to the name of the graphic representation produced by that person, as long
as this does not lead to any misunderstandings. The mind maps of the six interviewees
possess quite a broad spectrum of content richness and structural complexity standing
in a certain correlation to the other subjects being studied by the individual students
for their teacher degrees. The spectrum reaches from elaborated mind maps (chemistry
[Berta], physics [Chris], [Davis]) across reasonably elaborated ones (physics [Ed],
social science [Andrew]) down to less elaborated ones (history [Fred]).

As we are interested in spontaneous retrieval processes, we assumed that the
global ‘locating’ of the initially unknown theme is of central relevance.

The Affective Dimension

Immediately after presenting the theme to the students we asked them how they
would affectively categorize the theme: Andrew = rather rejective, Berta = positively
loaded, Chris = neutral, Davis = neutral, Ed = “feel insecure‘ und Fred = neutral, “not
very secure”. It is surprising how reserved the many different facets this central theme
in the academic curriculum are expressed. In particular the students Andrew and Fred,
who both cannot relate this theme to their second academic discipline, reacted more
rejectively than not.

The ‘home-localization’ of the Theme

The spontaneous subject-specific localization of the theme plays a key role, as
the following knowledge maps demonstrate. We have to assume that relating a theme
to mental information fields activates different retrieval processes. Illuminating was
the short question asked in response to our question in the interview of Berta: “May
I also use physics examples?” Sources of subjective localization are rather implicit
information from the maps as well as verbal statements (e.g., quotations) from the
interview. The following table lists these data.
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home... | Andrew Berta Chris David Ed Fred
map mathe- mathe- processes | physics | mathe- Mathe-
matics, matics, of growth matics, matics,
calculus functional | in physics functions | Eulerian
equations number
inter- mathe- coaching everywhere | physics | mathe- mathe-
view matics maths stu- | in physics matics matics
dents

When we speak of home localization we implicitly define in a dual mode a so-
called outer location which is not necessarily explicitly mentioned but is nonetheless
exactly for this reason present; Fred for example does not like to address aspects from
physics: “I am absolutely not very good at physics!”. The inner-outer view (Green
employs the terms central and peripheral) underlines the relevance of the home local-
ization, which could be confirmed by the interview statements.

Around the Mathematical World

It has been noted by a number of authors that beyond the dynamics of the con-
ceptual network of mathematics there is a world of stabilized expectations and beliefs
which deeply influence the reception as well the use of mathematical and scientific
knowledge (see e.g., Fishbein, 1987). Thus it is fundamental to identify these intuitive
forces and to take them into account in analyzing the pattern of the retrieval process.
The mathematical worldview of a physics-oriented student will perceive mathematics
in a trivial fashion differently than a “pure” mathematician. In particular, mathemati-
cal schemata and systematics such as definition, theorem and lemma appear to fade
away.

The Pattern of Retrieval

The present six knowledge graphs point to a few retrieval heuristics, which are
nonetheless explainable. Basically, when drawing a graph one is generating another
node, thus one is probing in a suitable direction towards a new aspect. One of the
fundamental principles is the ‘variation of a constant’ - to employ a mathematical
principle as a metaphor. A number of approaches appear to be obvious here: First of
all there are the completely mathematically neutral classical variation principles: from
the specific to the general (David) as well as from the general to the specific. (Ed).
Here switching backwards and forwards between the exponential functions (logarithm
function) with a random basis a and the classical exponential functions (natural loga-
rithm function) occurs. Alongside these heuristics one can also list variations on the
linguistic level when searching for -suitable associations (cf. Fred): Here the theme
exponential function is also varied over the letter e, synonymous for the Eulerian
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number. One has the impression of a rather helpless non-directed search. Fred does
not leave his mathematics home location; a fruitful link to his parallel academic disci-
pline history cannot occur for content reasons.

More successful, as it is more mathematics-specific, is the variation on the
linguistic level. Here term representations undergo variations, and formula repre-
sentations are manipulated. The variation on the conceptual level can be viewed
as a further development of the aforementioned principle; here we are dealing with
associations that can also be understood as dualisms: term representation, graph rep-
resentation, function, inverse function. Our interviewees represented their knowledge
contents — at least in the context of the exponential function — often very clearly in
the form of dualisms (graph - term, function - inverse function, application - theory,
figurative - formal, approximately - precise, reality - school, learn - forget, know it
- look it up). Notably, even dualisms that are in fact symmetric (and when asked,
the interviewees are aware of this symmetry) are nonetheless represented as a rule
in a hierarchical form. Thus logarithm functions are conceptualized as inverse func-
tions of exponential functions, but not vice-versa. The opposite direction is felt to be
‘unnatural’: logarithm functions, perceived as ‘complicated’, are ‘reconstructed” from
the simpler concept of exponential function by inversion. Other dualisms also appear
to be conceptualized as dichotomies with inherent assessment in the forms: ‘simple-
difficult’, ‘important—unimportant’, ‘good—bad’ or similar. We tend to interpret these
observations in such a manner that representation (even) of mathematical knowledge
is ‘emotionally charged’ (cf. central versus peripheral mathematical beliefs).

