

Grundvorlesung Abwasserreinigung

Teil 1

Mechanische Abwasserreinigung

Gliederung

- 2. Mechanische Abwasserreinigung
- 2.1 Rechen und Siebe
- 2.2 Sandfänge
- 2.3 Absetzbecken
 - 2.3.1 Vorklärung
 - 2.3.2 Nachklärung

31.05.2006 Folie 3

Grundvorlesung Abwasserreinigung

Gliederung

- 2. Mechanische Abwasserreinigung
- 2.1 Rechen und Siebe
- 2.2 Sandfänge
- 2.3 Absetzbecken
 - 2.3.1 Vorklärung
 - 2.3.2 Nachklärung

Mechanische Abwasserreinigung

Verfahren/ Anlagen	Abschei- dungsgut	Anwendungs- gebiet	Bemerkung
Rechen	grobe partikuläre Stoffe	Klärung des Zulaufwassers	Standard bei kommunalen Kläranlagen
Siebe	feine partikuläre Stoffe	Klärung des Zulauf- und eventuell des Ablaufwassers	Einsatz bei hohen Anforderungen, wartungsintensiv
Absetzver- fahren/ Sedimen- tation	partikuläre Stoffe mit einer Dichte > 1; (Sand)	Vor- und Nachklärung	Standard bei kommunalen Kläranlagen

31.05.2006 Folie 5

Grundvorlesung Abwasserreinigung

Mechanische Abwasserreinigung

- Fortsetzung

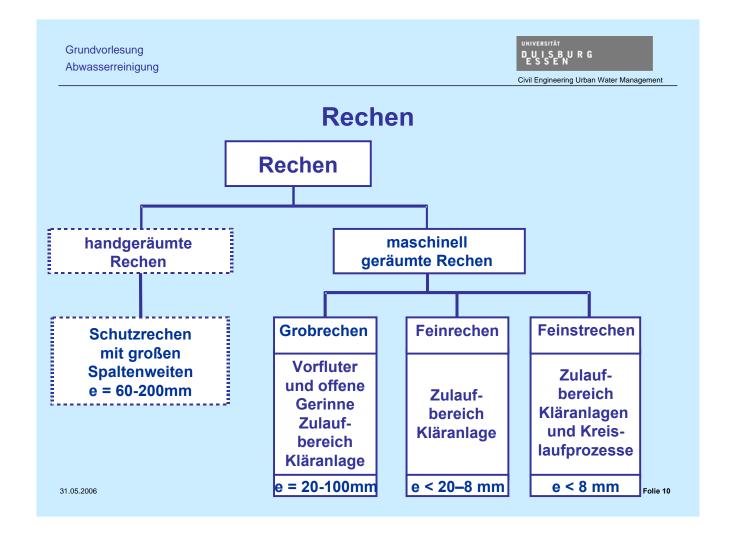
Verfahren/	Abschei-	Anwendungs-	Bemerkung
Anlagen	dungsgut	gebiet	
Leichtstoff- abscheidung	Stoffe mit einer Dichte < 1; (Fette oder Öle)	Gewerbliche Grundstücksentwäs serung; Klärung des kommunalem Kläranlagenzulaufs	Bei kommunalen Kläranlagen meist in Kombination mit Sandfang
Flotation	suspendierte	Industrielle	Abtrennung von
	Stoffe	Abwasserreinigung	Emulsionen
Adsorption	gelöste Stoffe	Industrielle Abwasserreinigung	Abtrennung von Emulsionen, pH- neutral

Mechanische Abwasserreinigung

- Die mechanische Abwasserreinigung dient der Entfernung von festen Schweb- und Schwimmstoffen.
- Man unterscheidet drei Verfahren:
 - Trennen nach Teilchengröße (durch Filtration und Siebung)
 - Ausnutzung der Trägheits- und Schwerkraft (durch Sedimentation und Zentrifukation)
 - Ausnutzung der Auftriebskraft (durch Flotation)

31.05.2006 Folie 7

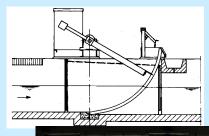
Grundvorlesung Abwasserreinigung



Gliederung

- 2. Mechanische Abwasserreinigung
- 2.1 Rechen und Siebe
- 2.2 Sandfänge
- 2.3 Absetzbecken
 - 2.3.1 Vorklärung
 - 2.3.2 Nachklärung

Rechen

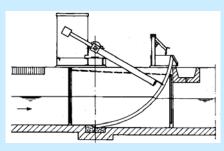


Rechen

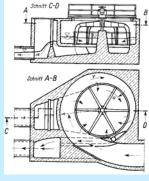
Bogenrechen
(DIN 19554 T.2)

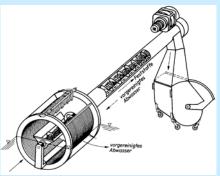
Folie 11

Grundvorlesung Abwasserreinigung


Civil Engineering Urban Water Management

Bauarten von Rechen


Greif- bzw. Kammer rechen



Zentrisieb (Fa. Passavant)

Sieb- bzw. Feinrechen (Fa. Huber)

Rechengut

Kondome
Windeln
Ohrenstäbchen

Folie 13

31.05.2006

Grundvorlesung Abwasserreinigung

Bemessung von Rechen

• Strömungswiderstand des unbelegten Rechens

$$h = \beta \cdot (s/b)^{4/3} \cdot v^2 / 2g \cdot \sin \delta$$

h = Stauverlust

s = größte Stabdicke (m) entgegen der Strömung

b = geringste lichte Stabweite (m)

v²/2g = Geschwindigkeitshöhe (m) vor dem Rechen

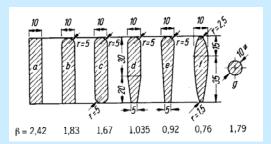
δ = Neigungswinkel des Rostes gegen die Horizontale

 β = Formfaktor des Rechenprofils

Formel gilt nur für unbelegte Rechen und dient nur zur überschlägigen Orientierung. Rechen ist meist belegt.

Bemessung von Rechen

- freier Rechenquerschnitt erhält die gleiche Breite wie nicht aufgeweitetes Gerinne
- bei Grobrechen wird die Belegung mit dem Beiwert f = 0,75 berücksichtigt
- Geschwindigkeit vor Rost ≥ 0,5 m/s zur Vermeidung von Sandablagerungen
- wenn Summe der Rechenspalten gleich der Gerinnebreite ist gilt

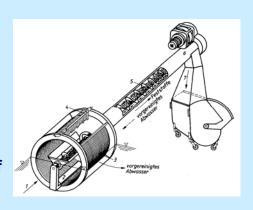

$$b = (b_g / e - 1) \cdot (s + e) + e$$

b = Kammerbreite (mm)

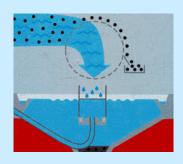
b_a= Gerinnebreite (mm)

e = Spaltweite (mm)

s = Stabdicke (mm)


31.05.2006 Folie 15

Grundvorlesung
Abwasserreinigung



Siebe

- Empfohlene Maschenweite maximal 3 mm
- Verminderung der absetzbaren Stoffe
- Schlamm wird homogener und weniger störanfällig
- Vermeidung von Schwimmdecken in Faulbehältern
- ggf. kann die Vorklärung verkleinert oder darauf verzichtet werden. Eine vorgeschaltete Denitrifikation oder eine biologische P-Eliminierung wird hierdurch unterstützt.

