Spatiotemporal patterns in indirect defence of a South-East Asian ant-plant support the optimal defence hypothesis

Martin Heil1, Daniel Feil, Andrea Hilpert and K. Eduard Linsenmair

Lehrstuhl Zoologie III, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
(Accepted 2 October 2003)

Abstract: The optimal defence hypothesis predicts that plant parts characterized by a high value and/or a high risk of being attacked should exhibit the highest level of defence. We tested this hypothesis with Macaranga bancana ant-plants, which are protected efficiently by resident, mutualistic ants from herbivores, parasites and encroaching vegetation. Because cost-effective defence of the host by ants increases ant fitness, selection should act on ant behaviour to produce patterns of distribution of defence as predicted for direct chemical defence traits. Termites and pieces of tape were equally distributed over the uppermost ten leaves and over the leaf-bearing part of the stems (with termites mimicking a transient herbivore, while tape mimics a long-term stress caused by a climber or plant parasite). This arrangement allowed a separation of putative coevolutionary adaptations in the ants’ behaviour from other potential sources of spatial patterns in ant defence, such as differences in herbivore pressure, in the vulnerability of different herbivores, or in direct plant defences. Ant activity dropped rapidly at termite baits, but remained high at tapes for at least 5 h, thereby demonstrating adaptive differential responses to the differences between the two stressors. Most importantly, ants preferentially defended young leaves and shoot parts. The temporal and spatial patterns of ant attention to exogenous stressors thus were clearly adaptive, varying with likely costs and benefits of defence as formulated in the optimal defence theory.

Key Words: ant-plant interaction, anti-herbivore defence, Crematogaster, Macaranga bancana, Macaranga triloba, mutualism, myrmecophytism

INTRODUCTION

Herbivore pressure is assumed to have significant fitness consequences, which vary depending on the part of a plant that is attacked. The optimal defence hypothesis (ODH) was originally formulated by McKey (1974) and was later extended (McKey 1979, Rhoades 1979) to answer the question: In what regions of the plant should the limited quantity of defensive compounds be concentrated? Costs of defence are defined as a reduction of plant fitness resulting from the expression of defensive traits under enemy-free conditions (Simms & Fritz 1990). Such costs might be caused, for example, by the allocation of limited resources to defensive traits (Herms & Mattson 1992), they limit a plant’s overall metabolic investment in defensive traits. Therefore, it is not possible to maximally defend all plant parts all the time. In the ODH it is assumed that adaptive strategies must underlie temporal and spatial patterns in allocation to defence, and it is predicted that defences should be most intensive in the most valuable and most vulnerable parts of a plant (McKey 1974, 1979; Rhoades 1979).

Although the ODH appears to be widely accepted, empirical tests have been plagued by several difficulties. (1) The assumption that defence is costly must be met for the defensive trait in question; (2) the spatial and temporal distribution of the defensive trait must be determined; and (3) the trait must have a defined defensive effect that can be quantified, preferably under realistic field conditions. The last prerequisite is particularly difficult to meet, since many defence traits serve several functions, thus being subject to different selective forces. Moreover, a low level of herbivory seen on a plant or a part of a plant under field conditions can result either from an effective defence or from limited herbivore pressure.

We used the ant-plant, Macaranga bancana, to test predictions of the ODH. Macaranga bancana is an obligate
myrmecophyte that houses and nourishes specialized Crematogaster ants. The ants live in domatia (hollow twigs and shoots, see Fiala & Maschwitz 1992) and collect so-called food bodies, modified trichomes with high contents of lipid and protein that are specifically adapted to meet the ants’ nutritional requirements (Heil et al. 1998). The ants effectively protect their host plant from herbivores (Fiala et al. 1989, Heil et al. 2001a), shoot borers and pathogenic fungi (Heil et al. 1999). The M. bancana – Crematogaster system fulfills all requirements needed for a test of ODH. (1) Providing nutrition for ants consumes limited resources (Heil et al. 2001b, 2002) and thus imposes relevant costs to the host plant (Heil et al. 1997). (2) The ants represent an effective defensive trait (Heil et al. 2001a). (3) The protective efficacy of the ants is correlated with their number (Heil et al. 2001b), the distribution of ants thus gives a direct estimate of the spatial distribution of defences.