Dominance of context-relevant aspects
(Aspect: anti-didactic, objective-logical nature of mathematics.)

Characteristic for the (mathematical!) definition of the exponential function is that
it fulfills the differential equation f’ = f. The identity of f to its differentiation is insofar
constitutive and unique for this function. It is surprising that this central differentiation
aspect in the mind maps is allocated only secondary priority - a tendency more or less
strongly supported in the interviews. The same can be said about the interviews, in
which conscious mentioning of the f’=f-property (if at all) occurs at a very late stage.
We explain this fact by noting that the systematics of a function discussion mentions
the f"=f-property later, and this consequently influences the retrieval process. The logi-
cal nature of mathematics has insofar an anti-didactic effect here.

Door-opener resp. dead end

We would just like to shortly mention this aspect. Individual nodes of the graphs
point to a high networking index, which strikes one’s attention immediately. They are
equally starting points for (interdisciplinary) associations in various directions, for
example the aspect of exponential growth links to physics (see Andrew, Chris, David,
Ed), to economics (see Andrew, Berta), to chemistry (see Berta), to geography (see
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Chris) and to biology (see Chris). On the other hand there appear to be nodes that can
be called ‘dead ends’, when for example Fred reflects the theme domain under the
didactic aspect of how to teach it in schools.

Aspect: Piggyback

Sigel (1999) throws up the question: ‘Does emotion involve a separate repre-
sentational system or does piggyback affect onto other systems?’ We believe in the
productive nature of this piggyback aspect: Our interviews reveal numerous instances
of colorful emotionally affected details.

Conclusions

It is apparent to our authors that the observations made here cannot be uncritically
generalized without limitations. On the other hand they agree to preceding implicit
observations and feature patterns of generalized structures. We consider home local-
ization, which occurs quite spontaneously, to be of decisive importance. The home
domain functions as a reference level to which the interviewee always finds his way
back, and which also controls retrieval processes to a great extent. In the case of the
interviewees, those students akin only to mathematics presented only limited knowl-
edge maps, whereas those students who were science oriented presented more multi-
faceted aspects. The networking of science contents with mathematical contents and
viewpoints, however, had its deficiencies. We have to assume that interdisciplinary
linking of content is not automatically executed by the learner but has to be explicitly
taught. Moreover, home localization determines the sense-making of mathematical
objects und terms (differentiation, growth etc.). It seems as if the university course
for mathematics does not take this aspect sufficiently into consideration. Spontaneous
reporting of memorized information from the long-term memory does not seem to be
determined by the primarily requested content, as if one were to expand a stuffit file.
On the contrary: ‘home’-specific routines seem to considerably influence retrieval.
Home localization of a theme is insofar a key factor; decisive for home localization is
in particular the domain that guarantees sense-making of the mathematical object.

Our observations reveal that the classical way of imparting mathematical knowl-
edge (lectures) does not guarantee the emergence (or construction) of a relevant and
sense-making ‘mental network of mathematical knowledge’ in our students — at least
in the context of exponential functions. It seems that natural science subjects (chem-
istry, physics) are allocated specific functionalities here that (regretfully) cannot
be mediated solely within mathematics studies. The effects of other subjects upon
mathematical knowledge that we observed (a neglected aspect in research) appear to
be a rather ambivalent but nonetheless relevant phenomenon for the development of
mental representations of mathematical knowledge, which we would like to investi-
gate in further going studies.
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From a methodological point of view our survey has demonstrated that research
into mind maps only allows correct analyses if in the research context also the produc-
tion process of each map is illuminated, for instance by a subsequent interview. The
mere graph structure of a mind map often leads to improper results, as ‘nearness on the
paper’ may conceal the actual (chronological) distance of mind map elements. While
the static graph structure essentially depicts the ‘stored representation’ of knowledge,
the interview offers insight into the dynamics of the ‘working memory’.
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