Bauformen Bogensiebe Muldensieb Trommelsieb Bandsieb

Siebgut Faserstoffe Haare fadenförmige Stoffe

Betriebliche Aspekte beim Einsatz von Rechen und Sieben

- Ebenso wie Rechenanlagen sollten Siebanlagen witterungs- und emissionsbedingt eingehaust werden.
- Rechenanlagen mit Spaltweite e < 20 mm sind mit Sicherheitsumläufe auszuführen. Diese dienen der Umleitung des Wassers bei Verstopfung der Rechen. Aus Gründen des Emissionsschutzes und für einen problemlosen Winterbetrieb werden Rechen häufig eingehaust.
- Siebanlagen sind relativ wartungsintensiv und sollten deshalb als redundante Systeme ausgeführt werden. Somit können einzelne Siebe gewartet werden, ohne den gesamten Betrieb nachrangig zu stören. Einstraßige Siebe benötigen einen Notumlauf.

31.05.2006 Folie 17

Grundvorlesung Abwasserreinigung

Förderschnecken

Gliederung

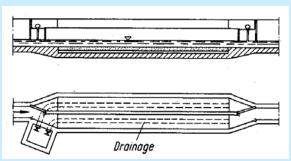
- 2. Mechanische Abwasserreinigung
- 2.1 Rechen und Siebe
- 2.2 Sandfänge
- 2.3 Absetzbecken
 - 2.3.1 Vorklärung
 - 2.3.2 Nachklärung

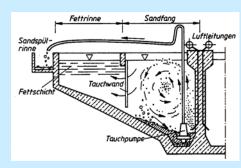
31.05.2006 Folie 19

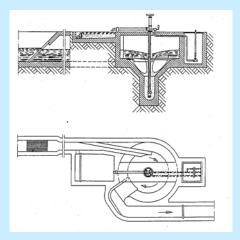
Grundvorlesung Abwasserreinigung

Civil Engineering Urban Water Management

Sandfang







Sandfangarten

Langsandfang

Rundsandfang

Belüfteter Sandfang

Folie 21

Grundvorlesung
Abwasserreinigung

31.05.2006

Typen von Sandfängen

Langsandfang

belüfteter Sandfang (meist mit Fettfang)

Rundsandfang, (Tiefsandfang), Dorr-Sandfang

Bemessung

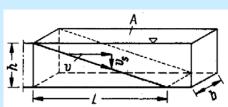
Diagramm zur Oberflächenbeschickung (Langsandfang) Kennwerte für Geometrie, Strömungsgeschwindigkeit und Lufteintrag

Aufgaben des Sandfangs

- Entnahme von Sand und anderen anorganischen Abwasserinhaltsstoffen
- Abtrennung der organischen Anteile
- Problem: Immer öfter Feinrechen, bei Spaltweiten < 10 mm lagert
 Sand sich bereits vor diesem ab
- Lösung: Sandfang zwischen Grob- und Feinrechen anordnen

31.05.2006 Folie 23

Grundvorlesung Abwasserreinigung



Folie 24

Essener Langsandfang

Absetzvorgang bei laminarer Strömung

1.
$$L = v \cdot t_v \left[\frac{m \cdot s}{s} \right]$$

$$2. h = v_s \cdot t_s \left[\frac{m \cdot s}{s} \right]$$

3. Sinkzeit
$$t_s$$
 gleich Durchflußzeit t_v $t_v = t_s = \frac{L}{v} = \frac{h}{v_s}$ [s]

4. Für rechteckige Absetzrinne:
$$v = \frac{Q}{b \cdot h}$$
 [m/s]

5. Oberfläche der Absetzrinne:
$$A = L \cdot b \text{ [m}^2\text{]}$$

6. Aus 3–4 folgt:
$$A = \frac{Q}{v_s}$$
 [m²]

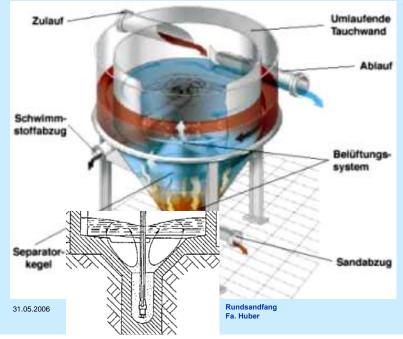
31.05.2006

Belüfteter Sandfang meist kombiniert mit Fettfang

Lufteinblasung:

- ⇒ Umwälzung des Wassers (Schraubenströmung)
- ⇒ Auswaschung der organischen Stoffe vom Sand und Absetzung des Sandes in der Sammelrinne.

⇒ Flotieren von Fett, Öl und sonstigen Schwimmstoffen


31.05.2006

Grundvorlesung
Abwasserreinigung

Folie 25

Rundsandfang Rundbecken mit tangentialem Zulauf

Tangentialer Einlauf

- ⇒ Kreisströmung des Abwassers erfolgt Trombenströmung (Teetasseneffekt)
- ⇒ Auswaschung der organischen Stoffe vom Sand und Absetzung des Sandes im Separatorkegel.

Folie 26

Die Entsandung des Abwassers beugt folgendem vor:

- Sandablagerungen im Belebungsbecken,
- Behinderung der Umwälzströmung im Flockungsbecken,
- erhöhter Verschleiß durch Abrasion von Rühr- und Paddelwerken,
- Schäden an Schlammräumanlagen,
- Verstopfungen an Schlammablagerungs- und Transporteinrichtungen,
- allgemein erhöhter Materialverschleiß.

31.05.2006 Folie 27

Grundvorlesung
Abwasserreinigung

Endsandung durch Sandklassierer

Gliederung

- 2. Mechanische Abwasserreinigung
- 2.1 Rechen und Siebe
- 2.2 Sandfänge
- 2.3 Absetzbecken
 - 2.3.1 Vorklärung
 - 2.3.2 Nachklärung

31.05.2006 Folie 29

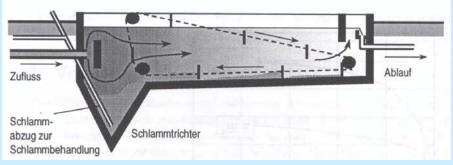
Grundvorlesung Abwasserreinigung

Civil Engineering Urban Water Management

Vorklärbecken

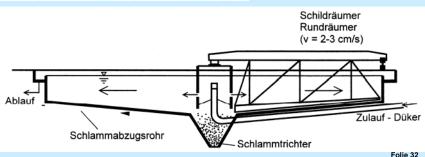
Vorklärbecken

Reduzierung der organischen Feststofffracht im Abwassers durch Absetzwirkung.



