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Capacity-Equivocation Region of a Special Case of
Wiretap Channel with Noiseless Feedback

Bin Dai, A. J. Han Vinck, Yuan Luo, and Zheng Ma

Abstract: The general wiretap channel with noiseless feedback is
first investigated by Ahlswede and Cai, where lower and upper
bounds on the secrecy capacity are provided in their work. The
upper bound is met with equality only in some special cases. In
this paper, we study a special case of the general wiretap chan-
nel with noiseless feedback (called non-degraded wiretap channel
with noiseless feedback). Inner and outer bounds on the capacity-
equivocation region of this special model are provided. The outer
bound is achievable if the main channel is more capable than the
wiretap channel. The inner bound is constructed especially for
the case that the wiretap channel is more capable than the main
channel. The results of this paper are further explained via binary
and Gaussian examples. Compared with the capacity results for
the non-degraded wiretap channel, we find that the security is en-
hanced by using the noiseless feedback.

Index Terms: Capacity-equivocation region, noiseless feedback, se-
crecy capacity, wiretap channel.

I. INTRODUCTION

THE concept of the wiretap channel was first introduced by
Wyner [1]. It is a kind of degraded broadcast channel. The

wiretapper knows the encoding scheme used at the transmitter
and the decoding scheme used at the legitimate receiver. The
object is to describe the rate of reliable communication from
the transmitter to the legitimate receiver, subject to a constraint
of the equivocation to the wiretapper. After the publication of
Wyner’s work, Csiszár and Körner [2] investigated a more gen-
eral situation: The broadcast channels with confidential mes-
sages. It is clear that Wyner’s wiretap channel is a special case
of the model of Csiszár and Körner, in a manner that the main
channel is less noisy than the wiretap channel. In addition, the
secrecy capacity of the non-degraded wiretap channel was also
formulated in [2], which provides the best transmission rate with
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perfect secrecy. Based on Wyner’s work, Leung-Yan-Cheong
and Hellman studied the Gaussian wiretap channel (GWC) [3],
and showed that its secrecy capacity was the difference between
the main channel capacity and the overall wiretap channel ca-
pacity (the cascade of main channel and wiretap channel). Re-
cently, Mitrpant et al. [4] and Chen et al. [5] studied wiretap
channel with noncausal channel state information, where both
of them focused on achievable regions. Based on the work of
[5], Dai [6] provided an outer bound on the wiretap channel with
noncausal channel state information (CSI), and determined the
capacity-equivocation region for the model of wiretap channel
with memoryless CSI, where the memoryless means that at the
ith time, the output of the channel encoder depends only on the
ith time CSI. In addition, Merhav [7] studied a specific wiretap
channel, and obtained the capacity region, where both the legit-
imate receiver and the wiretapper have access to some leaked
symbols from the source, but the channels for the wiretapper are
more noisy than the legitimate receiver, which shares a secret
key with the encoder.

It is a well-known fact that the feedback does not increase the
capacity of a discrete memoryless channel (DMC). However,
does the feedback increase the secrecy capacity of the wiretap
channel? To solve this problem, Ahlswede and Cai [8] studied
the general wiretap channels with noiseless feedback, see Fig. 1.
The upper and lower bounds on the secrecy capacity were pro-
vided. The lower bound is proved to be tight, while the upper
bound is only tight for some special cases. Specifically, for the
degraded wiretap channel with noiseless feedback, the secrecy
capacity satisfies

Cs = max
p(x)

min{I(X ;Y ),

I(X ;Y )− I(X ;Z) +H(Y |X,Z)} (1.1)

where X , Y , and Z are input of the main channel, output of the
main channel, and output of the wiretap channel, respectively.
Recall that the secrecy capacity Cs1 of the degraded wiretap
channel is determined by Wyner [1], and it is given by

Cs1 = max
p(x)

min{I(X ;Y ), I(X ;Y )− I(X ;Z)}. (1.2)

From the above definitions of Cs and Cs1, it is easy to see
that the noiseless feedback increases the secrecy capacity of the
wiretap channel.

