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Abstract. To implement a biometric authentication scheme, the tem-
plates of a group of people are stored in the database (DB) under the
names of these people. Some person presents a name, and the scheme
compares the template of this person and the template associated with
the claimed person to accept or reject their identity [1]. The templates of
people stored in the DB should be protected against attacks for discovery
the biometrics and attacks for successful passing through the verification
test. The authentication algorithm developed by Juels and Wattenberg
[2] is a possible solution to the problem. However, implementations of
this algorithm for practical data require generalized versions of the algo-
rithm and their analysis. We introduce a mathematical model for DNA
measurements and present such a generalization. Some numerical results
illustrate the correction of errors for the DNA measurements of a le-
gitimate user and protection of templates against attacks for successful
passing the verification stage by an attacker.

1 An Additive Block Coding Scheme

An additive block coding scheme proposed in [2] can be presented as follows
(see Figure 1). Let C be a set consisting of M different binary vectors of length
n (a binary code of length n for M messages). The entries of the set C are
called key codewords. One of the key codewords x ∈ C is chosen at random
with probability 1/M. This codeword is added modulo 2 to the binary vector
b generated by a biometrical source, and the vector y = x ⊕ b is stored in the
DB under the name of the person whose biometrics is expressed by the vector
b. Furthermore, the value of a one–way hash function Hash at the vector x (a
one-to-one function whose value can be easily computed, while the inversion is a
difficult problem) is also stored in the DB. Having received another binary vector
b′ and the claimed name, the verifier finds the key codeword x̂ ∈ C located at
the minimum Hamming distance from the vector z = y ⊕ b′. The basis for the
algorithm is the observation.

y = x⊕ b
b′ = b⊕ e

}
⇒ x ⊕ e = z.
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Fig. 1. Verification of a person using an additive block coding scheme with a binary
code

In particular, if the number of positions where the vectors b and b′ differ does
not exceed �(dC − 1)/2�, where dC is the minimum distance of the code C, then
the key codeword used at the enrollment stage will be found. Then Hash(x̂)
is equal to Hash(x) and the identity claim is accepted. Otherwise, the claim is
rejected.

Notice that the verification scheme in Figure 1 can be represented as trans-
mission of the key codeword x over two parallel channels, because

y = x ⊕ b
b′ = b⊕ e

}
⇒

{
x ⊕ b = y
x ⊕ e = z.

Thus, we say that the verifier receives a pair of vectors (x⊕b,x⊕e) (see Figure 2),
while the attacker receives only the first component and the JW decoder analyzes
only the second component of that pair. The transformations x → y and x → z
can be interpreted as transmissions of the key codeword over the biometric and
the observation channels, respectively.

The processing of biometric data is illustrated in Table 1, where we assume
that n = 6 and assign a binary block code C for M = 8 messages. Let 011011 be
the input vector and let 011110 be the chosen key codeword. Then the vector
000101 is stored in the DB. The attacker forms the set of candidates for the
biometric vectors as 000101⊕C and searches for the vector having the maximum
probability computed over the ensemble Prbio . If 111011 is the noisy observation
of the biometric vector, then the JW decoder forms the set 000101⊕111011⊕C,
considers it as the set of possible observation noise vectors, and searches for the
vector having the maximum probability computed over the ensemble Prerr . The
verifier analyzes the pair of these sets and searches for the pair of vectors having
the maximum probability computed over the ensemble Prbio ×Prerr .
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Fig. 2. Representation of the additive block coding as a scheme where a key codeword
x is received under the biometric noise b and the observation noise e

Table 1. Example of processing data with the additive block coding scheme for n = 6
and M = 8

C −→ y ⊕ C z ⊕ C
000000 x = 011110 000101 111110
001011 b = 011011 001110 110101
010101 y = x ⊕ b 010000 101011
011110 = 000101 011011 100000
100110 b′ = 111011 100011 011000
101101 z = b′ ⊕ y 101011 010011
110011 = 111110 110110 001101
111000 111101 000110

We will assume that particular binary vectors b and e are chosen as the
biometric and the observation noise vectors according to the probability distri-
butions (PDs)

(
Pr
bio

{
B = b

}
, b ∈ {0, 1}n

)
,

(
Pr
err

{
E = e

}
, e ∈ {0, 1}n

)
.

