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Zusammenfassung

Polykristallines B20 FeGe, das sich durch die ihm innewohnende Dzyaloshinskii-Moriya Wech-

selwirkung auszeichnet, wurde mittels ferromagnetischer Resonanz Experimente untersucht.

Die Messungen zeigen eine unidirektionale Anisotropie, das heißt, dass sich das Resonanzfeld

bei Inversion des Magnetfeldes verschiebt. Magnetostatische Messungen zeigen diese Aniso-

tropie nicht, es handelt sich also um einen dynamischen Effekt. In dieser Arbeit werden

zwei Modelle beschrieben, um eine solche ferromagnetische Resonanz Messung auszuwerten.

Das erste fügt der freien Energiedichte einen zusätzlichen unidirektionalen Anisotropieterm

hinzu, der wie eine Kristallanisotropie wirkt, aber rein phenomenologischer Natur ist. Das

zweite nimmt einen Temperaturunterschied zwischen den beiden Feldrichtungen an, der sich

in einer Änderung der Magnetisierung und somit auch einer Änderung der Formanisotropie

niederschlägt. Dieser Temperaturunterschied ∆T kann temperaturabhängig ausgewertet wer-

den und beträgt maximal 7.1 K±0.8 K bei T = 200 K. Um diesen Temperaturunterschied zu

erklären wurde ein Modell basierend auf Magnonenstreuung entwickelt. Durch die asymmetri-

sche Dispersionsrelation, hervorgerufen von der Dzyaloshinskii-Moriya Wechselwirkung, folgt

eine Änderung der Magnonenstreuung je nach Feldrichtung. Dies führt zu einer Änderung

der Temperatur des Magnonensystems und somit zur unidirektionalen Anisotropie.





Abstract

Polycrystalline B20 FeGe, which is characterized by its inherent Dzyaloshinskii-Moriya in-

teraction, was investigated by ferromagnetic resonance experiments. The measurements

display a unidirectional anisotropy, meaning that an inversion of the magnetic field changes

the resonance field. Magnetostatic measurements do not show this anisotropy, thus it is a

dynamic effect. In this work, two models are described to analyse such ferromagnetic reso-

nance measurements. The first one introduces an additional term to the free energy density

with unidirectional symmetry, which acts like a magnetocrystalline anisotropy. This term

is purely phenomenological. The second method is based on a temperature change inside

the sample after magnetic field inversion. This results in a change of the magnetization and

thus also in a change of shape anisotropy. This temperature change ∆T can be evaluated

as a function of the temperature and is at its maximum 7.1 K ± 0.8 K at T = 200 K. To

justify such a temperature change a magnon scattering model was developed. It is based

on asymmetric magnon scattering, caused by the asymmetric magnon dispersion in systems

with Dzyaloshinskii-Moriya interaction. This leads to an inhomogeneous change of the tem-

perature in the magnonic system and thus to the observed unidirectional anisotropy.
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1 Introduction and Motivation

Dzyaloshinskii–Moriya interaction (DMI) was introduced to the theory of magnetism to ex-

plain weak ferromagnetism in otherwise antiferromagnetic samples [1, 2]. One necessity for

the occurence of DMI is a broken inversion symmetry. This broken inversion symmetry can

either be manufactured, for example through interfaces in thin-films, which is then called

interfacial DMI [3,4], or is an inherent property of the crystal lattice like in the B20 crystals

MnSi or FeGe [5–8]. DMI favors a perpendicular alignment of neighboring spins and there-

fore competes with exchange interaction, resulting in chiral spin textures like helices [7] and

skyrmions [9, 10]. Skyrmions are topologically stable magnetic vortices and are promising

for applications in spintronics, e.g. as racetrack memories [11] and spin logic devices [12].

DMI not only influences the magnetostatic but also the magnetodynamic properties by

introducing an additional term to the spin-wave dispersion proportional to the wavenum-

ber [13,14]. This leads to non-reciprocal spin-waves, meaning that spin-waves traveling with

the same frequency in opposite directions have different wavelengths. It has been predicted,

that these spin-waves form complex standing modes in confined geometry [15]. Polycrys-

talline FeGe was investigated in my bachelor thesis [16] with the motive to measure these

standing spin-wave modes. For that, micron sized FeGe samples were cut and placed inside

an R-type microresonator [17–19] for ferromagnetic resonance (FMR) [20–22] measurements.

In the obtained spectra, a multitude of resonances were visible and ultimately attributed to

an inclined surface simultaneously satisfying a collection of boundary conditions for standing

spin-waves. Surprisingly, all results pointed to the conclusion that a unidirectional anisotropy,

observed as a shift of the resonance position after magnetic field inversion, had to be present.

It was presumed that even though the non-reciprocity creates complex standing modes, these

modes should still be inversion symmetric. A comparison with older FMR data measured

by Thomas Feggeler [23] on bulk FeGe samples inside a conventional cavity revealed, that

even the uniform mode displayed this kind of anisotropy. Unidirectional anisotropy is not

unheard of in FMR measurements. For example, it can occur in systems with exchange

bias [24], which has never been reported for FeGe.

In this work, the unidirectional anisotropy is investigated for both angular and temperature

dependence. The relevant theoretical background is given in Ch. 2. First the Helmholtz

free energy density [25] [21, p. 31f.] is introduced, whereby all important magnetic contribu-

tions appearing in this work are presented. The theory of FMR is discussed with regards

to the resonance position, lineshape and linewidth. Finally a section is dedicated to chiral-

ity [26], which is an important aspect of the FeGe crystal lattice. Chapter 3 is devoted to

the preparation and properties of FeGe [27, 28]. Among other things, the known magnetic

properties of FeGe are brought together from literature. In Ch. 4, angular and temperature

dependent FMR measurements are presented, particularly with regard to the unidirectional

anisotropy. A phenomenological model for the free energy density is introduced to quantify
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1. Introduction and Motivation

the strength of the unidirectional anisotropy. The absence of any asymmetry in the hystere-

sis of FeGe points to its dynamic nature. Temperature dependent FMR measurements lead

to the conclusion that this effect can also be described through a temperature difference

between opposite magnetic field directions. Therefore, a second model for the free energy

density is proposed, which takes this temperature difference into consideration. It is able

to fit to the data better than the already mentioned phenomenological model. After this,

different contributions to the FMR linewidth are discussed with the largest one identified

as an inhomogeneous demagnetization field inside the irregularly shaped sample. Chapter

5 gives a theoretical model to explain the assumed temperature difference between opposite

field directions during dynamic excitation. It is based on asymmetric magnon scattering due

to the non-reciprocity of spin-waves in DMI systems [13]. Furthermore, the energy needed

for such a temperature change is calculated based on the heat capacity of magnons in FeGe

and is found to lie below the energy provided by the microwave. In Ch. 6, the results of

this work are discussed and a summary is given on unanswered questions concerning the

unidirectional anisotropy.

The calculations and plots in this thesis were done with Wolfram Mathematica 12.0 Stu-

dent Edition. Further editing of these plots and the illustrations were made with Corel

DRAW 2017. This thesis was written with LATEX.
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2 Theoretical Background

This chapter centers on the theory of magnetism relevant for this work. Especially FMR is

discussed in detail. For an overview of ferromagnetism in general see the book of Aharoni [29].

For a basic understanding of FMR, the books of Vonsovskii [20] and Gurevich and Melkov [21]

are well suited.

2.1 Magnetization and Free Energy Density

The magnetic moment ~µ of any material is given by the torque ~I it experiences inside a

magnetic field ~B and is defined by

~I = ~µ× ~B. (2.1)

Such a magnetic moment can either be an intrinsic property of the material, or it can be

induced by an external magnetic field or an electrical current. The magnetization ~M is the

magnetic moment per volume [29, p. 1] or, in other words, the magnetic moment density.

Due to sample sizes far above atomic length scales all interpretations and calculations can

be performed with methods and concepts of statistical physics. One of these concepts is the

Helmholtz free energy [25] [21, p. 31f.], which is the difference between the inner energy U

and the product of temperature T and entropy S. The free energy density F [30, p. 196] is

the Helmholtz free energy per volume V and is therefore defined as

F =
U − TS

V
. (2.2)

The free energy density in this work refers to the magnetic part of the free energy density.

The thermodynamic equilibrium position of the magnetization minimizes the free energy

density [22, p. 779]. The absolute value and direction of the effective magnetic field can be

determined through

~Beff = − δF
δ ~M

= − ∂F
∂ ~M

+
3∑

i=1

∂

∂xi

(
∂F

∂
(
∂ ~M/∂xi

)
)
. (2.3)

Here δ denotes the functional derivative [25,31] [21, p. 33]. In the case of thermal equilibrium

it is also parallel to the magnetization [20, p. 21]. Due to Eq. 2.3, all contributions to the

magnetic free energy can be treated as magnetic fields acting on the sample. These fields

are often fictitious. The molecular field postulated to treat ferromagnetism in classical

electrodynamics is a prominent example for a fictitious field [32]. It is explained by the

exchange interaction introduced in the next section.

3



2. Theoretical Background

2.2 Magnetic Energy Contributions

2.2.1 Symmetric and Asymmetric Exchange Interaction

The Heisenberg model [33] is devised to explain ferromagnetism and is based on the assump-

tion of having localized electrons around atoms inside a crystal lattice. Since electrons are

fermions with spin 1/2, they are subject to the Pauli exclusion principle [34] favoring parallel

or antiparallel spin alignment. Simultaneously, electrons carry a negative charge and thus

feel a repulsive Coulomb force from one another. These together create an electron-electron

interaction called exchange interaction [35, p. 459ff.], which is a purely quantum mechanical

effect. Since the electron wave functions have to overlap, it is only a nearest-neighbor inter-

action. The exchange interaction is not limited to ferromagnetism but can also be used to

explain antiferromagnetism [36] or the paramagnetism of oxygen [37]. DMI [1, 2] is another

type of nearest-neighbor interaction favoring the perpendicular alignment of spins and can

only exist in a system with broken inversion symmetry. If this broken inversion symmetry

is an intrinsic property of the crystal structure, one refers to it as bulk DMI. It can be ex-

plained through spin-orbit coupling [2]. The combined Hamiltonian of exchange interaction

and DMI can be written as

Ĥ = ĤEX + ĤDMI = −1

2

∑

i 6=j

JAij
2
~si · ~sj +

1

2

∑

i 6=j

~Dij · (~si × ~sj). (2.4)

Here ~si and ~sj are the spin momenta on the lattice sites i and j respectively, JAij the exchange

constant, and ~Dij the DMI-vector between them. DMI is often denoted as asymmetric

exchange, since the exchange interaction and DMI can be combined to one joint exchange

tensor with the DMI-vector components being the non-diagonal entries. The connection

between broken inversion symmetry and DMI can be seen in Eq. 2.4, since an inversion

of the spin momenta in the cross product also yields an inversion of the sign breaking

the inversion symmetry. The non-uniform free energy density contribution of the exchange

interaction and bulk DMI can be written as

FEX + FDMI =
A

2M2

(
∇ ~M

)2

+
d

M2
~M ·
(
∇× ~M

)
. (2.5)

A is the exchange stiffness and d the DMI constant [7,13] [21, p. 179]. The coupled magnetic

moments in a ferromagnet form through Eq. 2.4 an oscillatory system, which can carry

dynamic oscillations [21, p. 179ff.] [20, p. 78ff.]. These oscillations are called spin-waves in a

semi-classical approach and magnons as quasi particles in a quantum mechanical model. A

further description of spin-waves and their dispersion follows in Ch. 5.
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2.2. Magnetic Energy Contributions

2.2.2 Zeeman Term and Demagnetization

The Zeeman effect [38] describes the energy contribution of a static external magnetic field

on the magnetization. It is a shift of the energy favoring a parallel alignment. The free

energy density contribution of the Zeeman effect FZ can be written as

FZ = − ~M · ~Bext. (2.6)

FZ is the scalar projection of the magnetization ~M on the external magnetic field ~Bext

[21, p. 34]. An additional demagnetization field has to be considered in a sample with

finite dimensions. The demagnetization field ~Bdem can be determined using the matrix

multiplication of the demagnetization tensor N with the magnetization [21, p. 23], so that

~Bdem = −µ0N ~M. (2.7)

The free energy density contribution of the demagnetization field [21, p. 34] is then

Fdem =
µ0

2
~MN ~M. (2.8)

It is often referred to as the shape anisotropy. When the sample shape is not an ellipsoid,

the demagnetization field inside the sample is not uniform [29, p. 130] and can, depending

on the specific problem, be calculated analytically [39] or through simulation [40]. However,

most simple geometric bodies can be approximated as an equivalent ellipsoid [41].