Here note that in [8], the legitimate receiver just sends back
the previous received symbols to the transmitter, and it is natural
to ask: is it better for the legitimate receiver to send back pure
randomness secret keys to the transmitter? Ardestanizadeh et al.
[9] answered this question by considering the model of wiretap
channel with secure rate-limited feedback. Ardestanizadeh et al.
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Fig. 1. The general wiretap channel with noiseless feedback.
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Fig. 2. The non-degraded wiretap channel with noiseless feedback.

[9] showed that if the limits (capacity) of the feedback channel is
denoted by Rf , the secrecy capacity of the physically degraded
wiretap channel (X → Y → Z) with secure rate-limited feed-
back is given by

Csf = max
p(x)

min{I(X ;Y ),

I(X ;Y )− I(X ;Z) +Rf}. (1.3)

Compared with Cs, it is easy to see that if Rf ≤ H(Y |X,Z),
sending pure randomness secret keys is no better than sending
Y i−1 back. If Rf > H(Y |X,Z), sending pure randomness se-
cret keys is better than sending Y i−1 back.

In this paper, we study the model of non-degraded wiretap
channel with noiseless feedback, see Fig. 2. In this model, the
ith time input of the main channel Xi depends not only on the
messageW , but also on the previous outputs of the main channel
Y i−1. The wiretapper can observe Xi via a wiretap channel, see
Fig. 2. Note that in Fig. 2, givenXi, Yi is independent ofZi, i.e.,
Xi → Zi → Yi. Therefore, the model of Fig. 2 is a special case
of Fig. 1. Inner and outer bounds on the capacity-equivocation
region of Fig. 2 are provided. The results are further explained
via binary and Gaussian examples.

The reminder of this paper is organized as follows. In
Section II, we present the basic definitions and the main results
on the capacity-equivocation region (including the secrecy ca-
pacity). In Section III, we give the capacity-equivocation regions
of the binary and Gaussian examples. Final conclusions are pre-
sented in Section IV.

II. DEFINITIONS AND THE MAIN RESULTS

In this paper, random variab1es, sample values, and alpha-
bets are denoted by capital letters, lower case letters, and calli-
graphic letters, respectively. Let PV (v) denote the probability
mass function Pr{V = v}. Let TN

V (η) be the strong typical set

with respect to PV (v). Throughout the paper, the logarithmic
function is to the base 2.

Definition 1: (Channel encoder) The message W is uni-
formly distributed over W . The feedback Y i−1 (where 2 ≤
i ≤ N ) is the previous i − 1 time output of the main channel.
At the ith time, the inputs of the channel encoder are W and
Y i−1, while the output is Xi. The ith time channel encoder is a
stochastic encoder with the conditional probability distribution
PX|W,Y1,···,Yi−1

(xi|w, y1, · · ·, yi−1).
Definition 2: (Channels) The main channel is a DMC with

finite input alphabet X , finite output alphabet Y , and tran-
sition probability PY |X(y|x), where x ∈ X , and y ∈ Y .
PY N |XN (yN |xN ) = ΠN

i=1PY |X(yi|xi). The input of the main
channel is XN , while the output is Y N .

The wiretap channel is also a DMC with finite input al-
phabet X , finite output alphabet Z , and transition probability
PZ|X(z|x), where x ∈ X , z ∈ Z . The input and output of the
wiretap channel are XN and ZN , respectively. The equivoca-
tion to the wiretapper is defined as

∆ =
1

N
H(W |ZN ). (2.1)

The perfect secrecy is achieved when H(W |ZN ) = H(W ).
Note that given the input XN , the output ZN of the wiretap
channel and the output Y N of the main channel are condition-
ally independent.

Definition 3: (The relation of the main channel and the
wiretap channel) Similar to the definitions in [2], “the main
channel is more capable than the wiretap channel” is character-
ized by I(X ;Y ) ≥ I(X ;Z) for every input PX(x), and “the
wiretap channel is more capable than the main channel” is char-
acterized by I(X ;Y ) ≤ I(X ;Z) for every input PX(x).

Definition 4: (Decoder) The Decoder for the receiver is a
mapping fD : YN → W , with input Y N and output Ŵ . Let
Pe be the error probability of the receiver, and it is defined as
Pr{W 6= Ŵ}.

A rate pair (R,Re) (where R,Re > 0) is called achiev-
able if, for any ǫ > 0, there exists a channel encoder-decoder
(N,∆, Pe) such that

lim
N→∞

log |W|

N
= R, lim

N→∞
∆ ≥ Re, Pe ≤ ǫ. (2.2)

The capacity-equivocation region R is the set composed of all
achievable (R,Re) pairs in the model of Fig. 2.