Folie 31

Grundvorlesung Abwasserreinigung



Schnitte und Räumerarten von Vorklärbecken

Rechteckbecken mit Bandräumer

Rundbecken mit Schildräumer

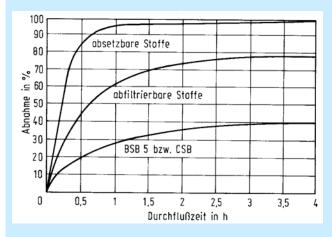
31.05.2006

Vorklärung

- Meist werden Rechteckbecken gebaut
- Trend: eher Grobentschlammung um mehr Substrat für die Denitrifikation zu liefern -aber: größeres Belebungsvolumen, deutlich mehr Energieeinsatz für die Belüftung, weniger Gasertrag aus der Faulung
- also: spezielle örtliche Bedingungen pr
 üfen, wenn hohes BSB / N
- Verhältnis, größere Vorklärung (im Extremfall ggf. chemische Vorfällung => Verschiebung auf Anaerobbehandlung)

31.05.2006 Folie 33

Grundvorlesung Abwasserreinigung


Bemessung der Vorklärung

- Bemessung sehr grob nach hydraulischer Aufenthaltszeit
- Bei 2-Stufigen Anlagen mit Höchstlastbelebung (AB Anlagen) keine Vorklärung (A-Sufe ist Bio-Flokkulation mit guter Eliminationsleistung)
- Übliche Bemessung versagt bei hohen oder geringen partikulären Anteilen des CSB oder BSB

Leistung von Vorklärbecken

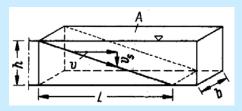
in Abhängigkeit von der Durchflusszeit und der Oberflächenbeschickung

Einsatz	Durchfluss- zeit [h]	Flächenbe- schickung q _A [m ³ /m ² •h]
nur mechanische Reinigung	1,7 – 2,5	0,8 – 1,5
vor chemischer Fällung	0,5 - 0,8	2,5 – 4,0
vor Tropfkörper	1,7 – 2,5	0,8 - 1,5
vor Belebungs- anlagen	0,5 - 1,5	2,5 – 4,0

31.05.2006 Folie 35

Grundvorlesung Abwasserreinigung

31.05.2006


Bemessungsgrundsätze Vorklärbecken

Bemessungsgrößen:

 \mathbf{t}_{R} rechnerische Durchflusszeit q_△ Oberflächenbeschickung

Beckenvolumen

$$V = Q_t \cdot t_R \quad \text{in } m^3$$

Beckenoberfläche

$$A_{VK} = \frac{Q_t}{q_A} \text{ in } m^2 \qquad h = \frac{V_{VK}}{A_{VK}}$$

$$h = \frac{V_{VK}}{A_{VK}} \qquad in m$$

1.
$$L = v \cdot t_v \left[\frac{m \cdot s}{s} \right]$$

2.
$$h = v_s \cdot t_s \left[\frac{m \cdot s}{s} \right]$$

3. Sinkzeit
$$t_s$$
 gleich Durchflußzeit t_v $t_v = t_s = \frac{L}{v} = \frac{h}{v_s}$ [s]

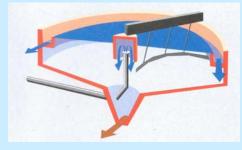
4. Für rechteckige Absetzrinne:
$$v = \frac{Q}{b \cdot h}$$
 [m/s]

5. Oberfläche der Absetzrinne:
$$A = L \cdot b \text{ [m}^2\text{]}$$

6. Aus 3–4 folgt:
$$A = \frac{Q}{v_s} \ [m^2]$$

Folie 36

Gliederung

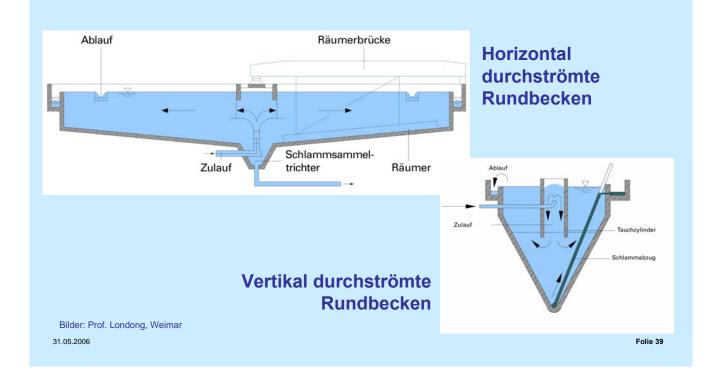

- 2. Mechanische Abwasserreinigung
- 2.1 Rechen und Siebe
- 2.2 Sandfänge
- 2.3 Absetzbecken
 - 2.3.1 Vorklärung
 - 2.3.2 Nachklärung

31.05.2006 Folie 37

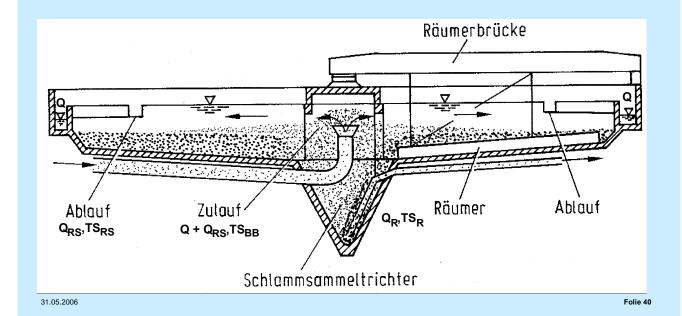
Grundvorlesung Abwasserreinigung

Formen von Nachklärbecken

Runde Nachklärbecken



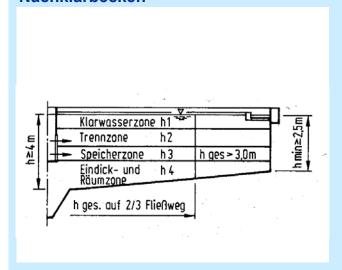
Folie 38


Nachklärbecken in Abhängigkeit der Durchströmung

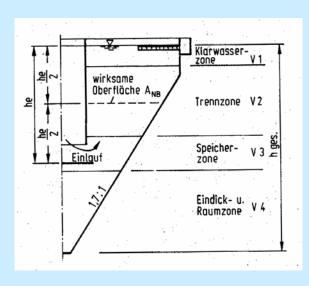
Grundvorlesung Abwasserreinigung

Schlammverhältnisse in einem horizontal durchströmten Rundbecken

Anforderungen an die Nachklärung



Grundvorlesung Abwasserreinigung



Zonen und Tiefen von Nachklärbecken

Horizontal durchströmtes Nachklärbecken

Vertikal durchströmtes Nachklärbecken

Konstruktive Auslegung der Nachklärung

Die maßgebende Größe für die konstruktive Gestaltung der Nachklärung ist die Oberflächenbeschickung q_A .