2.2.3 Magnetocrystalline Anisotropy

Although we use a semi-classical model of magnetism one has to be aware of the underlying

atomic structure. Ordinary matter can exist in the form of ordered crystals that impose

certain symmetry conditions on the magnetism of the material. This is known as magne-

tocrystalline anisotropy [29, p. 84] [21, p. 37ff.] and gives rise to preferred magnetization

directions. It is expressed as additional terms in the free energy density. Calculations of

these terms may need the usage of phenomenological power series expansions containing the

correct symmetry [29, p. 85]. The anisotropy constants have to be measured. An example

for the cubic crystal anisotropy will be given in Sec. 3.2.

5



2. Theoretical Background

2.3 Ferromagnetic Resonance

To describe the dynamic behavior of the magnetization inside an effective magnetic field the

Landau-Lifshitz-Gilbert equation, written as

∂ ~M

∂t
= γ ~M × ~Beff −

α

M
~M × ∂ ~M

∂t
, (2.9)

is used [42, 43]. The first term of the differential equation describes a precession of the

magnetization around the effective magnetic field, while the second accounts for energy

dissipation. α is the damping parameter. To solve the equation, an Ansatz is needed [44] [21,

p. 10ff.]. First, a constant magnetization ~M0 and an effective field ~B0 pointing in the same

direction (w.l.o.g. this can be the z-axis of a Cartesian coordinate system) are assumed.

Additionally, their small oscillating perpendicular pertubations ~b and ~m are considered with

a phase shift of π/2 between them, so that

~B = ~B0 +~b = ~B0 +~b0ei(ωt+
π
2 )

and ~M = ~M0 + ~m = ~M0 + ~m0eiωt.
(2.10)

For example, ~b can be the magnetic field component of a microwave. The solution links the

dynamic oscillation of the magnetization ~m with that of the magnetic field ~b through the

high-frequency magnetic susceptibility tensor χ, so that

~m = χ~b. (2.11)

This means that the sample absorbs power from the oscillating magnetic field. In a cavity

based FMR experiment, where a sample is excited through a microwave, the measured signal

is proportional to the density P of the absorbed power. When calculated [45,46] [22, p. 767],

it has the form

P =
1

2
ωµ0

(
b0

µ0µr

)2

Im (χ11) . (2.12)

It is important to note that the dependence on the imaginary part of the first tensor com-

ponent of the high frequency susceptibility tensor stems from certain assumptions on the

coordinate system and the field and magnetization directions in Eq. 2.10. A general treat-

ment can be found in [47]. In such a general treatment χ′′ denotes the imaginary part of

the respective tensor component contributing to the measured FMR-signal. The field (or

frequency) with the highest absorption is the FMR position. In the case of α = 0, the

absorption diverges at the resonance position.
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2.3. Ferromagnetic Resonance

2.3.1 Ferromagnetic Resonance Lineshape

The power density shown in Eq. 2.12 has a Lorentzian-shape [21, p. 20], which can be written

as

L =
a∆x

∆x2 + (x− x0)2 . (2.13)

Here a/∆x is the maximum amplitude, ∆x is the half width at half maximum, and x0 is the

resonance position. In a typical FMR experiment, the microwave frequency is kept constant,

while the magnetic field is varied. Then, x0 corresponds to a resonance field. This method

of calculation assumes perfect sample conditions. Other effects like the penetration depth

of the microwaves are not considered and lead to an asymmetric lineshape also denoted as a

Dysonian lineshape [48]. This is written as

D =
a (∆x+ β (x− x0))

∆x2 + (x− x0)2 . (2.14)

β is an additional asymmetry parameter. This asymmetry shifts the maximum amplitude

of the curve away from the resonance position x0, as can be seen in Fig. 2.1.

2.3.2 Calculation of the Resonance Position

From Eq. 2.3, it follows that the absolute value of the effective magnetic field can be

determined using the free energy density. Solving Eq. 2.9 by approximating the free energy

density with a Taylor series about the equilibrium position of the magnetization, one obtains

ω =
γ
√

1 + α2

Msin (θ)

√
∂2

∂θ2
F
∂2

∂φ2
F −

(
∂2

∂θ∂φ
F

)2

(2.15)

for the ferromagnetic resonance frequency [20, p. 67]. This provides a convenient way to

analyse FMR data, because a suitable model of the free energy density can reproduce the

measured resonance positions. These models consist of combinations of different magnetic

energy contributions with some of them introduced in Sec. 2.2.

2.3.3 Ferromagnetic Resonance Linewidth

The linewidth of the resonance curve is defined as the full width at half maximum of the

resonance line. In an experimental setup, where the magnetic field is swept at a constant

frequency, the linewidth is denoted as ∆B. One mechanism leading to a broadening of the

resonance line is the intrinsic magnetic damping. Using Eq. 2.9 the intrinsic linewidth ∆Bint

7



2. Theoretical Background
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Figure 2.1.: Plot of a Dysonian lineshape. (a) D from Eq. 2.14 and (b) its derivative D’
with respect to x. The asymmetry parameter β was varied between 0 and 1,
which is color coded above the figure. The parameters used are x0 = 0, a = 1,
and ∆x = 1. The shift of the maximum amplitude (or the zero crossing in the
derivative) away from x0 with increasing β can be seen.
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2.4. Chirality

can be calculated as a function of α and F [49] [20, p. 67] as

∆Bint =
∂Bres

∂ω

γα

M

(
∂2F

∂θ2
+

1

sin (θ)

∂2F

∂φ2

)
. (2.16)

According to the reciprocal dependence of M in this equation, without additional anisotropy

the intrinsic linewidth near the Curie temperature TC increases. Until now, only an individual

resonance line in a uniform sample was discussed. In a real sample different parts of the

sample can lead to different resonance frequencies. This can give a distribution of resonance

lines in a measured FMR spectrum resulting in additional contributions to the linewidth.

Such a distribution of resonance lines can have different origins with the most important

ones in this work being the broadening due to polycristallinity [21, p. 54] [50,51] and due to

an inhomogeneous field distribution inside the sample.

2.4 Chirality

Chirality is the inability of a geometric object to coincide with its own mirror image. The

term was coined by lord Kelvin [52] more than one hundred years ago. The reflection of

a mirror image is again the original image. Therefore, chiral objects always come in the

form of two related manifestations, which are called enantiomers. Some three dimensional

chiral objects like helices can be described by their handedness, which is their helicity and

can be either right-handed or left-handed. Symmetry operations can thus be classified by

preservation of the handedness as symmetry operations of the first (preserving) and second

(not preserving) kind [26]. Since rotation is a symmetry operation of the first kind, chiral

objects keep their chiral properties even inside a polycrystalline sample or when dissolved in

a solvent.

This is, for example, used in circular dichroism measurements [53] to analyse the structure

of chiral molecules, taking advantage of the different absorption of right and left circular

polarized light by the enantiomers. In this work, the magnetic interactions arising from the

chirality of FeGe is investigated. Investigations on the chirality itself can be found in [54,55].

A basic description of the origin of chirality in FeGe is given in the following chapter.

9



3. Sample Characteristics

3 Sample Characteristics

3.1 Crystallography of Cubic FeGe

Similar to the general summary of the B20 structure given in [56, p. 33f.], here, particularly

the B20 crystal FeGe denoted as cubic FeGe is explained. It was first described by Richardson

[27,28] in 1967. FeGe has a cubic crystal symmetry with the space group P213 and a lattice

parameter of a = 4.700 Å ± 0.002 Å. The density is % = 8.22 g cm−3. The following Wyckoff

positions [57] are occupied, where u is uFe = 0.1352 or uGe = 0.8414 depending on the

respective element [28]:

4(a) (u,u,u) (−u,
1

2
+u,

1

2
−u) (

1

2
−u,−u,

1

2
+u) (

1

2
+u,

1

2
−u,−u)

This means the unit cell consists of 4 atoms of each type. Due to its chiral properties

the crystal structure comes in the form of two enantiomers depicted in Fig. 3.1. The

handedness can be changed through the transformation u→ 1− u of the Wyckoff positions.

Since uFe + uGe 6= 1 this transformation is not identical with an exchange of Fe and Ge. The

a)

Fe

Ge

Fe

Ge

b)

a = 4.7 Å 

a

a = 4.7 Å 

a

a a

Figure 3.1.: a) and b) are the unit cells of both B20 FeGe enantiomers. The blue and red
spheres denote the respective lattice sites of Fe and Ge. The length of the cell
edges is a = 4.700 Å ± 0.002 Å.

chirality in this crystall structure can be illustrated through the structural helices formed by

both Fe and Ge parallel to the [111]-direction of the crystal. Helices are three-dimensional

chiral objects. They are shown in Fig. 3.2 together with their rotation direction. The

helices of Fe and Ge have an opposite handedness, i.e. in Fig. 3.2 a) Fe rotates clockwise

and Ge rotates counter clockwise. When looking at the other enantiomere in Fig. 3.2 b), the

handedness of these structural helices has switched. This means, that the distinction between

Fe and Ge leads to a chiral crystal lattice. But even if Fe and Ge atoms were indistinguishable

10



3.1. Crystallography of Cubic FeGe

the crystal structure would still be chiral. Due to the inequality uFe + uGe 6= 1, the clockwise

rotating Fe helices cannot be brought to coincide with the clockwise rotating Ge helices after

inversion. The same is true for the counter clockwise rotating helices. Thus, the crystal is

chiral. This chirality is the origin of the DMI observed in FeGe.
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Figure 3.2.: View along the [111]-direction of the FeGe crystal lattice for both enantiomers a)
and b) in Fig. 3.1. The distance from the (111)-plane placed in the front lower
left corner of the cube in Fig. 3.1 is color coded. Arrows indicate the direction
of rotation of helices in the crystal structure.
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3. Sample Characteristics

3.2 Magnetic Properties of B20 FeGe

In [58], magnetization measurements gave a Curie temperature of TC = 280 K ± 2 K and

an extrapolated saturation magnetization of 1.00µB ± 0.04µB per iron atom. These results

are consistent with Mössbauer studies [59,60]. Other Curie temperatures were reported, for

example TC = 278.2 K [61] and TC = 279.1 K [62]. The amount of different values is due

to the intense research of the FeGe magnetic phase diagram, especially in the vicinity of

the Curie temperature. The magnetic phase diagram mainly consists of a ferromagnetic,

paramagnetic, conical, and helical phase [61]. Of particular interest is the so-called A-

phase [63, 64], which was intensively studied [65, 66] and identified as a skyrmion lattice

[10, 67, 68]. A complete characterization of the A-phase is still subject to magnetic research

[61,69]. However, even though the phase diagram is an important aspect of FeGe this thesis

centers on results obtained in the ferromagnetic phase. In 1970 Lundgren et al. [8] published

the temperature dependent magnetocrystalline anisotropy of FeGe as second order cubic

anisotropy, which takes the form of Eq. 3.1 and is depicted in Fig. 3.3. Here and in the

x

y

z

a) b) c)

φ

ϑ

Figure 3.3.: a) and b) are the first and second order power series expansion with cubic
symmetry of the free energy density. The corresponding definition can be seen
in Eq. 3.1. c) is the free energy density of FeGe using Eq. 3.1 and the conditions
K4 = −2K6 with K4 < 0 taken from [8]. The furthest point from the origin
in c) corresponds to an energy contribution of 0. An appropriate offset was
introduced beforehand to be able to show the general structure and intuitively
identify hard and easy axes. A coordinate system corresponding to the presented
energy landscapes is depicted as an inset on the left to demonstrate the relation
between Cartesian and spherical coordinates.

further course of this work ~e (θ, ϕ) = (sin (θ) cos (φ) , sin (θ) sin (φ) , cos (θ)) is the unit vector

of spherical coordinates. They further report the relationship between the cubic anisotropy

parameters to be K4 = −2K6 with K4 < 0 for all temperatures.

