
722 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

Insertion/Deletion Correction with Spectral Nulls

H. C. Ferreira,Member, IEEE, W. A. Clarke, A. S. J. Helberg,
K. A. S. Abdel-Ghaffar, and A. J. Han Vinck

Abstract—Levenshtein proposed a class of single insertion/deletion
correcting codes, based on the number-theoretic construction due to
Varshamov and Tenengolt’s. We present several interesting results on the
binary structure of these codes, and their relation to constrained codes
with nulls in the power spectral density function. One surprising result is
that the higher order spectral null codes of Immink and Beenker are sub-
codes of balanced Levenshtein codes. Other spectral null subcodes with
similar coding rates, may also be constructed. We furthermore present
some coding schemes and spectral shaping markers which alleviate the
fundamental restriction on Levenshtein’s codes that the boundaries of
each codeword should be known before insertion/deletion correction can
be effected.

Index Terms—Insertion/deletion correction, spectral nulls, constrained
codes, balanced codes.

I. INTRODUCTION

In 1965, Varshamov and Tenengolt’s [1] proposed the following
code construction to correct a singleasymmetricalerror on a channel
where the probability of the symbolone turning into a zero is
considerably less than the probability of azero turning into aone, or
vice versa. Let xxx = (x1; x2; � � � ; xn), xi 2 f0; 1g denote a binary
codeword andC the codebook. Varshamov and Tenengolt’s required
that

xxx 2 C ()

n

i=1

i xi � a (modm) (1)

for some fixed integersa andm, wherem � n + 1. Note that in
(1), then-dimensional vector space is partitioned intom different
codebooks, all having the desirable error correction capability and
we shall denote each of these codebooks withC(n; m; a). We shall
refer to the construction in (1) and other similar constructions as
number-theoreticcode constructions.

In 1966, Levenshtein [2] described two classes of codes capable
of correcting a single insertion or deletion error in a codeword. Such
an error results in the deletion of a bit in a random position, or the
insertion of a random bit in a random position, and it, respectively,
changes the length of the received word ton � 1 or n + 1.

Briefly, Levenshtein noted that by settingm � n + 1 in (1), a
single insertion/deletion error can be corrected under the assumption

Manuscript received December 26, 1994; revised July 25, 1996. This
work was supported in part by the South African Foundation for Research
Development, by the Deutscher Akademischer Austauschdienst, and the
National Science Foundation under Grant NCR-9115423. The material in
this correspondence was presented in part at the 6th Joint Swedish–Russian
International workshop on Information Theory, M¨olle, Sweden, August 23–27,
1993; at the 1994 IEEE International Symposium on Information Theory,
Trondheim, Norway, June 27–July 1, 1994; and at the 1996 International
symposium on Information Theory and Its Applications, Victoria, Canada,
September 17–20, 1996.

H. C. Ferreira, W. A. Clarke, and A. S. J. Helberg are with the Department
of Electrical and Electronic Engineering, Rand Afrikaans University, P.O. Box
524, Aucklandpark, 2006, South Africa.

K. A. S. Abdel-Ghaffar is with the Department of Electrical and Computer
Engineering, University of California, Davis, CA 95616 USA.

A. J. Han Vinck, is with Institut f̈ur Experimentelle Mathematik, Universität
GHS Essen, 45326, Essen, Germany.

Publisher Item Identifier S 0018-9448(97)01287-X.

that the boundaries of each codeword, i.e., the location of bitsx1 and
xn, are known. This single insertion/deletion correction capability is
denoted with the parameters = 1. Furthermore, it is shown in [2]
that for m � 2n, either a single insertion/deletion error or a single
reversalerror (i.e., modulo2 additive error) can be corrected, thus
s = 1 or t = 1, if parametert denotes the reversal error-correction
capability. Levenshtein furthermore showed that the cardinality of the
first class of codes is lower-bounded by

jC(n; m; a)j �
2n

n+ 1
: (2)

Subsequently, Ginzberg [3] proved that the code cardinality can be
maximized by settinga = 0 and minimized witha = 1.