Define RA to be the set of all pairs (R1, Re) such that

RA =
⋃

PX (x):







(R,Re) : Re ≤ R,
R ≤ I(X ;Y ),
Re ≤ H(Y |Z).







,

for some distribution

PX,Y,Z(x, y, z) = PZ|X(z|x)PY |X(y|x)PX(x),

which implies the Markov chain Y → X → Z .
As stated in the next theorem, the set RA is an outer bound

on the capacity-equivocation region R of the model of Fig. 2.
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Theorem 1: The capacity-equivocation region R of Fig. 2
satisfies

R ⊆ RA.
Proof: See Appendix I. 2

Remark 1: There are some notes on Theorem 1, see the fol-
lowings.
1) The outer bound RA is achievable if the main channel is

more capable than the wiretap channel, i.e., if I(X ;Y ) ≥
I(X ;Z) for every input PX(x), the capacity-equivocation
region of Fig. 2 is denoted by

R = RA =
⋃

PX (x):
I(X; Y ) ≥ I(X; Z)







(R,Re) : Re ≤ R,
R ≤ I(X ;Y ),
Re ≤ H(Y |Z).







.

Proof: See Appendix I and Appendix II. 2

2) The secrecy capacity C
′

s of the model of Fig. 2 is denoted by

C
′

s = max
(R,Re=R)∈R

R. (2.3)

Substituting Re = R into Theorem 1, it is easy to see that

C
′

s ≤ max
PX (x)

min{I(X ;Y ), H(Y |Z)}, (2.4)

and “=” is achieved if I(X ;Y ) ≥ I(X ;Z) for every input
PX(x).

The inner bound is stated next. Define RB to be the set of all
pairs (R,Re) such that

RB =
⋃

PX (x):
I(X; Y ) ≤ I(X; Z)







(R,Re) : Re ≤ R,
R ≤ I(X ;Y ),
Re ≤ H(Y |X).







,

for some distribution

PX,Y,Z(x, y, z) = PZ|X(z|x)PY |X(y|x)PX(x),

which implies the Markov chain Y → X → Z .
Theorem 2: The capacity-equivocation region R of Fig. 2

satisfies

RB ⊆ R.
Remark 2: There are some notes on Theorem 2, see the fol-

lowings.
1) Note that the inequality Re ≤ H(Y |X) of RB implies

that Re ≤ H(Y |X) = H(Y |X,Z) ≤ H(Y |Z). Since
the secrecy rate R = maxPX (x)min{I(X ;Y ), H(Y |Z)} is
achievable if the main channel is more capable than the wire-
tap channel, the secrecy ratemaxPX (x)min{I(X ;Y ), H(Y |X)}
is also achievable for this case. To prove the achievability of
RB , it remains to show that RB is achievable if the wiretap
channel is more capable than the main channel, see Appendix
II.

2) The secrecy capacity C
′

s of the model of Fig. 2 satisfies

C
′

s ≥ max
PX (x)

min{I(X ;Y ), H(Y |X)}. (2.5)

3) If the wiretap channel is more capable than the main chan-
nel, the secrecy capacity of the non-degraded wiretap chan-
nel without feedback reduces to zero. However, for the feed-
back model, the rate maxPX (x)min{I(X ;Y ), H(Y |X)} is
also an achievable secrecy rate, and this is because the noise-
less feedback is used as a secret key shared by the transmit-
ter and the legitimate receiver, while the wiretapper does not
know the key. Therefore, by using feedback, the security is
enhanced.

III. BINARY AND GAUSSIAN EXAMPLES OF FIGURE 2

A. The Binary Case of the Model of Figure 2

In this subsection, we study the following binary case of
Fig. 2. Throughout this subsection, the logarithmic function is
to the base 2.