Fcubic =K4 (T ) ·
(
ex (θ, ϕ)2 ey (θ, ϕ)2 + ex (θ, ϕ)2 ez (θ, ϕ)2 + ey (θ, ϕ)2 ez (θ, ϕ)2)

+K6 (T ) ·
(
ex (θ, ϕ)2 ey (θ, ϕ)2 ez (θ, ϕ)2) (3.1)
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3.2. Magnetic Properties of B20 FeGe

Previous FMR measurements on bulk cubic FeGe are dominated by four papers from S. Har-

aldson published with different co-authors throughout the 1970s, with the first one as early

as 1971. In the latter [70] two single crystal samples of FeGe, one being a disk with 0.7 mm

diameter and 0.07 mm height and the other a sphere with 0.4 mm diameter, are investigated

at 9.5 GHz and 35 GHz. The obtained spectrum is interpreted as three resonance lines, with a

mostly temperature independent uniform mode around 300 mT at 9.5 GHz and two strongly

temperature dependent resonances interpreted as spin waves in the conical phase, the first ap-

pearing between 250 K and 150 K and the second between 150 K and 80 K. The penetration

depth of the microwaves is estimated to be around 1µm. The measured samples were pro-

vided by M. Richardson, who also gave the first description of the B20 FeGe structure [27,28].

The second [71] and third [72] publication focus on the uniform mode and the two tempera-

ture dependent resonance lines respectively. The last of the four papers [73] summarizes the

to this point obtained knowledge about FeGe. With a frequency range between 3.2 GHz and

35 GHz and a temperature range between 4.2 K and 300 K a deep understanding of the mag-

netic properties was possible. The g-factor obtained for the uniform mode is g = 2.07 for all

frequencies. Unidirectional anisotropy was never observed. For bulk FeGe the relaxation fre-

quency λ is reported as 4× 109 s−1 [71], from which the damping parameter can be calculated

through α = λ/µ0γM. This gives a range for the damping parameter between 0.05 and 0.09 for

temperatures between 115 K and 257 K. Several values for the damping parameter α were

reported for cubic FeGe and are listed in Tab. 3.1. Also multiple values for the DMI constant

and the exchange stiffness are reported for thin films. A list can be found in [74]. In this thesis

the values obtained by Turgut [75] are used. They were determined through temperature-

dependent magnetization measurements as A = 1.37× 10−12 J m−1 ± 0.13× 10−12 J m−1 and

d = 2.48× 10−4 J m−2 ± 0.26× 10−4 J m−2.

Value for α Sample type Temperature Year Source

0.28± 0.02 - - 2017 [76]

0.05 - 0.09 bulk 115 K - 257 K 1974 [71]

0.0036± 0.0003 thin film 310 K 2017 [77]

0.038± 0.005 thin film 258 K 2017 [78]

0.066± 0.003 thin film 264 K 2017 [79]

Table 3.1.: Different damping parameters α reported in literature. The first value is the
result of a finite-element based micromagnetic simulation. All other values were
optained through microwave resonance experiments of FeGe.
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3. Sample Characteristics

3.3 Sample Preparation

The examined FeGe samples are all from the same batch and the same ones used in my Bach-

elor thesis [16], where the synthesis is described in detail. The samples were synthesized by

Iliya Radulov at the Deutsches Elektronen-Synchrotron in Hamburg, using a Kawai-type [80]

Multianvil Apparatus with Waker-type module [81]. First, stoichiometric FeGe was melted

three times by induction heating and then annealed at 1000 K for 130 h. Afterwards, a high

pressure high temperature synthesis was undertaken at 7 GPa and 1075 K on a machined

cylindrical sample. The brittle sample broke into smaller pieces during removal. These

smaller parts were not altered any further so the samples retain their broken edges.

In this thesis three different samples are used. A “disk shaped” sample (Fig. 3.5) for crystal-

lography, an “L-shaped” sample (Fig. 4.1) for angular dependent FMR and a “cylindrical”

sample (Fig. 4.9) for temperature dependent FMR and magnetometry measurements.

3.4 X-ray Diffraction Measurements

ϑ ϑ
2ϑ

X-ray source Detector

sample

Figure 3.4.: Schematic illustration of a XRD experiment with Bragg-Brentano geometry.
Light from a X-ray source hits the (in this case spinning) sample under the
angle θ, which is also the exit angle at which a detector measures the diffracted
light. Therefore the angle between incident and diffracted light is 2θ. In the
course of the experiment θ is varied. The zero-background sample holder is not
depicted.
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3.4. X-ray Diffraction Measurements
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Figure 3.5.: XRD spectra of the “disk shaped” FeGe sample. The drawn in crystallographic
planes of cubic FeGe can be calculated with Eq. 3.2 and the lattice parameter
of cubic FeGe introduced in Sec. 3.1. An inset in the upper left corner shows
an optical microscope image of the sample.

X-ray diffraction (XRD) is a standard technique of crystallography and allows to investigate

the crystall structure of a sample. For this it uses the aligned planes formed by atoms inside a

crystall lattice to impose a path difference between X-rays diffracted at different levels of the

planes. This path difference is tuned by the incident angle θ of the X-rays until constructive

interference occurs and a maximum of intensity can be measured at an exit angle which is

equal to the incident angle. The angle can be calculated using Bragg’s law [82], written as

λ = 2phklsin (θB) . (3.2)

λ is the wavelength of the X-rays, phkl the separation of the respective aligned planes, and

θB the incident angle of constructive interference. To differentiate between planes, the Miller

indices hkl are used [83]. The separation of the planes phkl can then easily be calculated as

phkl =
a√

h2 + k2 + l2
. (3.3)

Here a is the lattice parameter [84, p.4]. In a powder or perfectly polycrystalline sample

all possible Bragg diffraction peaks can be measured, since every orientation of the crystal

is present. A difference of intensity between a powder and a sample spectrum can then

reveal possible texturations in the sample. X-Ray diffraction was measured with the help of

Mehmet Acet in a Phillips PANalytical X’Pert PRO on a “disk shaped” FeGe sample. The
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3. Sample Characteristics

sample was spinning during the measurement, self-defeating when looking for texturation,

but necessary to minimize the effects of the irregular surface. For that it was placed with

vacuum grease on a zero-background sample holder. The angle steps were ∆2θ = 0.001◦.

Non-monochromatized X-rays from a Cu X-ray source were used in a Bragg-Brentano geom-

etry [85], which is depicted in Fig. 3.4. The results can be seen in Fig. 3.5. Due to the small

sample size and an irregular surface the sample is hardly suitable for XRD measurements.

Nevertheless diffraction peaks are visible in the spectrum. All peaks consisting of more than

one data point can be associated with a crystallographic direction of cubic FeGe. Therefore

it can be assumed, that cubic FeGe is the only ordered crystal structure in the sample. This

doesn’t include amorphous structures or local variations of compositions, which this mea-

surement technique isn’t sensitive for. A comparison of peak intensities to find a potential

texturation is not possible, due to the already mentioned spinning sample. The Scherrer

equation [86] is also not applicable for the determination of the crystallite size, due to its

upper size limit of about 100 nm.
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4 Dynamic Unidirectional Anisotropy

4.1 Angular Dependent Ferromagnetic Resonance

For a better understanding of the magneto-dynamic properties of FeGe it is imperative to

know the energy landscape of the magnetization, which is described by the free energy density

introduced in Sec. 2.1. A measurement technique to obtain this information is FMR. One

way to perform an FMR measurement is to measure the magnetic field dependent microwave

reflection of a resonator, in which the sample is placed. When the sample is in resonance, the

resonator is detuned, which can be measured as an increased microwave reflection [20, p. 12].

The sensitivity of the measurement can be increased through the usage of a magnetic field

modulation, whilst its frequency is the reference signal to a Lock-In amplifier. This results

in the measurement of the differentiated resonance spectrum. FMR measurements were

performed with a conventional Bruker X-band FMR spectrometer using a cylindrical TE011

cavity. The sample was a millimeter sized “L-shaped” polycrystalline FeGe flake weighing

17.0 mg ± 0.5 mg, which is depicted in Fig. 4.1. Since FeGe is not ferromagnetic at room

1 mm 1 mm 1 mm

a) b) c)

0°

180°

Figure 4.1.: Optical microscope images of the “L-shaped” FeGe sample, which was used for
the angular dependent FMR measurements in this thesis. The images show the
front a), back b) and side c) of the sample. The front points to the right in
image c). In frame c) the respective 0◦ and 180◦ magnetic field directions of the
FMR measurements are shown. The axis of rotation in the measurement lies
perpendicular to the arrows in the image plane.

temperature, the sample had to be cooled for measurements. Therefore, a cooling system

based on liquid nitrogen was installed into the FMR equipment. The liquid nitrogen inside

a vacuum insulated can was evaporated with a fixed heating voltage and then transported
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4. Dynamic Unidirectional Anisotropy

through a transfer line into a glass tube, which was mounted inside the cavity. On the

way the gas passed a heating coil and a temperature sensor. The voltage applied on the

heating coil was controlled by a proportional–integral–derivative controller (PID) comparing

a chosen temperature setpoint to the measured temperature at the sensor. The temperature

sensor itself had to be fixed a few centimeter below the sample outside the cavity to not

disturb the measurement. The total temperature error is assumed to be as high as ± 5 K
2 K.

The error is asymmetric, due to a further warming of the nitrogen gas between temperature

sensor and sample. The relative temperature error between two measurements at the same

temperature can be neglected. With this setup a temperature range between 120 K and

700 K is accessible. To guarantee a successful measurement one has to be sure that the

system reached a thermal equilibrium by allowing for enough adjustment time. To be able to

evaluate the FMR results, the sample is approximated as a flat cylinder. When the magnetic

field lies in the base plane, the direction is called in-plane (ip) and when its perpendicular

to the base plane its called out-of-plane (oop). In Fig. 4.2 the recorded FMR spectra can be

seen as a contour plot. The temperature was T = 275 K ± 5 K
2 K. A time constant of 40.96 ms

and a conversion time of 81.92 ms were used together with a microwave power of 0.62 mW.

The modulation frequency was 100 kHz with a modulation amplitude of 1× 10−3 T. The

positions of maximum microwave reflection are marked with yellow dots, which are, due to

the asymmetric line shape (see Sec. 2.3.1) not identical with the resonance field. However,

they follow the same angular symmetry as the resonance field. Due to the polycrystallinity

of the sample one would expect that the only angular change of the resonance field is caused

by the shape anisotropy of the sample explained in Sec. 2.2.2. The angular dependence

indeed shows a uniaxial anisotropy contribution with a maximum resonance field position

in the oop-direction (by definition 0◦ and 180◦) and a minimum resonance field in the ip-

direction of the sample. But additionally, the resonance field at 180◦ is lower than at 0◦, thus

there is a unidirectional anisotropy, i.e. a shift of the resonance field after magnetic field

inversion (see Fig. 4.3). Through the assumption of a free energy density model one can

now extract sample parameters like the demagnetization tensor and quantify the strength of

the unidirectional anisotropy. The model is

F = ~M · ~BUD

︸ ︷︷ ︸
unidirectional anisotropy

+
µ0

2
· ~M ·N · ~M

︸ ︷︷ ︸
shape anisotropy

− ~M · ~B
︸ ︷︷ ︸
Zeeman term

. (4.1)

The energy contribution of the unidirectional anisotropy in this model is the scalar prod-

uct of the normalized magnetization with a phenomenologically motivated unidirectional

anisotropy field ~BUD imposing a one fold symmetry on the system. In the measurement the

unidirectional axis lies along the oop-direction of the flat cylinder, which is from now on per

definition the z-direction of the coordinate system. This leads to a unidirectional anisotropy

field of ~BUD = (0, 0,KUD/M), where KUD is the unidirectional anisotropy constant. The de-
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4.1. Angular Dependent Ferromagnetic Resonance
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Figure 4.2.: Contour plot of the angular dependent FMR spectra. The sample was rotated
from ip to oop, while 0◦ and 180◦ denote the oop-directions. The frequency
was f = 9.467 GHz ± 0.001 GHz at a temperature of T = 275 K ± 5 K

2 K. A
linear background was subtracted. The yellow dots indicate the zero crossing of
a resonance spectrum, which corresponds to the maximum microwave reflection.
For improved clarity only every fifth maximum is depicted. The red and blue
lines indicate the respective resonance spectra depicted in detail in Fig. 4.3.
They are 180◦ degree apart from each other, which is identical to a magnetic
field inversion.

magnetization tensor N can be calculated using the equivalent ellipsoid proposed by Beleggia

et al. [41]. The z-component then becomes

N zz = 1 +
τ

π

(
1 + log

(
τ 2

16

))
+O

(
τ 3
)

(4.2)

with N xx = N yy and 1 −N zz = 2 ·N xx. Here τ = h/2r is the aspect ratio with the height

h and the diameter 2r of the cylinder. We can now express Eq. 4.1 in spherical coordinates

taking our considerations into account, which results in

FS =−KUD · cos (θ) + n · µ0

2
·M2 · cos (2θ)

−M ·B · (cos (θ) cos (θB) + cos (φ− φB) sin (θ) sin (θB)) .
(4.3)

The angles (θ, φ) are the angles of the magnetization and (θB, φB) the angles of the external

magnetic field. The constant n is a factor scaling the demagnetization and is linked to the

aspect ratio of the cylinder by n = (2π+3τ+3τ log(τ2/16))/4π. Terms not dependent on the magne-

tization angles were ignored. This model is used to fit the experimental angular dependence

19
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Figure 4.3.: Comparison between ferromagnetic resonance spectra at −0.3◦ and 179.7◦. The
frequency was f = 9.467 GHz ± 0.001 GHz at a temperature of T = 275 K ± 5 K

2 K.
The general lineshape of FeGe visible in this Figure is discussed in Sec. 4.5.1.

of the FMR data. A Mathematica program written by Benjamin Zingsem [47] was used.