The concept of a subword obtained when deleting bits from a code-
word also plays an important role when investigating the correction of
deletions/insertions [2]. If a code correctss insertions/deletions, the
following restriction is imposed on the length of the largest common
subword�(x; yx; yx; y) obtained from codewordsxxx andyyy:

j�(x; y)j < n� s: (3)

For the purpose of this correspondence, let us return to (1). We
note here that first the series ixi, which sums all indicesi where
xi = 1, represents thecodeword moment, also more precisely referred
to as thefirst-order moment[4]. By considering the integer codeword
moment ixi, beforeit is reduced modulom, as is done in (1) and
in most investigations, we present some new insight in the binary
structure of Levenshtein’s codes in Section II. For related work refer
to [5]–[9].

II. THE BINARY STRUCTURE OF LEVENSHTEIN’S

INSERTION/DELETION CORRECTING CODES

In the rest of this correspondence we investigate Levenshtein’s first
class of codes in [2]. Unless otherwise indicated, we setm = n+ 1

and a = 0 to maximize the code cardinality. Using the notation
introduced in Section I, the results in this section thus mainly pertain
to the structure of Levenshtein’sC(n; n + 1; 0) class of codes,
although some generalizations toC(n; m; a), m 6= n + 1, a 6= 0,
are also presented. In later sections, we show that constant-weight
w subcodes of theC(n; n + 1; 0) codes, which we shall denote by
C(n; n+ 1; 0; w), are also important for other coding applications,
such as the creation of spectral nulls. We shall furthermore apply the
results of this section in new code constructions and coding schemes.

Let

(x1; x2; � � � ; xn) 2C(n; n+ 1; a) (4)

and

� =

n

i=1

ixi : (5)

Then

0 �� �
n (n+ 1)

2
(6)

and since

� � amod (n+ 1) (7)

� belongs to a finite set of at mostbn=2c + 1 integers that differ
by at leastn + 1.

Note that if m = n + 1 and a = 0, the all-zeroscodeword is
included in the codebook. If, furthermore,n is even, the all-ones
codeword is also included inC(n; n + 1; 0).

0018–9448/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997 723

First, we are interested in the Hamming weight structure of Leven-
shtein’s first class of codes. Using the theory of integer partitions [10],
a simple generating function can be set up to evaluate the number of
codewords of weightw. This follows from the observation that each
nonzero codeword can be associated with a partition with no repeated
parts, and no part greater thann, of the integer�, which represents
the unreduced codeword moment. Consequently, lettingt

i represent
the integer part, or codeword indexi, and u one unit of weight,
we can set up the following generating function for determining the
weight spectrum:

f(u; t) =

n

i=1

(1 + ut
i
): (8)

The number of codewordsN(w) of weightw can be determined by
summation of the coefficient(s) ofuwt�, 0 � � � n(n+1)=2, in (8).

Several previous workers investigated the cardinality and weight
spectrum of Varshamov–Tenengolt’s codes: see e.g., [3], [5], [7].
It is also interesting to note that Dickson [11, pp. 87–88] presents
a formula which can be used to compute the cardinality ofC(n;

n + 1; a; w), attributed to R. D. von Sterneck (1902). Fora = 0,
it yields

jC(n; n+ 1; 0; w)j

=
(�1)w

n+ 1
djn+1

�(d)(�1)bw=dc
(n+ 1)=d� 1

bw=dc
(9)

where� is Euler’s function.
For certain weightsw, we are also able to obtainN(w) in explicit

form, such as forw = 2.
Proposition 1: Let xxx 2 C(n; n+1; 0; 2). The two binary ones in

eachxxx occur in a symmetrically spaced pair at indicesi andn�i+1

and N(2) = bn=2c.
Proof: If there are two ones in any binary word of lengthn

bits, the moment is bounded by

3 �

n

i=1

i xi � 2n� 1:

Consequently, the moments of all codewords ofC(n; n + 1; 0; 2)

have to satisfy
n

i=1

ixi = n+ 1:

This is only possible if the ones in a codeword occur in a symmetri-
cally spaced pair at indicesi andn� i+ 1. Consequently, there are
bn=2c codewords withw = 2.

We next investigate when the binary complement of codewordxxx,
i.e., xxx with xi = xi + 1(mod 2), is included in the codebook. This
insight also enables us to further evaluate the weight spectrum.

Proposition 2: Let xxx 2 C(n; n + 1; a) and letn be even. Then
xxx 2 C(n; n + 1; �a).

