IMPLEMENTATION STRATEGY FOR THE WATER FRAMEWORK DIRECTIVE (2000/60/EC)

Guidance Document No. 14

GUIDANCE DOCUMENT ON THE INTERCALIBRATION PROCESS 2008-2011
Disclaimer:
This technical document has been developed through a collaborative programme involving the European Commission, all the Member States, the Accession Countries, Norway and other stakeholders and Non-Governmental Organisations. The document should be regarded as presenting an informal consensus position on best practice agreed by all partners. However, the document does not necessarily represent the official, formal position of any of the partners. Hence, the views expressed in the document do not necessarily represent the views of the European Commission.
Foreword

The first phase of the intercalibration has been carried out following CIS Guidance Document No. 14 “Guidance on the Intercalibration Process 2004-2006” and was published in 2005. For the second phase of intercalibration (2008-2011) there was a need to update the guidance, taking into account the experiences of the first phase.

This document is revised Guidance No. 14 taking into account the experiences and the results of the first round of intercalibration, ongoing discussions in WG ECOSTAT, and the recommendations of the expert networks on lakes, rivers, and coastal and transitional waters.

The document was revised by Ursula Schmedtje (DGENV), Sebastian Birk (DE), Sandra Poikane, Wouter van de Bund and Wendy Bonne (EC Joint Research Centre), with the help of a drafting group consisting of Geoff Phillips, Peter Holmes, Roger Owen (UK), Rob Portielje (NL), André Chandesris and Martial Ferreol (FR).

The draft of this document was presented and agreed at WG ECOSTAT meeting 1-2 October, 2009. Annex III, V and VI of the Guidance are under preparation. They will contain additional technical specifications. These annexes should be finalised by the WG ECOSTAT in April 2010 and then submitted to the SCG.

The Water Directors endorsed this guidance during their informal meeting under the Swedish Presidency in Malmö (30 November - 1 December 2009) and they have asked the Geographical Intercalibration Groups to continue the work on this basis. Furthermore, they have requested ECOSTAT to present Annex III, V and VI for endorsement at the next Water Directors meeting in Spain. The completed guidance document should be available by June 2010.

December 2009
TABLE OF CONTENTS

BACKGROUND AND PURPOSE OF THIS DOCUMENT .. 7

1. KEY PRINCIPLES OF THE INTERCALIBRATION PROCESS 9

2. STEPS OF THE INTERCALIBRATION PROCESS ... 14
 2.1 - Preconditions for intercalibration: WFD compliance criteria 15
 2.2 - Methods’ intercalibration feasibility check: method acceptance criteria 17
 2.3 - Data base for intercalibration analysis ... 19
 2.4 - Intercalibration options .. 20
 2.5 - Reference/alternative benchmark conditions ... 25
 2.6 - Boundary setting/comparison .. 27

3. CONTENTS OF THE TECHNICAL INTERCALIBRATION REPORT 29

4. ORGANISATION OF THE WORK AND TIMETABLE ... 30

ANNEX I: LIST OF GEOGRAPHICAL INTERCALIBRATION GROUPS (GIGS) 34

ANNEX II: RECOMMENDATIONS ON THE ESTABLISHMENT OF A COMMON DATASET FOR INTERCALIBRATION ... 37

ANNEX III: GUIDELINES FOR DERIVING REFERENCE CONDITIONS AND DEFINING ALTERNATIVE BENCHMARKS (UNDER DEVELOPMENT) 39

ANNEX IV: THE DEVELOPMENT OF A BOUNDARY SETTING PROTOCOL FOR THE PURPOSES OF THE INTERCALIBRATION EXERCISE ... 43

ANNEX V: DEFINITION OF COMPARABILITY CRITERIA FOR SETTING CLASS BOUNDARIES (TO BE DEVELOPED) .. 50

ANNEX VI: CONTENTS OF MILESTONE REPORTS (TO BE DEVELOPED) 51

GLOSSARY ... 52
Background and purpose of this document

1. The first phase of the intercalibration (IC) has been carried out following CIS Guidance Document No. 14 “Guidance on the Intercalibration Process 2004-2006”, published in 2005. It contained key principles of the intercalibration exercise, framework for deriving class boundaries consistent with the Water Framework Directive (WFD) normative definitions, process options for intercalibration, contents of the final intercalibration report, organisation of the work and timetables, and composition of the GIGs.

2. During and after completion of the first round of intercalibration, several additional documents were added addressing specific aspects and/or problems that were encountered:
 - Class boundary setting protocol was agreed outlining the general principles of boundary setting in compliance with the WFD normative definitions (latest version: 1.2 of 6 June 2005). This document was used as the basis for the reporting templates for the GIG ‘milestone reports’;
 - Discussion document on the comparability of the intercalibration results – presenting an analysis of the results and summarising the comparability of the GIG results. It contains recommendations for improving the level of comparability for future IC exercises.¹

3. The results of the first round of intercalibration are laid down in the Commission Decision of 30 October 2008² that was accompanied by the following documents:
 - Intercalibration technical reports;
 - The ‘intercalibration guidelines’ to translate the IC results into national methods and to derive reference conditions;
 - Work plan for future intercalibration, aiming for complete cover of all quality elements by 2011 in time for the second round of River Basin Management Plans (RBMP).

4. The results of the first intercalibration showed a number of gaps:
 - Transitional waters were not intercalibrated at all and for other water categories, some quality elements were missing (e.g. fish and macrophytes for rivers, and macroinvertebrates and phytobenthos for lakes);
 - Some of the results did not cover the full biological quality element (BQE) but only parts of them (e.g. phytoplankton in lakes and coastal waters; macroalgae and angiosperms in some coastal GIGs);
 - The results for some of the GIGs did not include all the participating Member States;
 - In some cases a close look at the results also cast doubt on the degree of comparability achieved;
 - There were gaps in the coverage of water body types and pressures;
 - There was a lack of comparability in the application of criteria for setting reference conditions and class boundaries.

 The aim of the second phase of intercalibration is to close these gaps and improve the comparability of the results in time for the second river basin management plans due in 2015.

5. For the second phase an update of the CIS Guidance Document No. 14 “Guidance on the Intercalibration Process 2004-2006” is needed, taking into account the experiences of the first phase. The purpose of the present document is to provide further detailed guidance for the intercalibration process continuation, which has already started in 2008 and will continue up to the end of 2011. The guidance is based on the previous Intercalibration Guidance, taking into account the experiences and the results of the first round of intercalibration, ongoing discussions in WG ECOSTAT, and the recommendations of the expert networks on lakes, rivers, and coastal and transitional waters.
1. Key Principles of the intercalibration process

Aims of intercalibration

1. The intercalibration process is aimed at ensuring comparability of the classification results of the WFD assessment methods developed by the Member States for the biological quality elements. The intercalibration exercise must establish values for the boundary between the classes of high and good status, and for the boundary between good and moderate status, which are consistent with the normative definitions of those class boundaries given in Annex V of the WFD. In the frame of the intercalibration exercise compliance of Member States assessment methods with the provisions of the Directive are checked.

2. The essence of intercalibration is to ensure that the high-good and the good-moderate boundaries in all Member States’ assessment methods for biological quality elements correspond to comparable levels of ecosystem alteration. In this way, the intercalibration process described in this guidance is aimed at identifying and resolving:
 - Any significant inconsistencies between the values for the good ecological status class boundaries established by Member States and the values for those boundaries indicated by the normative definitions set out in Section 1.2 of Annex V of the Water Framework Directive;
 - Any significant incomparability between the values established for the good status class boundaries by different Member States.

3. In the first phase of the intercalibration process an intercalibration register was established for a limited number of water body types consisting of sites representing boundaries between the quality classes high-good and good-moderate. These were based on the WFD normative definitions. The intention was to compare the class boundaries of the Member States at those sites. The first intercalibration exercise (2004-2007) showed that, generally, the data was not sufficient and that a larger data set is needed that should ideally cover the whole gradient of the pressure. In the second phase of intercalibration (2008-2011) Member States may continue to use the data from the sites of the intercalibration register, but there will be no specific role for the register in this phase.

4. In Phase 2 the gaps assessed in the first phase of intercalibration should be closed. Any biological quality elements that have not been intercalibrated or not fully intercalibrated in the first phase (for example, phytoplankton) should be fully intercalibrated in Phase 2. Furthermore, all Member States in the GIG need to participate in the intercalibration. In order to improve the comparability of the results, the intercalibration procedure has been refined, now defining more clearly the individual intercalibration steps and introducing a number of checking criteria (details described in section 2).

1 The WFD describes intercalibration in Annex V, 1.4.1. using the term ‘to ensure the comparability of monitoring systems’. The term ‘monitoring system’ in the way it is commonly used includes the whole process of sampling, measurement and assessment including all quality elements (biological and others). The term ‘monitoring system’ in WFD Annex V, 1.4.1. should be interpreted to mean only the biological assessment, applied as a classification tool, the results of which can be expressed as EQR. To be clear, this guidance uses the term ‘WFD assessment method’ instead of the term ‘monitoring system’.

2 WFD Annex V, 1.4.1 (ii), (iii), (iv), (vi)

5. Although priority should be given to the quality elements for which intercalibration has not been completed in the first phase, it will be necessary to check if the results for BQEs that have been fully intercalibrated in Phase 1 are in agreement with the criteria defined in this guidance and to review the intercalibration results following the procedure described in this guidance where the criteria are not fulfilled. The results of the checking and, where necessary, the review should be discussed and endorsed by the ECOSTAT, the SCG and the WFD Committee. The results need to be reported by the GIGs in the format requested (Annex VI).

WFD-compliant assessment methods

6. In principle, only results from WFD-compliant assessment methods can be intercalibrated (a list of checking criteria is given in section 2.1). Where methods are only partially developed, Member States may use parameter level methods for a partial intercalibration. The results of both the full and the partial intercalibration will be documented in the Technical Report. However, the COM Decision will in principle only include the results of the full intercalibration at the BQE level (compare point 22).

7. Should it turn out that – based on existing scientific knowledge – it is not possible to develop a WFD-compliant method for a BQE (i.e. only parameters can be developed and intercalibrated) then this needs to be discussed at the BQE level and a conclusion should be drawn firstly within the GIG (comparison of methods across MS). The conclusion should be supported by scientific arguments explaining why this is not possible. This needs to be checked and verified by the BQE lead. The issue should then be discussed at the cross-GIG level and at WG ECOSTAT. The IC Steering Group would need to support the conclusion. It could then be discussed whether this conclusion should be included in the COM Decision (compare point 22). The decision on which BQEs can actually be intercalibrated in Phase 2 will need to be taken very early in the process, preferably by the end of 2009, of which a last revision may be possible by mid-2010.