It solves Eq. 2.15 for a given set of magnetic field angles and minimizes the difference to

an interpolation of the measured data by varying the parameters. Due to the variety of

damping parameters α reported in literature (see Sec. 3.2), for most of which α � 1, the

limiting case α→ 0 was chosen for these calculations. A set of start values has to be passed

to the program beforehand. To solve the equation, the angles of the magnetization have to

be known. Therefore the free energy density is minimized with regards to the magnetiza-

tion angles, while the magnetic field is assumed to be the measured resonance field. The

Value Error

KUD 873 J m−3 ±175 J m−3

n 0.37 ±0.01

t 0.015 T ±0.001 T

Table 4.1.: Fit parameters (Fig. 4.4) of the angular dependent FMR measurement (Fig. 4.2)
of the “L-shaped” FeGe sample (Fig. 4.1). The errors were estimated in such a
way, that with the other parameters fixed a change of the respective parameter
by its error yields a mean difference between fit and data, which is 1.1 times the
original difference.

fitparameters were KUD, n and an additional value t shifting every zero crossing position
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4.1. Angular Dependent Ferromagnetic Resonance
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Figure 4.4.: a) Comparison between the fit (see text) and the angular dependent FMR-
measurement in Fig. 4.2. Only every fifth data point is plotted for clarity.
b) Difference between the fit and the data points in a). In a perfect fit these
points should follow a Gaussian distribution around 0 T. The red and blue lines
indicate the angles of the respective resonance spectra depicted in Fig. 4.3.

by the same amount to compensate for the asymmetry of the lineshape. The magnetization

of M = 98 380 A m−1 was taken from temperature dependent magnetization measurements

from a different sample of the same synthesis process at 275 K, which are discussed in the

next section. The obtained values can be found in Tab. 4.1 and the corresponding compari-

son between fit and measurement in Fig. 4.4. The factor n = 0.37 corresponds to an aspect

ratio of τ = 0.08, meaning that the diameter of the cylinder is roughly 10 times the height,

which does not agree with the sample shape in Fig. 4.1. The in Sec. 4.5 discussed lineshape

suggest a distribution of resonance lines rather than a single individual line, while the high-

est contribution to this broadening is shown to stem from inhomogeneous demagnetization

fields inside the sample. The analysis of the angular dependent FMR position as done in

this section assumes that the point of highest amplitude always refers to the same part of

the sample. The value of n only describes the shape anisotropy of this part of the sample.
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4. Dynamic Unidirectional Anisotropy

Due to the penetration depth of the microwaves of 1 µm [70] the shape anisotropy can not

easily be determined from the general sample shape.

This section shows, that angular dependent FMR measurements of FeGe display a unidirec-

tional anisotropy. A phenomenological unidirectional magnetic field can be used to quantify

the strength of this effect. Such a field could be explained by exchange bias, which is further

discussed of the next section.

4.2 Vibrating Sample Magnetometry
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Figure 4.5.: Hysteresis loop of FeGe between 9 T and −9 T measured at 275 K via vibrating
sample magnetometry (VSM). The measurement was performed along the uni-
directional axis, in this case the out-of-plane orientation, identified before using
FMR. The inset depicts a detailed view in the vicinity of 0 T. No significant
shift, i.e. exchange bias, can be seen.

Unidirectional anisotropy can be caused by exchange bias [24]. Hysteresis loops obtained

along the unidirectional axis of the sample can be used to check whether any asymmetry

in the magnetization is present. The “L-shaped” sample discussed in the last section was

destroyed in the process of this work and couldn’t be used for these measurements. A

“cylindrical” FeGe sample produced in the same synthesis process, which is depicted in Fig.

4.9, was taken instead. The unidirectional axis was identified as the oop-direction beforehand

through FMR measurements, which are shown in Fig. A.1. Hysteresis and temperature
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Figure 4.6.: Hysteresis loop along the out-of-plane (hard axis) (blue) and in-plane (easy axis)
(red) directions of FeGe between 9 T and −9 T measured at 275 K via VSM. The
inset depicts the framed area inside the plot.

dependent magnetization curves were then obtained through VSM [87] by Marina Spasova.

This technique measures the voltage induced inside pickup coils by the magnetic stray field

of a vibrating sample. This voltage can then be associated with a certain absolute magnetic

moment. It is common to calculate the magnetization, which is the magnetic moment per

volume, through division with the sample weight and multiplication with the density. The

hysteresis loop of FeGe at 275 K can be seen in Fig. 4.5. Evidently no exchange bias or

additional asymmetry is present. Since the unidirectional axis coincides with the magnetic

hard axis in this case, an additional hysteresis loop along the easy axis can be used to

determine the magnetic anisotropy energy density (MAE), which is the difference between

the areas below the curves. In Fig. 4.6 both hysteresis loops can be seen. Along the

hard direction a larger magnetic field is needed to saturate the sample. Accordingly, the

hysteresis loop of the hard axis can be identified as the one with saturation at higher fields.

Both hysteresis loops saturate in a linear dependence with almost identical slopes. The

hysteresis is closed after 200 mT, yet the magnetization is still rising. This can happen in

a pure ferromagnet along the hard axis. Then the magnet moments are all aligned, but

point along an intermediate direction, which is energetically favorable. However, in this case

both the hard axis and the easy axis show this phenomenon equally, therefore an additional
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Figure 4.7.: Hysteresis loops of Fig. 4.6 after compensation of the linear contributions.

contribution to the magnetization must be considered and subtracted as a linear fit before

the MAE can be determined through integration. This has been done in Fig. 4.7. The

difference between the numeric integration of both curves gives the MAE:

EMAE = 13 600 J m−3 ± 400 J m−3

The error stems from the standard error of the linear model fit. The MAE can now be used

to calculate the difference of the resonance fields in a saturated system between the hard

and easy axis. For this purpose it must be divided by the saturation magnetization MVSM:

MVSM = 165 177 A m−1 ± 74 A m−1

Then the field difference ∆BVSM can be calculated as

∆BVSM =
EMAE

MS

= 82.3 mT± 2.4 mT. (4.4)

The only anisotropy expected for static magnetometry measurements of polycristalline FeGe

is shape anisotropy. Therefore the value of ∆BVSM in Eq. 4.4 should give the difference

between the easy and hard direction in an FMR measurements at 275 K of the “cylindrical”

FeGe sample. Due to its dependence on the shape it is only valid for this particular sample.
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4.2. Vibrating Sample Magnetometry

However, the highest measured difference between the easy and hard direction in the angu-

lar dependent FMR measurements of the “L-shaped” sample is ∆BFMR = 100 mT± 1 mT,

which is the same order of magnitude as the calculation from VSM measurements. While
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Figure 4.8.: Temperature dependent magnetization of the FeGe sample shown in Fig. 4.9.
The magnetization was measured along the hard direction of the sample at a
constant magnetic field of both 850 mT (blue) and 350 mT (blue). The measure-
ment was performed from high to low temperatures. The plot follows the typical
shape of a ferromagnetic magnetization below the Curie temperature.

hysteresis measurements along the easy and hard axis at a certain temperature are important

for comparison with angular dependent FMR measurements a temperature dependent mag-

netization measurement is important for comparison with temperature depentend FMR mea-

surements. Therefore temperature dependent magnetization measurements were performed

at both Bext = 350 mT and Bext = 850 mT for comparison with the X-band and K-band

FMR measurements respectively. To measure roughly at the same external magnetic field

as the resonance field in FMR is important, due to the field dependence of the magnetic

phase diagram. The temperature dependent FMR measurements were all performed with

the external field pointing along the hard axis, which is also the unidirectional axis. This

can cause an additional error in magnetization measurements, due to the already mentioned

energetically favorable intermediate direction of the magnetization, which can occur. Figure

4.7 demonstrates, that above Bext = 200 mT at 275 K this error becomes negligible. The

measurement at both external fields can be seen in Fig. 4.8. The biggest differences between

both curves are at temperatures below 180 K, where the already mentioned hard axis effects

come into play at 350 mT and above 270 K, where the phase transition to paramagnetism

begins.
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4. Dynamic Unidirectional Anisotropy

4.3 Temperature Dependent Ferromagnetic Resonance

1 mm 1 mm 1 mm

a) b) c)

Boop2

Boop1

Figure 4.9.: Optical microscope images of the “cylindrical” FeGe sample used for tempera-
ture dependent FMR and magnetometry measurements. The images show the
front a), back b) and side c) of the sample. The front points to the right in image

c). In frame c) the respective oop-directions ~Boop1 and ~Boop2 for the magnetic
field as they are called from now on are depicted.

An insight into the temperature dependence of the unidirectional anisotropy is critical for

the further understanding of this effect. Therefore the resonance spectrum was measured

for opposite magnetic field directions at different temperatures. For this the axis with the

highest unidirectional anisotropy, identified as the oop-direction in FMR measurements (as

can be seen in Fig. A.1) of the “cylindrical” FeGe sample (Fig. 4.9), was chosen. Since only

the two oop directions of the external field are measured and discussed they are denoted as

oop-direction 1 and oop-direction 2 as depicted in the figure. The temperature has to be

changed in consecutive temperature steps for the whole measurement, because of possible

magnetic phase transitions. For the same reason overshoots in temperature have to be

avoided. For convenience, the temperature is set to the respective value and then both

directions are measured in direct succession. This also avoids an additional temperature

error. Figure 4.10 shows exemplary one of the hard-axis FMR spectra along oop-direction 1.

It was obtained at a temperature of T = 130 K ± 5 K
2 K and a X-band microwave frequency

of f = 9.4394 GHz± 0.0001 GHz. For every temperature a modulation frequency of 100 kHz

was used with a modulation amplitude of 1.5× 10−3 T. The time constant was 10.24 ms

with a conversion time of 20.48 ms and a microwave power of 1.975 mW. The spectrum is

disturbed by two different contributions. The first one are resonances in the helical/conical

phase mentioned in Sec. 3.2, which are strongly temperature dependent. The second one is

the unusual broad lineshape of the uniform resonance, which is discussed later in Sec. 4.5.

One characteristic of the resonances in the helical/conical phase is its restriction on those,
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Figure 4.10.: X-band FMR spectrum with the magnetic field pointing along
the hard axis/oop direction measured at T = 130 K ± 5 K

2 K,
f = 9.4394 GHz± 0.0001 GHz. The measurement was done four times
and then averaged to account for small temperature oscillations around the
setpoint. The yellow dot indicates the inflection point p− (see text).

i.e. it is always at lower fields than the uniform resonance mode in the ferromagnetic state.

