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Summary

This paper introduces an algebraic approach to generate the super-set of perfect complementary (PC) codes suitable
for new generation CDMA applications, characterized by isotropic multiple access interference (MAI) free and
multipath interference (MI) free properties. The code design methodology proposed in this paper takes into account
major impairing factors existing in real applications, such as MAI, MI, asynchronous transmissions, and random
signs in consecutive symbols, such that a CDMA system using the generated codes can insure a truly interference-
free operation. Two important facts will be revealed by the analysis given in this paper. First, implementation of
an interference-free CDMA will never be possible unless using complementary code sets, such as the PC code sets
generated in this paper. In other words, all traditional spreading codes working on an one-code-per-user basis are
not useful for implementation of an MAI-free and MI-free CDMA system. Second, to enable the interference-free
CDMA operation, the flock size of the PC codes should be made equal to the set size of the codes, implying that a
PC code set can support as many users as the flock size of the code set. A systematic search has been carried out
to generate the super-set of various PC codes with the help of carefully selected seed codes belonging to distinct
sub-sets. This paper will also propose an implementation scheme based on multi-carrier CDMA architecture and its
performance is compared by simulations with the ones using traditional spreading codes. Copyright © 2006 John
Wiley & Sons, Ltd.
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1. Introduction

It is well known that the performance of a CDMA sys-
tem is always interference-limited due to the presence
of multiple access interference (MAI) and multipath
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interference (MI), the former stemmed from non-ideal
cross-correlation functions amid all spreading codes
and the latter caused by non-trivial auto-correlation
side lobes of any individual code used in the system.
A direct consequence from such interference-limited
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property is that the capacity of all currently available
CDMA-based 2–3G wireless systems [1–5] can offer a
capacity equal to merely about one-third to a half of its
processing gain, even using so called orthogonal codes

(such as Walsh–Hadamard sequences [12], OVSF
codes [3–5], etc.). As the core technologies of 2G and
3G CDMA systems are very similar, we would like
to refer them as to the first generation CDMA (1G-
CDMA) technologies, all of which make use of tradi-
tional unitary spreading codes for channelization and
need a great deal of auxiliary sub-systems, such as the
power control and RAKE, etc., to mitigate the problems
associated with the spreading codes, such as near–far
effect and MI, etc.

Being the most important part of the CDMA tech-
nologies, the spreading codes or signature codes play
a critical role in overall performance of a CDMA sys-
tem. It has to be admitted that many problems existing
in the current 2–3G CDMA systems, such as low ca-
pacity, slow transmission rate, and complex system im-
plementation and so on, are because of unsatisfactory
properties of the spreading codes adopted by the sys-
tems. For instance, the choice of Walsh–Hadamard se-
quences and OVSF codes in IS-95 [1,2] and WCDMA
[3,4] standards, respectively, has made it impossible to
insure a symmetric data throughput in their up-link and
down-link channels at the very beginning of the system
design, because of their completely different correla-
tion characteristics in asynchronous and synchronous
transmission modes.

The study on spreading codes for CDMA applica-
tions is a traditional research topic and many candi-
date codes have been found in the literature, such as
Gold codes [6], GMW codes [7], No codes [8], Bent
sequences [9], Kasami codes [11], m-sequence [10],
Walsh–Hadamard sequence [12], and OVSF codes [3–
5], to just name a few as examples, all of which are
unitary codes, meaning that only one code should be
assigned to each user. Some of them have already been
integrated into 2–3G mobile cellular standards as an
indispensable part of the systems. The problems as-
sociated with those systems based on the traditional
spreading codes were mainly attributable to the fact
that their design approaches simply ignored real ap-
plication scenarios in a wireless system, such as up-
link asynchronous transmissions, varying signs in bit
stream and MI. In fact, they were generated and applied
to the systems based only on the knowledge of seemly
acceptable properties in their periodic auto-correlation
and cross-correlation functions, which are relevant only
to the down-link synchronous operation in a real sys-
tem without MI. However, a wireless system has to

cope with many other impairing factors, the most seri-
ous one of which is MI. Without considering them, any
attempt to design a spreading code set will never meet
our requirements.

Very recently, the CDMA technologies have faced
a serious challenge from other traditional multiple ac-
cess technologies. Having been fed up with the annoy-
ing MAI and MI problems with the 1G-CDMA tech-
nologies, someone have turned to work on some other
new possible candidates to replace CDMA for the next
generation wireless applications, which require much
higher data rate than current 2–3G systems. One of such
possible candidates is so called high data rate (HDR)
TDMA technology or channel-driven TDMA. There-
fore, it is likely that 4G wireless will probably run on
a non-CDMA based platform, leaving CDMA tech-
nologies lag behind other competing multiple access
technologies. In order to prevent such thing from hap-
pening, the evolution of CDMA technologies should be
speeded up and many innovative techniques, including
promising spreading codes, are badly needed to bring
CDMA back on track.

Motivated by the call for innovation of CDMA tech-
nologies, in this paper we intend to propose a new
methodology to generate ideal spreading codes as an ef-
fort to improve the performance of the current CDMA
systems. In particular, we will make use of an alge-
braical approach for spreading code design and genera-
tion by taking into account major operational scenarios
such that resultant spreading codes should effectively
address those adverse operational conditions in their
code structure. To make the study as general as possi-
ble, we should not limit our attention to the candidates
in some particular code form. Instead, we would rather
start from a mathematical problem that covers all pos-
sible codes, either real or complex and either unitary
or complementary codes. Therefore, the design prob-
lem will be formulated initially from complementary
codes, as any non-complementary codes are only the
special cases with the flock size being one.