Protective ant-plant mutualisms have repeatedly been used to test different theories on antiherbivore defence (for an overview see Heil & McKee 2003). A central assumption of these and the present study is that obligately plant-inhabiting ants are limited by resources provided by their host, and that they gain a fitness benefit when increasing their host’s fitness, thus acting as a true ‘defence’ sensu Karban & Baldwin (1997). Final empirical evidence for these assumptions is missing for all ant-plant mutualisms, but several facts indicate that ants will obtain short-term benefits from living in a vigorous host plant. A limitation of plant-ants by nesting space has already been demonstrated (Fonseca 1993). Moreover, obligately plant-inhabiting ants such as the Crematogaster ants in M. bancana usually appear to receive all their food from their host plant and cannot survive outside a living host tree (Fiala & Maschwitz 1990), and their colony size can be increased by host plants producing more food bodies (Heil et al. 2001b, Itino et al. 2001). Ant-free M. bancana trees suffered from an average reduction by c. 80% in total leaf area and a dramatic dying of shoot tips and even whole branches after 1 y (Heil et al. 2001a). This reduction in photosynthetic area and available nesting space should have dramatic negative effects on resident ants, thus it is obvious that resident Crematogaster ants benefit from effectively protecting their host.

Herbivory to stems may be even more costly to the plant than destruction of the leaves that they bear. Protection from stem herbivores has been reported for Pheidole inhabiting Costa Rican Piper myrmecophytes (Letourneau 1998), for Camponotus in Endospermum labios in Papua New Guinea (Letourneau & Barbosa 1999), and for Crematogaster in Macaranga bancana in West Malaysia (Heil et al. 2000a). A major part of our experiment thus focused on the protection of shoots. In order to avoid influences from differences in the nature of attacking enemies, artificial mimics of plant enemies were chosen. We used living termites fixed with a needle to mimic herbivores feeding on the plant (i.e. foreign insects currently causing a wound site), and textile tapes to mimic encroaching or epiphytic plants (i.e. foreign objects that are present for a longer time span and that do not wound the plant). The use of termites all from the same colony and of pieces of the same tape, placed at the same time on the youngest leaves or internodes, allowed us to separate adaptive patterns in the ants’ response to enemies from all other putative influences (such as, for example, chemical or behavioural differences among attackers) on the spatiotemporal patterns of defence by ants.

METHODS

Plant material

Macaranga bancana (Miq.) Müll. Arg. grows as small trees mainly in secondary forests in South-East Asia. Plants were determined after Davies (2001), however, this species is referred to as M. triloba in earlier publications (Whitmore 1967, 1973). In Peninsular Malaysia, the plants are obligately inhabited by specific Crematogaster (Decracrema) ants (morphospecies no. 4, see Feldhaar et al. 2000, 2003 and Fiala et al. 1989 for detailed descriptions of the biology and taxonomy of the ants). In general, more than 99% of all plants > 10 cm are inhabited by ants, and the ants have never been observed to nest outside their Macaranga host trees (B. Fiala & H. Feldhaar, pers. comm., and pers. obs. by MH). The present study was conducted in an abandoned rubber plantation close to Tamping in the state of Selangor, West Malaysia. This site was particularly rich in young M. bancana saplings. Unbranched plants 1.5–2.0 m high were selected, and were randomly assigned in groups of ten to the three different treatments. All experiments started in the morning (c. 10h00).

Preliminary experiments

Preliminary experiments were conducted to select suitable ‘enemy mimics’. It was not possible to use living herbivores. The ants’ responses differed strongly among different types of herbivores, and it was not possible to find enough herbivores belonging to a single species. Termites only placed on the plant surface elicited a reproducible response of the ants, yet the number of ants recruited to a termite was low as compared with that recruited to feeding herbivores. It turned out that the ants’ behaviour and their quantitative response to a feeding (and vulnerable) herbivore was satisfyingly mimicked by a termite fixed with a needle (and therewith close to a wounding site).

Similarly, the ants’ behaviour towards encroaching vegetation or any other material placed on the plant
surface differed depending on chemical and physical properties of the different materials. The typical behaviour to large pieces of foreign material that cannot be removed by a single worker is characterized by a comparably slow recruitment resulting in long-term activity of ants trying to remove the foreign material. It was convincingly elicited by placing textile tape on the plant surface (pers. obs. by DF and MH).