Due to the disturbed lineshape it is not possible to identify any Lorentzian or Dysonian line

in the data, which were introduced in Sec. 4.5.1. A different approach is to select a certain

feature in the spectrum, which is visible at every temperature and at a high enough field to

be outside of the helical/conical phase. This feature is then tracked temperature dependent

and can nevertheless provide useful information about the unidirectional anisotropy. Here,

the local minimum associated with the highest field position of the differentiated resonance

curve was chosen. It is the inflection point of the resonance curve and from now on called

p− (see yellow dot in Fig. 4.10). FMR measurements were performed between 130 K and

280 K for oop-direction 1 and oop-direction 2. The resulting contour plot of the differentiated

FMR spectra can be seen in Fig. 4.11. The respective amplitude minima associated with

the highest field position is marked with a yellow dot in every spectrum. The temperature

dependent behaviour of p− is typical for the hard axis of a polycrystalline ferromagnet below

the Curietemperature, which is further explained in Sec. 4.5. Due to shape anisotropy, whose

energy contribution is proportional to the squared magnetization (Eq. 2.8), the temperature
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Figure 4.11.: FMR spectra as a grayscale contour plot as a function of the external magnetic
field and the temperature for a) oop-direction 1 and b) oop-direction 2. The
temperature was lowered with the progression of the experiment. All frequen-
cies of the spectra lay in an interval of 5 MHz around 9.436 GHz. The gray scale
is depicted on the left side of each plot. Yellow dots are used to indicate the
high field inflection points of the resonance curve as explained in the text. Be-
low 0.3 T the strongly temperature dependent resonances of the helical/conical
phase are visible for temperatures below 260 K.
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Figure 4.12.: The feature positions p− extracted from Fig. 4.11 depicted in detail. The
position is the amplitude minimum associated with the highest field position,
which is the inflection point of the resonance curve. p− of oop-direction 1 and
oop-direction 2 are compared. The field difference between both directions is
due to unidirectional anisotropy. The switching of oop-direction 1 and oop-
direction 2 at T = 280 K ± 5 K

2 K is due to the broadening of the resonance line
at higher temperatures.

dependence of p− follows roughly the temperature dependence of the magnetization, which

is depicted in Fig. 4.8. Other contributions like the changed equilibrium position of the

magnetization must also be taken into account, but play a minor role in the overall behavior.

The change of direction of p− at 280 K is due to the choice to track the inflection point.

While getting closer to the Curie temperature, the FMR resonance line broadens [22, p. 770]

and therefore also shifts the inflection point away from the resonance field. That means that

even when the field difference of the inflection points is 0 mT unidirectional anisotropy can

still be present for the resonance position. p− for oop-direction 1 and oop-direction 2 can

be seen in detail in Fig. 4.12. The measurement not only exhibits unidirectional anisotropy,

but also shows a temperature dependence of the magnetic field difference between p− of

both directions at the same temperature. When p− of oop-direction 1 is subtracted from

oop-direction 2 Fig. 4.13 is obtained, which gives the temperature dependent unidirectional

field difference ∆p−. Starting from 130 K the difference gets larger until a reversal point

around 260 K with a difference of ∆p− = 16.4 mT± 1 mT, from which on a fast decline with

a zero-crossing follows. The zero-crossing could give rise to the assumption of an inversion
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4. Dynamic Unidirectional Anisotropy

of the unidirectional anisotropy. However, in the next section its origin is identified to be

the broadening of the resonance line at higher temperatures.
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Figure 4.13.: Temperature dependent difference ∆p− of p− between oop-direction 1 and oop-
direction 2 from Fig. 4.12. Note, that this plot does not show the difference of
the resonance field, but the differences of the inflection points.

4.3.1 Introduction of a Magnetization-Dependent Temperature

Model

In the last section the deviation in the resonance spectrum of oop-direction 1 compared to

oop-direction 2 (Fig. 4.12) was described through a field offset, which can be seen in Fig. 4.13.

The behavior of this offset can also be explained by a temperature offset. It could for example

occur due to asymmetric microwave heating. If this is true one should be able to reproduce

the function course of Fig. 4.13 by using only one temperature dependent FMR measurement,

w.l.o.g of oop-direction 1, and an additional temperature offset. Due to our limitation to

discrete temperature steps in a finite measurement one has to interpolate the data first. The

interpolation for oop-direction 1 can be seen in Fig. 4.14. In this model Boop1 (T) corresponds

to oop-direction 1 and Boop1 (T + ∆T) would then correspond to oop-direction 2. Therefore

with the right ∆T Fig. 4.13 should follow the difference Boop1 (T + ∆T)− Boop1 (T) between

them. A look at Fig. 4.12 alone shows that a temperature difference, which corresponds to an

arbitrary shift in the horizontal axis for each point, is able to bring both directions to coincide

in the same way an arbitrary vertical shift does. One can now calculate the temperature
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Figure 4.14.: Spline interpolation of the temperature dependent position of p− of oop-
direction 1, which is depicted in Fig. 4.12, together with the actual data points.
The idea of a temperature offset is illustrated by displaying p− extracted from
the interpolation with and without offset.

difference necessary to obtain Fig. 4.13. It is plotted in Fig. 4.15. The temperature difference

∆T between both oop-directions rises with falling temperature beginning at 280 K with a

shoulder at 250 K until it reaches a maximum at around 200 K with ∆T = 7.1 K ± 0.8 K.

After that it begins to fall again for lower temperatures. Through the tracking of a feature

position, which is sensitive to temperature change, instead of a real resonance field, it is

possible to accurately determine the temperature change in the sample without worrying

about otherwise important factors like lineshape, resonance distributions or resonance line

distortions. This temperature change can also explain the zero-crossing of the field difference

seen in Fig. 4.13. As already explained the FMR resonance line broadens while getting closer

to the Curie temperature. Due to the evaluation of the inflection point this broadening has

a higher impact on p− at high temperatures than the shift of the resonance position. Later

in this work this temperature change is explained as asymmetric microwave heating due to

magnon-scattering. The downside of the feature position choice is a possible field dependence

of the unidirectional anisotropy. Since the unidirectional anisotropy is explained by effects

related to the resonant absorption of the microwaves, it is expected to become stronger

with larger amplitude of the resonance curve, that is more absorbed microwave power. The

temperature difference shown in Fig. 4.15 should be treated with caution, since it was not

determined at the position with highest amplitude, which is the resonance position.
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Figure 4.15.: Temperature dependent temperature difference between oop-direction 1 and
oop-direction 2, whereas the x-axis denotes the temperature of oop-direction 1,
while the temperature of oop-direction 2 would then be the same temperature
plus the additional ∆T. When the errorbar of the plotted value is smaller than
the pointsize it is not depicted.

4.4 Adapted Unidirectional Anisotropy Model

The results so far motivate the introduction of a new model for the free energy density

of FeGe in FMR measurements. This time no unidirectional anisotropy is assumed, but a

magnetization-dependent temperature, which in turn affects the magnetization. It is mod-

eled by a temperature T̃ (θ, φ), which can lie between T and T + ∆T . ∆T is the maximum

change of temperature after inversion of the magnetic field. The general model can be written

as

F =
µ0

2
· ~M

(
T̃ (θ, φ)

)
·N · ~M

(
T̃ (θ, φ)

)

︸ ︷︷ ︸
shape anisotropy

− ~M
(
T̃ (θ, φ)

)
· ~B

︸ ︷︷ ︸
Zeeman term

.
(4.5)
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Figure 4.16.: a) comparison between the fitted temperature model and the measured zero
crossings of the angular dependent FMR-measurement visible in Fig. 4.2. Only
every fifth data point is depicted for clarity. b) field difference between the fitted
model and the data points. In a perfect fit these points would be normally
distributed around 0 T. The red and blue lines indicate the angles of the
respective resonance spectra depicted in Fig. 4.3.

Here only the shape anisotropy and the Zeeman term are considered. When written in

spherical coordinates and with a specific dependence of T̃ on T and ∆T this model becomes

FS = n · µ0

2
·M

(
T̃ (θ, φ)

)2

cos (2θ)

−M
(
T̃ (θ, φ)

)
B (cos (θ) cos (θB) + cos (φ− φB) sin (θ) sin (θB))

(4.6)

with T̃ (θ, φ) =T +
∆T

2
(1− cos (θ)) . (4.7)

The highest difference in temperature happens with the magnetization along the z-direction

(θ = 0◦ and θ = 180◦) of the coordinate system. How the dependence on the magnetization

angles affects the calculation of the resonance position is described in Sec. A.2. Using

this model for the angular dependent spectra (Fig. 4.2) the parameters in Tab. 4.2 were
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obtained. The shift t due to the asymmetry of the lineshape and the demagnetization factor

n were assumed again as fit parameters (see Sec. 4.1). The magnetization at the respective

temperature was taken from the magnetization measurements at 350 mT seen in Fig. 4.8.

The fit itself can be seen in Fig. 4.16. The biggest difference between the phenomenological

Value Error

∆T 3.2 K ±0.6 K

n 0.40 ±0.01

t 0.016 T ±0.001 T

Table 4.2.: Fit parameters (Fig. 4.16) of the angular dependent FMR measurement (Fig.
4.2) of the “L-shaped” FeGe sample (Fig. 4.9). The error was determined the
same way as in Tab. 4.1.

fit in Fig. 4.4 and the temperature model is a better accordance between 90◦ and 270◦. The

magnetization change not only influences the height of the angular dependent resonance

curve, but also its width through a change of the equilibrium position of the magnetization.

This can’t be modeled with the phenomenological unidirectional anisotropy. This model is

better suited to describe the experimental results.

4.5 Ferromagnetic Resonance Lineshape

As mentioned in Sec. 4.3 the FMR lineshape of FeGe is distorted and in general does not

represent the types of resonance lines discussed in Sec. 2.3.1. In this section this lines shape

distortion is described in detail and several aspects, which could lead to such a distortion,

are discussed.

4.5.1 Description of the FeGe Lineshape

At temperatures above 270 K the FMR lineshape is Dysonian (see Sec. 2.3.1). Here the

sample volume in the cavity causes the asymmetry, as can be seen in Fig. 4.17, rather than

the penetration depth itself, which is approximately 1µm [70] for FeGe at X-band frequen-

cies. This can occur, when the sample in resonance disturbs the microwave mode in the

cavity. At temperatures below 270 K the lineshape becomes broader and starts to deviate

from the Dysonian lineshape. Below 240 K resonances in the helical/conical phase (Sec. 3.2)

start to appear in X-band FMR measurements and distort the lineshape even more. To

separate the uniform mode and the helical/conical modes one has to conduct measurements

at K-band or Q-band frequencies, where the helical/conical modes do not appear [73]. This

has been done at various temperatures between 88 K and 290 K at K-band frequencies. For
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4.5. Ferromagnetic Resonance Lineshape

the measurements a Bruker ER 6706KT cavity was placed inside an Oxford Instruments CF

935 helium cryostat for cooling. The cavity and the cryostat both have a temperature sensor,

which were calibrated beforehand with a CX-SD temperature sensor at the sample position,

thus leading to a temperature error of ±2 K, which is smaller than in the nitrogen X-band

measurements (Sec. 4.3). The temperature is stabilized by a PID. A modulation frequency

of 100 kHz was used with a modulation amplitude of 0.4× 10−3 T. The time constant was

5.12 ms with a conversion time of 10.24 ms and a microwave power of 1.975 mW. An FMR

measurement at T = 88 K ± 2 K can be seen in Fig. 4.18. The external field points

along oop-direction 1. Due to the strong asymmetry of the lineshape it is not possible to

properly define a full width at half maximum. To still define a linewidth the peak-to-peak

linewidth, that is the distance between maximum and minimum position in the derivative

of the absorption spectrum, was used. In Fig. 4.18, these points are indicated by a blue and

a yellow dot. The field difference between the inflection points is then the linewidth. For

each measured temperature, the inflection points are plotted in Fig. 4.19 together with a

grayscale contour plot of the FMR spectra. In the same figure the temperature dependent

linewidth is plotted and compared with the temperature dependent magnetization with an

external magnetic field of 850 mT pointing along the oop-direction. The resemblance of

the temperature dependence of the magnetization and the temperature dependence of the

linewidth is no typical result for FMR measurements. From the intrinsic linewidth seen in

Eq. 2.16 one would suggest a reciprocal dependence on the magnetization. The following

interpretation of the linewidth is based on the assumption that a distribution of resonance

lines is visible rather than a single very broad line. This assumption rests on the strong de-

viation of the resonance line from a Lorentzian or Dysonian lineshape. The inflection points

marked in fig. 4.19 can then be viewed as the borders of the resonance line distribution.

A distribution in general can have different origins: a) a polycrystallinity of the sample. This

explanation can only be a minor contribution as shown in Sec. 4.5.2 by a detailed theoretical

analysis of the distribution, which would follow from the magnetocrystalline anisotropy in

FeGe. b) a temperature gradient in the sample. This, however, can not explain the tempera-

ture dependent behavior of the linewidth. Along the hard axis it is expected, that with lower

temperature and therefore higher magnetization the resonance line moves to higher fields. It

is not possible, that the resonance distribution spreads to lower fields at lower temperatures,

which is, however, the case. c) A inhomogenous demagnetization field inside the sample.