Zur Sicherung einer guten und ausreichenden Absetzwirkung im Nachklärbecken müssen in Abhängigkeit von der Auslegung des Nachklärbeckens bestimmte Grenzwerte eingehalten werden.

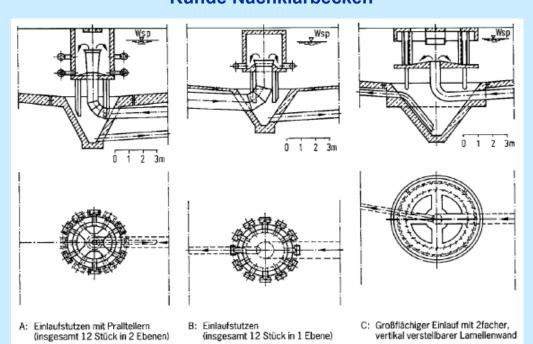
Zulässige Werte für den Übergangsbereich zwischen überwiegend horizontal und überwiegend vertikal durchströmten Nachklärung K gibt Tab. 11 ATV A 131 (2000)

Verhältnis	≥ 0,33	≥ 0,36	≥ 0,39	≥ 0,42	≥ 0,44	≥ 0,47	≥ 0,50
*q _{SV} (l/m².h)	≤ 500	≤ 525	≤ 550	≤ 575	≤ 600	≤ 625	≤ 650
q _A (m/h)	≤ 1,60	≤ 1,65	≤ 1,75	≤ 1,80	≤ 1,85	≤ 1,90	≤ 2,00
RV (-)	≤ 0,75	≤ 0,80	≤ 0,85	≤ 0,90	≤ 0,90	≤ 0,95	≤ 1,00

31.05.2006

ATV-DVWK-A 131 (2000)

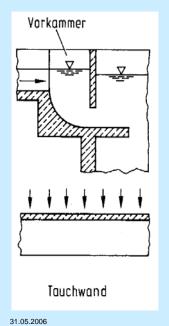
Vertikalkomponente zu Horizontalkomponente, z.B. 1: 2,5 = 0,4

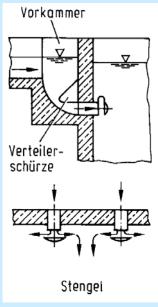

Folie 43

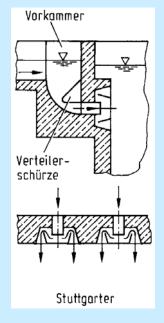
Grundvorlesung Abwasserreinigung

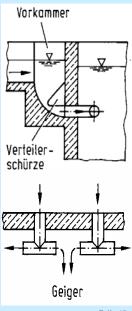
Zulaufkonstruktionen

Runde Nachklärbecken




31.05.2006


Folie 44

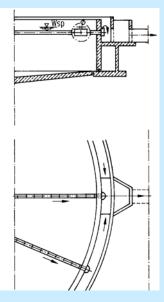


Zulaufkonstruktionen Rechteckige Nachklärbecken

Folie 45

Grundvorlesung Abwasserreinigung


Ablauf aus dem Nachklärbecken



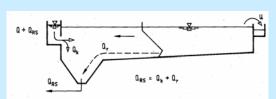
Ablaufkonstruktionen

Runde Nachklärbecken

getauchte, gelochte Ablaufrohre

31.05.2006 Folie 47

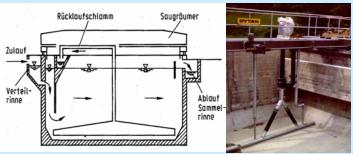
Grundvorlesung Abwasserreinigung



Einteilung der Schlammräumungssysteme für Absetzbecken

Beckenart		Räumsystem/ Räumart		
Becken mit vorwiegend horizontalem Durchfluss	Rechteck- becken	Schildräumer	Bodenschilde schieben den Schlamm in Trichter oder Abzugsöffnungen	
		Saugräumer	Abzug über Saugdüsen oder Bodenschilde; der Schlamm wird durch senkrecht angeordnete Entnahmerohre abgesaugt.	
	Rund- becken	Bandräumer	Räumbalken an umlaufenden Ketten schieben den Schlamm zum Abzugspunkt.	
		Schildräumer	Bodenschilde schieben den Schlamm in Trichter oder Abzugsöffnungen.	
Becken mit vorwiegend vertikalem Durchfluss	Rundbecken mit flacher Sohle	Saugräumer	Abzug über Saugdüsen oder Bodenschilde; der Schlamm wird durch senkrecht angeordnete Entnahmerohre abgesaugt.	
		Schildräumer	Bodenschilde schieben den Schlamm in Trichter oder Abzugsöffnungen.	
	Trichter- becken	Steigleitung	Schlammabzug aus Trichterspitze durch fest eingebaute Steigleitung zu einem Schlammschach	
31.05.2006		Druckluftheber oder Pumpe	Abzug aus Trichterspitze und anschließende Weiterförderung in Rohrleitung. Folie 48	

Räumertypen


Bandräumung im Rechteckbecken

Schildräumer im Rundbecken

Saugräumung im Rundbecken

Saugräumung im Rundbecken

31.05.2006 Folie 49

Grundvorlesung Abwasserreinigung

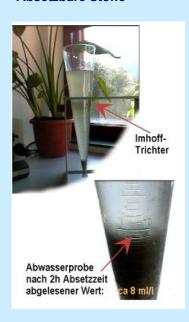

Schwimmschlammbildung

- Schwimmschlammbildung erfolgt in Nachklärbecken als Folge einer übermäßigen Entwicklung fadenförmiger Organismen beispielsweise durch unkontrollierte Denitrifikation,
- im Nachklärbecken bei nitrifizierenden Kläranlagen
- durch saisonale Einflüsse (Veränderung der Biozönose im Frühjahr und im Herbst) oder
- aufgrund einer ungünstigen Abwasserzusammensetzung oder
- ungünstiger Belastungszustände der biologischen Behandlungsstufe.

