XT# Hardware Architecture and System Software

Workshop at UDE
June 9-10
Stefan Andersson
Agenda

- **Wednesday : Basic Overview**
 - XT Architecture
 - XT Programming Environment
 - XT MPT : CRAY MPI
 - Cray Scientific Libraries
 - CRAYPAT : Basic HOWTO
 - Handons

- **Thursday : Optimization**
 - Where and How to Optimize on the XT
 - More CRAYPAT
 - More Handons (bring your application day)
Two Cabinet Cray XT6m
- Peak Performance of 31 TFLOPS
- AMD 12-Core Magny Cours Processors, 1.9 GHz
- 4128 processor cores
- This is the first Cray XT6m order in Europe
Cray MPP product for the mid-range HPC market using proven Cray XT6 technologies

- Leading Price/Performance
- Divisional/Supercomputing HPC configurations
 - 1-6 Cabinets
- “Right-sized” Interconnect
 - SeaStar2+ Interconnect
 - 2D Torus Topology
- Proven “petascale” hardware and software technologies
- New “Customer Assist” Service Plan
The cabinet contains three chassis, a blower for cooling, a power distribution unit (PDU), a control system (CRMS), and the compute and service blades (modules).

All components of the system are air cooled:
- A blower in the bottom of the cabinet cools the blades within the cabinet.
 - Other rack-mounted devices within the cabinet have their own internal fans for cooling.
- The PDU is located behind the blower in the back of the cabinet.
Cray XT6 Compute Blade

- 8 AMD Magny-Cours processors (Opteron 6100 series)
- 8 channels of DDR3 memory per dual-socket node
- Plug-compatible with XT5 cabinets and backplanes
- Now shipping with SeaStar interconnect as the Cray XT6
- Upgradeable shortly to Gemini Interconnect
- Upgradeable in 2011 to AMD’s “Interlagos” series
Characteristics

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cores</td>
<td>24 (MC)</td>
<td>32 (IL)</td>
</tr>
<tr>
<td>Peak Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC-8 (2.4)</td>
<td>153 Gflops/sec</td>
<td></td>
</tr>
<tr>
<td>MC-12 (2.2)</td>
<td>211 Gflops/sec</td>
<td></td>
</tr>
<tr>
<td>IL-16 (2.2)</td>
<td>282 Gflops/sec</td>
<td></td>
</tr>
<tr>
<td>Memory Size</td>
<td>32 or 64 GB per node</td>
<td></td>
</tr>
<tr>
<td>Memory Bandwidth</td>
<td>85 GB/s (1333 MHz)</td>
<td>102 GB/s (1600 MHz)</td>
</tr>
</tbody>
</table>
- Up to 24 cores and 24 MB cache
- Over 200 GF
- 8 channels of DDR3 memory (85 GB/s)
- Dies are fully connected with HT3
- Snoop Filter for high-performance SMP coherence scaling
Cray SeaStar2+ Interconnect

- Cray XT5/XT6 systems ship with the SeaStar2+ interconnect
- Custom ASIC
- Integrated NIC / Router
- MPI offload engine
- Connectionless Protocol
- Link Level Reliability
- Proven scalability to 225,000 cores
Every XT6 Cray System Includes

Cray Integrated Tools
- Cray Compilation Environment
 - Fortran/C/UPC/CAF/C++
- Optimized OpenMP/MPI Libraries
- CrayPat, Cray Apprentice2
- Optimized Math Libraries
 - Iterative Refinement Toolkit
 - Cray PETSc, CASK

Customer-selected Options

Compilers
- PGI, PathScale

Debuggers
- TotalView, Allinea DDT

Schedulers
- Moab, PBS Professional, LSF
New CLE Features for 2009 / 2010

- Parallel Data Virtualization Service support
- Scalable Dynamic Libraries
- Cluster Compatibility Mode
- Noise Isolation
- NodeKARE (Node Knowledge and Reconfiguration) resiliency features
- Checkpoint / Restart
Mounting Other Filesystems with DVS

Cray XT System

SeaStar Interconnect

DVS Server SIO Node 4
Pansas Client

DVS Server SIO Node 4
Stornext Client

DVS Server SIO Node 4
GPFS Client

DVS Server SIO Node 4
NFS Client

IB or 10GigE

Servers & Storage

Stornext Servers & Storage

GPFS Servers & Storage

NFS Servers & Storage
Scaling Shared Libraries with DVS

- Requests for shared libraries (.so files) are routed through DVS Servers
- Provides similar functionality as NFS, but scales to 1000s of compute nodes
- Central point of administration for shared libraries
- DVS Servers can be “re-purposed” compute nodes
DSL: Dynamic Shared Libraries