The calculation of demagnetization fields in different geometries is a standard problem. It is

known that the local demagnetization field can vary strongly dependent on the position in-

side samples with non-ellipsoidal shape [39]. This causes an inhomogeneous line broadening

and can cause complex FMR lineshapes [88]. Haraldson and Smith [72] already used this

argument to explain certain features in the FeGe lineshape, which they called edge modes.

The skin depth of FeGe further adds to this, since the edge regions typically contribute the

most to varieties in the demagnetization field.
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Figure 4.17.: Asymmetry of the Dysonian lineshape at a temperature of T = 275 K± 5 K
2 K

for different sample sizes together with a photo of the respective sample. The
frequencies were a) f = 9.469 GHz ± 0.001 GHz b) f = 9.469 GHz ± 0.001 GHz
c) f = 9.470 GHz ± 0.001 GHz. For better comparison the resonance lines b)
and c) were shifted by 0.2 mT and 0.4 mT respectively. All resonance lines were
normalized. The volumes of each sample were calculated using the measured
weight and the density of FeGe: a) V = 2.07 mm3 ± 0.06 mm3, b) V =
0.84 mm3 ± 0.01 mm3 and c) V = 0.51 mm3 ± 0.06 mm3.
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Figure 4.18.: Resonance spectrum at T = 88.2 K ± 0.5 K. The external magnetic field points
along oop-direction 1. The frequency was f = 24.0870 GHz ± 0.0001 GHz.
The blue and yellow point indicate a local amplitude maximum and minimum
respectively and indicate the inflection points of the resonance line.

In the following two demagnetization tensors are chosen and the related temperature de-

pendent resonance position calculated. The two tensors represent the easiest and hardest

directions possible by shape anisotropy. It is checked, whether the resonance line distribution

is within these borders. To further simplify this calculation, it is assumed that all magnetic

moments in the sample are aligned along the principal direction of an ellipsoid. The demag-

netization tensor from Eq. 2.8 in such a case can be written in a diagonal form [29, p. 129]:

N =



Nxx 0 0

0 Nyy 0

0 0 Nzz


 . (4.8)

The influence of the demagnetization field on the resonance position is calculated using Eq.

2.15 and the free energy density

F =
µ0

2
· ~M ·N · ~M

︸ ︷︷ ︸
shape anisotropy

− ~M · ~B
︸ ︷︷ ︸
Zeeman term

. (4.9)
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Figure 4.19.: a) FMR spectra as a grayscale contour plot dependent on the external magnetic
field and the temperature for oop-direction 1. All frequencies of the spectra lay
in an interval of 12 MHz around 24.083 GHz. The yellow and blue dots represent
the respective local minimum and local maximum position of each spectrum
as indicated in Fig. 4.18. The red curve is the expected resonance position
of FeGe without any anisotropy. b) The temperature dependent peak-to-peak
linewidth of each spectrum in a) compared with the temperature dependent
magnetization at 850 mT along the oop-direction shown in Fig. 4.8.
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It contains only the Zeeman term and the shape anisotropy. The calculation is done as

described in Sec. 4.1. The only difference is that there is no resonance field, which can be

used for the minimization of the free energy density to calculate the equilibrium position of

the magnetization. Therefore a start field is needed, which lies above the assumed resonance

field. The direction of magnetization is then calculated and used to determine the respective

resonance field, which in turn is used again to calculate the magnetization direction. This

cycle is repeated until self-consistency is achieved, which is numerically implemented through

an upper bound of the difference between two consecutive calculated resonance fields. This

calculation was done w.l.o.g. along the z-axis using the demagnetization tensors Nxx,1 = 0,

Nyy,1 = 0 and Nzz,1 = 1 and Nxx,2 = 1, Nyy,21 = 0 and Nzz,2 = 0. These two represent

the hardest and easiest direction of shape anisotropy along the z-direction. Furthermore the

temperature dependent magnetization measured at 850 mT shown in Fig. 4.8 was used as the

fixed magnetization in this calculation. The results can be seen in Fig. 4.20. The resonance
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Figure 4.20.: Temperature dependent resonance field position calculated using Eq. 2.15 and
Eq. 4.9 with the external magnetic field pointing along the z-direction. The
respective demagnetization tensors were a) Nxx,1 = 0, Nyy,1 = 0 and Nzz,1 = 1
and b) Nxx,2 = 1, Nyy,21 = 0 and Nzz,2 = 0. A g-factor for FeGe of 2.07 [73]
was assumed together with a frequency of 24.083 GHz.

positions display the same temperature dependent behavior as the measured inflection points

in Fig. 4.19 a). At the same time these inflection points lie within the limits set by shape

anisotropy in Fig. 4.20. This shows that the behavior of the FeGe FMR linewidth can be

explained with inhomogeneous demagnetization fields.

39



4. Dynamic Unidirectional Anisotropy

Another important aspect of FMR is its intensity, which is the area below the resonance curve.

It can be determined through double integration of the respective FMR spectrum. Due to

the asymmetry of the resonance line the limits of integration have to be chosen consistently

at each temperature to make the intensity comparable. In this case the inflection points were

used as the limits. The results can be seen in Fig. 4.21. The intensity follows as expected

the temperature dependent behavior of the magnetization as in Fig. 4.8. The sharp rise

around 260 K could be caused by fluctuations of the order parameter in the vicinity of a

magnetic phase transition [89].

0.4

0.6

0.8

1

200 250150

T (K)

In
te

n
si

ty
 (

ar
b
. 
u
n
it
s)

0.2

300

0

100

Figure 4.21.: Temperature dependent FMR resonance line intensity of the FMR measure-
ment depicted in Fig. 4.19. The intensity was obtained trough double numeri-
cal integration of the FMR spectra.

4.5.2 Modeling the Ferromagnetic Resonance Spectra of a Poly-

crystal

A polycrystalline material consists of a finite number of single crystals. These are either ran-

domly oriented or textured in a way that preferred orientations exist within the sample. The

simplest way to model the magnetic response of a polycrystalline material is to assume that

every crystalline direction is equally abundant. The idea is, to calculate the resonance field

for each crystalline direction. This is approximated by a finite but sufficient number of sam-

ple directions. This approach implies non-interacting grains [21, p. 54], which was suggested

by VanVleck [90]. When these grains form a different geometry than a sphere together, the
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4.5. Ferromagnetic Resonance Lineshape

demagnetization field has to be taken into consideration. The methods for these calculations

are collectively presented in Sec. A.3. With them one is able to compute a distribution of

resonance lines of a polycrystalline material with and without shape anisotropy. Here only

the results are discussed. To determine whether the broadening of the resonance line at low

temperatures (Fig. 4.18 and Fig. 4.19) can be explained with the polycrystallinity of the

sample, the resonance distributions were calculated at a frequency of 24 GHz and a temper-

ature of 88 K. A magnetization M = 3.4× 105 A m−1, determined by VSM measurements,

was assumed. The magnetocrystalline anisotropy constants of K4 (88 K) = −3250 J m−3 and

K6 (88 K) = 6500 J m−3 were taken from [8]. Additionally a g-factor for FeGe of 2.07 [73] was

assumed. The results can be seen in Fig. 4.22 with and without the shape anisotropy, which

was calculated with Eq. 4.2 and an aspect ratio τ = 1/3 taken from Fig. 4.9. In the former

case only the distributions along the easy and the hard direction are shown. The FeGe line

broadening through the polycrystallinity is approximately 30 mT, while the line broadening

in Fig. 4.19 is as high as 350 mT. One can conclude that the broadening of the line cannot

be explained through the polycrystallinity. Another proof is that this line broadening is also

visible in measurements with single crystalline samples [71].
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4. Dynamic Unidirectional Anisotropy
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Figure 4.22.: Histogram of the probability for resonance positions, when the crystallographic
direction is randomly oriented. The green histogram is calculated with just the
magneto-crystalline anisotropy of Eq. 3.1 with K4 (88 K) = −3250 J m−3 and
K6 (88 K) = 6500 J m−3 taken from [8] a g-factor for FeGe of 2.07 [73] and
a rounded measured magnetization of 340 000 A m−1 at 88 K. The red and
blue histograms are the respective easy and hard direction of a cylinder with
an aspect ratio of τ = 1/3. The black line represents the resonance position
without any magnetocrystalline anisotropy.
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5 Magnon-Scattering Model for FeGe

In Sec. 4.3.1 a temperature model based on changes of the magnetization was used to describe

and quantify the unidirectional anisotropy. Here, the origin of the different temperatures due

to the magnetization is discussed on the basis of unidirectional dynamic magnetic excitations

in FeGe, which were introduced in Sec. 2.2.1 as spin-waves or magnons.

5.1 Dispersion Relation with and without DMI

The dispersion relation is the frequency (or energy) of a wave as a function of the wave

vector ~k = (kx, ky, kz). It can be derived through the high-frequency magnetic susceptibility

tensor in the same way as the position of FMR [13], which is, in fact, just a special case

(~k = 0) of the spin-wave dispersion. Assuming a spherical isotropic ferromagnet the magnetic

free energy density is the sum of the Zeeman term in Eq. 2.6 and the exchange term in

Eq. 2.5 [21, p. 179f.] and can be written as

FEX =
A

2M2
∇2 ~M − ~M · ~Bext. (5.1)

A is the exchange stiffness (Sec. 2.2.1). By solving the Landau-Lifshitz-Gilbert equation

(Eq. 2.9) with the modified Ansatz of Eq. 2.10 and using the functional derivative Eq. 2.3

of Eq. 5.1 to determine the effective field one can calculate the high-frequency magnetic

susceptibility tensor χ (Eq. 2.11) with the formalism developed by Benjamin Zingsem [47].

The modified version of the Ansatz has the form

~B = ~B0 +~b = ~B0 +~b0ei(kxx+kyy+kzz−(ωt+π
2 ))

and ~M = ~M0 + ~m = ~M0 + ~m0ei(kxx+kyy+kzz−ωt).
(5.2)

Additionally, the three-dimensional Jacobian matrix J~r has to be introduced, which is defined

as

J~ξ

(
~f
(
~ξ
))

=




∂f1
∂ξ1

∂f1
∂ξ2

∂f1
∂ξ3

∂f2
∂ξ1

∂f2
∂ξ2

∂f2
∂ξ3

∂f3
∂ξ1

∂f3
∂ξ2

∂f3
∂ξ3



. (5.3)

In this case ~f( ~ξ ) denotes an arbitrary three-dimensional vector function dependent on the

parameter vector (ξ1, ξ2, ξ3)T. The Jacobian matrix is then the matrix of all first-order

derivatives of the vector function with respect to the parameter vector. Additionally, the
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5. Magnon-Scattering Model for FeGe

Landau-Lifshitz-Gilbert equation must be written in the form

L
(
~b, ~m

)
=
∂ ~M

∂t
+ γ ~M × ~Beff −

α

M
~M × ∂ ~M

∂t
= 0, (5.4)

which describes a hyper-surface dependent on the small oscillating perturbations ~b and ~m in

the Ansatz. According to Benjamin Zingsem [47] the high-frequency magnetic susceptibility

tensor can be written as

χ = −



(
J(mx,my ,mz)T

(
L
(
~b, ~m

)) ∣∣∣∣
~m=0,~b=0

)−1

J(bx, by , bz)T

(
L
(
~b, ~m

)) ∣∣∣∣
~m=0,~b=0


 . (5.5)

As shown in Eq. 2.12 only the first row and first column element of the high-frequency

susceptibility tensor χ11 is needed for the calculation of the dispersion. For the free energy

density in Eq. 5.1 and w.l.o.g. an external field pointing in the z-direction, the determined

formula for χ11 is

lim
α→0

Im (χ11) = − M2γ2
(
BzM + A

(
k2
x + k2

y + k2
z

))

γ2
(
BzM + A

(
k2
x + k2

y + k2
z

))2 −M2ω2
(5.6)

As discussed in Sec. 4.1 the parameter α is assumed to be 0 also here. The resonance

frequency is now the singularity of Eq. 5.6, i.e. the frequency ω where the denominator is

zero. The final dispersion relation for an isotropic ferromagnet is then

ω =
γ

M

(
BzM + A

(
k2
x + k2

y + k2
z

))
(5.7)

At ~k = 0 it has the typical relationship ω = γB for the FMR position without anisotropy [20,

p. 3]. Additionally, it has a term proportional to the wave vector components squared, which

is a well known result for the dispersion [91, p. 60], and has the form of a parabola with its

vertex at the position of FMR. This quadratic relationship is only valid for small values of

(kx, ky, kz). To calculate the influence of the DMI to the dispersion relation the DMI free

energy density term in Eq. 2.5 has to be added to Eq. 5.1, which leads to

FDMI =
A

2M2
∇2 ~M − ~M · ~Bext +

d

M2
~M
(
∇× ~M

)
. (5.8)

When the dispersion is calculated the same way as the one without DMI, one obtains

ω =
γ

M

(
BzM + A

(
k2
x + k2

y + k2
z

)
+ 2dkz

)
. (5.9)

The DMI adds an additional term to the dispersion, which is proportional to kz [13]. This

describes a non-reciprocity of spin-waves, meaning that spin-waves traveling with the same
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5.2. Heat Capacity of Magnons in FeGe

wave length in opposite directions oscillate with different frequencies. This asymmetry in

the spin-wave spectrum exists only for components of the wave vector along the effective

magnetic field. A plot of this dispersion can be seen in Fig. 5.1.