Schwimmschlammräumungssysteme

31.05.2006 Folie 51

Grundvorlesung Abwasserreinigung



Eigenschaften des Belebtschlammes

Schlammvolumen

Absetzbare Stoffe

Schlammentwässerung

www.abwassertechnik.at Folie 52

Teil 2

Biologische Abwasserreinigung

31.05.2006 Folie 53

Grundvorlesung Abwasserreinigung

Gliederung

- 3. Biologische Abwasserreinigung Belebungsverfahren
- 3.1 Grundsätze und Mikroorganismen
- 3.2 Nitrifikation und Denitrifikation
- 3.3 Belebungsverfahren
- 3.4 Phosphor Elimination

Gliederung

- 3. Biologische Abwasserreinigung Belebungsverfahren
- 3.1 Grundsätze und Mikroorganismen
- 3.2 Nitrifikation und Denitrifikation
- 3.3 Belebungsverfahren
- 3.4 Phosphor Elimination

31.05.2006 Folie 55

Grundvorlesung Abwasserreinigung

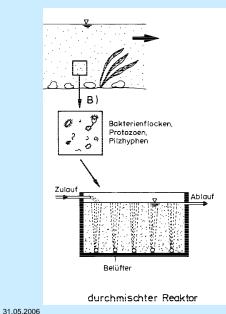
Biologische Abwasserreinigung

Ziele der Veranstaltung:

- Grundprinzipien der biologischen Abwasserreinigung verstehen
- biologischen Prozessabläufe nachvollziehen
- verfahrenstechnische Ausbildung kennen
- grobe Richtwerte (Kennzahlen) wissen

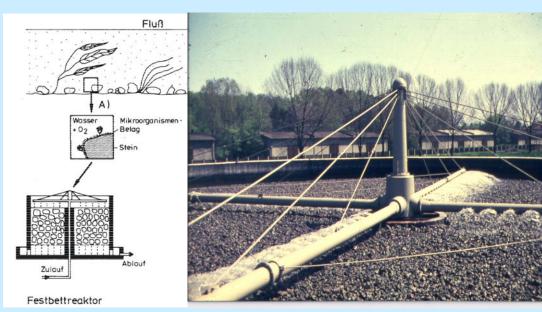
Systematik der Reinigungsverfahren

Grundvorlesung Abwasserreinigung



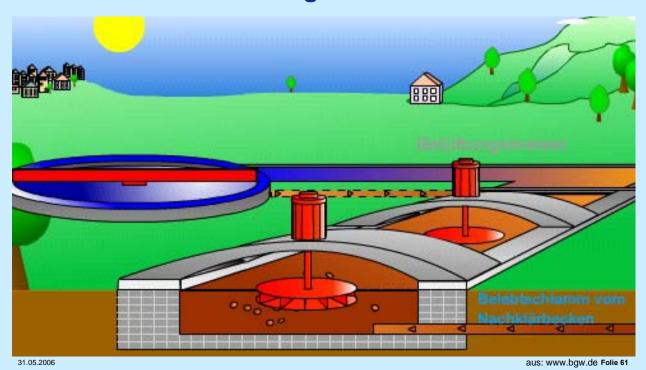
Technische Nutzung biologischer Prozesse

Biologische Abwasserreinigung nach dem Belebungsverfahren



Grundvorlesung Abwasserreinigung

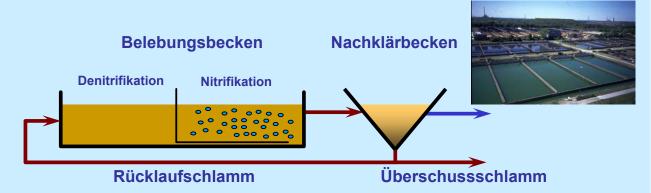
Biologische Abwasserreinigung nach dem Tropfkörperverfahren



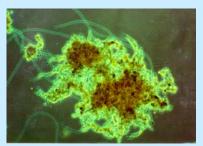
31.05.2006

Folie 60

Belebungsverfahren



Grundvorlesung Abwasserreinigung



Civil Engineering Urban Water Management

Fließschema Belebungsverfahren

Folie 62

Anforderungen an Belebungsbecken

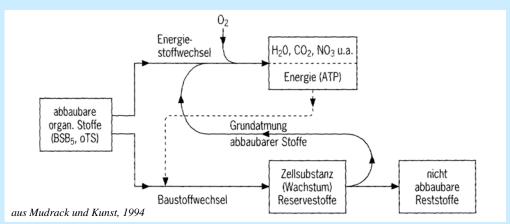
- Ausreichende Anreicherung an Biomasse
- Ausreichende Sauerstoffzufuhr und deren Regelbarkeit
- Ausreichende Durchmischung
- Keine Belästigung durch Geruch, Aerosole, Lärm und Erschütterungen

31.05.2006 Folie 63

Grundvorlesung Abwasserreinigung

Mikroorganismen im Belebtschlamm

- Bakterien
- Wechseltierchen oder Amöben
- Wimperntierchen



Zusammenspiel von Bau- und Betriebsstoffwechsel der Mikroorganismen

- der Nährstoffangebot
- die Milieubedingungen (Sauerstoffgehalt)
- die Abwassertemperatur
- der pH-Wert und die Säurekapazität des Abwassers
- vorhandene Hemmstoffe im Abwasser (Schwermetalle, Pestizide)
- die eingesetzte Verfahrenstechnik (Durchmischung, mechanische Beanspruchung, Selektion)

31.05.2006 Folie 65

Grundvorlesung
Abwasserreinigung

Bakterienarten im Belebtschlamm

heterotroph


Zell-C aus organischen Verbindungen Aerobier: aerober Kohlenstoffabbau Denitrifikanten:

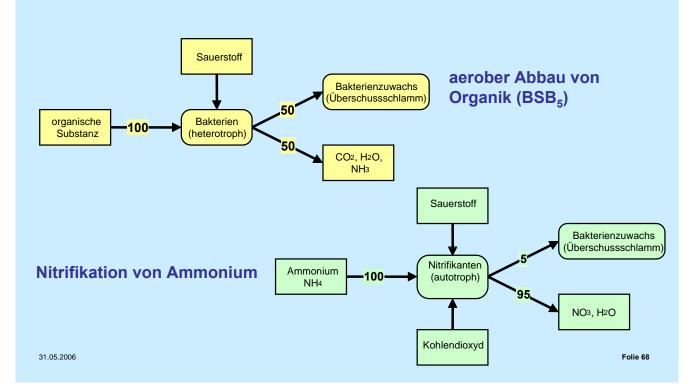
Reduktion von Nitrat (NO -N) zu N

Reduktion von Nitrat (NO₃-N) zu N₂

autotroph

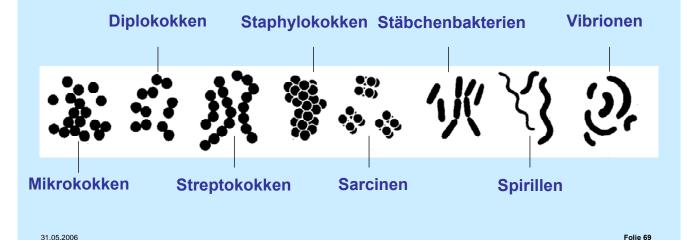
Zell-C aus CO₂ Nitrifikanten: Oxidation von Ammonium (NH₄-N) zu Nitrat (NO₃-N)

Prozessbedingungen


- aerob
 Zufuhr von Sauerstoff
 Kohlenstoffabbau
 Nitrifikation
- anoxisch kein gelöster Sauerstoff Denitrifikation
- anaerob kein Sauerstoff Methanbildung