Nevertheless, as the results obtained in this paper
are related closely to complementary codes, its history
has to be briefed in the sequel. The complementary
codes were first introduced by Golay in 1961 [13]. Later
in 1963, Turyn studied the ambiguity functions of the
complementary codes for their possible applications in
radar systems [14]. Both Golay and Turyn studied pairs
of binary complementary codes whose autocorrelation
function is zero for all even shifts except the zero shift.
Suehiro [15] extended the concept to generation of so
called complete complementary (CC) codes whose au-
tocorrelation function is zero for all even and odd shifts
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except the zero shift and whose cross-correlation func-
tion for any pair is zero for all possible shifts. The work
carried out in [15] had paved the way for possible appli-
cations of the CC codes in CDMA systems, a possible
architecture of which has been proposed and studied in
[16]. However, the major problem with the CC codes is
its very small set size, given a certain PG value. Specif-
ically, it can only support L1/3 users with its PG being
equal to L, making it hardly practical for any real sys-
tem, as shown in Table I. For instance, if we want to
support 64 users in a cell, we have to use a CC code
set with it PG being equal to 643 = 262, 144, which
is too complicated to implement from the view point
of currently available hardware. On the other hand, the
resultant codes generated from the method proposed
in this paper form a super-set of perfect complemen-
tary (PC) codes to distinguish them from the previously
reported complete complementary codes. The set size
of some PC codes can be equal to their PG value, and
thus they can support a lot more users than the CC codes
with a fixed PG value.

The rest of the paper is outlined as follows. In the
next section, we will introduce the method to formulate
a design problem under the frame of a non-linear equa-
tion set. Section 3 will explain necessary conditions
to solve for the PC codes from a set of homogenous
linear equations based on some seed codes from dif-
ferent sub-sets. It will also reveal that an interference-
free CDMA can never be made possible if considering
only unitary codes, thus making the complementary
codes a very important part of the future CDMA appli-
cations. The relation derived in Section 4 specifies that
set size K and flock size M of a complementary code
set must satisfy the inequality M ≥ K to formulate an
interference-free CDMA, and an example will be given
to show step by step how to generate the PC codes. A
possible implementation scheme is to be proposed in
Section 5, together with performance comparison of
the systems based on different codes, followed by the
conclusion. Finally, a PC code set concerned in the
simulation study is given in Appendix.

2. Formulation of the Non-Linear
Problem

Let us start with a generic spreading code set, whose
element code length, flock size, and set size are N,
M, and K, respectively. If M = 1, the generic code
set reduces to a conventional unitary spreading code
set, which works on one-code-per-user basis. On the
other hand, if M > 1, the generic code set represents

a complementary code set, in which a flock of codes
should be assigned to a user and ought to be sent to a
receiver individually via different channels.

Let us consider any two flocks in a code set, x =
{x1, x2, . . . , xM} and y = {y1, y2, . . . , yM}, where
xi = {xi1, xi2, . . . , xiN} and yi = {yi1, yi2, . . . , yiN}
for 1 ≤ i ≤ M. All chips, xij or yij for 1 ≤ i, j ≤ M,
could take any value, either binary or multiple-leveled
and either real or complex.

Assume that the signal transmission from each user
forms a continuous bit stream and the signs of two con-
secutive bits can be arbitrary, either same or different.
We are concerning an asynchronous channel (thus a
synchronous one is only a special case), where both
MAI and MI are present. Thus, the spreading code
designing problem can be expressed as: to design a
perfect complementary code set such that its periodic
and aperiodic out-of-phase auto-correlation functions
as well as its periodic and aperiodic cross-correlation
functions should be zero, to insure MAI-free and MI-
free operation. To formulate a mathematical expression
for such a design problem, let us examine in particular
two different cases: even and odd lengths of the ele-
ment codes. As all element codes have the same length
N, we could focus on any one of them, say the ith one
or xi (1 ≤ i ≤ M), without losing generality. For repre-
sentation simplicity, let us assume N = 6 for the even
case and N = 5 for the odd case, as shown in Figures 1
and 2, where the ith element code of a complementary
code x and its j chips shifted versions (0 ≤ j ≤ N − 1)
are shown.

It is seen from Figures 1 and 2 that, if two relatively
shifted versions of an element code with their offsets
being a and b and a + b = N (as shown by the pairs
indicated by arrowed lines in the figures), they will gen-
erate the same periodic and aperiodic auto-correlation
functions with the zero-shifted version. Thus, we can
establish an equation set for the element code x with in
total MN unknown variables as follows:

For either an even or odd N, there are �N
2 � +

�N−1
2 � + 1 independent non-linear equations as:




∑M
i=1

[
x2

i1 + x2
i2 + · · · + x2

iN

] = NM∑M
i=1

[
xiNxi1 + xi1xi2 + · · · + xi(N−1)xiN

] = 0∑M
i=1

[
xi(N−1)xi1 + xiNxi2 + · · · + xi(N−2)xiN

] = 0∑M
i=1

[
xi(N−2)xi1 + xi(N−1)xi2 + · · · + xi(N−3)xiN

] = 0

. . . . . .∑M
i=1

[−xiNxi1 + xi1xi2 + · · · + xi(N−1)xiN

] = 0∑M
i=1

[−xi(N−1)xi1 − xiNxi2 + · · · + xi(N−2)xiN

] = 0

. . . . . .

(1)
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Fig. 1. Illustration of periodic auto-correlation functions of an even (N = 6 in (a)) or odd (N = 5 in (b)) length element code xi

(1 ≤ i ≤ M) with two consecutive bits having the same sign in an asynchronous channel, where N − 1 = 5 (in (a)) or N − 1 = 4
(in (b)) delayed multipath returns or periodical cyclic-shifted versions are present. The shaded sequences represent the local
element code of xi (1 ≤ i ≤ M) generated at a correlator and the arrowed lines indicate the two relatively cyclic-shifted versions

of an element code that will generate the same out-of-phase auto-correlation functions with the local element code.

where the first �N
2 � + 1 equations are from ideal pe-

riodic auto-correlation functions and the last �N−1
2 �

ones from ideal aperiodic auto-correlation func-
tions. Here �x� stands for the largest integer less
than x.

Now, let us introduce the second code y into the set,
which consists of x and y only, such that they should
satisfy all conditions as a pair of perfect complemen-
tary codes. Similarly, we can establish the equation
sets based on the ideal periodic and aperiodic cross-
correlation functions between the codes y and x as fol-
lows.