Assume that all channels inputs and outputs take values in
{0, 1}, and the channels are discrete memoryless. The input-
output relationship of the channels at each time instant satisfies

Yi = Xi ⊕ Z1,i, Zi = Xi ⊕ Z2,i, (3.1)

where 1 ≤ i ≤ N , and ZN
1 , ZN

2 are composed of N i.i.d. ran-
dom variables with distributionsPr{Z1,i = 1} = p, Pr{Z1,i =
0} = 1 − p, Pr{Z2,i = 1} = q, and Pr{Z2,i = 0} = 1 − q,
respectively. Let 0 ≤ p, q ≤ 0.5. The following Theorem 3
provides the secrecy capacity of the binary case of Fig. 2.

Theorem 3: For the binary non-degraded wiretap channel
with noiseless feedback (Fig. 2), the achievable secrecy rate Cfbi

s

is given by

Cfbi
s =

{

min{1− h(p), h(p+ q − 2pq)}, if q ≥ p,
min{1− h(p), h(p)}, otherwise.

(3.2)
Proof: Let PX(0) = α and PX(1) = 1−α. By calculating

and maximizing (the maximum is achieved when α = 0.5) the
terms in Theorem 1 and 2, we have Theorem 3. Thus, the proof
of Theorem 3 is completed. 2

Moreover, the secrecy capacity of the binary non-degraded
wiretap channel (Fig. 2 without feedback) is given by the fol-
lowing Theorem 4.

Theorem 4: For the binary non-degraded wiretap channel,
the secrecy capacity Cb

s is given by

Cb
s =

{

h(q)− h(p), if q ≥ p,
0, otherwise. (3.3)

Proof: The proof of Theorem 4 is directly obtained by
calculating and maximizing I(X ;Y ) − I(X ;Z), and thus, the
proof is omitted here. 2

By using 0 ≤ h(p + q − 2pq) ≤ 0.5 and h(p + q − 2pq) =
h(q + p(1 − 2q)) ≥ h(q) ≥ h(q) − h(p), it is easy to see that
Cfbi

s is larger than Cb
s , i.e., feedback enhances the security of

this binary model.

B. The Gaussian Case of the Model of Figure 2

In this subsection, we study the Gaussian case of Fig. 2. The
channel input-output relationships at each time instant i (1 ≤
i ≤ N ) are given by

Yi = Xi + Z1,i, Zi = Xi + Z2,i (3.4)
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Fig. 3. The secrecy rates of the Gaussian non-degraded wiretap channel with or
without noiseless feedback.

where Z1,i ∼ N (0, N1) and Z2,i ∼ N (0, N2). The random
vectors ZN

1 and ZN
2 are independent with i.i.d. components.

The channel input XN is subject to the average power constraint
P .

The following Theorem 5 provides the secrecy capacity of the
Gaussian case of Fig. 2.

Theorem 5: For the Gaussian non-degraded wiretap channel
with noiseless feedback (Fig. 2), the secrecy rate Cfgi

s is given
by

Cfgi
s = min

{

1

2
log

(

1 +
P

N1

)

,
1

2
log(2πeN1)

}

(3.5)

if N1 ≥ N2, and

Cfgi
s = min

{

1

2
log

(

1 +
P

N1

)

,

1

2
log

(

2πe

(

N1 +
(N2 −N1)P

N2

))} (3.6)

if N1 < N2.
Proof: The proof of Theorem 5 is directly obtained by

calculating and maximizing the terms in Theorem 1, and thus,
the proof is omitted here. 2

Moreover, the secrecy capacity of the Gaussian non-degraded
wiretap channel (Fig. 2 without feedback) is given by the fol-
lowing Theorem 6.

Theorem 6: For the Gaussian non-degraded wiretap chan-
nel, the secrecy capacity Cg

s is given by

Cg
s =

{

0, if N1 ≥ N2,
1
2 log(

N2(N1+P )
N1(N2+P ) ), otherwise. (3.7)

Proof: The result is directly obtained from [3], and there-
fore, the proof is omitted here. 2

Fig. 3 plots the secrecy rates of the Gaussian case of Fig. 2
with or without feedback. It is easy to see that for fixed P and
N1, the feedback enhances the security of the Gaussian non-
degraded wiretap channel Moreover, when P is fixed, the se-
crecy capacity of the Gaussian non-degraded wiretap channel is
increasing while N1 is decreasing.