- Benefit: root file system environment available to applications
- Shared root from SIO nodes will be available on compute nodes
- Standard libraries / tools will be in the standard places
- Able to deliver customer-provided root file system to compute nodes
- Programming environment supports static and dynamic linking
- Performance impact negligible, due to scalable implementation
An Adaptive Linux OS designed specifically for HPC

ESM – Extreme Scalability Mode
- No compromise *scalability*
- Low-Noise Kernel for scalability
- Native Comm. & Optimized MPI
- Application-specific performance tuning and scaling

CCM – Cluster Compatibility Mode
- No compromise *compatibility*
- Fully standard x86/Linux
- Standardized Communication Layer
- Out-of-the-box ISV Installation
- ISV applications simply install and run

CLE3 run mode is set by the user on a job-by-job basis to provide full flexibility
CLE3: Allows simultaneous CCM and ESM Modes

- Many Applications running in Extreme Scalability Mode (ESM)
- Submit CCM application through Batch Scheduler, nodes reserved
 \[\text{qsub -q ccm Qname AppScript} \]
- Previous jobs finish, nodes configured for CCM
- Executes the batch script and Application
- Other nodes scheduled for ESM or CCM applications as available
- After CCM job completes, CCM nodes cleared
- CCM nodes available for ESM or CCM mode Applications
Cray XE6 System

- System announced two weeks ago in Edinburgh, Scotland
- Over $200M in booked orders
- 3 Additional Petaflop Machines
- Deliveries start in July
- Key New Technologies
 - Gemini interconnect
 - Series 6 Processor blade to support AMD’s new 6100 series Opteron
 - New XIO blade for I/O
 - CLE 3 Operating System
Gemini Network in the Cray XE6

- Shipping 3Q 2010
- XT systems upgraded by swapping mezzanine card
- Topology remains a 3D torus

- Dramatic increase in network performance and capabilities:
 - 50x higher message throughput per node
 - 4x reduction in message latency
 - Hardware support for one-sided MPI and PGAS languages
 - Suite of global synchronization primitives
 - Advanced resiliency features – fully resilient MPI communication
Cray XE6 Compute Blade

- 8 Magny Cours Sockets
- 96 Compute Cores
- 32 DDR3 Memory DIMMS
- 32 DDR3 Memory channels
- 2 Gemini ASICs
- L0 Blade management processor
- Redundant Vertys & VRMs
Node Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Cores</td>
<td>24 (Magny Cours)</td>
</tr>
<tr>
<td>Peak Performance</td>
<td></td>
</tr>
<tr>
<td>MC-12 (2.2)</td>
<td>211 Gflops/sec</td>
</tr>
<tr>
<td>MC-8 (2.4)</td>
<td>153 Gflops/sec</td>
</tr>
<tr>
<td>Memory Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 GB per node</td>
</tr>
<tr>
<td></td>
<td>64 GB per node</td>
</tr>
<tr>
<td>Memory Bandwidth (Peak)</td>
<td>83.5 GB/sec</td>
</tr>
</tbody>
</table>
Gemini vs SeaStar – Topology

XT6 Module with SeaStar

XE6 Module with Gemini
Gemini Interconnect
Cray Network Evolution

SeaStar
- Built for scalability to 250K+ cores
- Very effective routing and low contention switch

Gemini
- 100x improvement in message throughput
- 3x improvement in latency
- PGAS Support, Global Address Space
- Scalability to 1M+ cores

Aries
- Up to 10x improvement with Low Radius, High Bandwidth Network
- Very effective routing and low contention switch
- Electro-Optical Signaling
Cray Gemini

- Supports 2 Nodes per ASIC
- 168 GB/sec routing capacity
- Scales to over 100,000 network endpoints
- Link Level Reliability and Adaptive Routing
- Advanced Resiliency Features
- Provides global address space
- Advanced NIC designed to efficiently support
 - MPI
 - One-sided MPI
 - Shmem
 - UPC, Coarray FORTRAN
Gemini MPI Features

- Like SeaStar, Gemini has a DMA offload engine allowing large transfers to proceed asynchronously

- Gemini provides low-overhead OS-bypass features for short transfers
 - MPI latency targeted at ~ 1 us
 - NIC provides for many millions of MPI messages per second (measured 8M on a single core)
 - “Hybrid” programming not a requirement for performance

