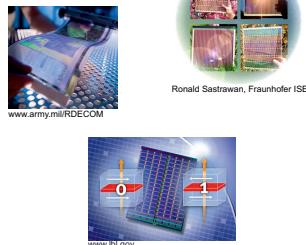


¹University of Duisburg-Essen, Faculty of Physics, Lotharstr.1, 47057 Duisburg, Germany

²Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizábal 5, E-20018 San Sebastián, Spain

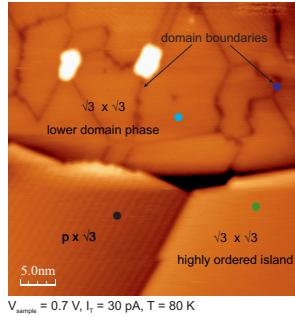

³Departamento Física Aplicada I, Universidad del País Vasco, E-20018 Donostia-San Sebastián, Spain

⁴Donostia International Physics Center, Manuel Lardizábal 4, E-20018 San Sebastián, Spain

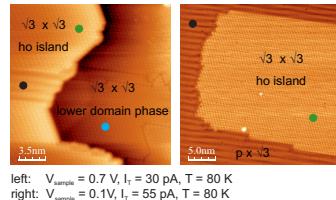
Motivation

Merging spintronics and organic electronics

- organic molecules become building blocks of more and more electronic devices: low cost, easy to process, etc.
- the electronic properties of the organic molecules can easily be tuned, e.g., by the choice of the central atom of Pc molecules
- spintronics: spin dependent transport phenomena are used as an additional information channel besides the regular electric currents to construct, e.g. smaller devices with larger storage capacities
- combination of both fields paves the way to future high performance electronic devices


BiAg_2 Surface Alloy / BiAg_2 Mixed Structures

Preparation


- evaporation of Bi from a Knudsen cell onto a pre-heated $\text{Ag}(111)$ single crystal
- post annealing step to about 100°C
- formation of BiAg_2 surface alloy checked via LEED

General sample structure

- sample covered with $\sqrt{3} \times \sqrt{3}$ highly ordered BiAg_2 islands / domains
- lower BiAg_2 , $\sqrt{3} \times \sqrt{3}$ ordered areas exhibit numerous domain boundaries
- slight excess of Bi leads to a gradual dealloying of the $\sqrt{3} \times \sqrt{3}$ highly ordered BiAg_2 islands into $p \times \sqrt{3}$ structures
- $p \times \sqrt{3}$ islands: $\sqrt{3}$ periodicity in $\text{Ag}[1\bar{1}\bar{2}]$ direction (lower, striped appearance)

$\sqrt{3} \times \sqrt{3}$ BiAg_2 surface alloy

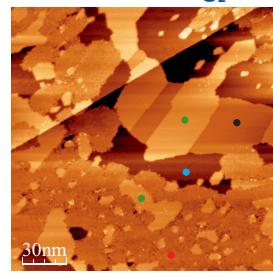
left: $V_{\text{sample}} = 0.7 \text{ V}$, $I_t = 30 \text{ pA}$, $T = 80 \text{ K}$

right: $V_{\text{sample}} = 0.1 \text{ V}$, $I_t = 55 \text{ pA}$, $T = 80 \text{ K}$

left: $V_{\text{sample}} = 0.7 \text{ V}$, $I_t = 30 \text{ pA}$, $T = 80 \text{ K}$

right: $V_{\text{sample}} = 0.1 \text{ V}$, $I_t = 55 \text{ pA}$, $T = 80 \text{ K}$

- upon landing, the Bi atoms embed into the $\text{Ag}(111)$ substrate
- to relieve surface stress this dilute surface alloy becomes a more and more dense $\sqrt{3} \times \sqrt{3}$ structure
- displaced Ag atoms diffuse around the surface and form highly ordered $\sqrt{3} \times \sqrt{3}$ islands with incoming Bi atoms
- after the entire surface is covered with the BiAg_2 surface alloy further Bi leads to a dealloying of the sample by transforming $\sqrt{3} \times \sqrt{3}$ ordered islands into $p \times \sqrt{3}$ ordered islands


Literature

C. Kato, Y. Aoki, and H. Hirayama, PRB **82**, 165407 (2010)

K.H.L. Zhang et al., PRB **83**, 235418 (2011)

C. R. Ast et al., PRB **75**, 201401(R) (2007)

PTCDA on BiAg_2

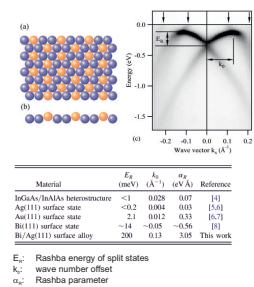
$V_{\text{sample}} = 1.2 \text{ V}$, $I_t = 10 \text{ pA}$, $T = 80 \text{ K}$