For either an even or odd N, there are 2N − 1 non-
linear homogenous equations as




∑M
i=1

[
yi1xi1 + yi2xi2 + · · · + yiNxiN

] = 0∑M
i=1

[
yiNxi1 + yi1xi2 + · · · + yi(N−1)xiN

] = 0∑M
i=1

[
yi(N−1)xi1 + yiNxi2 + · · · + yi(N−2)xiN

] = 0∑M
i=1

[
yi(N−2)xi1 + yi(N−1)xi2 + · · · + yi(N−3)xiN

] = 0

. . . . . .∑M
i=1

[−yiNxi1 + yi1xi2 + · · · + yi(N−1)xiN

] = 0∑M
i=1

[−yi(N−1)xi1 − yiNxi2 + · · · + yi(N−2)xiN

] = 0

. . . . . .

(2)

Fig. 2. Illustration of aperiodic auto-correlation functions of an even (N = 6 in (a)) or odd (N = 5 in (b)) length element code xi

(1 ≤ i ≤ M) with two consecutive bits having different signs in an asynchronous channel, where N − 1 = 5 (in (a)) or N − 1 = 4
(in (b)) delayed multipath returns or aperiodically cyclic-shifted versions are present. The shaded sequences represent the local
element code of xi (1 ≤ i ≤ M) generated at a correlator. The arrowed lines indicate the two relatively cyclic-shifted versions
of an element code that will generate the same out-of-phase auto-correlation functions with the local element code and the code

inside the solid-line frame yields zero out-of-phase auto-correlation function.
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where the upper N equations are due to ideal periodic
cross-correlation functions and the lower N − 1 ones
from the ideal aperiodic cross-correlation functions. In
addition, y itself should also satisfy the conditions for
ideal auto-correlation functions as




∑M
i=1

[
y2

i1 + y2
i2 + · · · + y2

iN

] = NM∑M
i=1

[
yiNyi1 + yi1yi2 + · · · + yi(N−1)yiN

] = 0∑M
i=1

[
yi(N−1)yi1 + yiNyi2 + · · · + yi(N−2)yiN

] = 0∑M
i=1

[
yi(N−2)yi1 + yi(N−1)yi2 + · · · + yi(N−3)yiN

] = 0

. . . . . .∑M
i=1

[−yiNyi1 + yi1yi2 + · · · + yi(N−1)yiN

] = 0∑M
i=1

[−yi(N−1)yi1 − yiNyi2 + · · · + yi(N−2)yiN

] = 0

. . . . . .

(3)

where the first �N
2 � + 1 equations reflect ideal periodic

auto-correlation functions and the last �N−1
2 � equations

specify the ideal aperiodic auto-correlation functions,
respectively.

In general, to determine a complementary code set
with its element code length, flock size, and set size
being N, M, and K respectively, where K > 1, we can
obtain the following non-linear equations, regardless
of even or odd N.

(1) (�N
2 � + 1)K non-linear equations from perfect pe-

riodic auto-correlation conditions;
(2) NK(K−1)

2 non-linear equations from zero periodic
cross-correlation conditions;

(3) (�N−1
2 � + 1)K non-linear equations from perfect

aperiodic auto-correlation conditions; and
(4) (N−1)K(K−1)

2 non-linear equations from zero aperi-
odic cross-correlation conditions, where K > 1.

Thus, we will have altogether K(�N
2 � + �N−1

2 � + 1) +
(2N − 1)K(K−1)

2 non-linear equations, which contain
MNK unknown variables or K unknown complemen-
tary codes. It is possible that those non-linear equations
might be solvable under a necessary condition that the
following inequality must be satisfied

K

(⌊
N

2

⌋
+

⌊
N − 1

2

⌋
+ 1

)

+(2N − 1)
K(K − 1)

2
≥ MNK (4)

However, the solutions to a non-linear equation
set are not guaranteed even if Equation (4) is satis-
fied. To have a clearer interpretation for the problem,
we would like to turn to the following methodology
based on the linear equation sets. Before doing so, let

us make several observations worthy mentioning as
follows.

It is noticed that Equation (2) in fact can be trans-
formed into a homogenous linear equation set if x is
already known. We will take this known first code x

as a seed code, which itself should satisfy all condi-
tions for MI-free operation or both periodic and ape-
riodic out-of-phase auto-correlation functions of the
codes should be zero. If so, we readily have an linear
equation set from Equation (2) for us to solve the sec-
ond code y jointly with Equation (3), which is not a
linear equation set but can be used effectively to de-
termine all unknown variables in Equation (2). The
solution to those equation sets or code y must have
satisfied all MAI-free and MI-free conditions, or equa-
tions from Equations (1–3). The same procedure can
be repeated until all codes in the set are determined.
This observation is significant to facilitate our analysis
followed.

It should be again emphasized that the above mathe-
matical design problem did not impose any restrictions
on the form of codes, neither the values each chip might
take, which can be either binary or polyphase and either
real or complex. We have chosen the complementary
codes as our starting point simply because they rep-
resent the most general case, including all spreading
codes currently available or M ≥ 1. If M = 1, the ob-
tained results is reduced to traditional unitary spreading
codes; otherwise if M > 1, the complementary codes
will yield. In other words, the solutions from Equa-
tions (1–3) should include all possible codes satisfy-
ing the MAI-free and MI-free conditions. If the above
equations are not solvable, we then can conclude that
there will not exist such perfect codes offering an MAI-
free and MI-free operation. Therefore, we would like
to know in particular

(1) whether or not such perfect codes exist?
(2) if yes, what form the codes will take?
(3) how many such perfect code sets will exist?

which are the questions of interest in the next
section.

3. Necessary Conditions to Generate
Perfect Codes

The following theorems in linear algebra will be useful
in our code design problem based on the linear equation
sets.
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Consider an m × n coefficient matrix A, a variable
vector x and an m × 1 constant vector b, which are
related by the equation Ax = b, where the elements
of A, x and b in general can be complex. It is noted
that m is the number of linear equations and n gives the
number of unknown variables in x.

(1) Theorem 1. For a given m × n matrix A, it is
always true that rank(A) ≤ min(m, n).

(2) Theorem 2. The solution to the linear equation
set Ax = b has only the following three possible
outcomes
(a) if rank(A|b) > rank(A),Ax = b has no solu-

tion;
(b) if rank(A|b) = rank(A) and rank(A) = n,
Ax = b has only one solution;

(c) if rank(A|b) = rank(A) and rank(A) < n,
Ax = b has more than one solutions;

where (A|b) stands for an extended matrix for
the linear equation setAx = b. For a homogenous
linear equation set, we always have rank(A|b) =
rank(A) as b = 0. Therefore, it will have at
least one solution or all-zero solution as long as
rank(A) ≤ n.