8. In two cases a BQE consists of two components: 1) "macrophytes and phytobenthos" for rivers and lakes, and 2) "macroalgae and angiosperms" for transitional and coastal waters. Macrophytes and phytobenthos react at different time and spatial scales, e.g. macrophytes generally react within years to changes in pollution whereas phytobenthos can react within days or even hours. Furthermore, macrophytes react on larger spatial scales than phytobenthos. Depending on the type and magnitude of the existing pressure(s) it may be sufficient to use only one of the two components. In other cases it may be necessary to use both to get a fuller and clearer picture of the impacts or the responses to a given measure. It is up to the Member State to decide how it develops its methods. If only one component is used then it must be demonstrated that the impacts of the existing pressures are being sufficiently detected by that component. The same applies to macroalgae and angiosperms.

9. If the assessment methods developed by a Member State differ so much that the data cannot be compared and therefore the assessment method cannot be intercalibrated by one of the options provided in this guidance, then the Member State (in collaboration with the GIG) will need to find an alternative intercalibration approach. The alternative approach will need to be approved by WG ECOSTAT. If no alternative method can be found, the Member State will...
need to carry out an on-site comparison (comparative field exercise on a selected number of sites). The results of the IC based on this field exercise must be approved by the GIG.

Practical implementation

10. The intercalibration exercise is undertaken within Geographical Intercalibration Groups (GIGs) rather than the ecoregions defined in Annex XI of the Water Framework Directive. This is to enable intercalibration between a greater number of Member States. GIGs consist of Member States sharing common intercalibration types. It is also possible to undertake the exercise in one EU-wide GIG with the establishment of one central database and development of common intercalibration metrics. A full list of the GIGs is provided in Annex I.

11. Within each GIG 'common intercalibration types' have to be selected for intercalibration based on factors described in the WFD (Annex II, 1.2). These common intercalibration types should cover the main surface water types occurring in the GIG. Member States need to identify which national types correspond to the common intercalibration types. The common intercalibration types should be shared by at least two countries in the GIG and should be sufficiently common to allow for a meaningful comparison. The common intercalibration types defined in the first intercalibration phase should be reviewed and adapted as necessary. If there are main surface water types missing, it may be necessary to define new common intercalibration types. This is to be decided within the GIG. For those surface water types that are not intercalibrated in the intercalibration exercise, the IC boundaries of high-good and good-moderate status classes need to be translated accordingly. If a significant number of national types do not match the common intercalibration types, then this has to be reported to WG ECOSTAT.

12. The intercalibration exercise is focused on combinations of common intercalibration types, biological quality elements and specific pressures or specific combinations of pressures. The selection of these combinations should cover the major pressures occurring in the GIG. Major pressures that have not been covered in the first intercalibration need to be included in the second phase.

13. It is important to ensure that the reference conditions of the surface water types being intercalibrated are comparable. The definition of the reference conditions must correspond to the criteria given in the REFCOND Guidance. If natural or near-natural reference conditions are not available or cannot be reliably derived for a certain type (for example, for large rivers) intercalibration needs to be carried out against an alternative reference / alternative benchmark (e.g. good ecological status for that surface water type). Annex III contains guidelines for deriving reference conditions and alternative benchmarks.

14. The first intercalibration showed that the definition of common intercalibration types and the pressures acting upon them, the definition of reference conditions, and the criteria for assessing the comparability of boundaries need to be improved. As these are essential elements of the intercalibration process it is of utmost importance that they are based on sound definitions shared by all Member States in the GIG. They should be agreed and validated at the cross GIG/BQE level before the implementation begins.
15. As in Phase 1, intercalibration in Phase 2 will focus on the intercalibration of good ecological status. Good ecological potential (GEP) will not be intercalibrated in Phase 2 due to the complexity of defining GEP and the fact that the procedure how to intercalibrate GEP is not yet clear.

16. In certain cases data from HMWBs/AWBs can nonetheless be used for the intercalibration of good ecological status:
 - Where the BQE to be intercalibrated is not impacted by the hydromorphological conditions leading to the designation of the HMWB or AWB, the BQE can be intercalibrated (e.g. phytoplankton in reservoirs). This means that the maximum ecological potential of the BQE is comparable to the reference conditions of the corresponding natural type. These HMWBs or AWBs should be intercalibrated separately from natural surface water types, i.e. they should be treated as separate common intercalibration types (e.g. a certain type of reservoir).
 - Where the BQE to be intercalibrated is impacted by the hydromorphological conditions leading to the designation of a HMWB or AWB (e.g. benthic invertebrates in diverted streams), data may be used from all water bodies (including HMWBs/AWBs) in order to cover the whole gradient of hydromorphological alterations. It is important to note that in this case ecological status is intercalibrated, not ecological potential.

17. This guidance describes three different options that can be used for intercalibration of WFD-compliant methods. Where Member States have not yet defined the high-good and good-moderate boundaries, intercalibration may be used to define these.

18. The choice of the appropriate intercalibration option depends on how comparable the approaches of the national methods are:
 - Option 1: same data acquisition and same numerical evaluation means that Member States are using a common assessment method and intercalibration then concentrates on the harmonisation of reference conditions and class boundary comparison/setting;
 - Option 2: different data acquisition and numerical evaluation requires the development of common metrics for intercalibration;
 - Option 3: similar data acquisition but different numerical evaluation necessitates direct comparisons (Option 3) in which the pairwise differences of national assessment results are investigated. Common metrics are highly recommended as a supporting approach to evaluate the influences of biogeographical differences, the definition of reference conditions and the actual boundary setting.

19. The results of the intercalibration exercise are expressed as Ecological Quality Ratios (EQRs), which link class boundaries to type-specific reference conditions. The calculation of EQRs varies depending on how a particular parameter responds to changes in water quality (detailed explanations are given in Chapter 2). Because of these differences in calculation methods among others, it is not possible to compare the values of the EQRs across methods and biological quality elements. Therefore, intercalibration is not about agreeing common EQR values for the good status class boundaries but on demonstrating that those boundaries represent a comparable level of anthropogenic alteration to the biological quality element.

Organisation and time-table

20. The time-table laid down in Chapter 4 needs to be followed closely to ensure the timely completion of the intercalibration exercise.

21. The intercalibration is steered through a bottom-up process with the main work being carried out in the GIGs. In addition, BQE leads have been established to address cross-GIG issues related to BQE-specific assessment methods. The BQE groups should also steer the process of the review of intercalibration results of Phase 1. The water category leads address issues across GIGs and BQE groups. A description of the groups' tasks and responsibilities is given in Chapter 4. The Intercalibration Steering Group consists of the water category leads as well as other experts, e.g. GIG leads and/or BQE leads, and is chaired by the Joint Research Centre. The Steering Group will be used as a review panel to check on the implementation of the intercalibration and to resolve issues that cannot be solved at the GIG or BQE level. Any issue that cannot be resolved must ultimately be brought forward to WG ECOSTAT. Should any issues arise that cannot be resolved by WG ECOSTAT, then these will be forwarded to the Strategic Co-ordination Group and/or WFD Committee, as appropriate.

22. The GIGs are obligated to report on the results of the intercalibration including the review of intercalibration results of Phase 1 for all BQEs. The results of the intercalibration exercise will be discussed and agreed at WG ECOSTAT and then forwarded to the Strategic Co-ordination Group and the WFD Committee for approval. Once approved the Commission will decide on the adoption of the results and publish them in a Commission Decision thereafter. The “Technical Report on the WFD Intercalibration Exercise” will be prepared by JRC based on the reports of the GIGs and will describe in detail how the intercalibration exercise has been carried out in each GIG.

23. After completion of the intercalibration exercise it is the obligation of the Member States to translate the results of the intercalibration exercise into their national classification systems in order to set the boundaries between high and good status and between good and moderate status for their national types. For some types that are either very specific (e.g. volcanic lakes) or very rare (e.g. some large lake type that occurs only once within the Member States) or even unique in Europe, it may not be possible to translate the intercalibration results to that type. In such cases an explanation should be given for each type why this is not possible.
2. Steps of the intercalibration process

Preconditions

Q1. Do all national assessment methods meet the requirements of the Water Framework Directive?
 - YES
 - NO

Q2. Are all national methods applicable to the same common IC types and pressures, and is their assessment concept similar?
 - YES
 - NO

Q3. Do all countries apply the same assessment method (but different class boundaries)?
 - YES
 - NO

Q4. Is the BQE sampling and data processing generally similar, so that all national assessment methods can reasonably be applied to the data of other countries?
 - YES
 - NO

IC feasibility check 1

IC feasibility check 2

Data basis for IC analysis

IC option

Selection of common metric(s)

Q5. Are all methods sufficiently correlated with the common metric(s)?
 - YES
 - NO

IC feasibility check 2

Q6. Do the intercalibration datasets contain sites in near-natural conditions?
 - YES
 - NO

Benchmarking

Screen for sites using abiotic criteria, validate with biological data.

Description of type-specific reference/biological benchmark communities of common IC type at GIG level, considering possible biogeographical differences

Boundary comparison/setting

Q7. Do the good ecological status boundaries of the national methods comply with the WFD normative definitions?
 - YES
 - NO

Demonstrate national boundary setting and compare national classifications.

Description of type-specific biological communities of common IC type at GIG level representing moderate deviation from reference conditions (good-moderate boundary), including associated environmental conditions

Figure 1: Flow chart of the main steps of the intercalibration process
This chapter describes the general approach of the technical intercalibration process for the second round of intercalibration. The main steps of this process are presented in the flow chart depicted in Figure 1. The questions that are asked in the flow chart serve the purpose of performing four basic checks for the identified necessary steps of the intercalibration exercise:

- **Preconditions check**: Check the compliance of national assessment methods with the WFD requirements with the help of **WFD compliance criteria**;
- **Intercalibration feasibility check**: Screening of Member States’ assessment methods for acceptance in the current intercalibration exercise with the help of **method acceptance criteria**;
- **Data set check**: Evaluation of Member States’ datasets for inclusion in common dataset / boundary calculations with the help of **data acceptance criteria**;
- **Comparison of boundaries**: Assess level of agreement of boundaries with the help of **comparability criteria**.

These checks are related to the main tasks of the intercalibration process that comprise:
- Documentation of national assessment methods including response to pressures and class boundary setting (Q1, Q2);
- Evaluation of general method comparability for intercalibration (“IC feasibility checks”) (Q2, Q3, Q4, Q5);
- Collation of common intercalibration dataset (Chapter 2.3);
- Definition of intercalibration reference conditions/benchmark including description of the respective biological community (Q6),
- Common boundary setting / analysis of boundary comparability (Q7);
- Description of biological communities at conditions representing the harmonised good-moderate boundary (“borderline conditions”) (Q7).

2.1 - Preconditions for intercalibration: WFD compliance criteria

Q1. Do all national assessment methods meet the requirements of the Water Framework Directive?

In principle, only methods meeting the requirements of the WFD can be intercalibrated (compare key principle no. 6). The first step in the intercalibration process requires the checking of national methods considering the following WFD compliance criteria. If the criteria are not met, the methods will be excluded from the next step.

Status classification:
- Ecological status is classified by one of five classes (high, good, moderate, poor and bad);
- High, good and moderate ecological status are set in line with the WFD’s normative definitions (Boundary setting procedure).