Proof:
n

i=1

ixi +

n

i=1

ixi =
n(n+ 1)

2
� 0mod (n+ 1):

Thus
n

i=1

ixi � �

n

i=1

ixi � �amod (n+ 1):

Corollary 1: Let xxx 2 C(n; n + 1; 0) and letn be even. Then
xxx 2 C(n; n+ 1; 0).

The codewords thus occur in complementary pairs. This leads to
the following corollary:

Corollary 2: ForC(n; n+1; 0) with n even, the weight spectrum
is symmetrical, i.e.,

N(n� i) = N(i); for 0 � i � n=2� 1:

Corollary 3: If n is even anda 6� 0mod (n+ 1), thenxxx and its
binary complementxxx are in different codebooks.

The previous results can be generalized as follows:
Proposition 3: If xxx 2 C(n; m; a), then xxx 2 C(n; m; e � a)

wheren(n + 1)=2 � e (modm).
Proof:

n

i=1

ixi +

n

i=1

ixi =
n(n+ 1)

2
� e (modm):

Since
n

i=1

ixi � a (modm)

it follows that
n

i=1

ixi � (e� a) (modm):

We now investigate the Hamming distance structure. First, we present
some results which apply to alls = 1 insertion/deletion correcting
codes.

Proposition 4: Any code correctings = 1 insertions/deletions has
dmin > 1.

Proof: If codewordsxxx and yyy have Hamming distanced = 1,
a common subword of lengthj�(xxx; yyy)j = n � 1 can be obtained
by deleting the distance building bit from each word. However, this
contradictsj�(xxx; yyy)j < n� 1, as required in (3).

Since theall-zeroword is included in theC(n; n+1; 0) codebook,
we have the following corollary:

Corollary 4: There can be no codewords of weightw = 1 in the
C(n; n+ 1; 0) codebook, i.e.,N(1) = 0.

The following result again applies to anys = 1 insertion/deletion
correcting code.

Theorem 1: Any code correctings = 1 insertion/deletion has the
following property: two codewords with weightj and j + 1 have
d � 3.

Proof: Two codewords with weightsj and j + 1 have odd
Hamming distance,d. Sinced > 1 (Proposition 4),d � 3.

The following result is known to hold for the Varshamov–
Tenengolt’s construction (see, e.g., [5], [9]):

Theorem 2: Let C(n; m � n; a) be a Varshamov–Tenengolt’s
code. Two equal-weight codewords haved � 4.

Corollary 5: The Hamming distance properties in Theorems 1 and
2 also holds for Levenshtein’s codes.

We now investigate the imagêxxx of codewordxxx. We define the
image of a codewordxxx to be the word̂xxx, found by writing the bits
in xxx in reverse order, i.e.,

x̂j = xn+1�j ; 1 � j � n:

The image word̂xxx will play a role in coding schemes presented in
later sections. The proof of the following proposition is straightfor-
ward:

Proposition 5: Let xxx 2 C(n; n + 1; a). Then it holds for the
imagex̂xx of xxx, that x̂xx 2 C(n; n+ 1; �a).

Corollary 6: If a = 0, it follows thatxxx, x̂xx 2 C(n; n+ 1; 0).
Note that some codewords of lengthn, n even, may be their own

images, i.e.,

xj = xn+1�j ; 1 � j � n:

We shall call these codewords symmetrical.

724 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

Cyclic shifts of codewords play an important role in coding theory
and in some synchronization recovery schemes. Of particular interest
is if a cyclic shift ofxxx 2 C(n; m; a) will also be in the codebook.
The proof of the following proposition is again straightforward:

Proposition 6: By cyclic shifting a weightw codewordxxx 2

C(n; m; a) to the right (left), the resulting wordxxxr(xl) falls into a
new codebook as follows:

1) xn =0: xxx
r
2 C(n; m; a+ w)

x1 =0: xxx
l
2 C(n; m; a� w)

2) xn =1: xxx
r
2 C(n; m; a+ w � n)

x1 =1: xxx
l
2 C(n; m; a� w + n):

Corollary 7: For xxx 2 C(n; n; 0; n=2), a codeword in the same
codebook is obtained after two cyclic shifts in the same direction.