ω

0

a)
e)

b)

B  > 0, d < 0z B  > 0, d > 0z

c)

k

d)

B  < 0, d > 0z B  < 0, d < 0z

Figure 5.1.: Dispersion relation ω (k) with DMI (Eq. 5.8) plotted for different signs of Bz

and d. a) is the new uniform mode with DMI b) is the uniform mode without
DMI. c) is a standing spin wave mode, which can be excited in FMR in confined
geometry. d) is a traveling spin wave mode, which is excited by magnon-magnon-
scattering (see e)) of the uniform spin wave mode.

5.2 Heat Capacity of Magnons in FeGe

The specific heat capacity is the amount of heat necessary to increase the temperature of one

cubic meter of the investigated material by one Kelvin. It is denoted by cV . The specific heat

capacity has different contributions, for example vibrational, electronic or magnetic. Here,

the magnetic contribution to the specific heat capacity of FeGe is calculated based on [92].

This calculation provides the amount of energy necessary to heat up the sample to the

reported temperature differences (Fig. 4.15), with the simplified assumption that only the

magnonic system changes its temperature. That means neither magnon-phonon-scattering

nor thermal conduction is taken into account. A comparison with the microwave power then

unveils whether it is sufficient for such a temperature change. This calculation does not

include any considerations about the cause of such an asymmetry of the temperature. It

only provides information about the energy needed. The specific heat is given by

cV =
∂U

∂T
, (5.10)
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5. Magnon-Scattering Model for FeGe

which is the derivative of the inner energy U with respect to the temperature T [93, p. 276].

The inner energy of the magnonic system must be calculated with Bose–Einstein statistics

as

Umag =
1

(2π)3

km∫

0

d3k ~ω(~k)

︸ ︷︷ ︸
energy

1

e~ω(~k)/kBT︸ ︷︷ ︸
occupation number

(5.11)

with km =κ
3
√

6π2

a
. (5.12)

For that the occupation number of a magnon state is multiplied with the respective energy

and integrated over the Brillouin zone, which contains all information about all possible

waves. Equation 5.12 is the edge of the Brillouin zone with the lattice constant a and the

scaling factor κ [94]. Since no scaling factor for FeGe is given in literature, I assume for

simplicity κ = 1. The magnetic part of the specific heat cVmag is the derivative of Eq. 5.11

with respect to T:

cVmag =
∂Umag

∂T
=

1

(2π)3

km∫

0

d3k

(
~ω(~k)

)2

kBT 2

e~ω(~k)/kBT

(
e~ω(~k)/kBT − 1

) . (5.13)

With this formula the specific heat can be calculated using the dispersion (Eq. 5.9) with the

values A = 1.37× 10−12 J m−1 ± 0.13× 10−12 J m−1 for the exchange stiffness and

d = 2.48× 10−4 J m−2 ± 0.26× 10−4 J m−2 for the DMI constant both given in [75] and a

lattice parameter of a = 4.700 Å ± 0.002 Å [27, 28]. The calculated magnetic part of the

specific heat is shown in Fig. 5.2. The energy necessary to heat a certain volume V of FeGe

by ∆T = T2 − T1 is given by

E∆T = V

T2∫

T1

dTcVmag. (5.14)

For the biggest temperature difference in Fig. 4.15 of ∆T = 7.1 K± 0.8 K at a temperature

of T = 200 K± 5 K
2 K and with a volume of V = 0.84 mm3 ± 0.01 mm3 the energy evaluates

to E∆T = 1.12 mJ± 0.14 mJ. The experiment was performed with a microwave power of

P = 1.975 mJ s−1, which is a sufficient amount to change the temperature of the whole sample.

Additionally, due to the penetration depth of the microwave, only the surface region needs

to be heated. Furthermore, the dispersion relation in Eq. 5.9 is only valid for small k and

otherwise overestimates the needed energy. The obtained value of E∆T is therefore an upper

limit.
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Figure 5.2.: Temperature dependent magnetic part of the specific heat cVmag of FeGe calcu-
lated according to Eq. 5.13. The parameters and references are mentioned in
the text.

5.3 Geometry Dependent Heating by

Magnon-Scattering

In general, the decrease in magnitude of the magnetization M is related to the number of

magnons, which are excited in the sample:

M =

(
1−N−1

∑

k

n (k)

)
M (T = 0) . (5.15)

More excited magnons mean less magnetization [92, 94]. Here, M (T = 0) is the magnetiza-

tion at 0 K and M after the excitation of
∑

k n (k) magnons. N is the total number of spins

in the sample. Each excited magnon lowers the magnetization. The number of thermally

induced magnons is given again by Bose–Einstein statistics [92] and leads to a temperature

dependence of the magnetization of

M (T ) =


1− a3

2π2

km∫

0

d3k
1

e~ω(~k)/kBT − 1


M (0) . (5.16)
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5. Magnon-Scattering Model for FeGe

Here, a is the lattice parameter. However, the calculation of the amount of magnons ad-

ditionally excited by the microwave is complex. Detailed information about the magnetic

system and the electromagnetic wave at the sample position is necessary [20, p. 4].

During FMR measurements the magnetic system is in a steady state of nonequilibrium [21,

p 283]. On the one hand the driving microwave field continuously excites magnons, while

on the other hand relaxation processes dissipate energy. In the state of nonequilibrium the

temperature difference postulated in Sec. 4.3 can be explained in two ways. Either the whole

sample changes its temperature or just the magnonic system. In the former case a temper-

ature sensor placed on the sample would detect a temperature change after inversion of the

magnetic field during microwave excitation. In the latter case only a change of the static

magnetization would be detected, for example in a VSM measurements. Until now, relax-

ation processes were described by the phenomenological damping parameter α introduced

in Sec. 2.3. In one way or another these relaxation processes dissipate their energy into the

phononbath, i.e. heat. This can either happen directly or through intermediate spin-wave

states [91, p 95]. The basic idea of the magnetization-dependent temperature is that these

intermediate spin-wave states, due to the asymmetric dispersion visible in Fig. 5.1, contain

an asymmetric distribution of wave vectors ~k. In what follows, the connection between this

asymmetric distribution of wave vectors and the proposed temperature difference between

opposite magnetic field directions is explained. Exemplary, this is done on the basis of two-

magnon scattering. Two-magnon-scattering describes a direct transfer of energy from one

magnon to another [21, p. 300]. In FMR-measurements the main two-magnon-process is the

scattering of the uniform mode (k = 0), due to the steady state excitation of this mode by

the microwave field. Due to the conservation of energy the excited modes have to be on the

same energy level as the uniform mode [21, p. 302]. Such a two-magnon-process is depicted

in Fig. 5.1 e). For opposite magnetic field directions the wavevector k of this excited mode is

inverted. The consequences of this are shown in Fig. 5.3. In b) one edge of a schematic FeGe

sample is shown. The part of the sample, which is penetrated by the microwaves (around

1 µm penetration), is marked gray and on one side confined by a rough surface. Only this

part of the sample is of interest in an FMR measurement. The DMI constant d is now

chosen in such a way, that the wavevector of the, through the two-magnon-process, excited

magnon points in the direction of the magnetic field. Two opposite magnetic field directions

are compared, where the magnetic field either points towards (a) & b)) or away (c) & d))

from the rough surface. Similarly the excited magnons either travel towards or away from

the surface. The idea is now that when the magnons are traveling towards the surface, they

participate in magnon-phonon scattering, which ultimately increases the temperature of the

surface. However, when The magnons are traveling away from the surface, they will partic-

ipate in magnon-phonon scattering inside the sample. Due to steady contact of the surface

with the thermal bath a temperature difference between opposite magnetic field directions

during dynamic excitation occurs.
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Figure 5.3.: Schematic illustration of the magnetization-dependent temperature model. b)
is a depiction of one side of the sample. The gray area marks the penetration
depth of the microwaves in an FMR experiment. The left edge of the sample
consists of a rough surface, while anything beyond the penetration depth is not
depicted. An arrow above the sample indicates the direction of the external
magnetic field. a) depicts the magnon dispersion relation of this configuration.
The wave number corresponds to magnons parallel to the external magnetic
field. A dashed arrow indicates the 0-k process exciting traveling magnons as
described in the text. These magnons are illustrated in b) as a solid arrow
inside the sample. They are traveling towards the rough surface and scattered
as phonons (dashed arrow). c) and d) illustrate the same situation as a) and
b), but with an opposite magnetic field direction. This mirrors the dispersion
curve about the ω axis, resulting in an inverted direction of the excited magnons,
which are then traveling away from the surface.

49



5. Magnon-Scattering Model for FeGe

5.3.1 Limits of the Heating Model

Here, details and arguments against the model introduced in Sec. 5.3 of magnetization-

dependent temperature are discussed.

First of all, the proposed model discusses only one side of the FeGe sample. The opposite side

should display the same behavior, but with an opposite dynamic unidirectional anisotropy.

It can be argued, that an asymmetry between both surfaces exists like a different size, rough-

ness or composition. To check whether such a geometric asymmetry can explain the results,

two surfaces with defined roughness have to be created on an otherwise ideal FeGe sample.

Furthermore, the mean free path of magnons has not been considered in this work. To my

knowledge no value of it has been reported in literature for FeGe. For the proposed model

it has to be larger than the penetration depth of the microwave.

An argument in favor of the model is the angular dependence of the unidirectional anisotropy.

It is typically strongest along the oop-direction, i.e. when the magnetic field points perpen-

dicular to the largest surface of the sample. This is also the orientation in which one would

expect the highest unidirectional anisotropy in the proposed model.

50



6 Discussion and Outlook

This thesis was written with the intention to quantify and eventually explain contributions of

DMI in the spin dynamics of cubic FeGe with focus on the dynamic unidirectional anisotropy.

The first approach in Sec. 4.1 was to find a phenomenological model to evaluate the strength

of the anisotropy. This was done by the introduction of a new term to the free energy density

in Eq. 4.1, which is in its simplest form the scalar product of the normalized magnetization

with a unidirectional anisotropy field. With this model one is able to fit the measured FMR

resonance position and obtain a value for the unidirectional anisotropy constant. This model

is a simple tool, which can only be used to quantify the strength and direction of the uni-

directional anisotropy. It was not deduced from any interaction or symmetry of the crystal

lattice.

The next step was in Sec. 4.2 to check static magnetometry measurements of FeGe along

the beforehand determined unidirectional axis for any asymmetry, which could be able to

explain the FMR results. The obtained Hysteresis loop was point symmetric, which led to

the conclusion, that the unidirectional anisotropy is a dynamic effect only visible during

dynamic excitation.

In Sec. 4.3 temperature dependent FMR measurements along the unidirectional axis were

performed. Due to a strong distortion of the lineshape at low temperatures a certain feature

position in the FMR spectra was chosen and its temperature dependent behavior checked.