Numerical evaluation:
- All relevant parameters indicative of the biological quality element are covered (see Table 1). A combination rule to combine parameter assessment into BQE assessment has to be defined. If parameters are missing, Member States need to demonstrate that the method is sufficiently indicative of the status of the QE as a whole.
- Assessment is adapted to intercalibration common types that are defined in line with the typological requirements of the Annex II WFD and approved by WG ECOSTAT.
- The water body is assessed against type-specific near-natural reference conditions.
- Assessment results are expressed as EQRs.

Data acquisition (i.e. sampling and data processing):
- Sampling procedure allows for representative information about water body quality/ecological status in space and time;
- All data relevant for assessing the biological parameters specified in the WFD’s normative definitions are covered by the sampling procedure;
- Selected taxonomic level achieves adequate confidence and precision in classification.

Table 1: Indicative parameters to be included in biological assessment methods for the surface water categories and BQEs (\(\text{a} \) or depth distribution/cover for macroalgae and angiosperms, \(\text{b} \) only lakes, \(\text{c} \) only macroalgae, \(\text{d} \) bioaccumulation-bioassays). The table gives an overview of the normative definitions in the WFD and of the parameters mentioned in the CIS Guidance No 7 - Monitoring (WG 2.7) (optional issues are put between brackets).

<table>
<thead>
<tr>
<th>Surface Water Category</th>
<th>Biological Quality Element</th>
<th>Taxonomic composition</th>
<th>Abundance</th>
<th>Disturbance sensitive taxa</th>
<th>Diversity</th>
<th>Age structure</th>
<th>Frequency and intensity of algal blooms</th>
<th>Biomass</th>
<th>Absence of major taxonomic groups</th>
<th>Taxa indicative of pollution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers and Lakes</td>
<td>Phytoplankton</td>
<td>x x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macrophytes and Phytobenthos</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benthic invertebrate fauna</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish fauna</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitional Waters</td>
<td>Phytoplankton</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macroalgae</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angiosperms</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benthic invertebrate fauna</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fish fauna</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coastal Waters</td>
<td>Phytoplankton</td>
<td>x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macroalgae and Angiosperms</td>
<td>x x (x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benthic invertebrate fauna</td>
<td>x x x x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Task 1 (Member State):
- Description of national assessment method.
The necessary information will be compiled in a joint questionnaire of the WISER project and the intercalibration exercise. The questionnaire should be filled in by each Member State per BQE and water category. The information should be compiled by the GIG in an overview table and will be part of the intercalibration technical report.

Task 2 (GIG):
- Collation and evaluation of national descriptions concerning WFD requirements.
2.2 - Methods’ intercalibration feasibility check: method acceptance criteria

Q2. Do all national methods address the same common type(s) and pressure(s), and follow a similar assessment concept?

The intercalibration process ideally covers all national assessment methods within a GIG. However, the comparison of dissimilar methods (“apples and pears”) has clearly to be avoided. Intercalibration exercise is focused on specific type / biological quality element / pressure combinations. The second step of the process introduces an “IC feasibility check” to restrict the actual intercalibration analysis to methods that address the same common type(s) and anthropogenic pressure(s), and follow a similar assessment concept.

Typology criteria as restricting factor

- At first, the existing intercalibration typology should be reviewed. Are the common type descriptions suited for the specific BQE intercalibration exercise? And are all major types in the GIG covered?
- The individual type allocations of each country (national type to common intercalibration type) need to be checked by the MS.

Pressure criteria as restricting factor

Moreover, the exercise has to consider that pressure specific assessment approaches feature distinct characteristics. Organic pollution and hydromorphological degradation, for instance, show different effects on aquatic communities. While for the latter the alteration or loss of habitats is decisive, the impact of oxygen depletion is most relevant in organically polluted water bodies. These effects are often more dominant, superimposing the influence of habitat alteration. Methods designed to assess individual pressures often follow different assessment concepts.

In the intercalibration process the consequences of these differences need to be evaluated. The process flowchart (Figure 1) links this step to the second “IC feasibility check” that investigates the comparability based on the results of data analyses (see Chapter 2.4).

Assessment concept criteria as restricting factor

- Different community characteristics - structural, functional or physiological - can be used in assessment methods which can render their comparison problematic. For example, biodiversity indices may give a different view on structural characteristics of the community compared to species composition indices.
- In several cases, the concept of the method requires more specific typology issues to be taken into account to ensure comparability of results, e.g., in lakes it may be necessary to define the water body zone from which the samples were taken. Lake macroinvertebrate assessment systems may focus on different lake zones - profundal, littoral or sublittoral - and subsequently may not be comparable.
- Additional important issues may be the assessed habitat type (soft-bottom sediments versus rocky sediments for benthic fauna assessment methods) or life forms (emergent macrophytes versus submersed macrophytes for lake aquatic flora assessment methods).

Task 3 (Member State):
- Demonstration of applicability of national method to common IC type, coverage of pressure-impact relationship and of similarity of assessment concept of national method with those of other Member States in the GIG (to be included in general method description, see Task 1).

Task 4 (GIG):
- Compilation of groups with similar assessment methods, and evaluation of “outlying” methods.

Assessment method criteria: numerical evaluation as restricting factor

Q3. Do all countries apply the same assessment method (but different status classifications)?
The "same assessment method" means the application of identical protocols of sampling and data processing, and the use of the same numerical evaluation for classification. The latter means that:
- The same BQE parameters are used in the assessment and their results are combined in a similar way up to the BQE level;
- The assessment has to be comparable at the spatial scale (combination of assessments at sample level / assessment at water body level) or the temporal scale (combination of temporal series).

In this case the intercalibration efforts only need to concentrate on the harmonisation of status classifications, i.e. the definition of reference conditions and the setting of the boundaries between high and good, and good and moderate ecological status, respectively.

Task 5 (GIG)
- Evaluation of national method descriptions with regard to data acquisition and numerical evaluation.

Assessment method criteria: data acquisition as restricting factor

Q4. Is the BQE sampling and data processing generally similar, so that all national assessment methods can reasonably be applied to the data of other countries?
Most assessment methods are adapted to regional conditions and often follow national traditions. In case the answer on Q3 is negative, this means that different techniques of numerical evaluation are applied (e.g. focus on different aspects of the biological community being reflected in the selection and combination of biological metrics, different choice and scoring of indicator taxa).

The process step Q4 interrogates the scope of the base data sampled according to the national protocols:
- Do the raw taxa lists contain all biological information required by the individual methods? Are the required levels of taxonomic precision similar?
- Are spatial and temporal requirements (e.g. sampling season or minimum sampling area) met?

If this is the case, national methods can reasonably be applied to the base data of other countries. However, the effect of biogeographical differences has to be determined, and data may need to be harmonised/adjusted (e.g. taxonomic adjustment, abundance scale conversions) (see Annex II).

Task 6 (GIG)
- Evaluation of national method descriptions with regard to data acquisition.
2.3 - Data base for intercalibration analysis

Generally, BQE groups within a GIG shall collate a common dataset for intercalibration. Central data collection and analysis facilitate a reproducible and transparent intercalibration process considerably. The quest for intercalibration solutions is often a laborious task including trial and error. Central data processing allows in-depth examination and testing of various approaches. The common dataset is also the basis for the description of biological communities of the intercalibration types (see Chapters 2.5 and 2.6) and should therefore be comprehensive and representative for the common IC types. The common dataset should furthermore:

- sufficiently cover the geographical area in which the common type occurs within the GIG,
- encompass sampling sites covering the entire gradient of the pressure to be intercalibrated, and hence the complete ecological quality gradient ranging from high to poor ecological status, and
- contain non-biological (environmental) and biological data to conduct pressure-impact analyses.

The collection of the dataset involves several difficulties and limitations, e.g., there may be considerable differences among datasets from different countries regarding sampling, analytical methods and taxonomic precision; this may reduce the comparability of the data and increase the uncertainty of the results. So it is important to agree on criteria for minimum data requirements and data quality criteria in order to obtain comparable datasets.

Data acceptance criteria have to include the following aspects:

- Data requirements (obligatory and optional), e.g., providing physico-geographical parameters for checking type allocations (e.g. altitude, alkalinity, mean depth for lakes);
- The sampling and analytical methodology;
- Level of taxonomic precision required and taxalists with codes;
- The minimum number of sites / samples per intercalibration type
- Sufficient covering of all relevant quality classes per type;
- Other aspects where applicable.

The datasets should be screened by the GIG and a report describing the full list of acceptance criteria with the evaluations of whether the Member State met each of the required criteria should be compiled. Data that only partly fulfill the required criteria should be clearly identified, and the differences between the quality of the various datasets should be clearly mentioned and kept in mind all along the process of intercalibration (from the analysis of the data to the presentation of the results).

If the data acquisition is significantly different between countries, GIGs shall nevertheless aim at establishing a common dataset. In this case it can be composed of partial datasets, i.e. national subsets that fulfil the data requirements of particular methods. The common database, for instance, may contain monitoring data at the taxonomical level of family for most of the countries but include data at species level for some countries. Methods requiring species level information cannot be applied to family level data. However, their assessment can be related to common metrics at family level. Common metric development can be done using the complete dataset, benchmarking (Chapter 2.5) and boundary comparison/setting (Chapter 2.6) has to be done using
the partial dataset. The biological communities of the common intercalibration types need to be described based on the “least common denominator” (in this case: family level data). For further details on the common dataset see Annex II.

Task 7 (Member States):
- Providing required data for the intercalibration dataset.

Task 8 (GIG):
- Establishment of a common taxonomical checklist (taxa names and codes) for the needs of the Intercalibration;
- Collation of the common intercalibration dataset including biological and pressure data. For some issues (e.g. description of types, reference criteria and conditions, pressures etc.) the collation of common datasets useful for various GIGs shall be privileged as much as possible;
- Data access and storage etc.

2.4 - Intercalibration options

The choice of the appropriate intercalibration option depends on how comparable the national methods are the following:

(a) **Same data acquisition, same numerical evaluation → IC Option 1**

The national techniques of data sampling, processing and evaluation are the same and all countries in the GIG are using the same assessment method. The intercalibration exercise can concentrate on the harmonisation of reference conditions and class boundary comparison/setting. IC Option 1 represents the most straightforward option since the difficulties and uncertainties involved in comparing the results of different assessment methods are avoided.

(b) **Different data acquisition and numerical evaluation → IC Option 2**

If data sampling and evaluation procedures are significantly different between countries the use of common metrics for intercalibration is necessary. Common metrics can be selected from the national assessment methods and other existing biological indices, or they can be generated for the intercalibration exercise (see Birk & Willby, 2009⁶). Ideal common metrics have to:
- cover all relevant parameters indicative of the BQE;
- respond to the pressures being intercalibrated;
- be ecologically meaningful (i.e. clearly be related to common ecological principles);
- show no (or only minor) bias due to biogeographical differences or differences in national sampling protocols.