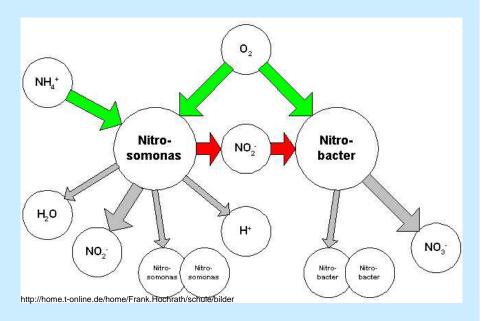
31.05.2006 Folie 67

Grundvorlesung Abwasserreinigung


Biologische Grundreaktionen

Typische Formen von Bakterienzellen

Grundvorlesung Abwasserreinigung


Gliederung

- 3. Biologische Abwasserreinigung Belebungsverfahren
- 3.1 Grundsätze und Mikroorganismen
- 3.2 Nitrifikation und Denitrifikation
- 3.3 Belebungsverfahren
- 3.4 Phosphor Elimination

Chemische Grundreaktionen – Nitrifikation

Mikrobiologische **Oxidation von** Ammonium (NH₄+) über Nitrit (NO₂-) zu Nitrat (NO₃-)

31.05.2006 Folie 71

Grundvorlesung Abwasserreinigung

Chemische Grundreaktionen - Nitrifikation

Mikrobiologische Oxidation von Ammonium (NH₄+) über Nitrit (NO₂-) zu Nitrat (NO₃-)

NH₄⁺ + 1,5 O₂ NO₂ + 0.5 O₃ -> NO₂- + H₂O + 2H+ **Nitrosomonas:**

Nitrobacter: $NO_2 + 0.5 O_2$ -> NO₃

 $NH_4^+ + 2O_2 + 2HCO_3$ -> $NO_3^- + 2CO_2 + H_2O$ Gesamtreaktrion:

Voraussetzungen:

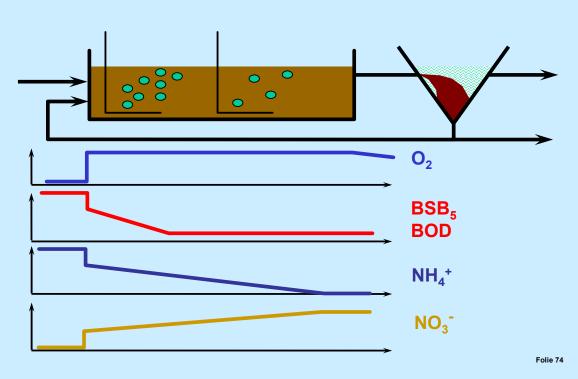
- Nitrosomonas und Nitrobacter sind Nitrifikanten.
- Nitrifikanten wachsen langsam, brauchen min. 10 °C, pH 7,2 8,0
- Anwesenheit von freiem Sauerstoff

• Sauerstoffverbrauch: 4,6 g O₂/g NH₄-N

2 mol HCO₃-/mol NH₄-N Verbrauch an Säurekapazität:

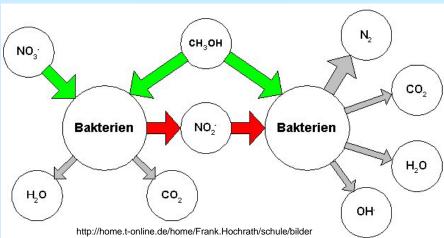
Einflussfaktoren auf die Nitrifikation

- Substratkonzentration (NH₄)
- Temperatur
- Sauerstoffkonzentration
- pH-Wert
- hemmende Stoffe


31.05.2006 Folie 73

Grundvorlesung Abwasserreinigung

31.05.2006


Nitrifikation (nach Gujer, 1999)

Chemische Grundreaktionen – Denitrifikation

Mikrobiologische Reduktion von Nitrat (NO₃-) zu Luftstickstoff (N₂)

31.05.2006 Folie 75

Grundvorlesung
Abwasserreinigung

Chemische Grundreaktionen – Denitrifikation

Mikrobiologische Reduktion von Nitrat (NO₃-) zu Luftstickstoff (N₂)

$$NO_3^- + 2 H^+ + 10 [H] \rightarrow N_2 + 6 H_2O$$

[H] entspricht Organik (BSB₅)

Voraussetzungen:

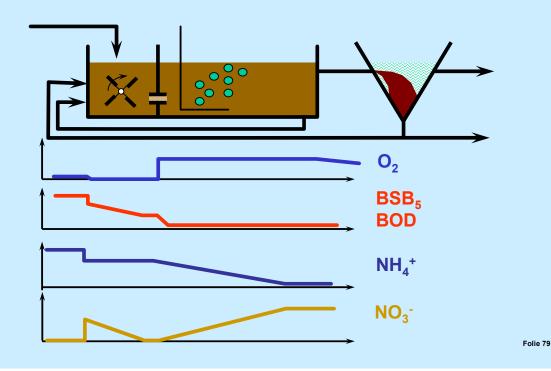
- Denitrifikanten (Die meisten Bakterien können denitrifizieren.)
- Nitrat oder Nitrit
- Abwesenheit von freiem Sauerstoff
- Organik (BSB₅)

Einflussfaktoren auf die Denitrifikation

- Nitratkonzentration
- Substratkonzentration (Energiequelle)
- Temperatur
- Sauerstoffkonzentration (Hemmung)
- pH-Wert

31.05.2006 Folie 77

Grundvorlesung Abwasserreinigung


Erforderliche Umweltbedingungen

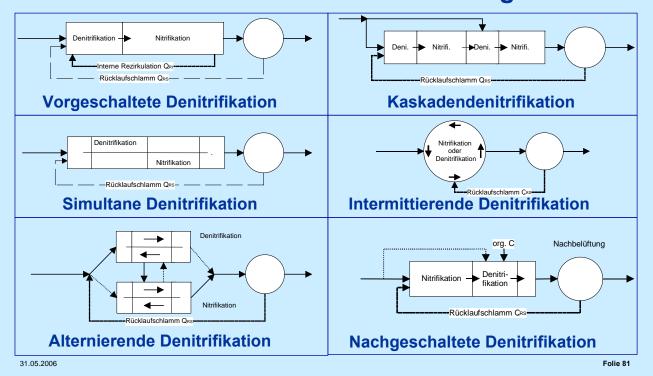
Aerober Abbau von BSB ₅	Nitrifikation	Denitrifikation
O ₂	•	<u>hemmt</u>
CSB, BSB ₅	0	•
het. Biomasse	_	•
Nitrifikanten	0	•
NH ₄ ⁺	0	0
NO ₃ -	Produktion	0
NCO ₃ -	0	Produktion
Schlammalter < 5d	7 – 10 d	12 – 18 d

muss vorhanden sein

Vorgeschaltete Denitrifikation (nach Gujer, 1999)

Grundvorlesung Abwasserreinigung

31.05.2006



Gliederung

- 3. Biologische Abwasserreinigung Belebungsverfahren
- 3.1 Grundsätze und Mikroorganismen
- 3.2 Nitrifikation und Denitrifikation
- 3.3 Belebungsverfahren
- 3.4 Phosphor Elimination