A change of the feature position after magnetic field inversion is then a measure of the uni-

directional anisotropy. So far the unidirectional anisotropy was treated as a difference in

the resonance field position. The temperature dependent measurements made it clear, that

a temperature difference between both magnetic field directions is also sufficient to explain

the experimental results. This temperature difference by itself is temperature dependent

as shown in Fig. 4.15 with a maximum of ∆T = 7.1 K ± 0.8 K at T = 200 K. A temper-

ature model was then applied to the same angular dependent FMR measurement, which

was already fitted with the phenomenological model. There a temperature difference of

∆T = 3.2 K± 0.5 K was determined at T = 275 K. At this point, similar to the phenomeno-

logical model, this temperature difference is only postulated due to its ability to explain the

findings.

In Sec. 4.5.1 the FMR lineshape of FeGe was discussed. The linewidth, as shown in Fig.

4.19, follows the same temperature dependent behavior as the magnetization. This led to the

conclusion, that the linewidth is driven by an inhomogeneous distribution of demagnetization

fields, due to the irregular sample shape and the low penetration depth of the microwaves.

The observed resonance line therefore doesn’t represent one single state of the sample, but

is a distribution of resonance lines of different parts of the sample. The already discussed

fit of the resonance line is therefore only valid for the assumption that the point of highest

microwave absorption at every angle is related to the same part of the sample. Another key
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factor, which could strongly influence the resonance lineshape, is the polycristallinity of the

sample. In Sec. 4.5.2 a simulation of the resonance line distribution in a perfect polycrys-

talline sample of FeGe has been done. The obtained linewidth due to the polycrystallinity

was found to be only a minor contribution to the measured FeGe linewidth.

In Ch. 5 the energy was calculated, which is necessary to heat the magnetic system of the

sample by the value obtained in Sec. 4.3.1. The calculated energy was below the energy

of the injected microwave. Furthermore asymmetric magnon scattering is proposed as an

explanation for the dynamic unidirectional anisotropy visible in FeGe. It is based on the

non-reciprocity of spin-waves.

Further research is needed to fully understand the unidirectional anisotropy in FeGe. To

begin with, the proposed temperature difference has to be checked for its measurability.

This can be done with a temperature sensor placed on top of the sample inside an external

magnetic field while it is simultaneously excited by microwaves. If no temperature difference

between opposite magnetic field directions is detectable, the magnetization has to be mea-

sured with the same set-up. A then measured asymmetry in the magnetization would point

to an isolated temperature change in the magnetic system. Additionally it is desirable to

also check single crystalline FeGe samples for unidirectional anisotropy. Together with the

measured dispersion, for example by inelastic neutron scattering, more sophisticated theo-

ries can be developed. To reduce the effects of the irregular shape it is reasonable to try to

form elliptical shapes of the sample. Then the surface roughness on one side of the sample

can be increased gradually to check whether it has a strong influence on the unidirectional

anisotropy as suggested in Sec. 5.3.1. A different approach to measure single crystalline

FeGe could be the extraction of a single crystallite from the polycrystalline FeGe sample,

for example with a focused ion beam, and to then measure FMR in a microresonator. Also

FeGe thin films have to be tested for unidirectional anisotropy. Here with ion-implantation

gradually more scattering centres could be inserted into the sample to measure its poten-

tial influence on the unidirectional anisotropy. Finally, besides FeGe other chiral magnetic

systems have to be investigated, from its closest relative MnSi to interfacial DMI samples.
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A Appendix

A.1 Ferromagnetic Resonance Spectra of the “Cylin-

drical” Sample
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Figure A.1.: Contour plot of the angular dependent FMR spectra of the “cylindrical” FeGe
sample. The sample was rotated from ip to oop. 0◦ denotes oop-direction 1 and
180◦ oop-direction 2. A unidirectional anisotropy axis is clearly visible along
these directions. The frequency was f = 9.469 GHz ± 0.001 GHz at a temper-
ature of T = 275 K ± 5 K

2 K. A linear background was subtracted beforehand.
The yellow dots indicate the zero crossing of a resonance spectrum, which corre-
sponds to the maximum microwave reflection. For improved clarity only every
twelfth maximum is depicted. A time constant of 40.96 ms and a conversion
time of 81.92 ms were used together with a microwave power of 1.975 mW. The
modulation frequency was 100 kHz with a modulation amplitude of 1× 10−3 T.

A.2 Dependence of T̃ on the magnetization angles

In Sec. 4.4 a angular dependent temperature T̃ (θ, φ) was introduced. It is important to note

that its angular dependence is only of static nature. It is not affected by differentiation with

respect to θ or φ in the determination of the resonance position in Eq. 2.15. This is due to

the much slower time scale of this temperature change compared to the dynamic precession of

the magnetization. In the same way, these angles are not used in the minimization of the free
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energy density to obtain the equilibrium direction of the magnetization. This would cause

an additional easy axis along the temperature difference vector, because the magnetization

would prefer to point along the direction with the lowest absolute magnetization to minimize

the shape anisotropy. Instead an iterative approach is used. In the first step, the free energy

density is minimized with respect to θ and φ, while T̃ (θ, φ) = T̃ (θB, φB). The obtained

magnetization angles of this minimization are then θ1 and φ1. In the next step, the free

energy density is again minimized, but for T̃ (θ, φ) = T̃ (θ1, φ1). This is then repeated until

self consistency is achieved.

A.3 Modeling of Polycrystals

The purpose of this section is to give a blueprint on how to calculate distributions of reso-

nances based on magnetocrystalline anisotropy and shape anisotropy. Typically, one needs

to know such a distribution along a certain direction of the sample shape. In the calculation

this direction then aligns with the external magnetic field. Then thousand of resonance fields

are calculated for different evenly distributed directions of the magnetocrystalline anisotropy

relative to the external magnetic field. This can be implemented into the free energy density

in two ways. The first approach is to assume that the magnetic field and the demagneti-

zation tensor are spatially-fixed. Then the magnetocrystalline anisotropy can be rotated in

a suitable fashion, resulting in the desired crystalline direction pointing along the external

field. The second option is a spatially-fixed magnetocrystalline anisotropy, while the external

magnetic field and the demagnetization tensor are rotated. In this work the latter approach

was used. To calculated different evenly distributed directions of the magnetocrystalline

anisotropy relative to the external magnetic field a method to generate evenly distributed

points on a unit sphere is needed. In the following such a method is introduced.

A.3.1 Evenly Distributed Points on a Unitsphere

A lot of programming languages have a command to generate a random number between

0 and 1. Let this random variable be called Z with its realization z. The task is to use

this random variable to generate evenly distributed points on the unit sphere. One might

think that one only has to randomly generate the spherical angles in the form of (Θr,Φr) =

(πz, 2πz − π), which is not the case. The uneven point distribution created by these randomly

generated spherical angles can be seen in Fig. A.2. The probability of a certain realization

θr+dθr has to scale with the surface between these angles (with simultaneous integration over

all φ) in relation to the whole sphere. Due to the special properties of spherical coordinates

the surface on a unit sphere scales with the Jacobian determinant sin (θ). The Jacobian

matrix can therefore be used to calculate the probability density function (PDF) sΘr (θr) to

the random variable Θr. The PDF is defined in such a way that sΘr (θr) dθr is the probability
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to find Θr between θr and θr + dθr [95, p. 19]. Since θr has to be somewhere between 0 and

π to obtain the PDF the Jacobian determinant has to be normalized so that its integral

between these limits is 1. The resulting PDF is depicted in Eq. A.1.

sΘr (θr) =
sin (θr)

2
(A.1)

To now calculate the real even distribution of points on the unit sphere one has to apply

the inverse transformation method [96, p. 122]. To do that first the cumulative distribution

function (CDF) SΘr (θr) has to be calculated through integration of the PDF from 0 to a

realization θr, which has been done in Eq. A.2. It is the probability, that Θr lies somewhere

between 0 and θr.

SΘr (θr) =

θr∫

0

sΘr (θ′r) dθ′r =
1− cos (θr)

2
(A.2)

The inverted CDF as a function of the random variable Z then generates evenly distributed

points on the unit sphere. The random variable Θr as a function of the random variable Z

can is Θr = S−1
Θr

(z) = arccos (1− 2z). The evenly distributed spherical angles can then be

computed through Eq. A.3.

(Θr,Φr) = (arccos (1− 2z) , 2πz − π) (A.3)

a) b)

Figure A.2.: a) distribution of points on the unit sphere obtained through
(Θr,Φr) = (πz, 2πz − π). The points are not evenly distributed but con-
centrate on the poles of the sphere, due to a wrong distribution of
Θr. b) evenly distributed points on the unit sphere obtained through
(Θr,Φr) = (arccos (1− 2z) , 2πz − π).
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A.3.2 Free Energy Density in Consideration of Rotation Matrices

Now the rotation of the external magnetic field and the demagnetization tensor have to be

implemented into the free energy density. We therefore sum up the free energy density terms

of the magnetocrystalline ansisotropy (Eq. 3.1), the Zeeman term and the demagnetization

term (Eq. 2.6 and Eq. 2.8). However we then have to apply two rotation matrices R1 and

R2 to the external magnetic field and the demagnetization tensor respectively in such a way

that they are pointing in the direction given by (Θr,Φr). The thus arising free energy density

is written in Eq. A.4.

Frot =K4 (T ) ·
(
ex (θ, ϕ)2 ey (θ, ϕ)2 + ex (θ, ϕ)2 ez (θ, ϕ)2 + ey (θ, ϕ)2 ez (θ, ϕ)2)

+K6 (T ) ·
(
ex (θ, ϕ)2 ey (θ, ϕ)2 ez (θ, ϕ)2)− ~M ·R1 · ~Bext

+ µ0
~M ·R2 ·N ·RT

2 · ~M
(A.4)

In the following R1 and R2 are derived. Each rotation has to be around a certain vector ~n

by an angle α. The components of an arbitrary rotation matrix R with these properties is

shown in Eq. A.5 with the Kroneker delta δij and the Levi-Civita symbol εikj.

Rij

(
~t, α
)

= ninj (1− cos (α)) + cos (α) δij +
3∑

k=1

sin (α) εikjnk (A.5)

One can presume that the external magnetic field and the demagnetization tensor point in

the z-direction of a Cartesian coordinate system before rotation. The vector ~n and the angle

α which are necessary to rotate them in a random evenly distributed direction (Θr,Φr) can

then be calculated through Eq. A.6.

α (Θr) = θr

~nr (Θr,Φr) =




sin (θr) cos (φr)

sin (θr) sin (φr)

cos (θr)


×




0

0

1




(A.6)

A rotation around ~nr (Θr,Φr) by α (Θr) rotates a vector pointing in the (0, 0, 1) direction into

the direction of ~e (Θr,Φr), which is sufficient for the rotation of the external magnetic field.

Therefore R1 (Θr,Φr) = R (~nr (Θr,Φr) , α (Θr)). But one has to be careful when rotating the

demagnetization tensor, because it is not explicitly defined, when only a certain direction

is given. Due to the occurrence of magnetization directions other than along ~nr also the

“environment” around this direction matters. This is depicted in Fig. A.3 c). To really have

a random orientation of the shape anisotropy, one also has to perform a rotation around its

own axis, i.e. a random rotation around the (0, 0, 1) direction in this case, before the actual

rotation in the direction of ~e (Θr,Φr) is performed. We therefore introduce another random
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azimuth called Φa with its realization φa. The rotation matrix around the (0, 0, 1) direction

is then Eq. A.7.

Ra (Φr) =




cos (φa) −sin (φa) 0

sin (φa) cos (φa) 0

0 0 1


 (A.7)

Due to the associativity of rotation matrices, the rotation matrix acting upon the demagne-

tization tensor is then the matrix product of R1 and Ra, see Eq. A.8.

R2 (Θr,Φr,Φa) = R1 (Θr,Φr) ·Ra (Φa) (A.8)

Now with the right rotation matrices the general method as described in Sec. 4.5.1 and Sec.

4.1 can be used to calculate resonance fields. A histogram of the obtained resonance fields

is then the distribution function.

Bext

a) b) c)

Figure A.3.: a) distribution of the former point
(
π
2
, 0
)

after (0, 0) was rotated to 100,000
randomly distributed points on the unit sphere. An unequal distribution occurs,
because no former rotation around the (0, 0)-axis was applied. b) The same
rotation as in a) but with the application of a random rotation around the
(0, 0)-axis. Now the points are randomly distributed as required. c) illustration
of the need for an extra random rotation around the (0, 0)-axis. In a not rotation-
symmetric body the surrounding area plays an important role. In this image,
two different rotations around the ip-axis of a cylinder are depicted.
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