Experimental design

Small pieces (c. 2 cm²) of textile tape were placed on the ten uppermost (i.e. youngest) internodes in the ‘tape’ treatment, since the stem bears leaves only in this part. In the ‘termite’ treatment, termites (*Globitermes sulphureus*: Isoptera, Termitidae, determined following Bordereau *et al.* 1997 and Tho 1992) were fixed with a needle at the same internode positions of a further set of ten plants. Ants being present on the affected side of these internodes were counted after different time spans (at t = 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, 180, 210 and 300 min after fixing the baits in the ‘termite’ treatment, and at t = 10, 20, 30, 60, 90, 120, 150, 180, 210 and 300 min in the ‘tape’ treatment). On a third set of ten plants, pieces of tape were placed in the centre of the lower surfaces of the ten youngest totally unfolded leaves, and ants appearing on these surfaces were counted after the same time intervals as stated above. These data were used to define spatiotemporal patterns in the ants’ response to the two different types of artificial enemies.

Statistical analysis

Individual plants were censused at different times, and different leaf or internode positions were censused at each time on each individual plant. Data analysis therefore was conducted by repeated-measures ANOVA to test for significant effects of organ position, or time, on the number of ants present at the enemy mimics. Ten plants had been used per treatment, and both time and organ position were used as within-subject variable. The different treatments were conducted on different days and using different plants (and thus, it was not possible to pool data from different treatments), they were therefore analysed independently instead of using ‘treatment’ as a between-subject variable. ‘Control’ data on ant activity on plants without enemy mimics are included in the results. They are, however, omitted from the statistical analyses since untreated plants have been studied within 2 h before the start of the experiments, yet not at an exactly defined time before placing the enemy mimics. Untransformed data (assumption of sphericity tested in all cases) were analysed using the GLM procedure of SPSS (Version 10.1).

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termite (Internodes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time error</td>
<td>1806</td>
<td>13</td>
<td>4.74</td>
<td><0.001</td>
</tr>
<tr>
<td>Internode (position) error</td>
<td>1904</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time × Internode error</td>
<td>3527</td>
<td>9</td>
<td>7.43</td>
<td><0.001</td>
</tr>
<tr>
<td>Tape (Internodes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time error</td>
<td>2304</td>
<td>9</td>
<td>7.78</td>
<td><0.001</td>
</tr>
<tr>
<td>Internode (position) error</td>
<td>1490</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time × Internode error</td>
<td>9806</td>
<td>9</td>
<td>6.93</td>
<td><0.001</td>
</tr>
<tr>
<td>Tape (Leaves)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time error</td>
<td>2238</td>
<td>9</td>
<td>0.37</td>
<td>NS</td>
</tr>
<tr>
<td>Leaf (position) error</td>
<td>2446</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time × Leaf error</td>
<td>8149</td>
<td>9</td>
<td>17.6</td>
<td><0.001</td>
</tr>
<tr>
<td>RESULTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Results of repeated-measures ANOVA on the effects of time and organ position on the number of ants present are presented for termites placed on internodes, tapes on internodes, and tapes on leaves. n = 10 plant individuals per treatment.

Resident *Crematogaster* ants quickly detected both tapes and termites and actively removed both materials. Termites in general were successfully removed within 2 h, while it usually took c. 10 d for ants to remove the pieces of tape used in this experiment (MH, pers. obs.). The ants showed an effective recruiting system and reached maximum average numbers of 14 ants on one side of a particular internode (Figure 1). Both time and internode position had significant effects on the number of ants present at a given time on a given internode or leaf (Table 1). In all treatments, highest ant numbers were reached on the youngest internodes and leaves (Figure 2). However, the spatiotemporal pattern of the response clearly differed between the two types of artificial enemies and the two types of plant organs challenged in this study. On internodes, ants recruited much faster to termites than to tapes and reached highest numbers in the ‘termite’ treatment already after 15–30 min (Figure 2a), while numbers of ants recruited to tapes increased over more than 2 h (Figure 2b). At termites, the ant number then decreased, yet it remained continuously higher than at the beginning of the experiment on the young internodes, while it dropped to the level of the initial values on older internodes. In contrast, maximum numbers of ants at tapes remained more or less stable even after 5 h (Figure 2b). The spatial pattern of ants at termites was only slightly affected by time (no significant time × internode position interaction in the ‘termite’ treatment), while the spatial pattern in the ‘tape’ treatment, which was characterized by very high
numbers of ants appearing only on young internodes, developed over the observational time span, leading to a significant time × internode interaction (Table 1).