IV. CONCLUSION

In this paper, we study the model of non-degraded wiretap
channel with noiseless feedback. Inner and outer bounds on the
capacity-equivocation region of the model of Fig. 2 are pro-
vided. We show that if X , Y , and Z satisfy the Markov chain
Y → X → Z and I(X ;Y ) ≥ I(X ;Z) for every input pX(x),
the outer bound is achievable. Moreover, if X , Y , and Z satisfy
the Markov chain Y → X → Z and I(X ;Y ) ≤ I(X ;Z) for
every input pX(x), we provide an inner bound for this case, and
it is different from that of [8, Theorem 1]. Compared with the
capacity results for the non-degraded wiretap channel, we find
that the security is enhanced by using this noiseless feedback.
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APPENDICES

I. PROOF OF THEOREM 1

In this section, we prove all the achievable pairs (R,Re) of
the model of Fig. 2 are contained in the set RA. We will prove
the inequalities ofRA in the remainder of this section. The proof
of R ≤ I(X ;Y ) and Re ≤ R are obvious, and it is omitted
here. Therefore, it only needs to prove that Re ≤ H(Y |Z), see
the following.

1

N
H(W |ZN )

(1)

≤
1

N
(I(W ;Y N |ZN ) + δ(Pe))

≤
1

N

N
∑

i=1

H(Yi|Zi) +
δ(Pe)

N

(2)

≤ H(YJ |ZJ) +
δ(Pe)

N
(3)
= H(Y |Z) +

δ(Pe)

N
(A1)

where (1) is from Fano’s inequality, (2) is from J is a random
variable (uniformly distributed over {1, 2, · · ·, N}), and it is in-
dependent of Y N and ZN , and (3) is from the definitions that
Y , YJ and Z , ZJ .

By using Pe ≤ ǫ, ǫ → 0 as N → ∞, limN→∞
H(W |ZN )

N
≥

Re and (A1), it is easy to see that Re ≤ H(Y |Z).
The proof of Theorem 1 is completed.

II. ACHIEVABILITY PROOF OF RA AND RB

A. Achievability Proof of RA

In this subsection, we will show that if I(X ;Y ) ≥ I(X ;Z)
for every input PX(x), any pair (R,Re) ∈ RA is achievable.
Block Markov coding and Ahlswede-Cai’s secret key on feed-
back [8] are used in the construction of the code-book. Since
Re ≤ H(Y |Z) and Re ≤ R ≤ I(X ;Y ), the achievability proof
of RA is considered into two cases.
• Case 1: If I(X ;Y ) ≥ H(Y |Z), it is sufficient to show that

the pair (R = I(X ;Y ) − ǫ, Re = H(Y |Z)) is achievable,
where ǫ is a fixed small positive real numbers, and ǫ → 0.
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• Case 2: If I(X ;Y ) ≤ H(Y |Z), it is sufficient to show that
the pair (R = I(X ;Y ) − ǫ, Re = R = I(X ;Y ) − ǫ) is
achievable.

Lemma 1: (Balanced coloring lemma) For all ǫ1, ǫ2, ǫ3,
δ > 0, sufficiently large N and all N -type PY (y), there exists
a γ- coloring c : TN

Y (ǫ1) → {1, 2, · · ·, γ} of TN
Y (ǫ1) such that

for all joint N -type PY Z(y, z) with marginal distribution PZ(z)

and |TN

Y |Z (zN )|

γ
> 2Nǫ2 , zN ∈ TN

Z (ǫ3),

|c−1(k)| ≤
|TN

Y |Z(z
N )|(1 + δ)

γ
, (A2)

for k = 1, 2, · · ·, γ, where c−1 is the inverse image of c.
Proof: Letting U = const, Lemma 1 is directly from [8,

p. 259], and thus we omit it here. 2

Lemma 1 shows that if yN and zN are joint typical, for given
zN , the number of yN ∈ TN

Y |Z(z
N ) for a certain color k (k =

1, 2, · · ·, γ), which is denoted as |c−1(k)|, is upper bounded by
|TN

Y |Z(zN )|(1+δ)

γ
. By using Lemma 1, it is easy to see that the

typical set TN
Y |Z(z

N) maps into at least

|TN
Y |Z(z

N )|

|TN

Y |Z
(zN )|(1+δ)

γ

=
γ

1 + δ
(A3)

colors. On the other hand, the typical set TN
Y |Z(z

N) maps into
at most γ colors.