(3) Theorem 3. If rank(A) ≤ min(m, n), then ma-
trixAmust have exactly rank(A) independent row
or column vectors, which can be uniquely deter-
mined by a series of linear transformation opera-
tions against either rows or columns ofA.

(4) Theorem 4. If two vectors, x and y, are indepen-
dent, then their inner product, xy, must be zero.

Assume that there exists a flock of codes, x =
{x11, x12, . . . , x2N ; x21, x22, . . . , x2N ; . . . ; xM1, xM2,

. . . , xMN}, which satisfies the conditions for an ideal
auto-correlation function, as defined by Equation

(1), where xij represents the jth chip in the ith
element code in the flock. To determine the second
flock of codes, y = {y11, y12, . . . , y2N ; y21, y22, . . . ,

y2N ; . . . ; yM1, yM2, . . . , yMN}, we can obtain a
(2N − 1) × (NM) coefficient matrix of a homogenous
linear equation set from Equation (2), which spec-
ifies ideal periodic and aperiodic cross-correlation
functions between x and y and can be written into
Ayy = 0, as

Ay =




x11 x12 . . . x1N, x21 x22 . . . x2N, . . . , xM1 xM2 . . . xMN

x12 x13 . . . x11, x22 x23 . . . x21, . . . , xM2 xM3 . . . xM1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1N x11 . . . x1(N−1), x2N x21 . . . x2(N−1), . . . , xMN xM1 . . . xM(N−1)

x12 x13 . . . −x11, x22 x23 . . . −x21, . . . , xM2 xM3 . . . −xM1

x13 x14 . . . −x12, x23 x24 . . . −x22, . . . , xM3 xM4 . . . −xM2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x11 −x12 . . . −x1N, x21 −x22 . . . −x2N, . . . , xM1 −xM2 . . . −xMN




(5)

where the upper half of Ay is the result of the peri-
odic cross-correlation functions between x and y and
the lower half is from the aperiodic cross-correlation
functions between the two codes.

Because x must satisfy the all conditions for ideal
auto-correlation functions specified by Equation (1), all
row vectors in the upper half of Equation (5) have to be
mutually independent. To illustrate it more clearly, let
us examine a matrix formed by all possible relatively
cyclic-shifted versions of the ith element code xi (1 ≤
i ≤ M) in a flock of codes x, where N = 4 is assumed
for illustration simplicity.




xi1 xi2 xi3 xi4

xi2 xi3 xi4 xi1

xi3 xi4 xi1 xi2

xi4 xi1 xi2 xi3


 (6)

which in fact is just one of the M sub-matrices in the
upper half of Equation (5). Since x has a perfect peri-
odic auto-correlation function, the following equation
set must be true

xi1xi2 + xi2xi3 + xi3xi4 + xi4xi1 = 0 (7)

xi1xi3 + xi2xi4 + xi3xi1 + xi4xi2 = 0 (8)

xi1xi4 + xi2xi1 + xi3xi2 + xi4xi3 = 0 (9)
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which merely states the fact that three pairs of the row
vectors in Equation (6) are mutually independent. Now
let us establish the inner products of the other three pairs
of relatively cyclic-shifted versions of the element code
x = {xi1, xi2, xi3, xi4}, which are

xi2xi3 + xi3xi4 + xi4xi1 + xi1xi2 (10)

xi3xi4 + xi4xi1 + xi1xi2 + xi2xi3 (11)

xi2xi4 + xi3xi1 + xi4xi2 + xi1xi3 (12)

where Equation (10) is the inner product between the
second and third rows of Equations (6) and (11) is that
between the third and fourth rows and Equation (12) is
that between the second and fourth rows, respectively.
By comparing Equations (10) and (7), (11) and (9), (12)
and (8), we can find that they are all equal. Therefore,
we have

xi2xi3 + xi3xi4 + xi4xi1 + xi1xi2 = 0 (13)

xi3xi4 + xi4xi1 + xi1xi2 + xi2xi3 = 0 (14)

xi2xi4 + xi3xi1 + xi4xi2 + xi1xi3 = 0 (15)

or all rows in matrix Equation (6) are mutually inde-
pendent with each other, implying that the matrix has a
rank equal to N = 4, or the length of the element code
x. Although the above conclusion is obtained from the
observation of the single element code with a particular
length N = 4, it can be easily shown that the conclu-
sion is equally applicable to the cases for any M and
N.

In general, it can be shown that the rank of a ma-
trix formed by all possible cyclic-shifted versions of
an element code x = {x1, x2, . . . , xM}, where xi =
{xi1, xi2, . . . , xiN} and 1 ≤ i ≤ M, must be equal to
the length of the element code or N, as long as the ele-
ment code itself has a perfect auto-correlation function
specified by Equation (1).

Observed from the upper half of the (2N − 1) ×
(NM) matrix Ay shown in Equation (5), formed by
all possible cyclic-shifted versions of x, it is concluded
that the rank of this coefficient matrix of the homoge-
nous linear equation setAy y = 0 is also equal to N. If
we let M = 1, we will get a homogenous linear equa-
tion set with its rank equal to the number of variables

or NM = N, resulting in an all-zero solution or y = 0
from Theorem 2(b). It means that, when M = 1, we
can not find the second code y such that it will en-
sure a perfect periodic and aperiodic cross-correlation
functions with the existing code x. However if we let
M > 1, the solution of Ay y = 0 could possibly ex-
ist according to Theorem 2(c). Therefore, we have the
first important conclusion obtained in this paper as
follows.

Corollary 1. To insure perfect periodic and aperi-
odic auto- and cross-correlation functions for a generic
spreading code set, the flock size M of the code set
must be greater than one (or M > 1). In other words,
only a complementary code set can possibly achieve
the perfect periodic and aperiodic auto-correlation
and cross-correlation functions. All traditional unitary
codes, such as Gold, Kasami, Walsh–Hadamard, OVSF
codes and so on, can never yield such perfect periodic
and aperiodic auto-correlation and cross-correlation
functions.