Bau und Betriebsweisen von Belebungsbecken

Grundvorlesung
Abwasserreinigung

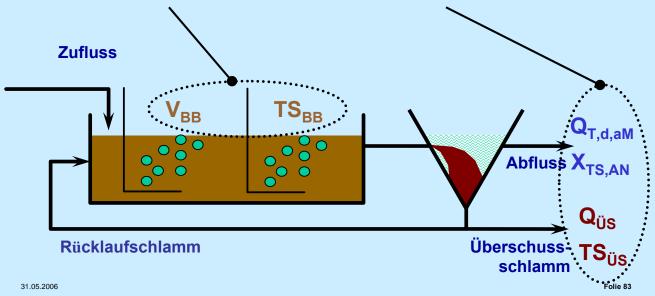
Verfahrensvergleich Denitrifikation

Vorgeschaltete Denitrifikation

- definierte, knappe Beckenvolumina
- gute Regelbarkeit, hohe Variabilität = kompliziert
- vornehmlich für größere Anlagen

Simultane Denitrifikation

- große Beckenvolumina, höhere Investitionskosten
- stabiler, einfacher Betrieb, sehr gute Ablaufwerte
- vornehmlich für kleinere Anlagen


Nachgeschaltete Denitrifikation

- externe C-Quelle = hohe Betriebskosten
- sehr gute Ablaufwerte, keine Rezirkulation
- Anwendung nur in Ausnahmefällen

Bemessung über das Schlammalter

Schlammmasse im System + Schlammentnahme aus dem System

Grundvorlesung Abwasserreinigung

Definition des Schlammalters

$$t_{TS} = \frac{V_{BB} \cdot TS_{BB}}{Q_{d} \cdot X_{TS,AN} + Q_{\ddot{U}S} \cdot TS_{\ddot{U}S}}$$

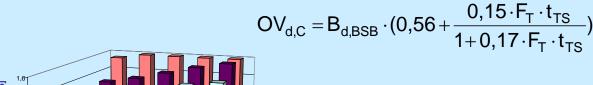
mit:

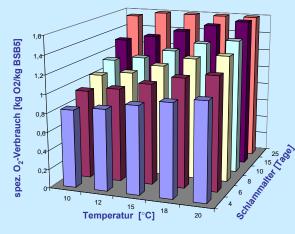
 V_{BB} = Volumen Belebungsbecken

TS_{BB} = Feststoffgehalt Belebung

QT,d,aM = Durchfluss

 $X_{TS,AN}$ = Feststoffgehalt Ablauf


Q_{üs} = Überschussschlammfluss


TS_{ÜS} = Feststoffgehalt des Überschussschlamms

Sauerstoffbedarf für die Kohlenstoffatmung

in Abhängigkeit von Temperatur (T) und Schlammalter (t_{TS})

Ov_{d,C} = Sauerstoffverbrauch Kohlenstoffelimination

 t_{TS} = Schlammalter

0,56 = Substratatmungskoeffizient

 $F_{T} = 1,072(t-15)$

 $0,15 \cdot F_T$ = endogene Atmungsrate

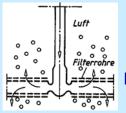
31.05.2006 Folie 85

Grundvorlesung
Abwasserreinigung

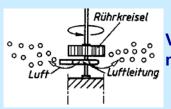
Sauerstoffbedarf für die Nitrifikation

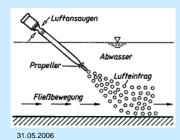
$$OV_{d,N} = Q_d \cdot 4.3 \cdot \frac{(S_{NO3,D} - S_{NO3,ZB} + S_{NO3,AN})}{1.000}$$

4,3 stöchiometrischer Faktor


S_{NO3,D} Konzentration des zu denitrifizierenden Nitrates

S_{NO3,ZB} Konzentration des Nitrates Zulauf BB


S_{NO3,D} Konzentration des Nitrates Ablauf NK

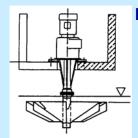

Belüftung mit Druckluft

Filterrohre

Verteilerring für Luft mit Rührkreisel

Injektorbelüfter

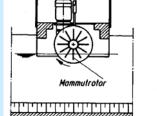
Flächenbelüftung


Folie 87

Grundvorlesung Abwasserreinigung

Civil Engineering Urban Water Management

Oberflächenbelüfter



Kreiselbelüfter

circulating umlaufende installation Brückenkonstruktion in Betrieb

Mammutrotor

Luftausgleichsfilter

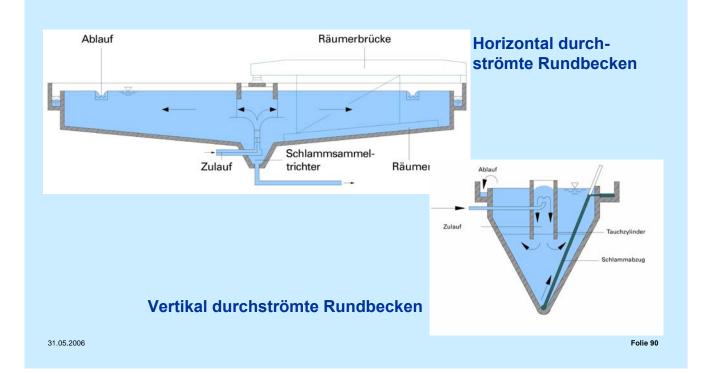
31.05.2006

Folie 88

Oberflächenbelüfter

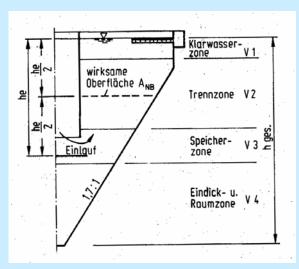
mit vertikaler Achse

mit horizontaler Achse

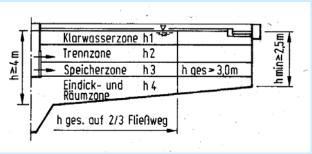


31.05.2006 Folie 89

Grundvorlesung Abwasserreinigung



Nachklärbecken in Abhängigkeit der Durchströmung



Zonen und Tiefen im Nachklärbecken

vertikal durchströmtes Trichterbecken

horizontal durchströmtes Rundbecken

31.05.2006 Folie 91

Grundvorlesung Abwasserreinigung

Gliederung

- 3. Biologische Abwasserreinigung Belebungsverfahren
- 3.1 Grundsätze und Mikroorganismen
- 3.2 Nitrifikation und Denitrifikation
- 3.3 Belebungsverfahren
- 3.4 Phosphor Elimination

Phosphorelimination

Algenpest durch Nährstoffeintrag

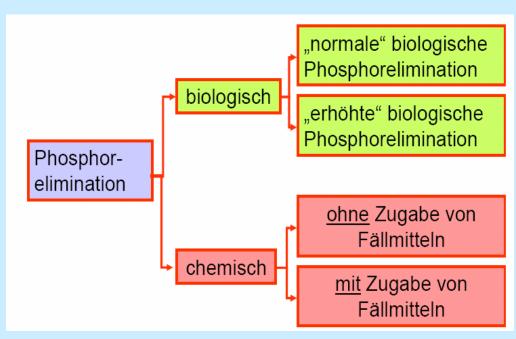
Gewässern häufig der limitierende Faktor.
Gefahr der Überdüngung und Vermehrung der Biomasse.