(c) **Similar data acquisition, but different numerical evaluation → IC Options 3 supported by the use of common metric(s)**

In the direct comparison (IC Option 3) the pair-wise differences of national assessment results are investigated at sampling site level or water body level. This method allows for a comprehensive analysis of Member States’ classifications of sites, including reference sites, if available. The

influence of biogeographical differences can be investigated by comparing biological data and assessment results of reference sites between Member States if these have been defined by common criteria. A proper national assessment system is likely to perform better on its own reference sites than on reference sites of other Member States. Biogeographical differences, and the different way of Member States to account for such differences, can thus be an important source of incomparability. This may hamper the possibilities for successful intercalibration, as well as the fact that the number of reference sites is often too low to investigate the role of biogeographical differences.

The use of common metrics is a supporting approach if the biogeographical differences are estimated as large. Regression analyses of national EQRs against the common metric reveal the positions of the national reference and class boundaries on the common metric scale. This provides insight into the reasons for possible incomparabilities. Common metrics can be used as "international currencies" to which common boundary setting (including harmonised reference definition) and the GIG-wide descriptions of reference and “borderline” conditions can be related (see Chapters 2.5 and 2.6). The ecological relevance further enhances the transparency of the intercalibration process. From these supporting analyses individual intercalibration exercises may result between subgroups of Member States that are biogeographically more comparable.

Task 9 (GIG)
- Selection of most appropriate intercalibration option.

When IC Options 2 or 3 are used, the following intercalibration feasibility check is needed.

Q5. Are all methods reasonably related to the common metric(s)?

The relationship between common metric(s) and national assessment methods has to be sufficiently strong. The feasibility check can also be carried out against the mean of national EQRs when applying IC Option 3. As a general rule the process shall strive for highest correlation coefficients. For the criteria for inclusion of intercalibration results see Annex V. In such cases when relationship between common metric(s) and national assessment methods is not sufficiently strong, the common metric selection needs to be reconsidered, or the respective methods have to be excluded from the particular exercise based on well-founded explanations (“IC feasibility check 2”).

Task 10 (GIG)
- Check of “IC feasibility” and evaluation of “outlying” methods.
The next section outlines the different options for the process of intercalibration in more detail.

“Option 1”: Common WFD assessment method

Features	All Member States in the GIG use the same WFD assessment method, and agree on high-good and good-moderate class boundaries of the EQR scale for this common method by applying the class boundary setting procedure for the common intercalibration types. No further harmonisation is required.
Application	Where Member States can agree to use the same WFD assessment method.
Data requirements	Data to demonstrate how the boundaries are set.
Advantages	The most straightforward option since the difficulties and uncertainties involved in comparing the results of different assessment methods are avoided. Comparability between Member States is assured.
“Option 2”: Comparability of class boundaries of Member States’ methods is assessed indirectly using a common intercalibration metric(s)

<table>
<thead>
<tr>
<th>Set type-specific reference/benchmark conditions and agree on boundary setting procedure</th>
<th>Identify common metric(s) for the biological quality element</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply agreed reference/benchmark criteria and boundary setting procedure at national level</td>
<td>Collate common IC data set with partial datasets from the countries</td>
</tr>
<tr>
<td></td>
<td>Apply national WFD assessment and common metric(s) method to partial data set of respective country</td>
</tr>
<tr>
<td></td>
<td>Establish a statistically acceptable relationship between metrics of national method and common metric(s) for a BOE/pressure</td>
</tr>
<tr>
<td></td>
<td>Convert national boundary values to common metric boundary values</td>
</tr>
<tr>
<td></td>
<td>Evaluate the comparability of the MS class boundaries on the common metric(s) scale with comparability criteria</td>
</tr>
<tr>
<td></td>
<td>Accept boundary EQR values proposed for national WFD assessment method</td>
</tr>
<tr>
<td></td>
<td>Adjust EQR values proposed for the national WFD assessment method</td>
</tr>
</tbody>
</table>

Information on Option 2

| Conditions for use | All Member States in a GIG have sufficiently developed their national WFD assessment methods. Member States can agree on common metric(s) that is indicative of the relevant biological quality element, sensitive to the pressure that is assessed, and is reasonably related with the Member States’ methods. Suitable Member States’ datasets are collated in an IC database from which these common metric(s) can be calculated to enable reliable comparison between the Member States’ assessment methods, containing data from a sufficient number of reference (or benchmarking) sites allowing a reliable and comparable boundary setting. |
| Application | Where it is not possible to apply Option 1 (because Member States do not use the same assessment method) or Option 3 (due to different data acquisition and numerical evaluation). Where Option 3 is used, the use of common metric(s) is recommended as a complementary analysis to increase transparency and to provide insights in |
reasons for possible incomparabilities (see Chapter 2.4).

Features
In this approach boundaries are initially set by the Member State compared on a common metric(s) EQR scale, and harmonised where necessary. Common metrics enable a GIG-wide comparison of classification results.

Data requirements
The GIG establishes a common IC database with data from each Member State that allow for calculating both the national WFD assessment method and the common metric(s).

Advantages
Common metrics allow for the comparison of national good status boundaries if the data acquisition techniques are different. Common metrics provide "international currencies" to which common boundary setting and GIG-wide descriptions of reference and "borderline" conditions can be related.

Disadvantages
Because comparisons are made indirectly on an EQR scale, Option 2 can only give valid results if reference/benchmark conditions are comparable throughout the GIGs.

Possible differences in classifications of different Member States’ assessment methods when applied to individual water bodies are not made transparent.

“Option 3”: (supported by the use of common metrics): Comparability of class boundaries of Member States’ methods is assessed by direct comparison of classification outcomes using a common dataset
Information on Option 3 (supported by common metrics)

<table>
<thead>
<tr>
<th>Conditions for use</th>
<th>All Member States in a GIG have sufficiently developed their national WFD assessment methods. Availability of suitable datasets on which Member States’ assessment method can be calculated to enable reliable application of the agreed boundary setting procedure. Availability of a means of estimating and taking into account differences in the bias of the methods when applied to the dataset referred to above. Member States agree on a common metric that is indicative of the relevant biological quality element, sensitive to the pressure that is assessed, and is reasonably related with the Member States’ methods.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Except where Option 1 is available</td>
</tr>
<tr>
<td>Features</td>
<td>Member States apply the boundary setting procedure using their own datasets and identify the high-good and good-moderate class boundaries. Comparability is tested by checking whether there are major differences in the results given by different Member States’ assessment methods when applied to the same dataset. A common metrics analysis (following Option 2) is used to help resolve inconsistencies between Member States’ methods.</td>
</tr>
<tr>
<td>Data requirements</td>
<td>A common dataset allowing the application of all Member States’ national methods, as well as the common metric(s).</td>
</tr>
<tr>
<td>Advantages</td>
<td>Comprehensive and robust comparison due to the combination of the direct comparison of the methods and the use of common metrics.</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Application of Member States’ national methods outside the geographical range for which they are tested may be questionable. Data requirements are difficult to meet without making compromises. Using a common metric (Option 2) intercalibration in parallel helps to overcome these disadvantages.</td>
</tr>
</tbody>
</table>

2.5 - Reference/alternative benchmark conditions

In the intercalibration exercise reference or alternative benchmark conditions have to be established for the common IC types in order to be able to compare the national class boundary settings. It is important to ensure that the reference conditions of the surface water types being intercalibrated are comparable. The definition of the reference conditions must correspond to the criteria given in the REFCOND Guidance. If natural or near-natural reference conditions are not available or cannot be derived for a certain type (for example, for large rivers) intercalibration needs to be carried out against an alternative benchmark (e.g. good ecological status for that surface water type). To enhance the transparency of the intercalibration process defining reference or benchmark conditions shall be done using the common dataset. This requires finding references or benchmarks based on actual data sampled at existing sites. The availability of a comprehensive
database that especially covers sites in reference or alternative benchmark conditions (pristine or impacted by similar levels of impairment) is essential. As a guideline and where possible, a minimum of 15 sites meeting these conditions per common intercalibration type should be used to make a statistically reliable estimate.

Q6. Do the intercalibration datasets contain sites in near-natural conditions?

The intercalibration benchmark shall preferably be derived from sites in near-natural reference conditions (see Figure 2). Based on a harmonised set of reference criteria abiotic data in the intercalibration dataset have to be screened for near-natural sites. The biological conditions of these sites need to be reviewed to avoid the influence of impacts caused by pressures not regarded in the screening process.

For several surface water types near-natural conditions no longer exist. These types require a different benchmarking approach based on the definition of “Least Disturbed Conditions” (LDC) that refer to the best available physical, chemical and biological habitat conditions given today’s modified landscape (Figure 3). LDC sites have to be identified from the common intercalibration dataset. This can be done by screening for sites meeting abiotic criteria that represent a similar low level of impairment (see Birk & Hering, 2009). This approach also requires the review of the biological conditions. It is important to identify the position of the benchmark on the gradient of impact, i.e. to document the deviation of the selected benchmark from reference conditions. This allows for integrating the approach into the Cross-GIG harmonisation efforts for benchmarking (see Cross-GIG activity on reference condition refinement). When appropriate, modelling approaches can be used to support the setting of alternative benchmarks.

Figure 2: The importance of a common definition of near-natural reference conditions in intercalibration. If the national assessment methods of two countries refer to different levels of human influence (Δ), the same EQRs represent different levels of impairment (Figure taken from Birk & Böhmer 2007).

7 Reference conditions to be used in the intercalibration exercise are currently reviewed by the Cross-GIG activity on reference condition refinement.
alternative reference based on LDC:
e.g. common high-good
or good-moderate boundary

human influence

Figure 3: Definition of an alternative reference in intercalibration by using sites impacted by a similar level of impairment (Least Disturbed Conditions - LDC) instead of near-natural reference sites (Figure taken from Birk & van Kouwen 200911)

The biological communities at reference/benchmark conditions have to be described, considering potential biogeographical differences. The description shall be based on the analysis of sites in the common dataset, possibly confined to the “least common denominator” level of data resolution (see Annex II). It is recommended to relate these descriptions to the characteristic value ranges of the common assessment method (IC Option 1) or the common metric(s) (IC Option 2 and 3), respectively.

Task 11 (GIG):
- Definition and application of reference conditions/benchmark criteria;
- Description of intercalibration type specific reference/benchmark communities.

2.6 - Boundary setting/comparison

Q7. Do the good ecological status boundaries of the national methods comply with the WFD normative definitions?

In the final step of the process a distinction is made between ecological status classifications of national methods established either individually by the Member States prior to the intercalibration process, or jointly by the GIG based on a common approach for boundary setting (IC Option 1 and 2). The former requires a detailed demonstration of national boundary setting according to a Boundary Setting Protocol (see Annex IV). The position of national class boundaries should be reviewed also with regard to the pressure-impact relationship (see Task 3).