- RDMA provides a much improved one-sided communication mechanism

- AMOs provide a faster synchronization method for barriers

- Gemini supports adaptive routing, which
 - Reduces problems with network hot spots
 - Allows MPI to survive link failures
Gemini Advanced Features

- Globally addressable memory provides efficient support for UPC, Co-array FORTRAN, Shmem and Global Arrays
 - Cray Programming Environment will target this capability directly

- Pipelined global loads and stores
 - Allows for fast irregular communication patterns

- Atomic memory operations
 - Provides fast synchronization needed for one-sided communication models
Example: Random Gather (Shared memory code)

```fortran
parameter (n=2**30)
real table(n)
buffer(nelts) ! nelts << n
...
do i=1,nelts
   buffer(i) = table(index(i))
enddo
```

- Yes, this is purely synthetic, but simulates “irregular” communication access patterns.
- We do have customers that do this stuff.
if(my_rank.eq.0) then
 ! first gather indices to send out to individual PEs
 do i=1,nelts
 indpe = ceiling(real(index(i))/real(myelts)) - 1
 isum(indpe) = isum(indpe) + 1
 who(isum(indpe),indpe) = index(i)
 enddo
 ! send out count and indices to PEs
 do i = 1, npes - 1
 call MPI_SEND(isum(i),8,MPI_BYTE,i,10, &
 MPI_COMM_WORLD,ier)
 if(isum(i).gt.0) then
 call MPI_SEND(who(1,i),8*isum(i),MPI_BYTE,i,11, &
 MPI_COMM_WORLD,ier)
 endif
 enddo
 ! now wait to receive values and scatter them.
 do i = 1,isum(0)
 offset = mod(who(1,0)-1,myelts)+1
 buff(i,0) = table(offset)
 enddo
 do i = 1,npes-1
 if(isum(i).gt.0) then
 call MPI_RECV(buff(1,i),8*isum(i),MPI_BYTE,i,12, &
 MPI_COMM_WORLD,status,ier)
 endif
 enddo
 else !if my_rank.ne.0
 call MPI_RECV(my_sum,8,MPI_BYTE,0,10, &
 MPI_COMM_WORLD,status,ier)
 if(my_sum.gt.0) then
 call MPI_RECV(index,8*my_sum,MPI_BYTE,0,11, &
 MPI_COMM_WORLD,status,ier)
 do i = 1, my_sum
 offset = mod(index(i)-1,myelts)+1
 buffer(i) = table(offset)
 enddo
 call MPI_SEND(buffer,8*my_sum,MPI_BYTE,0,12, &
 MPI_COMM_WORLD,ier)
 endif
 endif
Remote references will pipeline with this loop (library calls do not!)
Resulting performance is orders of magnitude faster than MPI
Summary: An overview of Cray XT systems

<table>
<thead>
<tr>
<th></th>
<th>XT3</th>
<th>XT4</th>
<th>XT5</th>
<th>XT6</th>
<th>XE6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cores/socket</td>
<td>2</td>
<td>4</td>
<td>4-6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Number of cores/node</td>
<td>2</td>
<td>4</td>
<td>8-12</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Clock Cycle (CC)</td>
<td>2.6</td>
<td>2.3</td>
<td>2.6</td>
<td>1.8-2.4</td>
<td>1.8-2.4</td>
</tr>
<tr>
<td>Number of 64 bit Results/CC</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>GFLOPS/Node</td>
<td>10.4</td>
<td>36.8</td>
<td>83.6-124.8</td>
<td>~200</td>
<td>~200</td>
</tr>
<tr>
<td>Interconnect</td>
<td>Seastar 1</td>
<td>Seastar 2+</td>
<td>Seastar 2+</td>
<td>Seastar 2+</td>
<td>Gemini</td>
</tr>
<tr>
<td>Link Bandwidth GB/sec</td>
<td>6x2.4</td>
<td>6x4.8</td>
<td>6x4.8</td>
<td>6x4.8</td>
<td>10x~14</td>
</tr>
<tr>
<td>MPI Latency microseconds</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1.2</td>
</tr>
<tr>
<td>Messages/sec</td>
<td>400K</td>
<td>400K</td>
<td>400K</td>
<td>400K</td>
<td>10M</td>
</tr>
<tr>
<td>Global Addressing</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Cray XE6 Compute Blade