The response of ants to tapes on leaves differed from the response to tapes on internodes in two ways. First, the number of ants depended on leaf position even more directly than on internode position and dropped very rapidly with increasing leaf age: old leaves received the lowest ant attendance among all bait—organ—position combinations tested (Figure 2c). Second, the highest numbers of ants on leaves were present after 10–20 min. The numbers then dropped slightly, but remained rather stable over the next 5 h. Leaf position had a highly significant effect on number of ants present at a particular piece of tape, while ‘time’ had no significant effect on ants present on tapes placed on leaf blades, and no significant time × leaf position interaction could be detected in this case (Table 1).

DISCUSSION

We used ants that are specialized to defend their particular host plant and artificial mimics of plant enemies in order to investigate whether these ants’ defensive efforts are adapted to meet the predictions of the optimal defence hypothesis ODH (McKey 1974, 1979). Which parts of *M. bancana* plants are most valuable (and/or most vulnerable) and thus should be most intensively defended? The value of an individual leaf depends on the investment to build up this leaf and on its current and expected metabolic contribution (Harper 1989). In *M. bancana* plants, leaves at position 2–4 contribute most to photosynthetic carbon fixation (Figure 3) and have an additional value in terms of expected future assimilation. On average c. 75% of all ants attacking tape on leaves were concentrated on the four youngest leaves (Figure 2c). The high intensity of defence by ants of the youngest leaves can be explained by their vulnerability (Coley 1983, Coley & Barone 1996) and by their value in terms of future carbon fixation and of resources already allocated to these leaves (Harper 1989). In contrast to leaves, the value of internodes is defined mainly by their leaf-supporting function and thus should not differ strongly among different-aged internodes, or it should even increase with internode age. However, the ODH is based on both the value and the vulnerability of different plant organs, and observations of ant-free *M. bancana* plants demonstrate that young (not yet lignified) internodes are subject to intensive attack by animals (in particular shoot borers) and pathogens (Heil et al. 1999, 2001a). Older, lignified internodes are seldom attacked and thus do not require defence by ants.

Spatiotemporal patterns in ant recruitment to the chosen enemy mimics were consistent with these predictions of the ODH: internode and leaf position significantly affected the number of ants present at a given time on a given plant part. Higher ant numbers were present on young than on old internodes and on young as compared with old leaves (Table 1). On the stems, ants recruited faster to termite baits (consisting of a wound caused by the needle and the presence of a foreign insect...
at this site, mimicking a feeding herbivore, see Figures 1, 2a) than to tapes (mimicking a continuously present foreign object such as an encroaching plant, see Figure 2b). This difference indicates that herbivores currently feeding on a plant might elicit a faster response than do encroaching plants. Among tapes, those placed on leaves recruited ants more rapidly than those on internodes, but only tapes placed on very young leaves
Such as herbivore pressure or the production of plant-grown ant-plant could reflect patterns in different factors. Spatiotemporal patterns in defending ants on a field-based study could help us understand how ants form a defence mechanism that is spatially distributed. Acacia (Madden & Young 1992), young leaves has been reported for young leaves. The concentration of protection by ants to the easy removal of the termites, ant numbers decreased quite rapidly at the ‘termite’ sites (Figure 2a), while difficult-to-remove tapes led to a continuously high number of ants being present (Figure 2b, c). The experimental setup used here is a quite artificial one, since ten enemy mimics were placed at the same time on different parts of a plant. However, simultaneous attacks by enemies of different parts of the plants may happen also under natural conditions. Our data demonstrate that the pattern in defence by ants resulting when several enemies are present at the same time is neither a random one nor does it depend simply on differences among enemies, but rather it is strongly affected by the type and position of the organ under attack.

Many plant-ants patrol and preferentially defend the young leaves. The concentration of protection by ants to young leaves has been reported for Piper (Risch 1982), Acacia (Madden & Young 1992), Tachigali (Fonseca 1994), Leonardoxa (Brouat et al. 2000, Gaume & McKey 1999, McKey 1984), Crypteronia (Moog et al. 1998), and Macaranga (Heil et al. 2001a). In general, plant-ants thus form a defence mechanism that is spatially distributed according to the optimal defence hypothesis.