General sample structure

- at submonolayer coverage PTCDA seems to grow exclusively on lower BiAg_2 covered areas
- as on several other metallic substrates, PTCDA forms ordered island where the molecules assume a herringbone like arrangement
- PTCDA forms large islands surrounding the highly ordered $\sqrt{3} \times \sqrt{3}$ islands
- several domain boundaries can be found within the molecular layers
- while some PTCDA covered areas exhibit almost perfect order, large areas exhibit a certain disorder in their herringbone arrangement

Funding

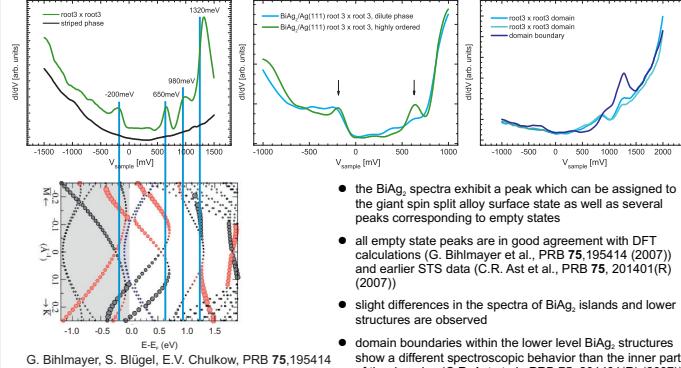
Special thanks to GxSM and WSxM



Giant Spin Orbit Splitting

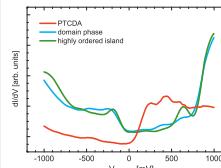
Giant Spin Orbit Splitting

Splitting due to an in-plane gradient

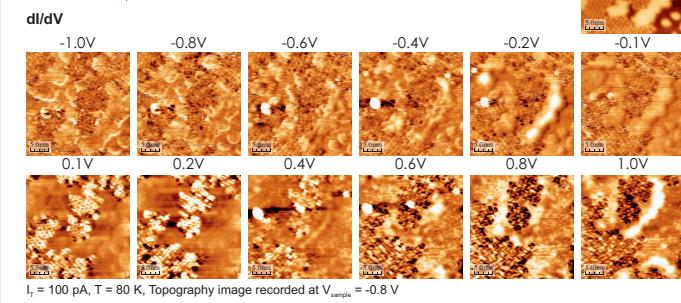

- in surface alloys such as BiAg_2 , PbAg_2 , and BiCu , the larger atomic species (Bi, Pb, etc.) buckles out of the surface plane
- due to the buckling, these alloys exhibit an in-plane potential gradient that leads to a spin splitting of the surface bands ("giant spin splitting") apart from and even bigger than the Rashba type spin splitting (this is due to a potential gradient in z-direction found, e.g., for $\text{Au}(111)$, $\text{Bi}(111)$)
- giant spin splitting is about 3 times larger than the Rashba type splitting observed for $\text{Bi}(111)$, about 10 times larger than for $\text{Au}(111)$
- the surface state of the original metal (Ag, Cu, ...) vanishes upon formation of the giant spin split alloy surface state

C.R. Ast et al., PRL **98**, 186807 (2007)

Spectroscopy


Pure BiAg_2 structures

G. Bihlmayer, S. Blügel, E.V. Chulkov, PRB **75**, 195414 (2007)


- the BiAg_2 spectra exhibit a peak which can be assigned to the giant spin split alloy surface state as well as several empty peaks corresponding to empty states
- all empty state peaks are in good agreement with DFT calculations (G. Bihlmayer et al., PRB **75**, 195414 (2007)) and earlier STS data (C.R. Ast et al., PRB **75**, 201401(R) (2007))
- slight differences in the spectra of BiAg_2 islands and lower structures are observed
- domain boundaries within the lower level BiAg_2 structures show a different spectroscopic behavior than the inner part of the domains (C.R. Ast et al., PRB **75**, 201401(R) (2007))
- spectra of the $p \times \sqrt{3}$ structure remains almost featureless within an energy range of $\pm 1.5 \text{ V}$ around the Fermi level

PTCDA on BiAg_2

- no features observed at the energy of the BiAg_2 surface state in spectra taken on PTCDA layers
- pronounced onset of PTCDA molecular levels close to E_F for empty states

Topography

$I_t = 100 \text{ pA}$, $T = 80 \text{ K}$, Topography image recorded at $V_{\text{sample}} = -0.8 \text{ V}$

- Is the disorder induced by the substrate?
- Is the interaction with the substrate stronger at the $\sqrt{3} \times \sqrt{3}$ domain boundaries?
- Do the molecules contribute to relieve/ build up surface stress?
- Is there any interaction between the molecular overlayer and the giant spin orbit split surface state?

→ Laterally resolved STS in combination with ARPES measurements

Contact

Maren C. Cottin
Tel.: +49-203-379-2184
maren.cottin@uni-due.de

Johannes Schaffert
Tel.: +49-203-379-2184
johannes.schaffert@uni-due.de

Prof. Dr. Rolf Möller
Tel.: +49-203-379-4220
rolf.moeller@uni-due.de

Dr. Christian A. Bobisch
Tel.: +49-203-379-2558
christian.bobisch@uni-due.de

visit us at <http://www.exp.physik.uni-due.de/moeller/en.html>