Code construction: Fix the joint probability mass func-
tion PZ|Y (z|y)PY |X(y|x)PX(x). The message set W satisfies
log ‖W‖

N
= R = I(X ;Y ) − ǫ, where ǫ is a fixed small positive

real numbers.
We use the block Markov coding method. The random vec-

tors XN , Y N and ZN consist of n blocks of length N . Let Ỹi

and Z̃i (1 ≤ i ≤ n) are the outputs of the main channel and the
wiretap channel, respectively. Define Y n = (Ỹ1, Ỹ2, · · ·, Ỹn)
and Zn = (Z̃1, Z̃2, · · ·, Z̃n). The message for n blocks is
Wn = (W1,W2, · · ·,Wn), where Wi (2 ≤ i ≤ n) are i.i.d.
random variables uniformly distributed over W . Note that in
the first block, there is no w1.
• Construction of XN for case 1: Generate 2NR i.i.d.

sequences xN , according to the probability mass func-
tion PX(x). Denote the message wi (2 ≤ i ≤ n) by
wi = (wi1, wi2), where wi1 ∈ {1, 2, · · ·, 2NH(Y |Z)} and
wi2 ∈ {1, 2, · · ·, 2N(R−H(Y |Z))}. In the first block, ran-
domly choose a codeword xN (a1) (a1 ∈ {1, 2, · · ·, 2NR})
to transmit. For the ith block (2 ≤ i ≤ n), when the trans-
mitter receives the output Ỹi−1 of the (i − 1)th block, he
gives up if Ỹi−1 /∈ TN

Y (ǫ2) (ǫ2 → 0 as N → ∞). It is easy
to see that the probability for giving up at the (i− 1)th block
tends to 0 as N → ∞. In the case Ỹi−1 ∈ TN

Y (ǫ2), gener-
ate a mapping gf: T

N
Y (ǫ2) → {1, 2, · · ·, 2NH(Y |Z)}. Define

a random variable K∗
i = gf (Ỹi−1) (2 ≤ i ≤ n), which is

uniformly distributed over {1, 2, · · ·, 2NH(Y |Z)}, and K∗
i is

independent of Wi. Reveal the mapping gf to the legitimate
receiver, the wiretapper and the transmitter. Then, since the
transmitter receives the output Ỹi−1 of the (i − 1)th block,
he computes k∗i = gf (ỹi−1) ∈ {1, 2, · · ·, 2NH(Y |Z)}. For a

given wi = (wi1, wi2) (2 ≤ i ≤ n), the transmitter chooses
a sequence xN (wi1 ⊕ k∗i , wi2) to transmit (note that here ⊕
is the modulo addition over {1, 2, · · ·, 2NH(Y |Z)}).

• Construction of XN for case 2: The construction of XN

for case 2 is similar to that of case 1, except that there is no
need to divide wi into two parts. The detail is as follows. For
the ith block (2 ≤ i ≤ n), if Ỹi−1 ∈ TN

Y (ǫ2), generate a
mapping gf : TN

Y (ǫ2) → W (note that |TN
Y (ǫ2)| ≥ |W|).

Define a random variable K∗
i = gf (Ỹi−1) (2 ≤ i ≤ n),

which is uniformly distributed over W , and K∗
i is indepen-

dent of Wi. Reveal the mapping gf to the legitimate receiver,
the wiretapper and the transmitter. Then when the transmitter
receives the output Ỹi−1 of the (i− 1)th block, he computes
k∗i = gf(ỹi−1) ∈ W . For a given wi (2 ≤ i ≤ n), the trans-
mitter chooses a sequence xN (wi⊕k∗i ) to transmit (note that
here ⊕ is the modulo addition over W).

Decoding: For block i (2 ≤ i ≤ n), given a vector ỹi ∈ YN ,
try to find a sequence xN (ŵi1⊕k∗i , ŵi2) (case 1) or xN (ŵi⊕k∗i )
(case 2) such that xN and ỹi are joint typical. If there exists such
a sequence, put out the corresponding (ŵi1 ⊕ k∗i , ŵi2) or ŵi ⊕
k∗i . Otherwise, declare a decoding error. Since the legitimate
receiver knows k∗i , put out the corresponding ŵi from (ŵi1 ⊕
k∗i , ŵi2) or ŵi ⊕ k∗i .