National boundary setting: comparison of national boundaries is determined using the standardised analytical procedure and harmonised comparability criteria (see Annex V). National methods not complying with these criteria have to adjust their national method, and re-enter the

comparison process. The adjustments do not necessarily need to be confined to elevating the status class boundaries, but may include more profound changes on the level of data acquisition or numerical evaluation.

Joint boundary setting requires the design of a common Boundary Setting Protocol (see Annex IV). Basic element of this protocol is to establish a relation between abiotic pressure parameters and the common WFD assessment method (IC Option 1) or the common metric(s) (IC Option 2), respectively. Depending on the type of relationship the GIG should agree on the most suitable boundary setting option that needs to be applied to the national classifications.

Similar to the benchmarking step the biological communities representing the “borderline” conditions between good and moderate ecological status have to be described. This shall be done using sites of the common dataset that fall into a selected boundary range (e.g. harmonisation band of national good-moderate boundaries expressed in common metric scale).

Task 12 (Member States):
- If boundaries were set individually by the Member State: Demonstration of national boundary setting according to a Boundary Setting Protocol and boundary adjustment in case of deviation (indicated by comparability analysis);
- If boundaries are jointly set: Transfer of common boundaries into national status classification.

Task 13 (GIG):
- If boundaries were set individually: Approval of national boundary setting and performance of comparability analysis;
- If boundaries are jointly set: Elaboration and execution of Boundary Setting Protocol;
- Description of intercalibration type specific biological communities at “borderline” conditions.
3. Contents of the Technical Intercalibration report

According to the timetable set out in the Intercalibration work programme 2008-2011, the final report of the intercalibration exercise should be finalised in December 2011. The final Intercalibration report will consist of the final reports of the intercalibration groups (Annex VI) and necessary considerations at GIG, BQE and cross-GIG level.

This chapter gives an outline of the expected key elements of this report following the major steps of the IC flowchart (Fig.1)

1. National assessment method:
 1.1. Description of Member States’ assessment methods (See table 2 and 3);
 1.2. Results of WFD compliance check (meeting the requirements of normative definitions);
 1.3. Results of intercalibration feasibility check (compliance with method acceptance criteria for the IC feasibility: type / pressure / method concept / metrics);

2. Common intercalibration types:
 2.1. Characterisation of common IC types;
 2.2. Correspondence of national typology to common IC typology;

3. Data basis:
 3.1. Description of dataset;
 3.2. Sampling strategy and analyses methods;

4. Intercalibration option used:
 4.1. Selection of the IC option;
 4.2. Development of the IC common metrics (if applicable) or common metric used;
 4.3. Application of IC procedure to the dataset(s);

5. Reference conditions/Benchmarking:
 5.1. Description of reference/benchmark setting process;
 5.2. Description of IC type-specific reference or benchmark communities, considering possible biogeographical differences;

6. Boundary comparison/setting:
 6.1. Description of boundary setting procedure;
 6.2. Description of IC type-specific biological communities representing the “borderline” conditions between good and moderate ecological status, considering possible biogeographical differences;
 6.3. Boundary comparison and harmonisation.

7. Boundary EQR values established for the type/quality element/pressure combination for the common metric (where applicable) and each national WFD assessment method:

<table>
<thead>
<tr>
<th>Member State</th>
<th>Classification Method</th>
<th>EQR High-Good boundary</th>
<th>EQR Good-Moderate boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Common metric</td>
<td>0.85</td>
<td>0.65</td>
</tr>
<tr>
<td>MS1</td>
<td>Method 1</td>
<td>0.85</td>
<td>0.60</td>
</tr>
<tr>
<td>MS2</td>
<td>Method 2</td>
<td>0.85</td>
<td>0.75</td>
</tr>
<tr>
<td>MS3</td>
<td>Method 3</td>
<td>0.70</td>
<td>0.60</td>
</tr>
<tr>
<td>MS4</td>
<td>Method 4</td>
<td>0.90</td>
<td>0.75</td>
</tr>
<tr>
<td>MS5</td>
<td>Method 5</td>
<td>0.85</td>
<td>0.60</td>
</tr>
</tbody>
</table>

8. Open issues:
 8.1. Gaps - what is not achieved in the current intercalibration exercise;
 8.2. Possible way forward.
4. Organisation of the work and timetable

4.1 The intercalibration process will be carried out under the umbrella of WFD Common Implementation Strategy WG ECOSTAT. An overview of the intercalibration organisational structure is given in Table 2. The Member States participating in the GIGs are given in Annex I.

<table>
<thead>
<tr>
<th>WFD Common Implementation Strategy Working Group ECOSTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercalibration Steering group (JRC water category coordinators plus additional members from GIG/BQE leads)</td>
</tr>
</tbody>
</table>

RIVER Intercalibration coordinator

<table>
<thead>
<tr>
<th>BQE / GIG</th>
<th>Alpine GIG lead</th>
<th>Central Baltic GIG lead</th>
<th>Eastern Continental GIG lead</th>
<th>Mediterranean GIG lead</th>
<th>Northern GIG lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benthic fauna</td>
<td>R-Alp-Bf lead</td>
<td>R-CB-Bf lead</td>
<td>R-EC-Bf lead</td>
<td>R-Med-Bf lead</td>
<td>R-N-Bf lead</td>
</tr>
<tr>
<td>Phyto benthos</td>
<td>R-Alp-Phb lead</td>
<td>R-CB-Phb lead</td>
<td>R-EC-Phb lead</td>
<td>R-Med-Phb lead</td>
<td>R-N-Phb lead</td>
</tr>
<tr>
<td>Macrophytes</td>
<td>R-Alp-Mp lead</td>
<td>R-CB-Mp lead</td>
<td>R-EC-Mp lead</td>
<td>R-Med-Mp lead</td>
<td>R-N-Mp lead</td>
</tr>
<tr>
<td>Fish fauna</td>
<td>R-Alp-F lead</td>
<td>R-CB-F lead</td>
<td>R-EC-F lead</td>
<td>R-Med-F lead</td>
<td>R-N-F lead</td>
</tr>
</tbody>
</table>

LAKE Intercalibration coordinator

<table>
<thead>
<tr>
<th>BQE / GIG</th>
<th>Alpine GIG lead</th>
<th>Central Baltic GIG lead</th>
<th>Eastern Continental GIG lead</th>
<th>Mediterranean GIG lead</th>
<th>Northern GIG lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoplankton</td>
<td>L-Alp-Ph lead</td>
<td>L-CB-Ph lead</td>
<td>L-EC-Ph lead</td>
<td>L-Med-Ph lead</td>
<td>L-N-Ph lead</td>
</tr>
<tr>
<td>Macrophytes</td>
<td>L-Alp-Mp lead</td>
<td>L-CB-Mp lead</td>
<td>L-EC-Mp lead</td>
<td>L-Med-Mp lead</td>
<td>L-N-Mp lead</td>
</tr>
<tr>
<td>Benthic fauna</td>
<td>L-Alp-Bf lead</td>
<td>L-CB-Bf lead</td>
<td>L-EC-Bf lead</td>
<td>L-Med-Bf lead</td>
<td>L-N-Bf lead</td>
</tr>
<tr>
<td>Fish fauna</td>
<td>L-Alp-F lead</td>
<td>L-CB-F lead</td>
<td>L-EC-F lead</td>
<td>L-Med-F lead</td>
<td>L-N-F lead</td>
</tr>
</tbody>
</table>

COASTAL/TRANSITIONAL WATERS Intercalibration coordinator

<table>
<thead>
<tr>
<th>BQE / GIG</th>
<th>North East Atlantic GIG lead</th>
<th>Baltic Sea GIG lead</th>
<th>Black Sea GIG lead</th>
<th>Mediterranean GIG lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoplankton</td>
<td>C-NEA-Ph lead</td>
<td>C-BS-Ph lead</td>
<td>C-BC-Ph lead</td>
<td>C-Med-Ph lead</td>
</tr>
<tr>
<td>Macrophytes/Angiosperms</td>
<td>C-NEA-Mp lead</td>
<td>C-BS-Mp lead</td>
<td>C-BC-Mp lead</td>
<td>C-Med-Mp lead</td>
</tr>
<tr>
<td>Benthic fauna</td>
<td>C-NEA-Bf lead</td>
<td>C-BS-Bf lead</td>
<td>C-BC-Bf lead</td>
<td>C-Med-Bf lead</td>
</tr>
<tr>
<td>Fish fauna</td>
<td>C-NEA-F lead</td>
<td>C-BS-F lead</td>
<td>C-BC-F lead</td>
<td>C-Med-F lead</td>
</tr>
</tbody>
</table>

Table 2. Overview of the organisational structure for the intercalibration process. The Lakes, Rivers, and Coastal/Transitional Waters expert groups are subdivided into GIGs, and horizontally subdivided into BQE sub-groups that work across GIGs.
4.2 The intercalibration organisational structure includes:
- IC Groups exist for each combination of water category, GIG and biological quality element, e.g. Lake Eastern Continental Phytoplankton group (L-EC-Ph) or River Central-Baltic macrophyte group (R-CB-Mp);
- GIGs comprise regional intercalibration groups for each relevant water category and biological quality element, e.g., Lake Central-Baltic GIG (L-CB GIG) includes Lake Central-Baltic Phytoplankton, Macrophytes, Benthic fauna and Fish fauna groups;
- Biological Quality element groups (BQE groups) ensure cross-GIG cooperation within a water category e.g. Lake Phytoplankton IC group includes Alpine, Central-Baltic, Eastern Continental, Mediterranean and Northern phytoplankton groups.

One of the Member States in each IC group will act as a group coordinator responsible for the practical work. Every GIG and every BQE group will appoint a coordinator responsible for cooperation and organization of cross-group work.

In addition, there are two cross-GIG groups:
- Reference Conditions Working Group (REFCON): The task of this group is to analyse comparability of Member States’ definitions of reference conditions for rivers, lakes, coastal and transitional waters and to make recommendations to Member States and GIGs how to improve comparability.
- Large Rivers Intercalibration Group: This group is developing a harmonised approach for intercalibration of very large rivers (catchments < 10,000 km²) across GIGs and BQEs.

4.3 The practical work will be carried out in the intercalibration groups, following the timetables set out in this guidance document. Basically IC group leads are responsible for organization of the IC process in their group:
- Collection of common dataset (recommended deadline: October 2009);
- Datasets established and common metrics developed (June 2010);
- Reference conditions/Benchmarking and boundary setting (October 2010);
- Boundary comparison and harmonisation (March 2011).

4.4 Cooperation between the IC groups at the BQE level is ensured through the BQE leads. Tasks of BQE leads include streamlining IC at BQE level, addressing BQE-specific problems, and ensuring the comparability of approaches taken by the IC groups:
- Validation of WFD compliance checking;
- Validation of how groups set reference conditions (together with GIG leads);
- Validation of BQE and pressure specific dataset requirements;
- Validation of common metric method elaboration by different GIGs
- Validation of IC results
- Discussions of “cross-GIG” issues: e.g. how to deal with hydromorphological pressures for Macrophyte BQE?