Phosphor ist in

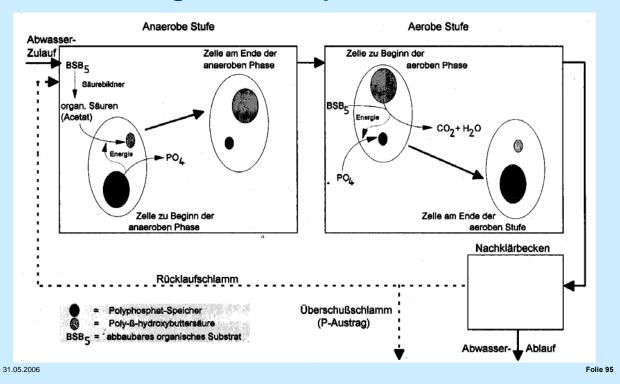
- Die Gewässer können umkippen (Eutrophierung).
- Verfahren zur Phosphorelimination
 - Biologisch (Bakterien)
 - Chemisch durch Fällung

Folie 93

Grundvorlesung Abwasserreinigung


31.05.2006

UNIVERSITÄT

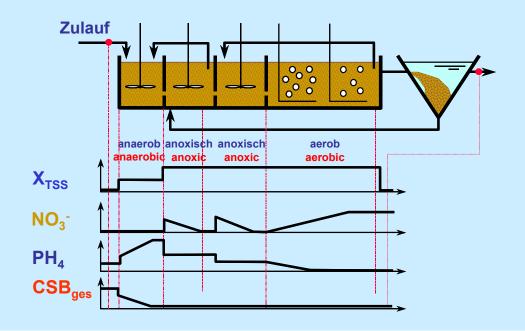

D.U.I.S.B.U.R.G.
E.S.S.E.N.

Civil Engineering Urban Water Management

Phosphorelimination

Biologische Phosphorelimination

Grundvorlesung Abwasserreinigung

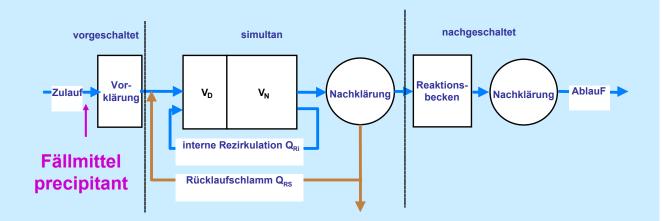

31.05.2006

Folie 96

Biologische Phosphorelimination

Konzentrationsverläufe nach Gujer, 1999

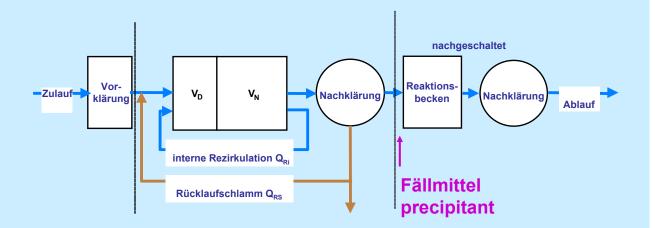
Chemische Phosphorelimination


- Überführung der Phosphate in schwer lösliche Eisen-, Aluminium- oder Kalzium-Verbindungen
- Abtrennung erfolgt durch Sedimentation
- Fällmittel und Bedarf nach ATV-A 131 (2000):
 - Eisen Fe³+: 2,7 kg Fe pro kg zu fällendem Phosphor
 - Aluminium: 1,3 kg Al pro kg zu fällendem Phosphor
 - Kalk (Kalkmilch): Bedarf richtet sich nach der Säurekapazität.
- Ort der Fällmittelzugabe definiert die Verfahren
 - Vorfällung
 - Simultanfällung
 - Nachfällung

Folie 97

Grundvorlesung Abwasserreinigung

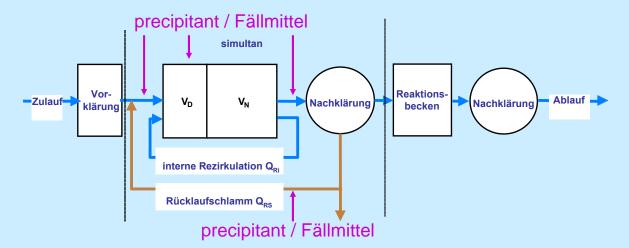
Verfahren der chemischen P-Elimination



· vorgeschaltet:

einfach zu installieren, evtl. P-Mangel im BB, keine biologische P-Elimination, hoher Fällmittelverbrauch

Verfahren der chemischen P-Elimination


• nachgeschaltet: bester Wirkungsgrad, hoher Aufwand wegen zusätzlicher Becken

31.05.2006 Folie 99

Grundvorlesung
Abwasserreinigung

Verfahren der chemischen P-Elimination

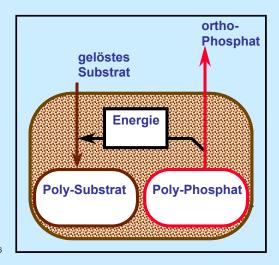
• simultan: positiv für Schlammbeschaffenheit, Reduzierung der

Blähschlammbildung, Verwendung von kosten-

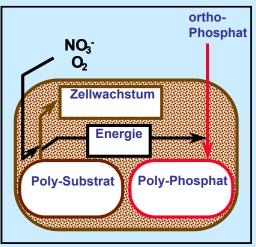
günstigem Grünsalz (Fe(II)-Salz)

Übersicht Fällmittel

Тур	Bezeichnung, Formel	Zustand
AI	Aluminiumsulfat Al ₃ (SO ₄) ₃ .18H ₂ O Aluminiumchlorid AlCl ₃ Polyaluminiumchlorid (Al ₂ (OH) _n Cl ₆ - _n) _m AlCl ₃ +FeCl ₃ nAl ₂ (SO ₄) ₃ . xH ₂ O + Fe ₂ (SO ₄) ₃ . yH ₂ O	fest Lösung Lösung Lösung fest
Fe II	Eisen(II)-Sulfat FeSO ₄ . 7H ₂ O	fest
Fe III	Eisen(III)-Chloridsulfat FeCISO ₄ Eisen(III)-Chlorid FeCI ₃	Lösung Lösung
Са	Kalk CaO Kalkhydrat Kalziumhydroxid Ca(OH) ₂	fest fest


31.05.2006 Folie 101

Grundvorlesung Abwasserreinigung



Prinzip der biologischen P-Elimination durch Phosphatspeichernde Bakterien

Anaerobe Umgebung

Anoxisch oder aerobe Umgebung

Geändert nach Gujer, 1999

Folie 102

31.05.2006