Let xbio, xerr, and xbio,err denote results of the decoding when the vectors y, z,
and the pair of vectors (y, z) are available. One can easily check that the maxi-
mum probabilities of correct decoding are attained by the maximum a posteriori
probability decoding rules, i.e., the optimum estimates of the key codeword sat-
isfy the equalities

Pr
bio

{
B = xbio ⊕ y

}
= max

x∈C
Pr
bio

{
B = x⊕ y

}
,
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Pr
err

{
E = xerr ⊕ z

}
= max

x∈C
Pr
err

{
E = x⊕ z

}
,

and

Pr
bio

{
B = xbio,err ⊕ y

}
Pr
err

{
E = xbio,err ⊕ z

}
=

max
x∈C

[
Pr
bio

{
B = x ⊕ y

}
Pr
err

{
E = x⊕ z

}]
.

Then the probabilities that the decoded codewords coincide with the transmitted
key codewords can be expressed as

Λbio =
1
M

∑
y

max
x∈C

Pr
bio

{
B = x ⊕ y

}
,

Λerr =
1
M

∑
z

max
x∈C

Pr
err

{
E = x ⊕ z

}
,

Λbio,err =
1
M

∑
y,z

max
x∈C

[
Pr
bio

{
B = x ⊕ y

}
Pr
err

{
E = x ⊕ z

} ]
.

2 Structure of the DNA Data and Mathematical Model

The most common DNA variations are Short Tandem Repeats (STR): arrays
of 5 to 50 copies (repeats) of the same pattern (the motif) of 2 to 6 pairs. As
the number of repeats of the motif highly varies among individuals, it can be
effectively used for identification of individuals. The human genome contains
several 100,000 STR loci, i.e., physical positions in the DNA sequence where
an STR is present. An individual variant of an STR is called allele. Alleles
are denoted by the number of repeats of the motif. The genotype of a locus
comprises both the maternal and the paternal allele. However, without additional
information, one cannot determine which allele resides on the paternal or the
maternal chromosome. If the measured numbers are equal to each other, then the
genotype is called homozygous. Otherwise, it is called heterozygous. The STR
measurement errors are usually classified into three groups: (1) allelic drop–in,
when in a homozygous genotype, an additional allele is erroneously included,
e.g. genotype (10,10) is measured as (10,12); (2) allelic drop–out, when an allele
of a heterozygous genotype is missing, e.g. genotype (7,9) is measured as (7,7);
(3) allelic shift, when an allele is measured with a wrong repeat number, e.g.
genotype (10,12) is measured as (10,13).

The points above can be formalized as follows. Suppose that there are n
sources. Let the t-th source generate a pair of integers according to the PD

Pr
DNA

{
(At,1, At,2) = (at,1, at,2)

}
= πt(at,1)πt(at,2),

where at,1, at,2 ∈ {ct, . . . , ct +kt −1} and ct, kt are given positive integers. Thus,
we assume that At,1 and At,2 are independent random variables that contain
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information about the number of repeats of the t-th motif in the maternal and
the paternal allele. We also assume that (At,1, At,2), t = 1, . . . , n, are mutually
independent pairs of random variables, i.e.,

Pr
DNA

{
(A1, A2) = (a1,a2)

}
=

n∏
t=1

Pr
DNA

{
(At,1, At,2) = (at,1, at,2)

}
,

where A� = (A1,�, . . . , An,�) and a� = (a1,�, . . . , an,�), � = 1, 2.
Let us fix a t ∈ {1, . . . , n} and denote

Pt
�
=

{
s = (i, j) : i, j ∈ {ct, . . . , ct + kt − 1}, j ≥ i

}
.

Then the PD of a pair of random variables

St
�
=

(
min{At,1, At,2}, max{At,1, At,2}

)
,

which represents the outcome of the t-th measurement, can expressed as

Pr
DNA

{
St = (i, j)

}
= ωt(i, j),

where ωt(i, j)
�
= π2

t (i), if j = i, and ωt(i, j)
�
= 2πt(i)πt(j), if j 	= i. Denote

ωt
�
= (ωt(i, j), (i, j) ∈ Pt ) and

G(ωt)
�
= − log max

(i,j)∈Pt

ωt(i, j),

H(ωt)
�
= −

∑
(i,j)∈Pt

ωt(i, j) log ωt(i, j),

p(ωt)
�
=

ct+kt−1∑
i=ct

ωt(i, i),

h(ωt)
�
= −(1 − p(ωt)) log(1 − p(ωt)) − p(ωt) log p(ωt).