Proof of achievability: The rate of the message Wn is de-
fined as R∗, and it satisfies

R∗ = lim
N→∞

lim
n→∞

H(Wn)

nN
= lim

N→∞
lim
n→∞

∑n
i=2 H(Wi)

nN

= lim
N→∞

lim
n→∞

(n− 1)NR

nN
= R. (A4)

Since the legitimate receiver knows k∗i , the decoding scheme
for Theorem 1 is in fact the same as that in [1]. Hence, we omit
the proof of Pe ≤ ǫ here. It remains to show that limN→∞ ∆ ≥
Re, see the following.
• For the case 1, part of the message wi is encrypted by k∗i .

In the analysis of the equivocation, we drop wi2 from wi.
Then, the equivocation about wi is equivalent to the equiv-
ocation about k∗i . Since k∗i = gf(ỹi−1), the wiretapper
tries to guess k∗i from ỹi−1. Note that for a given z̃i−1

and sufficiently large N , Pr{ỹi−1 ∈ TN
Y |Z(z̃i−1)} → 1.

Thus, the wiretapper can guess ỹi−1 from the conditional
typical set TN

Y |Z(z̃i−1). By using the above Lemma 1 and

(A3), the set TN
Y |Z(z̃i−1) maps into at least 2NH(Y |Z)

1+δ
(here

γ = 2NH(Y |Z)) k∗i (colors). Thus, in the ith block, the un-
certainty about K∗

i is bounded by

1

N
H(K∗

i |Z̃i−1) ≥ H(Y |Z)−
log(1 + δ)

N
, (A5)

here note that K∗
i is uniformly distributed.

• For the case 2, the alphabet of the secret key k∗i equals to
the alphabet of wi, and the encrypted message is denoted by
wi ⊕ k∗i . Then, by using the above Lemma 1 and (A3), the
set TN

Y |Z(z̃i−1) maps into at least 2NR

1+δ
(here γ = 2NR) k∗i

(colors). Thus, in the ith block, the uncertainty about K∗
i is

bounded by

1

N
H(K∗

i |Z̃i−1) ≥ R−
log(1 + δ)

N
. (A6)
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Proof of limN→∞ ∆ ≥ Re for case 1: Here ∆ is bounded
by

∆ =
H(Wn|Zn)

nN

(a)
=

∑n
i=2 H(Wi|Z̃i, Z̃i−1)

nN
(b)

≥

∑n
i=2 H(Wi1|Z̃i−1,Wi1 ⊕K∗

i )

nN

(c)
=

∑n
i=2 H(K∗

i |Z̃i−1)

nN
(d)

≥
(n− 1)(NH(Y |Z)− log(1 + δ))

nN
(A7)

where (a) is from Wi → (Z̃i, Z̃i−1) → (W i−1, Z̃i−2, Z̃n
i+1),

(b) is from Wi1 → (Wi1 ⊕K∗
i , Z̃i−1) → Z̃i, (c) follows from

the fact that Wi1 ⊕ K∗
i is independent of K∗

i , Wi1 and Z̃i−1,
and (d) is from (A5). Letting N → ∞ and n → ∞, we have
limN→∞ ∆ ≥ H(Y |Z) = Re.

Proof of limN→∞ ∆ ≥ Re for case 2: Analogously, we have

∆ ≥

∑n
i=2 H(K∗

i |Z̃i−1)

nN

(1)

≥

∑n
i=2(NR− log(1 + δ))

nN

=
(n− 1)(NR− log(1 + δ))

nN
, (A8)

where (1) is from (A6). Letting N → ∞ and n → ∞, we have
limN→∞ ∆ ≥ R = Re.

Thus, the achievability proof of RA is completed.

B. Achievability Proof of RB for the Case that the Wiretap
Channel is More Capable than the Main Channel

Since the wiretap channel is more capable than the main chan-
nel, the wiretapper also can decode the codeword xN . By us-
ing Lemma 1 and the definitions that γ = 2NH(Y |X,Z) for
the case I(X ;Y ) ≥ H(Y |X,Z), γ = 2NR for the case
I(X ;Y ) ≤ H(Y |X,Z), the achievability proof of RB is along
the lines of that of RA, and thus we omit it here.

Thus, the achievability proof of RA and RB is completed.
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