Übungen zur Vorlesung Physikalische Chemie II (WS 2011/2012)

Übung 7

Aufgabe 23:

- a) Skizzieren Sie folgenden Kreisprozess für 2 Mol eines einatomigen, idealen Gases in einem pV-Diagramm:
 - 1.) $A \rightarrow B$: isobare Kompression, von $V_A = 33.2$ L nach $V_B = 20.8$ L
 - 2.) $B \to C$: isochore Druckerhöhung ausgehend von $p_B = 1$ bar
 - 3.) $C \to A$: reversible adiabatische Expansion

Geben Sie für jeden der Punkte A, B und C jeweils Druck, Volumen und Temperatur an.

- b) Berechnen Sie ΔQ , ΔW , ΔU und ΔS für jeden Teilschritt, sowie für den gesamten Kreisprozess.
- c) Wie groß ist der Wirkungsgrad dieses Kreisprozesses? Handelt es sich um eine Wärmekraftmaschine oder um eine Wärmepumpe?

Hinweis: Betrachten Sie die molaren Wärmekapazitäten als temperaturunabhängig.

Aufgabe 24:

Berechnen Sie, wieviel Energie dem Körper durch die Verbrennung von 1 Mol Glukose ($C_6H_{12}O_6(s)$) bei der Körpertemperatur von 37°C zur Verfügung gestellt wird. Diese Energie kann dem Körper als nicht-Expansionsarbeit zur Verfügung stehen und zur Durchführung einer Anzahl physiologischer Prozesse verwendet werden.

Die Standardreaktionsentropie von Glukose (bei 298 K) ist $\Delta_R S^{\ominus} = 182.4 \text{ J K}^{-1} \text{mol}^{-1}$, und die Standardverbrennungsenthalpie ist $\Delta_C H^{\ominus} = -2808 \text{ kJ mol}^{-1}$.

Wieviel g Glukose müssen Sie mindestens verbrauchen, um auf den Eiffelturm (Höhe von 300 m) zu steigen? Benutzen Sie dazu die Treppe, nicht den Aufzug!