4.5 Tasks of the GIG leads include overall coordination of the IC process:
- Organizational aspects (resources, experts);
- Coordination of all IC groups/ all BQEs in a GIG;
- Definition of the common intercalibration types and their description;
- Validation of how groups set reference conditions (together with BQE leads) to ensure the comparability of the reference conditions between the IC groups in a regional context;
- Support for collection of datasets;
- Overview of pressures addressed by different BQEs to ensure that all relevant pressures are addressed in the GIG.
- In the course of the intercalibration process, the GIgs/Intercalibration groups should regularly report the progress to WG ECOSTAT to check whether approaches followed in different GIgs are sufficiently comparable.

4.6 The Intercalibration process needs to be transparent and the results need to be coherent and consistent between regions, biological quality elements and between water categories. WG ECOSTAT and the **Intercalibration Steering group** is responsible for evaluating the results of the intercalibration exercise and making recommendations to the Strategic Coordination Group or WFD Committee, as and when appropriate. WG ECOSTAT is responsible for the consistency and harmonisation of the process between GIgs and between water categories (lakes, rivers, and coastal and transitional waters), but the Cross-GIG groups should carry out the work necessary to ensure the consistency and harmonisation of the intercalibration process.

4.7 In addition, an **IC Review Panel** should be set up consisting of the water category leads as well as some other experts, e.g. from GIgs or possibly external experts. The review panel will have such tasks as checking WFD compliance of the methods and approving the results of the intercalibration.

4.8 The intercalibration process is facilitated by the EC Joint Research Centre (JRC). JRC has established a reporting structure where IC groups report and update the results of the different steps of the IC process, and will compile the draft final technical report of the intercalibration exercise.

4.9 The Member States in the GIgs have the collective responsibility to bring together the data enabling comparison of the classification results of different countries within the GIG. Additional sampling during the IC exercise may be considered in the GIgs. The GIgs are free to specify the aggregation level and format for this data. To ensure transparency of the intercalibration process the original data source(s) should be specified, and the data should be made publicly available in such a form that the Intercalibration procedure can be verified.

4.10 JRC is responsible to regularly report the progress of the intercalibration process to the CIS Strategic Co-ordination Group, the Water Directors, and the WFD Committee.

4.11 The general timetable of the intercalibration exercise (Table 3) is constrained by the legal deadline to finalise the intercalibration report by December 2012. This requires that WG ECOSTAT agrees on the report in June 2011. WG ECOSTAT will meet twice every year and regularly provide progress reports and recommendations to the Strategic Co-ordination Group and the WFD Committee.
Table 3. Timetable of the Intercalibration - Phase 2.

Reporting milestones are related to the major steps of the IC flowchart (Figure 1); further details on the contents of the milestone reports are given in Annex VI.
Annex I: List of Geographical Intercalibration Groups (GIGs)

GIG co-ordinator(s) are indicated in **bold**.

Geographical Intercalibration Groups

1) Rivers

<table>
<thead>
<tr>
<th>Name of the Geographical Intercalibration Group</th>
<th>Member States being part of this Geographical Intercalibration Groups</th>
</tr>
</thead>
</table>
| Northern | Finland
Ireland
Norway
Sweden
United Kingdom |
| Central/Baltic | Austria
Belgium
Czech Republic
Denmark
Estonia
France
Germany
Ireland
Italy
Latvia
Lithuania
Netherlands
Poland
Slovenia
Slovakia
Spain
Sweden
Luxemburg
United Kingdom |
| Alpine | Austria
France
Germany
Italy
Slovenia
Spain |
| Eastern Continental | Austria
Bulgaria
Czech Republic
Greece
Hungary
Romania
Slovakia
Slovenia |
2) Lakes

<table>
<thead>
<tr>
<th>Name of the Geographical Intercalibration Group</th>
<th>Member States being part of this Geographical Intercalibration Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>Finland, Ireland, Norway, Sweden, United Kingdom</td>
</tr>
<tr>
<td>Central/Baltic</td>
<td>Belgium, Czech Republic, Denmark, Estonia, France, Germany, Latvia, Lithuania, Netherlands, Poland, Slovakia, United Kingdom</td>
</tr>
<tr>
<td>Alpine</td>
<td>Austria, France, Germany, Italy, Slovenia</td>
</tr>
<tr>
<td>Eastern Continental</td>
<td>Bulgaria, Hungary, Romania</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>Cyprus, France, Greece, Italy, Malta, Portugal, Romania, Spain</td>
</tr>
</tbody>
</table>
3) **Transitional and coastal waters**

<table>
<thead>
<tr>
<th>Name of the Geographical Intercalibration Group</th>
<th>Member States being part of this Geographical Intercalibration Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baltic</td>
<td>Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Sweden</td>
</tr>
<tr>
<td>North-East Atlantic</td>
<td>Belgium, Denmark, France, Germany, Ireland, Netherlands, Norway, Portugal, Spain, Sweden, United Kingdom</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>Cyprus, France, Greece, Italy, Malta, Slovenia, Spain</td>
</tr>
<tr>
<td>Black Sea</td>
<td>Bulgaria, Romania</td>
</tr>
</tbody>
</table>
ANNEX II: Recommendations on the establishment of a common dataset for intercalibration

II.1 Content
The common dataset should contain

- biological data (e.g. taxonomical composition and abundance of BQE, …),
- localisation data (country code, name and coordinates of sampling site, …),
- typological data (e.g. altitude, geology, dominant substrate, …), and
- pressure data (e.g. catchment land use, physico-chemical measurements, …).

II.2 Features
The common dataset should allow central data processing and testing of various intercalibration options. It fosters the application of the Boundary Setting Protocol (pressure-response analyses, description of biological communities at various quality states). However, the collation of a representative common dataset for intercalibration requires a laborious process (data collection, data quality control, data harmonisation).

II.3 Harmonisation of biological data in common dataset
Data sampling and processing often differs between countries (e.g. record of abundance, level of taxonomical identification). Thus, deviating data features need to be harmonised. It may be necessary to slightly adjust a national assessment method, so it can be applied to the common dataset. In such a case, the results of the adjusted method have to be related to the outputs of the original method, based on a data subset including all required data parameters. The relations have to be sufficiently strong.

The harmonization of the common dataset may include the following aspects:

- Taxonomical adjustment and coding: The taxonomical data need to be standardized (according to recent reference literature) and coded (using international species codes).
- Level of taxonomic identification: Generally, data need to show the lowest taxonomical level that is required for applying all national assessment methods appropriately. Higher levels can be accepted if the effect on national methods is minimal (refer to relation between adjusted and original method).
- Record of abundance: The selection of the most precise scheme is desirable (e.g. Individuals per square metre). However, it is often necessary to agree on a “least common
denominator” that can be provided by all Member States. A transformation scheme to convert national abundance data might be suitable.

- Record of different aspects of the BQE: If national assessment methods record different/additional aspects of the BQE, but focus on similar pressures (e.g. macroalgae within macrophyte assessment), the common dataset may not provide the complete data relevant to all methods. In these cases, a “least common denominator” solution has to be found, e.g. applying the common dataset to an adjusted national method and referring to relation between adjusted and original method.

II.4 Collation of pressure data

Alongside the biological information pressure data of the sampling site need to be collated. Ideally, these data have to be standardized (comparable) measurements of anthropogenic influence to which the BQE is responding. Suitable parameters are, for instance, anthropogenic land use in the surrounding of the sampling site, derived from Corine Land Cover data. Chemical data sampled according to similar protocols can also be used, but should include the specification of data aggregation (e.g. monthly mean, spot) and spatial/temporal match with biological data. Data on habitat quality evaluation is useful, although the Member States often use individual systems. These data thus require harmonization efforts before including it in the common database.

II.5 National data quality criteria

Most national assessment methods employ quality criteria to evaluate the acceptability of a sample for ecological status classification. For example, the sample has to contain a minimum number of indicator taxa, or the total abundance has to exceed a specific value. When collating the common dataset, these national data quality criteria need to be considered. If compliance is difficult due to specific national requirements (e.g. short regionally specific indicator lists), modified criteria can be used.

II.6 Biogeographical differences

If the common dataset covers very large geographical gradients, the data may be prone to biogeographical differences. For example, climatic factors cause distinct community compositions within the same common intercalibration type. Or by natural means, a certain species is rare in country A (limit of distribution) and ubiquitous in country B (centre of distribution). The effect of biogeographical differences on the national classifications needs to be evaluated. Significant impacts on the intercalibration results have to be taken into account, e.g. by including sub-types (individual reference conditions) between which national classifications are compared.
ANNEX III: Guidelines for deriving reference conditions and defining alternative benchmarks *(under development)*

High status or Reference Conditions should reflect a state in the present or in the past corresponding to very low pressure, without the effects of major industrialisation, urbanisation and intensification of agriculture, and with only very minor modification of physico-chemistry, hydromorphology and biology.

Establishment of a spatial network of reference sites

1. The use of spatial networks of reference sites is expected to provide the most reliable estimates of biological reference conditions and is therefore the preferred option, where practicable. The first intercalibration exercise (2004-2007) showed that, generally, the data from reference sites were not sufficient and that a larger data set was needed that should ideally cover the whole gradient of the pressure. In the second phase of intercalibration (2008-2011) Member States may continue to use the data from the reference sites, but there will be no specific role for the IC register in the second phase.

2. Sites included in a spatial network of reference sites or other sites used to define reference conditions should meet the criteria specified in points (a) and (b) or, where appropriate, those in point (c)
 a) Reference sites should be affected by no or only very low pressures, leading to very minor modifications of physico-chemistry, hydro-morphology and biology.
 b) Any upstream or downstream pressures affecting the migration of aquatic fauna to, or via, the sites should have effects that are in the range of natural variation of the relevant biota
 c) Sites subject to greater anthropogenic disturbance than is consistent with points (a) and (b) may be used as reference sites provided the biological quality element or the biological metrics for which the sites are intended to be used as reference sites are not expected to be affected by that greater disturbance.

3. The level of “very low pressure” corresponding to “very minor modifications” of the biological quality element should be defined, when sufficient data are available, on the basis of statistical relationships demonstrating that the level of pressure accepted to select a reference site is unlikely to have a significant impact on the biological quality element (or parameter).

4. Before including any site in a spatial network of reference sites, Member States should make an appropriate survey and assessment of the driving forces and pressures, at the relevant spatial scales (watershed, water body, site) in order to demonstrate that it meets the criteria agreed by the GIG described in the intercalibration report, or in paragraph 3.6.

5. In order to avoid any circular reasoning, biological data should not be taken into account in a first stage, but sites with statistically outlier biological values should be carefully checked for pressures, and dubious sites eliminated. The outlier values that can be explained by natural disturbances (e.g. variability of meteorological and hydrological conditions) that affect temporarily the biological communities can be considered as part of the natural variability of the site.
6. Setting reference conditions for reservoirs or water body types likely to be designed as Heavily Modified (HMWB) can be done through the identification of another similar water body, within the same type, which is subject to insignificant human pressures except for those hydro-morphological modifications accepted as deserving its designation as HMWB.