It should be noted that the above conclusion was ob-
tained without imposing any limits on the values the
complementary codes might take. Therefore, the con-
clusion will be valid for any types of complementary
codes, either binary, or multiple leveled and either real
or complex.

4. Relation Between Flock Size and Set
Size

If M > 1, we then know from Theorem 2(c) that it
is impossible for us to readily determine a unique
solution to the homogenous linear equation set Ay

y = 0, which specifies zero periodic and aperiodic
cross-correlation functions between the codes x and y.
Fortunately, the relations specifying the ideal periodic
and aperiodic auto-correlation functions of the code y

itself have never been used, and thus they can help us
to find the final solutions of the second code y. The
number of suitable solutions may not be necessarily
one.

With the two codes in our hands, we can pro-
ceed to find the third one or z = {z1, z2, . . . , zM},
where zi = {zi1, zi2, . . . , ziN} and 1 ≤ i ≤ M. Sim-
ilarly, we will have a 2(2N − 1) × (NM) homoge-
nous linear equation set to specify the zero periodic
and aperiodic cross-correlation functions between the
new code z and the existing ones, or x and y, as
follows.
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Az =




x11 x12 . . . x1N, x21 x22 . . . x2N, . . . , xM1 xM2 . . . xMN

x12 x13 . . . x11, x23 x23 . . . x21, . . . , xM2 xM3 . . . xM1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x1N x11 . . . x1(N−1), x2N x21 . . . x2(N−1), . . . , xMN xM1 . . . xM(N−1)

x12 x13 . . . −x11, x22 x23 . . . −x21, . . . , xM2 xM3 . . . −xM1

x13 x14 . . . −x12, x23 x24 . . . −x22, . . . , xM3 xM4 . . . −xM2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x11 −x12 . . . −x1N, x21 −x22 . . . −x2N, . . . , xM1 −xM2 . . . −xMN

y11 y12 . . . y1N, y21 y22 . . . y2N, . . . , yM1 yM2 . . . yMN

y12 y13 . . . y11, y23 y23 . . . y21, . . . , yM2 yM3 . . . yM1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y1N y11 . . . y1(N−1), y2N y21 . . . y2(N−1), . . . , yMN yM1 . . . yM(N−1)

y12 y13 . . . −y11, y22 y23 . . . −y21, . . . , yM2 yM3 . . . −yM1

y13 y14 . . . −y12, y23 y24 . . . −y22, . . . , yM3 yM4 . . . −yM2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y11 −y12 . . . −y1N, y21 −y22 . . . −y2N, . . . , yM1 −yM2 . . . −yMN




(16)

As shown earlier, the all row vectors in Equation (16)
generated from all possible cyclic shifted versions of
element codes x and y must be mutually independent.
Therefore, the rank of the matrixAz should be at least
2N, where N is the length of the element codes. Now
if the flock size M becomes two, we face again the sit-
uation that the rank of the homogenous linear equation
set Az z = 0 or rank(Az) is greater than the number
of its unknown variables or MN = 2N, yielding ei-
ther all-zero solution z = 0 or no solution according to
Theorem 2(a) and (b), which is not the result we want.
Therefore, we have to make M > 2, say M = 3 (note
we have K = 3 here), to insure possible non-zero solu-
tions for the homogenous linear equation setAz z = 0.
Similar results can also be obtained for other values of
M, N, and K. Thus, we obtain another interesting con-
clusion from this paper as follows.

Corollary 2. To generate a perfect complementary
code set with its set size being K, in which all its mem-
ber codes should have perfect periodic and aperiodic
auto-correlation and cross-correlation functions, the
flock size M of the all member codes must not be less
than the set size K, or M ≥ K. Usually, M = K suf-
fices.

The corollaries 1 and 2 should be used jointly to gen-
erate the PC code sets. The major steps for generation
of the PC codes are summarized in the sequel

(1) First, the three parameters for the PC code set
should be given, that is, the length of element codes
N, the flock size M, and the set size K, where the
conditions for M > 1 and M = K must be satis-
fied.

(2) Second, then we should generate a seed code x

with the help of Point (1), which gives all necessary
conditions for the seed code to have ideal periodic
and aperiodic auto-correlation functions.

(3) Third, with the first code x already in the set, we can
proceed to search for the second code y by using
the homogenous linear equation set given in Point
(2), which specifies the perfect periodic and aperi-
odic cross-correlation functions between the codes
x and y. As long as the conditions of M > 1 and
M = K are satisfied, the homogenous linear equa-
tion set should have some suitable solutions, which
usually take the forms as expressions of some un-
determined variables.

(4) Fourth, the valid solutions of the problem can usu-
ally be obtained by taking into account Point (3),
which specifies the ideal periodic and aperiodic
auto-correlation functions for y.

(5) By repeating the same procedure over and over
again to generate all K codes in the set.

Clearly, the choice of the seed code is of ultimate im-
portance in the code generation procedure given above.
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Fig. 3. Illustration of the super-set (S) of perfect complementary codes in relation with different sub-sets, which are generated
by using different seed codes, such as seed a, seed b, and seed c, yielding complete complementary code sub-set A, binary
complementary code sub-set B and polyphase complementary code sub-set C, respectively, in the code generation procedure,

where A ⊂ B ⊂ S and C ⊂ D ⊂ S.

Figure 3 shows the possible sub-sets, in which the gen-
eration procedure may result due to the use of differ-
ent seed codes, since all non-linear and linear equa-
tions specifying the MAI-free and MI-free operation
conditions were introduced on a very general basis,
which include all possible candidate codes that satisfy
the MAI-free and MI-free operation conditions, either
binary or quadraphased and either real or complex se-
quences. In Figure 3, it is shown that three different
seed codes (a–c) effectively lead to three sub-sets of
the PC codes, which are sub-sets A–C, representing the
complete complementary codes [15,16], binary com-
plementary codes and polyphase complementary codes
respectively, where A ⊂ B ⊂ S and C ⊂ S. Therefore
in principle, by using a series of carefully selected seed
codes, we can generate the whole super-setS of the per-
fect complementary codes, each of which should insure
MAI-free and MI-free operation of a CDMA system.