Corollary 8: For anyxxx 2 C(n; n + 1; 0; n=2), shifting xxx in the
same direction, results in a codeword which belongs to one of two
other codebooks, as determined byxn for right shifts andx1 for left
shifts.

III. SOME CONSTANT-WEIGHT SUBCODES OF

LEVENSHTEIN’S INSERTION/DELETION CORRECTING CODES

In this section, we consider constant-weight codes, including the
balanced codes which have a spectral null atdc.

A. Bounds on the Cardinality of Constant-Weight Codes

Constant-weight codes have been investigated extensively in
the past. The cardinalities of these codes are usually denoted by
A(n; d; w), wheren is the length of the binary block code with a
minimum Hamming distance ofdmin (denoted here withd = dmin)
and weightw. Upper bounds on the cardinalities of these codes
appear, e.g., in [6], [12], [13].

The Varshamov–Tenengolt’s construction has previously been em-
ployed to construct good constant-weight codes withdmin = 4 and
dmin = 6 (see, e.g., [5], [6].) The rate efficiency of the constant-
weight Levenshtein codesper secan be appreciated if the cardinalities
are compared with the latest results onA(n; d; w) in [12]. From
Corollary 5 it can be seen that the constant-weight Levenshtein
subcodes will have minimum Hamming distancedmin = 4.

By evaluating the generating function in (8), it can be seen that
the cardinality of the class ofC(n; n + 1; 0; w) codes compares
favorably to the upper bounds. In fact, the achievable code rates of
interest for implementation are often the same, i.e.,

R =
k

n
=

blog2 jC(n; n+ 1; 0; w)jc

n
=

blog2 A(n; 4; w)c

n
(10)

or differ at the most with one unit in the numerator. It is thus
often possible to construct an optimal rateR = k=n, dmin = 4

constant-weight code, and also be able to correct insertions/deletions.

B. Balanced Block Codes withn = 16, dmin = 4

In [14], we presented the construction of an(n; k) = (16; 8)

balanced ordc-free block code withdmin = 4. Blaum improved
on this result by constructing an(n; k) = (16; 9) balanced code
in [15], while the bounds in, e.g., [12] indicates the existence of
an (n; k) = (16; 10) code. Immink and Beenker [4] proposed an
n = 16 dc2-constrained code with cardinality526 for this purpose.
By evaluating (8) forn = 16 andw = 8, it can be seen that an
(n; k) = (16; 9) balanced code withdmin = 4 can be constructed
usingC(16; 17; 0; 8). This code improves on the results in [14] and
[15], since it can correct either a single insertion/deletion in error or
the single reversal error considered in [14] and [15]. Furthermore, it

represents a simpler construction and a simple decoder exists, as can
be seen in Section V. In the next section, we shall show that Immink
and Beenker’s code is in fact one possible subcode of this code.

Using a computer to trim selected code words fromC(16; 17;

0; 8) which has cardinality758, we can reduce the maximum
runlength of the(n; k) = (16; 9) code, which needs a codebook with
512 codewords, to a maximum runlength of 5 bits (in comparison to
6 for Immink and Beenker’s code). The new code has a running
digital sum bounded by

�5 � zj
�
=

j

i=1

xi � 5; 1 � j � n; xi 2 f�1; +1g

where we assume a mapping ofxi 2 f0; 1g ontoxi 2 f�1; +1g.

IV. SOME SPECTRAL NULL SUBCODES OFLEVENSHTEIN’S

INSERTION/DELETION CORRECTING CODES

The balanced codes in the previous section have first-order spectral
nulls at dc. In this section, we consider block codes with either
higher order spectral nulls, or spectral nulls at other frequencies.
Note that once we turn to the topic of spectral nulls, the polar
representation of the binary symbols, i.e.,xi 2 f�1; +1g must be
used. In contrast, when codes with error-correcting capabilities are
investigated, thexi 2 f0; 1g representation is often used. By using
the straightforward mapping off0; 1g ontof�1; +1g, the results of
the previous sections, can be applied to this section.