7. For the purposes of carrying out the tests referred to in paragraph 3.9, Member States should ensure that, when collecting any new information on pressures and biological conditions, they do so using standardised methods, or methods currently in use according to the scientific literature, or any new method properly described and tested providing reliable information, and quality assurance procedures where applicable.

8. Where existing data is used to derive reference conditions, Member States should ensure that data is suitably comparable. Where necessary, appropriate conversion factors may be applied to improve the comparability of data.

9. The spatial network must consist of sufficient sites to enable Member States to:
 - Confidently estimate the reference value (i.e. statistic) that will serve as the reference biological value for the Member State’s classification system for the biological quality element; and
 - Determine whether or not the natural variation in the biological element is too great to establish reliable type-specific reference conditions.

10. Where a Member State has insufficient reference sites within its territory to enable it to derive a reliable estimate of biological reference conditions, it should explore the potential for utilising information from suitable sites in the territory of other Member States. In doing this, Member States should:
 - consider the comparability of the conditions at those sites with those at relevant sites in its territory (e.g. climatic, geomorphologic, physiographic conditions); and
 - ensure the effects of differences in these conditions can be estimated and appropriately taken into account when making use of information from the sites to derive biological reference values.

11. It may not be possible to establish reliable type-specific reference conditions if the natural spatial variation in the biological element across the type is too large. Where this may be the case, Member States should assess whether reliable reference conditions could be established by using additional factors to identify types representing a narrower range of spatial variation in the biological element concerned. Before doing this, Member States should consider whether there would be sufficient numbers of relevant reference sites from which to derive reliable reference conditions for the new types.

12. It may not be possible to establish reliable type-specific reference conditions if the natural temporal variation in the biological quality element (or metric) is too large. Where this may be the case, Member States should assess whether reliable reference conditions could be established by using reference data obtained from particular seasons.

12 Paragraph 1.3; sub-paragraph (vi), Annex VI
13. Where it is not possible to establish reliable type-specific reference conditions for a quality element (or parameter) in a surface water body type due to the high degree of natural variability in that element, not just as a result of seasonal variations, then that element may be excluded from the assessment of ecological status for that water body type. In such circumstances Member States should state the reason for this exclusion in the RBMP.\(^{13}\)

Modelling approaches

14. Member States may also elect to use data from reference sites in combination with modelling approaches to predict the most appropriate biological reference value for individual water bodies or groups of water bodies in order to reduce the effect of natural spatial variation on the reliability of reference conditions.

15. Modelling approaches may be used on their own or to improve confidence in the estimates of reference conditions based on a spatial network of reference sites (e.g. see paragraph 3.7).

16. Models should be designed to estimate the biological reference values expected under the conditions described in points (a) and (b) of paragraph 3.6.

17. When using modelling approaches, Member States shall ensure that the models provide a sufficient level of confidence about the values for the reference conditions to ensure that the conditions so derived are consistent and valid for each surface water body type. To ensure a sufficient level of confidence, Member States should compare the model predictions with data from known reference sites, historical data or palaeological data; and/or undertake appropriate sensitivity analyses.

Expert judgment

18. Member States could base reference conditions on expert judgement where it is not possible to derive reference conditions based on a spatial network of reference sites or from modelling.

19. Expert judgement could also be a part of the process of selecting reference sites, when background data or scientific knowledge are not available, to assess the level of pressure corresponding to “very minor modifications of physico-chemistry, hydro-morphology and biology”.

20. In making expert judgements, Member States should use as many sources of information as possible, including monitoring data and relevant information (e.g. historical or palaeological data, background levels identified by the international conventions), to improve confidence in their understanding of how the biological quality element responds to increased pressure and hence the values for that element under conditions of no or only very minor human disturbance.

\(^{13}\) Paragraph 1.3; sub-paragraph (vi), Annex VI
Updating reference conditions

21. Member States should review and, where necessary, revise reference conditions when updating the analyses of the characteristics of their river basin districts in accordance with Article 5 and Annex II of Directive 2000/60/EC (see also paragraph 2.2).

22. Member States should include an identification (including a statistical description) of reference values for their surface water body types in the River Basin Management Plans required by Article 13 of Directive 2000/60/EC. Where reference conditions are revised, such revisions should be described in the next update of the relevant River Basin Management Plan or Plans.
ANNEX IV: The development of a boundary setting protocol for the purposes of the intercalibration exercise

Background

This technical paper represents a template boundary setting protocol for the purposes of the intercalibration exercise required by section 1.4.1 of Annex V to Directive 2000/60/EC. The need for this template was identified in the Intercalibration Process Guidance, adopted by Water Directors in December 2004.

The protocol deals with the setting of specific class boundaries for those metrics of the biological quality elements for which suitable assessment methods and data are available for the intercalibration exercise. It does not deal with the overall classification of the ecological status of water bodies.

The template boundary setting protocol should be completed by the GIG (or alternative intercalibration group) and for each biological quality element being intercalibrated. The protocol should be applied in accordance with the agreed approaches to intercalibration. Where the Member States are comparing their own monitoring systems between themselves (Option 2 or Option 3), the boundary setting protocol will be applied by the individual Member States and the GIG will check that the BSP has been applied consistently and then oversee the comparison of boundaries and any harmonisation of boundaries.

The protocol presumes that the GIGs have identified types or sub-types the biology of which is expected to show a broadly similar ecological response to anthropogenic disturbances. For example, the ecology of naturally oligotrophic lakes may show a significantly different characteristic response to nutrient enrichment compared to naturally eutrophic lakes.

The WG ECOSTAT Discussion Paper “Draft Principles of Ecological Status Classification in Relation to Eutrophication”, sets out a proposed common understanding of the Water Framework Directive’s normative definitions in the context of nutrient enrichment, focusing on those key principles of the normative definitions that are relevant across the water categories. This can be used as a framework to apply the class boundary setting protocol regarding eutrophication, and in particular developing the conceptual description of the effects on the biological quality element of increasing impact on the supporting elements (see Step 2).
Step 1: Identify qualifying criteria for type-specific reference conditions (more detailed description given in Annex III)

- Describe the criteria used to identify reference sites for the biological quality element:
 - Identify the specific values for the relevant pressure criteria, hydromorphological and physico-chemical conditions considered to correspond to no, or only very minor, anthropogenic alteration

- State whether it was possible to identify reference values for the biological quality element using data from reference sites:
 - Were sufficient reference sites available for the type?
 - Were there sufficient biological data available from reference sites?

- If it was possible to use reference sites:
 - Specify which summary statistic (e.g. median value or arithmetic mean) of the values for the biological quality elements at reference conditions were used to quantify reference conditions for the purpose of calculating EQRs
 - Specify which summary statistic (e.g. 95 percentile) of the values for the biological quality elements at reference were used to identify the high-good boundary

- If it was not possible to use reference sites:
 - Specify the relevant criteria used to define reference values and the high-good boundary (e.g. when using modelling methods; paleolimnological methods; expert judgement; etc.)

Step 2:
(a) Describe how the biological quality element is expected to change as the impact of the pressure or pressures on supporting elements increases14; and
(b) Relate this description to the normative definitions.

- Specify the relevant pressure or combination of pressures and the associated impacts on the supporting elements that are being considered.

- Specify the quality element(s) being considered.

- In the form of a conceptual model, describe how the biological quality element(s) is expected to respond as the impact (or impacts) on the supporting elements increases. The conceptual model should be designed to highlight key changes to ecosystem structure and function as anthropogenic disturbance increases.

14 The direct effects of most pressures are on the supporting elements (i.e. physico-chemical conditions and hydromorphological conditions). The changes in these supporting elements lead to impacts on biological quality elements. Relatively few pressures act directly on the biological quality elements (e.g. fishing). If relevant, the effects of such pressures should be taken into account when using the protocol.
Based on the normative definitions and the conceptual model, provide an ecological description of the condition of the biological quality element at high, good and moderate status.

Step 3: Select suitable metric(s) of the quality element; assess whether the metric(s) responds to the gradient of impact contained in the data set; and quantify the reference conditions for the metric.

This purpose of this step is to organise the data in the biological data set so that they describe the way in which the biological quality element responds to increasing impacts (i.e. they describe the degradation curve for the biological quality element).

- Select a metric (or metrics) of the quality element that is representative of the effects on the quality element predicted in the Step 2 analysis of the normative definitions (for example, relative biovolume of Cyanobacteria describes effect of eutrophication on Phytoplankton BQE).

- Identify a descriptor, or composite descriptor, of the degree of the relevant pressure or combination of pressures (for example, total phosphorus or chlorophyll-a concentration describes eutrophication pressure).

- Identify whether the biological metric being considered responds over the whole potential gradient of impact on the supporting element(s). If not, try to find a combination of metrics for the quality element that will together cover the whole spectrum.15

- Collate comparable data on the selected biological metric or metrics from a range of sites subject to varying degrees of anthropogenic impact, including reference sites if possible.

- If the metric shows relationships with the impact gradient:
 (i) Quantify the reference conditions and the high-good boundary following the procedure outlined in step 1;
 (ii) Continue with step 4.

- If the metric shows no relationship with the impact gradient represented in the dataset, the boundary setting process for this metric cannot proceed. In such cases:
 (i) The use of another metric of the quality element should be considered;
 (ii) The collection of better data on the original metric of the quality element should be considered; and
 (iii) The appropriateness of the way in which the impact gradient has been defined should be considered (e.g. Are other pressures acting? Is the definition of the impact gradient sufficiently type-specific?)

15 If it is not possible to calculate metrics responding over the whole spectrum of the impact gradient, ensure a metric is selected that shows a response likely to span at least high, good and moderate status.
Step 4: Identify if there are any discontinuities in the relationship between the metric and the gradient of impact represented by the data set.

- If there are distinct discontinuities in the relationship between the biological metric and the gradient of impact represented in the data set, specify how the values for the discontinuity are derived from the data and proceed to Step 5. If not, proceed to Step 6.

Step 5: Determine if the discontinuity relates to a class boundary or a class centre

- Compare the data at the discontinuities with the Step 2 analysis of the normative definitions.

- Decide if the discontinuities correspond to class centres or class boundaries and identify to which classes they relate (for example, steep decrease of macrophyte abundance corresponds to the Good/Moderate class boundary).

- Set out the reasons for the decision and set class boundaries accordingly.

- Specify how errors in the estimate of the class boundaries or class centres are taken into account in setting class boundaries.
Step 6: Taking account of the results of Step 2, assess whether class centres or class boundaries can be located using paired metrics.

- Select appropriate paired metrics based on the Step 2 analysis of the normative definitions.

Example 1: Step 2 analysis predicts that paired metrics of the quality element respond in different ways to the influence of the pressure (e.g. % sensitive taxa compared to % of impact taxa for benthic invertebrates in rivers and lakes).