Now let us give a simple example to show step by
step how the generation procedure works. Assume that
we already have a seed code x = {x11, x12; x21, x22} =
{+1, +1; +1, −1}, where the semi-column “;” sepa-
rates the two element codes, each of which is 2-chip
long. Therefore, the two characteristics parameters, or
flock size and element code length, for this code are
M = 2 and N = 2, respectively. Based on the conclu-
sions obtained previously we must have in this case
M = 2 > 1 (from Corollary 1) and M = K = 2 (from
Corollary 2), meaning that there must be another code y

to complete the whole code set. Let the second code be
y = {y11, y12; y21, y22}. We can obtain a homogenous

linear equation set according to Equation (2) as




y11 + y12 + y21 − y22 = 0

y11 + y12 − y21 + y22 = 0

−y11 + y12 + y21 + y22 = 0

(16)

the solution to which is




y11 = −y12

y12 = y12

y21 = −y12

y22 = −y12

(17)

Then, using the conditions for ideal periodic and ape-
riodic auto-correlation functions, we obtain




y2
11 + y2

12 + y2
21 + y2

22 = 4

y12y11 + y11y12 + y22y21 + y21y22 = 0

−y12y11 + y11y12 − y22y21 + y21y22 = 0

(18)

to yield




4y2
12 = 4

0 = 0

0 = 0

(19)

Let y12 = 1 to find one solution as
{−1, +1; −1, −1}. We can obtain another solu-
tion by letting y12 = −1 as {+1, −1; +1, +1}.
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Thus, we find two sets of the PC codes in this
case as {x, y} = {[+1,+1

+1,−1 ], [+1,−1
+1,+1 ]} and {x′, y′} =

{[+1,+1
+1,−1 ], [−1,+1

−1,−1 ]}, respectively.
From the relation M = K = 2, we have already

known that it is impossible for us to introduce the third
code to either of the two code sets, {x, y} or {x′, y′},
if the conditions for MAI-free and MI-free operation
are to be satisfied. Nevertheless, we would like to show
the validity of Corollary 2 by testing the suitability of
the third code z = {z11, z12; z21, z22} as follows. If the
third code exists, it has to satisfy the following MAI-
free condition with the codes x and y as




z11 + z12 + z21 − z22 = 0

z11 − z12 + z21 + z22 = 0

z11 + z12 − z21 + z22 = 0

−z11 + z12 + z21 + z22 = 0

−z11 + z12 − z21 − z22 = 0

−z11 − z12 − z21 + z22 = 0

(20)

from which it can be found that the last two equations
are not independent and thus can be deleted to yield the
following reduced homogenous linear equation set




z11 + z12 + z21 − z22 = 0

z11 − z12 + z21 + z22 = 0

z11 + z12 − z21 + z22 = 0

−z11 + z12 + z21 + z22 = 0

(21)

which has only all-zero solution, or z11 = z12 = z21 =
z22 = 0. Therefore, we can not find the third code for
either of the code sets {x, y} or {x′, y′}.

Table I compares characteristic parameters, that is,
element code length N, flock size M, and set size K,
of the PC codes, complete complementary codes, Gold
codes, and OVSF codes with their PG fixed as L. It is
seen from the table that the PC codes have the simi-
lar set size as that of Gold or OVSF codes at a given
PG value; while the complete complementary codes
[15,16] offer much smaller set size.

5. Implementation Issues and
Performance Study

The CDMA system using the PC codes generated from
the super-set can be implemented with a multi-carrier
CDMA architecture, where each carrier is responsi-
ble to send a particular element code. In other words,
all element codes in a PC code should be sent to a

Table I. Characteristic parameters of perfect complementary (PC)
codes, complete complementary (CC) codes, gold codes and OVSF
codes with their processing gains (PG’s) being fixed as L.

Parameter PC
codes

CC
codes

Gold
codes

OVSF
codes

Element code length N 1 ∼ 2r∗ L
2
3 L L

Flock size M L ∼ L
2r L

1
3 1 1

Set size K L ∼ L
2r L

1
3 L + 2 L

∗r can be any integer.

receiver via different frequency channels. Obviously,
the channel division among the element codes can be
done through either time-division multiplexing (TDM)
or frequency-division multiplexing (FDM), although
only the latter is concerned in this paper. Figures 4 and
5 show an implementation example of the transmit-
ter and the receiver, respectively, based on the FDM
scheme, where M different carriers send M different
element codes of each user into the channel and a re-
ceiver ought to collect all element codes to compute
their correlation functions individually, followed by a
summation to yield a decision variable.

The computer simulation has been used to study the
performance of the CDMA scheme based on the PC
codes, whose architecture is shown in Figures 4 and
5. In particular, we would like to make a comparison
amid three 8-user CDMA systems based on different
spreading codes, that is, the PC codes, Gold codes [6]
and OVSF codes [3–5]. The Gold code can be consid-
ered as a good example of traditional quasi-orthogonal
codes with its well-controlled 3-level cross-correlation
functions. On the other hand, the OVSF code is a typ-
ical orthogonal code, although in fact it will not be
orthogonal at all in asynchronous channels. The both
are very popular for their applications in the current
2–3G mobile cellular standards [1–5].

In the simulation, we have taken a particular PC code
set with its characteristic parameters being M = 8,
N = 8, and K = 8, whose detail information has been
given in Appendix.

Figure 6 is to compare the MAI sensitivity to an asyn-
chronous CDMA system based on the three different
codes, all operating with eight users. The set size for the
PC code is just eight. However, the eight codes of con-
cern are randomly selected from an either Gold code
set or OVSF code set, whose sizes are 65 and 64 respec-
tively. The inter-user delay in the asynchronous CDMA
system is assumed to be four chips. All schemes use
single correlator as their receivers. We did not consider
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Fig. 4. Block diagram of a K-user CDMA system using the PC codes (a flock of the element codes {ck1, ck2, . . . , ckM} is assigned
to the kth user for 1 ≤ k ≤ K), where each user employs M element codes, which are sent into channel via M different carriers,
and BPSK spreading modulation and carrier modulations are used. The channel model concerned can be either AWGN or

multipath channel.

multipath effect in this case. It can be seen from the
figure that the system based on the PC code set can
offer a well-controlled bit-error-rate (BER) regardless
of changing user population of the system, indicating
the desirable MAI-free operation property.