What are the proximate reasons leading to these (ultimately beneficial) distributions of ant defence? Spatiotemporal patterns in defending ants on a field-grown ant-plant could reflect patterns in different factors such as herbivore pressure or the production of plant-derived food rewards being concentrated on the most valuable and vulnerable plant parts, rather than intrinsic adaptations in the ants’ behaviour.

In our study, the use of artificial mimics allowed us to study patterns in the ants’ defensive response independently of patterns in herbivore attack and of differences among enemies. Termite baits have often been used to compare the potential ant herbivore activity of ants on plants with and without extrafloral nectaries (Apple & Feener 2001, Barton 1986, Bentley 1981, Freitas & Oliveira 1996, Oliveira 1997, Oliveira et al. 1987) and are generally believed to reveal a realistic impression of ant recruitment patterns. By applying an equal spatial distribution of chemically identical foreign objects, we were able to determine whether ants show an optimal defensive behaviour even when they face different attackers at the same time.

The spatiotemporal activity patterns of *Pseudomyrmex veneficus*-ants inhabiting the myrmecophyte *Acacia hindsii* in Mexico obviously depended to a large degree on the provision of a food resource, extrafloral nectar (Raine et al. 2002). In our system, in contrast, the observed patterns were independent of the provisioning of food resources by the host plants, since food bodies are produced on the inner surface of stipules (Figure 1). Highest production rates are reached by stipules 3–5 (Heil et al. 1997), corresponding to internodes 4–6 in this study. In contrast, the highest defensive efficacy was observed on internodes 1 and 2. Very high numbers of defending ants were also observed on the lower surfaces of young leaves, although *M. bancana* produces a few tiny pearl bodies on its leaf blades (upper surface only). That obligate plant-ants preferentially patrol the young leaves of their host, although food rewards are either not produced at all or presented at spatially separated parts of the plant, has also been reported for myrmecophytes in the genera *Cecropia* (Downhower 1975) Barteria (Janzen 1972), and *Leonardoxa* (McKey 1984). Based on cost–benefit considerations, it has already been predicted that ants obligately inhabiting specialized ant-plants should recruit to those parts of their host that actually require defence without being guided by any short-term changes in the spatiotemporal patterns in resource provisioning by the host plant (Agrawal & Rutter 1998).

How are ants, then, able to distinguish among different-aged leaves, or internodes? Studies on other ant-plants have already demonstrated that chemical cues are likely to be involved in such patterns: Azteca ants on *Cecropia* myrmecophytes and *Macaranga*-inhabiting *Crematogaster* ants recruit to plant sap released at wound sites (Agrawal 1998, Fiaka & Maschwitz 1990, Fiaka et al. 1989), a response probably elicited by volatile compounds (Agrawal 1998, Brouat et al. 2000) that could differ among leaf age classes (Brouat et al. 2000). The most recent observations in this context have shown...
that *Alomerus octoarticulatus* ants recruit intensively to damaged young leaves of their host tree, *Hirtella myrmecophila*, while damaged older leaves elicited no detectable response (G. Q. Romero pers. comm.). All these observations indicate that obligate plant-ants are behaviourally adapted to protect their host in a way that allows distribution of the limited defensive efforts of the ants in a spatiotemporal pattern as predicted by the optimal defence hypothesis. Relying on ants as an indirect defence mechanism allows the host plant to spatially separate parts where highest investment in defence is expended from parts actually requiring the most intensive defence, thereby fulfilling adaptive requirements as formulated in the optimal defence hypothesis without being affected by physiological ‘growth-differentiation’ trade-offs (Herms & Mattson 1992).

ACKNOWLEDGEMENTS

The EPU (Economic Planning Unit) gave permits to conduct field studies in Malaysia. We are grateful for many valuable comments by M. Rutter, D. McKey and an anonymous referee on earlier versions of the manuscript. Financial support by the Deutsche Forschungsgemeinschaft (TP C8, SFB 251 and grants He3169/1-1 and /1-2) and the Max-Planck-Gesellschaft, and much logistic assistance provided by the MAS (Malaysian Airline System) is gratefully acknowledged.

LITERATURE CITED