Example 2: Step 2 analysis predicts secondary effects as the metric of the quality element becomes increasingly impacted (e.g. increase in phytoplankton biomass leading to secondary effects on macrophytes – normative definitions for phytoplankton in lakes).
• Assess the relationship between the paired metrics across the gradient of impact represented by the data set.

• If there is an ecologically relevant interaction between paired metrics\(^{16}\), proceed to Step 7.

• If no relationships are found between any paired metrics, try to obtain better data on the metrics. If this does not improve the situation, proceed to Step 8.

Step 7: Determine whether values derived from the paired metric analysis correspond to class centres or class boundaries.

- Take account of the Step 2 analysis of the normative definitions to decide if the values derived from the paired metric assessments correspond to a class centre or a class boundary, and to which classes they relate (for example, the Good/Moderate boundary for several types in Northern GIG where set at the cross-over point of % phytoplankton sensitive taxa compared to % of phytoplankton impact taxa).

- Specify how the values derived from the paired metric assessments are used to determine the good-moderate class boundary.

- Specify how the error associated with the estimates from the paired metric assessments are taken into account in setting the boundary.

\(^{16}\) e.g. a cross-over point (example 1) or step changes occurring in a secondary effect at distinct values of the biological element (example 2)
Step 8: Setting class boundaries if the relationship between the quality element and the pressure gradient is a continuum and Step 6 has failed to identify boundaries based on paired metric assessments.

- How should boundaries be identified in this situation?

Example approach

- As a starting point, divide the continuum of impact below the high-good boundary (established in Step 1) into four equal width classes. If the data set does not cover the full spectrum of impact, divide the data set below the high-good boundary into an appropriate number of equal width classes.

- Examine the values of the metric of the quality element represented at the good and moderate status class boundaries and compare the ecological meaning of these values with the Step 2 analysis of the normative definitions (e.g. no major reference taxonomic groups of benthic invertebrates should be absent at good status – normative definitions for rivers and lakes).

- Revise the boundaries until the values represented in the good and moderate status classes are consistent with the descriptions provided by the Step 2 analysis of the normative definitions.
Annex V: Definition of comparability criteria for setting class boundaries *(to be developed)*
Annex VI: Contents of milestone reports (to be developed)

The milestone reports are linked to the ECOSTAT meetings; for each report, a detailed template will be provided by the intercalibration steering group, focusing on the following aspects:

Milestone 1 (October 2009):
- Progress on WFD compliance checking (do all national assessment methods meet the requirements of the Water Framework Directive?);
- Progress on Feasibility checking (do all national methods address the same common type(s) and pressure(s) and follow a similar assessment concept?);
- Progress on Collection of IC dataset and Design the work for IC procedure;
- Review common IC types and decide on pressures/pressure combinations to be intercalibrated;

Milestone 2 (April 2010):
- Description of national assessment methods;
- Results of WFD compliance and feasibility check;
- Data set collected;
- Comparability of sampling and data processing;
- Selection of IC option;
- Development of IC common metric;
- Progress on Benchmarking Boundary comparison/setting.

Milestone 3 (October 2010):
- Results of Benchmarking Boundary comparison/setting (Q6);
- Progress on Boundary harmonisation.

Milestone 4 (April 2011):
- Boundary harmonisation completed (Q7);
- Proposal for IC Decision.

Milestone 5 (June 2011):
- Final IC group reports.
- Finalised proposal for IC Decision.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method acceptance criteria</td>
<td>List of criteria evaluating whether assessment methods can be included in the intercalibration exercise, e.g. address the same common type(s) and anthropogenic pressure(s), and follow a similar assessment concept</td>
</tr>
<tr>
<td>Alternative benchmark</td>
<td>Trans-national reference point for intercalibration that is different from near-natural conditions, e.g. representing a similar level of least disturbed conditions</td>
</tr>
<tr>
<td>Artificial Water Body (AWB)</td>
<td>A body of surface water created by human activity (Article 2(8)). An artificial water body is a surface water body which has been created in a location where no water body existed before and which has not been created by the direct physical alteration or movement or realignment of an existing water body</td>
</tr>
<tr>
<td>Assessment method</td>
<td>The biological assessment for a specific biological quality element, applied as a classification tool, the results of which can be expressed as EQR. Since the assessment method evaluates different required parameters indicative of a biological quality element, it is a combination of biological metrics (each designed for a specific parameter)</td>
</tr>
<tr>
<td>Biological metric</td>
<td>A metric quantifies some aspects of the biological population's structure, function or other measurable characteristic that changes in a predictable way with increased human influence</td>
</tr>
<tr>
<td>Biological quality element (BQE)</td>
<td>Particular characteristic group of animals or plants present in an aquatic ecosystem that is specifically listed in Annex V of the Water Framework Directive for the definition of the ecological status of a water body (for example phytoplankton or benthic invertebrate fauna)</td>
</tr>
</tbody>
</table>
| Common Implementation Strategy (CIS) | The Common Implementation Strategy for the WFD was agreed by the European Commission, Member states and Norway in May 2001 with the main aim to provide support in the implementation of the WFD by developing common understanding and guidance on key elements of the Directive. A series of working groups has been developed to help carry out the appointed tasks:
 - Raise awareness and exchange information;
 - Develop Guidance documents on various technical issues;
 - Carry out integral testing in pilot river basins |
<p>| Class boundary | The Ecological Quality Ratio value representing the threshold between two quality classes |
| Classification | The arrangement of similar entities into classes according to established criteria related to the environmental conditions of a water body |
| Boundary setting protocol | A procedure for defining boundaries of ecological status classes between different Member States in the framework of WFD intercalibration |</p>
<table>
<thead>
<tr>
<th>Borderline conditions</th>
<th>Description of the biological communities representing the “borderline” conditions between good and moderate ecological status. This shall be done using sites of the common dataset that fall into a selected boundary range (e.g. harmonisation band of national good-moderate boundaries expressed in common metric scale).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common metrics</td>
<td>A biological metric widely applicable within a GIG or across GIGs, which can be used to derive a comparable understanding of reference conditions/alternative benchmark and boundary setting procedure among different countries/water body types</td>
</tr>
<tr>
<td>Comparability criteria</td>
<td>Criteria for evaluating sufficient comparability of good ecological status between different national assessment methods</td>
</tr>
<tr>
<td>Commission Decision</td>
<td>Legally binding decision of the European Commission. The Commission Decision on the WFD intercalibration includes the results of the intercalibration exercise and the values established for the national assessment methods</td>
</tr>
<tr>
<td>Common intercalibration type</td>
<td>A type of surface water differentiated by geographical, geological, morphological factors (according to WFD Annex II) shared by at least two Member States in a GIG</td>
</tr>
</tbody>
</table>
| **Compliance criteria** | List of criteria evaluating whether assessment methods are meeting the requirements of the WFD, e.g.:
 - Ecological status is classified by one of five classes (high, good, moderate, poor and bad);
 - High, good and moderate ecological status are defined in accordance with the normative definitions of WFD (Annex V);
 - All relevant parameters indicative of the biological quality element are covered (Annex V) |
<p>| Data acceptance criteria | Minimum data requirement and data quality criteria in order to obtain comparable datasets |
| Ecoregion | The geographical area illustrated in WFD Annex XI Maps A (rivers and lakes) and B (transitional and coastal waters) |
| Ecological potential | The status of a heavily modified or artificial water body measured against the maximum ecological quality it could achieve given the constraints imposed upon it by those heavily modified or artificial characteristics necessary for its use |
| Ecological status | Expression of the structure and functioning of aquatic ecosystems associated with surface waters. In practice, ecological status is determined by biological quality elements, supported by hydromorphological and physico-chemical quality elements (Annex V) |
| ECOSTAT | WFD CIS Working Group Ecological Status that was established 2002 with the main objective to provide Member States and Candidate Countries with guidance on the intercalibration of the ecological status classification |
| Ecological Quality Ratio (EQR) | Calculated from the ratio observed value/reference value for a given body of surface water. The ratio shall be represented as a numerical value between zero and one, with high ecological status represented by values close to one and bad ecological status by values close to zero |</p>
<table>
<thead>
<tr>
<th>Geographic Intercalibration Group (GIG)</th>
<th>Organizational unit for the intercalibration consisting of a group of Member States sharing a set of common intercalibration types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harmonisation</td>
<td>The process by which class boundaries should be adjusted to be consistent with the normative definitions (Annex V Section 1.2) of the Water Framework Directive and comparable among Member States sharing the same type. It must be performed for HG and GM boundaries</td>
</tr>
<tr>
<td>Heavily modified water body (HMWB)</td>
<td>A body of surface water which as a result of physical alterations by human activity is substantially changed in character, as designated by the Member State in accordance with the provisions of Annex II</td>
</tr>
<tr>
<td>Impact</td>
<td>Effects of pressures on the status of surface water and groundwater (e.g. decrease in taxa richness due to habitat alteration)</td>
</tr>
<tr>
<td>Intercalibration</td>
<td>An exercise facilitated by the Commission to ensure that the high/good and good/moderate class boundaries are consistent with Annex V Section 1.2 of the Water Framework Directive and comparable between Member States</td>
</tr>
<tr>
<td>Intercalibration Steering Group</td>
<td>This group consists of the water category leads as well as other experts that are able to contribute, e.g. GIG leads and/or BQE leads. Potential external experts can be added. The review panel will have such tasks as checking WFD compliance of the methods and approving the results of the intercalibration.</td>
</tr>
<tr>
<td>Joint Research Centre (JRC)</td>
<td>European Commission Joint Research Centre which provides scientific and technical support for EU policy-making</td>
</tr>
<tr>
<td>Pressure</td>
<td>Human activities such as organic pollution, nutrient loading or hydromorphological modification that have the potential to have adverse effects on the water environment.</td>
</tr>
<tr>
<td>Reference conditions</td>
<td>For any surface water body type reference conditions or high ecological status is a state in the present or in the past where there are no, or only very minor, changes to the values of the hydromorphological, physico-chemical, and biological quality elements which would be found in the absence of anthropogenic disturbance.</td>
</tr>
<tr>
<td>River Basin Management Plan (RBMP)</td>
<td>A plan that must be produced for each River Basin District within a Member State under Article 13. The plan shall include the information detailed in Annex VII, including the programme of measures.</td>
</tr>
<tr>
<td>Strategic Co-ordination Group</td>
<td>A group led by the European Commission with participants from all Member States which was established to co-ordinate the work of the different working groups of the Common Implementation Strategy</td>
</tr>
<tr>
<td>Type specific reference conditions</td>
<td>Reference conditions representative for a specific water body type</td>
</tr>
<tr>
<td>Water body</td>
<td>Distinct and significant volume of water. For example, for surface water: a lake, a reservoir, a river or part of a river or a coastal area</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>WFD Water Framework Directive</td>
<td>Directive 2000/60/EC establishing a framework for Community action in the field of water policy</td>
</tr>
</tbody>
</table>