Figure 7 examines the system in terms of the impact
of operation modes on the BER. Again, we concern
an eight-user system, which operates in either syn-
chronous (i.e., down-link channels) or asynchronous

(i.e., up-link channels) mode. A great impairment can
be seen for a system based on both Gold and OVSF
codes; while the performance for the system using the
PC codes is not affected at all with almost constant
BER for whatever operation modes of the system, ver-
ifying another major benefit for the PC codes or the
isotropic MAI-free operation. It is noted that the so
called orthogonal OVSF codes perform extremely bad
in asynchronous channels.
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Fig. 5. Illustration of a receiver implementation for the CDMA system based on the PC codes, where the signal of interest to the
receiver is the first user transmission and only a simple correlator (matched filter) is used to detect the useful signal.

Figures 8 and 9 consider the multipath effect to the
system performance. The three systems will be com-
pared under two different multipath scenarios with their
delay profiles being [1, 0.8564, 0.107] and [0.7785,
0.6667, 0.0833], respectively. The inter-path delay of
two consecutive multipath returns is assumed to be
two chips. The inter-user delay is again four chips, as
we concern only an asynchronous system here. Obvi-
ously, the first multipath scenario has a stronger first
path than that of the second one. All three schemes
will use a correlator as their signal detection device for
fair comparison. It is observed from Figure 8 that the

multipath effect does impose a very serious thread to
the signal detection of the systems using either Gold
or OVSF code, but no harm to that based on the PC
codes. Similar observation can also be made from Fig-
ure 9, with only a bit increase BER for the scheme
with the PC codes due to the application of single cor-
relator, which captures only the first multipath return
in [0.7785, 0.6667, 0.0833] that is lower than that in
[1, 0.8564, 0.107], as shown in Figure 8. Neverthe-
less, Figures 8 and 9 clearly show the superior MI-
free operation of the CDMA system based on the PC
codes.

Fig. 6. MAI sensitivity comparison for CDMA systems based on three different types of spreading codes, which are Gold code,
OVSF codes and PC codes, versus the change in number of users in AWGN channel. PG’s for the PC codes, Gold codes and
OVSF codes are 8(flock size)×8(element code length)=64, 63, and 64, respectively. The system operates in an asynchronous

mode and the inter-user delay is four chips. The conventional correlator is used for the all three systems.
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Fig. 7. Comparison for the impact of the operation modes (synchronous or asynchronous) on BER’s of the eight-user CDMA
systems based on three different types of spreading codes, including Gold code, OVSF codes, and PC codes. PG’s for the PC
codes, Gold codes, and OVSF codes are 8(flock size)×8(element code length)=64, 63, and 64, respectively. The system operates
in a AWGN channel and the inter-user delay (in the asynchronous channel) is four chips. The conventional correlator is used for

the receiver in all three systems.

Fig. 8. The impact of multipath effect on BER’s of the eight-user CDMA systems based on three different types of spreading
codes, including Gold code, OVSF codes, and PC codes. PG’s for the PC codes, Gold codes, and OVSF codes are 8(flock
size)×8(element code length)=64, 63, and 64, respectively. The 3-path channel is characterized by its delay profile [1, 0.8564,
0.107] with its inter-path delay being two chips. The systems operate in asynchronous mode with its inter-user delay being four

chips. The conventional correlator is used for the receiver in all three systems.
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Fig. 9. The impact of multipath effect on BER’s of the eight-user CDMA systems based on three different types of spreading
codes, including Gold code, OVSF codes, and PC codes. PG’s for the PC codes, Gold codes and OVSF codes are 8(flock
size)×8(element code length)=64, 63, and 64, respectively. The three-path channel is characterized by its delay profile [0.7785,
0.6667, 0.0833] with its inter-path delay being two chips. The systems operate in asynchronous mode with its inter-user delay

being four chips. The conventional correlator is used for the receiver in all three systems.

It should be noted that the decision variable formed
at the output of the summation unit in Figure 5 must
be very robust due to the use of the PC codes, which
have been optimized for the MAI-free and MI-free op-
eration in both up-link and down-link channels. There-
fore, basically a simple correlator (instead of a RAKE)
is enough to yield a satisfactory detection efficiency,
even if multipath effect is present. This feature can be
considered as frequence selective fading resistance of
the scheme due to its inherent immunity against the MI.
In addition, whenever necessary a RAKE can still be
applied to further improve the detection efficiency. If
so, a genuine multipath-diversity can be achieved with
either equal-gain-combining (EGC) or maximal-ratio-
combining (MRC) RAKE, as the output from each fin-
ger consists of only the useful signals from different
multipath returns and nothing else. The use of an EGC-
RAKE instead of an MRC-RAKE can effectively re-
duce the complexity of a channel estimation unit at a
receiver, since the EGC-RAKE can already offer a very
good performance in the proposed CDMA system ow-
ing to the MAI-free and MI-free operation. On the other
hand, the output signal-to-interference ratio of a RAKE
in a traditional CDMA system will be impaired by the
nontrivial auto-correlation side lobes of different paths

from self-transmission as well as cross-correlation lev-
els due to the other transmissions.

The scheme proposed in Figures 4 and 5 is basically
a multi-carrier CDMA system. However, the multiple
carriers used here will not provide any frequency di-
versity gain, as each carrier will convey different in-
formation (or different element codes). Therefore, it
may give rise to a concern that the scheme will not be
as robust as a traditional multi-carrier CDMA against
frequency-selective fading in the channel. This con-
cern is not necessary because the scheme creates an
MI-free environment due to the use of the PC codes,
designed to work under zero periodic and aperiodic
auto-correlation functions. Therefore, the signaling in
such a CDMA system has a very good immunity against
the MI or frequency-selective fading.