One can easily see that the best guess of the output of the t-th source is a pair
(i∗t , j

∗
t ) such that ωt(i∗t , j

∗
t ) ≥ ωt(i, j) for all (i, j) ∈ Pt. Therefore, 2−G(ωt) is the

probability that the guess is correct. The value of p(ωt) is the probability that
the genotype is homozygous, H(ωt) is the entropy of the PD ωt, and h(ωt) is
the entropy of the PD (1 − p(ωt), p(ωt)).

Let us assume that qt
�
= | Pt | = kt(kt + 1)/2 values ωt(i, j), (i, j) ∈ Pt, are

different and introduce two transformations of a pair of measurements (i, j) ∈ Pt.
(a) Let i = j imply β(i, j) = 0 and let i 	= j imply β(i, j) = 1. (b) Given an
integer q ≥ qt, let βq(i, j) = b if and only if there are b pairs (i′, j′) ∈ Pt such
that ωt(i′, j′) > ωt(i, j). In particular, βq(i∗t , j

∗
t ) = 0.

We will denote the vector of measurements available to the scheme at the en-
rollment stage by s = ((i1, j1), . . . , (in, jn)). The transformations of this vector
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will be denoted by β(s) = (β(i1, j1), . . . , β(in, jn)) and βq(s) = (βq(i1, j1), . . . ,
βq(in, jn)). Similar notations will be used for the vector s′ = ((i′1, j

′
1), . . . , (i

′
n, j′n))

available to the scheme at the verification stage.
Example (the quantities below describe the TH01 allele in Table 2). Let ct = 6,
kt = 4, and (π(6), . . . , π(9)) = (0.23, 0.19, 0.09, 0.49). Then

[
πt(i)πt(j)

]
i,j=6,...,9

=

j = 6 j = 7 j = 8 j = 9
i = 6 .0529 .0437 .0207 .1127
i = 7 .0437 .0361 .0171 .0931
i = 8 .0207 .0171 .0081 .0441
i = 9 .1127 .0931 .0441 .2401

To construct the PD ωt, we transform this matrix to the right triangular matrix
below. The entries above the diagonal are doubled, and the entries below the
diagonal are replaced with the zeroes. The sum of all entries of the i-th row is
equal to the probability that min{At,1, At,2} = i and the sum of all entries of
the j-th column is equal to the probability that max{At,1, At,2} = j (these sums
are denoted by ωt,min(i) and ωt,max(j)),

[
ωt(i, j)

]
i,j=6,...,9

j≥i

=

j = 6 j = 7 j = 8 j = 9 ωt,min(i)
i = 6 .0529 .0874 .0414 .2254 .4071
i = 7 .0361 .0342 .1862 .2565
i = 8 .0081 .0882 .0963
i = 9 .2401 .2401

ωt,max(j) .0529 .1235 .0837 .7399

Reading the entries of this matrix in the decreasing order of their values brings
the following table,

i, j 9, 9 6, 9 7, 9 8, 9 6, 7 6, 6 6, 8 7, 7 7, 8 8, 8
β(i, j) 1 0 0 0 0 1 0 1 0 1

βq(i, j) 0 1 2 3 4 5 6 7 8 9
ωt(i, j) .2401 .2254 .1862 .0882 .0874 .0529 .0414 .0361 .0342 .0081
G(ωt) − log .2401 = 2.07
p(ωt) .2401 + .0529 + .0361 + .0081 = .3372

Some parameters of the PDs that were under considerations in the BioKey–
STR project [3] are given in Table 2. We conclude that results of the DNA mea-
surements can be represented by a binary vector of length 
log(q1 . . . qn)� = 129
bits. However the PD over these vectors is non–uniform and (roughly speak-
ing) only 109 bits carry information about the measurements. If an attacker
is supposed to guess this vector, then the best guess is the vector of pairs
s∗ = ((i∗1, j

∗
1 ), . . . , (i∗n, j∗n)). By the construction of the βq transformation, βq(s

∗)
is the all-zero vector. The probability that the guess is correct is equal to 2−76.8.
If the vector of n pairs of integers is transformed to a binary vector of length
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Table 2. Some characteristics of the PDs ω1, . . . , ωn that describe the DNA measure-
ments for n = 28

t Name log qt H(ωt) G(ωt) p(ωt) h(ωt)

1 D8S1179 4.39 4.08 3.01 0.20 0.73
2 D3S1358 3.91 3.71 2.87 0.22 0.76
3 VWA 4.39 4.13 3.12 0.19 0.71
4 D7S820 4.39 4.07 3.25 0.19 0.71
5 ACTBP2 7.71 7.43 6.13 0.06 0.32
6 D7S820 4.81 4.24 3.31 0.19 0.69
7 FGA 5.49 4.92 3.54 0.15 0.61
8 D21S11 4.81 4.13 3.01 0.20 0.73
9 D18S51 5.78 5.28 4.43 0.13 0.55

10 D19S433 4.39 3.59 2.33 0.26 0.82
11 D13S317 4.81 4.15 2.56 0.22 0.75
12 TH01 3.32 2.85 2.07 0.34 0.92
13 D2S138 6.04 5.60 4.23 0.12 0.52
14 D16S539 4.81 3.78 2.25 0.25 0.81
15 D5S818 3.91 3.11 1.81 0.31 0.89
16 TPOX 3.91 2.91 1.79 0.37 0.95
17 CF1PO 3.91 3.16 2.16 0.28 0.86
18 D8S1179 5.49 4.49 3.15 0.19 0.69
19 VWA-1 4.39 4.13 3.12 0.19 0.71
20 PentaD 5.17 4.32 3.13 0.19 0.70
21 PentaE 6.91 5.87 4.02 0.11 0.51
22 DYS390 4.39 3.24 2.06 0.30 0.88
23 DYS429 3.91 2.97 1.78 0.33 0.91
24 DYS437 2.58 2.26 1.58 0.40 0.97
25 DYS391 3.32 1.90 1.11 0.47 1.00
26 DYS385 5.17 3.61 1.72 0.34 0.93
27 DYS389I 2.58 2.01 1.18 0.50 1.00
28 DYS389II 3.91 3.14 2.04 0.31 0.89

P
128.6 109.1 76.8 7.01 21.5

n containing ones at positions where the genotype is homozygous, then the ex-
pected weight of the vector can be computed as p(ω1) + . . . + p(ωn) = 7.01,
because the weight is the sum of n independent binary random variables where
the t-th variable takes value 1 with probability p(ωt). The difference between the
entropies H(ωt) − h(ωt) characterizes the loss of data for the β transformation
of presented measurements.

3 Verification of a Person Using the DNA Measurements

Additive block coding schemes are oriented to the correction of certain types of
measurement errors with simultaneous hiding biometric data from an attacker.
If only the allelic drop–in/out errors are possible, then correction of errors means
the transformation of the binary vector β(s′) to the binary vector β(s), where
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s and s′ are biometric vectors presented to the scheme at the enrollment and
the verification stages, respectively. This procedure can be organized using an
additive block coding scheme with a binary code of length n. However, the β
transformation brings an essential loss of input data, and the verifier cannot
make a reliable acceptance decision.

Notice that the βq transformation is lossless and propose the use of an additive
block coding scheme with a q-ary code Cq, where q is chosen in such a way that
q1, . . . , qn ≤ q. All the vectors in Figures 1, 2 become q-ary vectors, and ⊕
has to be understood as the component-wise addition modulo q. To distinguish
between these vectors and binary vectors, we attach the index q and introduce
the following translation to parallel channels:

yq = xq ⊕ bq

b′
q = bq ⊕ eq

}
⇒

{
xq ⊕ bq = yq

xq 
 eq = zq

where zq = yq 
b′
q and 
 denotes the component-wise difference modulo q. Our

data processing algorithm is presented below.

Preprocessing. Assign a binary code C for M messages and a q-ary code Cq

for Mq messages. Both codes have length n.

Enrollment (input data are specified by the vector s).

(0) Construct the vectors β(s) and βq(s).
(1) Choose a binary key codeword x ∈ C. Store Hash(x) and y = x ⊕ β(s) in

the DB.
(2) Choose a q-ary key codeword xq ∈ Cq. Store Hash(xq) and yq = xq ⊕ βq(s)

in the DB.

Verification (input data are specified by the vector s′ and content of the DB).

(0) Construct the vectors β(s′) and βq(s′).
(1) Consider (y,y ⊕ β(s′)) as the pair of received words and decode the binary

key codeword as x̂. If Hash(x̂) 	= Hash(x), then output “No” and terminate.
(2) Consider (yq ,yq 
βq(s′)) as the pair of received words and decode the q-ary

key codeword as x̂q. If Hash(x̂q) 	= Hash(xq), then output “No”. Otherwise,
output “Yes”.