Another advantage for the PC codes based CDMA
is its unique signal decorrelating property, which
makes a multi-user detection unnecessary. As all
codes in a PC code set are designed with zero periodic
and aperiodic cross-correlation functions, or simply
MAI-free operation. In other words, the signaling
structure of the proposed CDMA scheme has already
been implanted some sort of de-correlating mecha-
nism. Therefore, all transmissions in the channel have
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Fig. 10. The illustration of identical detection efficiency at the edge and in the middle of a data burst in the PC code based
CDMA, where a particular PC code set of concern takes the following form: user 1: x1 = {+ + +−}, x2 = {+ + −+}, x3 =
{+ + +−}, x4 = {− − +−}; user 2: y1 = {+ − ++}, y2 = {+ − −−}, y3 = {+ − ++}, y4 = {− + ++}; user 3: z1 = {+ +
+−}, z2 = {+ + −+}, z3 = {− − −+}, z4 = {+ + −+}; user 4: w1 = {+ − ++}, w2 = {+ − −−}, w3 = {− + −−}, w4 =
{+ − −−}. Only two users {x, y} are present and an asynchronous two-path multipath channel is concerned. The inter-path
delay is one chip for illustration simplicity. The three bits in the bursts from the two users are {+1 − 1 + 1} and {+1 + 1 − 1}.

virtually been decorrelated with one another in either
up-link or down-link transmission mode without MAI.

For the same reason, the scheme does not require
a precision power control system including open loop
and closed loop algorithms, which has been a must to
all traditional CDMA systems to mitigate the near-far
effect. Due to the perfect periodic and aperiodic cross-
correlation functions, the power control pertaining to

the proposed CDMA system needs only to maintain
minimum emission power for battery life conservation
and nothing more than that.

Obviously, the performance of the proposed CDMA
scheme has nothing to do with the co-channel inter-
ference such that beam-forming algorithms applied to
a smart antenna system will no longer be relevant to
the improvement of the signal-to-interference-ratio at
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a receiver. Therefore, we do not need such a complex
antenna array system as a means to suppress the co-
channel interference in a cellular system.

A CDMA system using the PC codes guarantees a
symmetry for transmissions in both up-link and down-
link channels due to its isotropic MAI-free and MI-free
operation, which can effectively increase the overall
throughput in the air-link sector of a wireless system.

The PC codes based CDMA signaling is in partic-
ular well suited for burst data traffic, whose message
length is usually limited to a few packets, and thus
message edges detection will have a much greater im-
pact to the overall signal reception quality than that in
continuous transmission mode. However, due to irreg-
ularity of partial auto- and cross-correlation functions
in most traditional spreading codes, the detection ef-
ficiency at message edges is always a problem, which
has made a lot of people doubt about the suitability
for CDMA to be a good candidate for high-speed burst
channel. This is a very serious concern that has to be
addressed before CDMA can be considered for appli-
cations in B3G wireless. In this sense, the PC codes can
offer a very good solution to this problem. It can eas-
ily be shown that the PC codes have ideal partial auto-
and cross-correlation functions for either synchronous
or asynchronous transmission mode, and thus the same
MAI-free and MI-free operation can be ensured regard-
less of detection section in a message, either in edges
or middle parts, as illustrated in Figure 10 where the
signal detection process for both the edges and middle
parts of a message is shown.

With the above advantages combined, the CDMA
system implemented by the perfect complementary
codes allows us to substantially reduce the hardware
complexity as a whole (including the base station and
mobiles on a cell basis), while at the same time offer-
ing a superior performance with a greater capacity and
higher transmission speed than possible by currently
available schemes [1–5]. We can also use OFDM tech-
nology to implement the multi-carrier CDMA archi-
tecture as proposed in Figures 4 and 5 to further reduce
the system complexity.

6. Conclusion

This paper has revealed that an interference-free
CDMA system can be formulated by using the perfect
complementary codes, which can be generated with the
help of an algebraic approach taking into account many
real operational conditions in a wireless system, such
as MI, asynchronous transmission, different signs of

consecutive bits in data stream and so on. It has been
concluded in this paper that such an ideal CDMA sys-
tem will never be made possible if using only traditional
single-code based channelization techniques, as those
applied to the existing 2–3G systems. The possible im-
plementation of such an interference-free CDMA sys-
tem will make the perfect complementary codes ex-
tremely important, whose super-set can be generated
by carefully selected seed codes located in different
sub-sets. A multi-carrier CDMA architecture based on
the PC codes has been proposed in this paper to achieve
a noise-limited performance at a very affordable com-
plexity, giving us a great hope for the future CDMA
technological revolution.
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APPENDIX A PC Code Set Concerned in
Simulation

The perfect complementary code set concerned in the
computer simulation study has an identical value for its
set size K, flock size M and element code length N, or
K = M = N = 8, whose detail information is listed as
follows (Note: the semi-column “;” is used to separate
different element codes.):

(1) The 1st flock:
( + + + - + + - +; + - + + + - - -; + + + - - - + -; + -
+ + - + + +; + + + - + + - +; + - + + + - - -; - - - + +
+ - +; - + - - + - - -)

(2) The 2nd flock:
( + + + - + + - +; - + - - - + + +; + + + - - - + -; - + -
- + - - -; + + + - + + - +; - + - - - + + +; - - - + + + -
+; + - + + - + + + )

(3) The 3rd flock:
( + - + + + - - -; + + + - + + - +; + - + + - + + +; + +
+ - - - + -; + - + + + - - -; + + + - + + - +; - + - - + -
- -; - - - + + + - + )

(4) The 4th flock:
( + - + + + - - -; - - - + - - + -; + - + + - + + +; - - - +
+ + - +; + - + + + - - -; - - - + - - + -; - + - - + - - -;
+ + + - - - + - )

(5) The 5th flock:
( + + + - + + - +; + - + + + - - -; + + + - - - + -; + -
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+ + - + + +; - - - + - - + -; - + - - - + + +; + + + - - -
+ -; + - + + - + + + )

(6) The 6th flock:
( + + + - + + - +; - + - - - + + +; + + + - - - + -; - + -
- + - - -; - - - + - - + -; + - + + + - - -; + + + - - - + -;
- + - - + - - - )

(7) The 7th flock:
( + - + + + - - -; + + + - + + - +; + - + + - + + +; + +
+ - - - + -; - + - - - + + +; - - - + - - + -; + - + + - + +
+; + + + - - - + - )

(8) The 8th flock:
( + - + + + - - -; - - - + - - + -; + - + + - + + +; - - - +
+ + - +; - + - - - + + +; + + + - + + - +; + - + + - + +
+; - - - + + + - + )
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