The formal description of biometric sources for the 1-st and the 2-nd steps
are as follows: for all b ∈ {0, 1}n and bq ∈ {0, . . . , q − 1}n,

Pr
bio

{
B = b

}
=

n∏
t=1

Pr
DNA

{
β(St) = bt

}
,

Pr
bio,q

{
Bq = bq

}
=

n∏
t=1

Pr
DNA

{
βq(St) = bt,q

}
.

Suppose that the noise of observations is specified is such a way that, for all
e ∈ {0, 1}n and eq ∈ {0, . . . , q − 1}n,

Pr
err

{
E = e

}
=

n∏
t=1

{
1 − ε, if et = 0,
ε, if et = 1,
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Pr
err,q

{
E = eq

}
=

n∏
t=1

{
1 − εq, if et,q = 0,
εq/(q − 1), if et,q ∈ {1, . . . , q − 1},

where ε and εq are given.
Let us estimate the decoding error probability at the output of the JW de-

coders. One can easily see that if the decoder tries to find a key codeword at
distance at most �(dC − 1)/2� from the received vector y and outputs an error
when it is not possible, then the probability of correct decoding is expressed as

Λ̂err(ε) =
�(dC−1)/2�∑

ν=0

(
n

ν

)
(1 − ε)n−νεν .

The decoding at the 2-nd step can be organized as a procedure that depends
on the results of the 1-st step. Namely, the decoder can replace symbols of the
vector yq located at positions where the vector ê = y ⊕ x̂ contains 1’s with
erasures and decode the resulting vector ŷq. One can easily see that an estimate
of the probability of correct decoding can be expressed as

Λ̂∗
err(ε, εq) =

�(dC−1)/2�∑
ν=0

(
n

ν

)
(1 − ε)n−νενΛ̂err,q(εq|wt(ê)),

where

Λ̂err,q(εq|wt(ê))
�
=

�(dCq−wt(ê)−1)/2�∑
τ=0

(
n − wt(ê)

τ

)
(1 − εq)n−wt(ê)−τετ

q

is the estimate of the probability of correct conditional decoding at the 2-nd
step. Some numerical results are given in Table 3.

Table 3. Estimates of the decoding error probability for n = 28 and dCq = 5

1 − Λ̂err(ε) 1 − Λ̂∗
err(ε, εq = .001)

ε dC = 5 dC = 7 dC = 9 dC = 5 dC = 7 dC = 9

.001 3.2e-06 2.0e-08 9.6e-11 1.6e-05 1.3e-05 1.3e-05

.002 2.5e-05 3.2e-07 3.0e-09 4.7e-05 2.3e-05 2.2e-05

.003 8.4e-05 1.6e-06 2.3e-08 1.1e-04 3.4e-05 3.3e-05

.004 1.9e-04 4.9e-06 9.3e-08 2.3e-04 4.9e-05 4.4e-05

.005 3.7e-04 1.2e-05 2.8e-07 4.2e-04 6.8e-05 5.7e-05

Considerations presented in [4] show that the performance of the verifier, who
analyzes transmitted key codeword both under the biometric and the observation
noise, corresponds to the performance of the JW decoder for the channel having
crossover probability ε′ = 2ε/3, i.e., Λ̂bio,err(p, ε) = Λ̂err(2ε/3). The value of
parameter ε that can be of interest for practical systems is ε = 0.005, and the
corresponding values of the decoding error probabilities are given in Table 3 in
bold font.
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We can also prove the following upper bound on the probability of correct
decoding by the attacker,

Λ̂bio(p) ≤ 2n

M
· qn

Mq
max

s
Pr

DNA

{
S = s

}
.

In particular, if C is the code for M = 218 messages having the minimum disance
5 and C8 is the Reed–Solomon code over GF (28) for M8 = (28)24 messages having
the minimum distance 5, then Λ̂bio(p) is equal to 2−182−8(28−24)2−76.8 = 2−34.8.

A more detailed discussion of the implementation issues will be presented in
another paper.

4 Conclusion

Additive block coding schemes can bring efficient solutions to biometric problems
when the length of the auxiliary key codewords is the same as the length of
biometric vectors and there is an external randomness measured by the number
of possible key codewords. This approach is especially effective for correcting the
drop–in/out errors in the DNA measurements.
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