A. Subcodes with Higher Order Spectral Zeros at Zero Frequency

Immink and Beenker [4] described a subclass of balanced
codes, sometimes called higher orderdc-constrained codes, which
suppresses low-frequency components in the code’s power spectral
density function. Briefly, they investigated codewordsxxx; xi 2

f�1; +1g, of Kth-order zero disparity, i.e., with the firstK + 1

codeword moments atdc all zero, or

uk =

n

i=1

i
k
xi = 0 k 2 f0; 1; � � � ; Kg: (11)

This class of codes then has the property that the first2K + 1

derivatives of the power spectral density vanish atdc or ! = 0,
and they show that codewords have minimum Hamming distance

dmin � 2(K + 1): (12)

Furthermore, it is shown in [4] thatn should be divisible by4, and
that

xxx 2 C ,

x =+1

ixi = �

x =�1

ixi = n(n+ 1)=4 : (13)

If we assume a straightforward mapping off�1; +1g onto f0; 1g,
setn = 4e, and consider the first-order spectral null, it follows that
for any one of theKth-order zero disparity codes

xxx 2 C ,

n

i=1

ixi = e(n+ 1) = 0mod (n+ 1): (14)

Consequently, the moment of any higher orderdc-constrained code
is � = e(n+ 1) and the code is a subcode ofC(n; n+ 1; 0; n=2),
which may also contain codewords with other moments.

We thus conclude that the class of higher orderdc-constrained
codes are capable of correcting a single insertion/deletion error, a
property which seems to be hitherto unknown.

We now present a result on the binary structure of higher order
dc-constrainedcodes.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997 725

Fig. 1. The number of information symbols versus codeword length of some Levenshtein subcodes.

Proposition 7: Let xxx be dc2-constrained. Thenxxx is also dc2-
constrained.

Proof:
n

i=1

ixi +

n

i=1

ixi =
n(n+ 1)

2

n

i=1

ixi =
n(n+ 1)

2
�

n(n+ 1)

4

=
n(n+ 1)

4

which indicates thatxxx is alsodc2-constrained.

B. Nyquist Nulldc2-Constrained Subcodes

It is possible to further constrain thedc2-constrained codes in the
previous section, in order to obtain codes with a null at the Nyquist
frequencyfs. This class of codes is sometimes called minimum-
bandwidth codes. The Nyquist nulldc2-constrained subcodes of
C(n; n + 1; 0) were first described in [16].

Following Kim [17], who investigated a zeroth-order null atfs, we
require in addition to (11) and (13), that the running alternate sum
for each codeword is zero, or

RAS =

n

i=1

(�1)
i
xi = 0; xi 2 f�1; +1g: (15)

By applying the theory of integer partitions, the structure of code-
words can be analyzed and a generating function for enumerating
codewords can be set up. Refer back to (13) and consider the indices
pi wherexi = +1. Sincew = n=2, there aren=2 of these indices
which partition the integern(n + 1)=4 such that there are exactly
n=2 parts, with no repeated parts and no part larger thann. The
same structure applies to the indicesni wherexi = �1.

A moment’s reflection reveals that (15) can be written in terms of
these indices, as

RAS = N(p
e
)�N(p

o
) +N(n

o
)�N(n

e
) = 0 (16)

where the superscripte denotes even ando odd.

Since each codeword is balanced, we may also write

RDS = N(p
e
) +N(p

o
)�N(n

e
)�N(n

o
) = 0: (17)

Furthermore, since the codeword lengthn is even, there are equal
numbers of even and odd indices, thus

N(n
e
) +N(p

e
) = N(n

o
) +N(p

o
): (18)

There aren indices in total, or

N(p
e
) +N(p

o
) +N(n

e
) +N(n

o
) = n: (19)

Solving (16)–(19) yields

N(p
e
) = N(p

o
) = N(n

e
) = N(n

o
) = n=4: (20)

The Nyquist nulldc2-constrained codes are thus defined by

xxx 2 CCC ,

n=4

i=1

p
o
i +

n=4

i=1

p
e
i =

n=4

i=1

n
e
i +

n=4

i=1

n
o
i = n(n+ 1)=4:

(21)

Referring back to (8), and assuming a mapping off�1; +1g onto
f0; 1g, the generating function for this class of codes can be set up.
Let t account for one unit of weight,ui for index i andv for po

f (u; t; v) = (1 + utv)(1 + u
2
t)(1 + u

3
tv) � � � (1 + u

n
t)

=

n

i=1

(1 + u
i
tv

i�2 i=2
): (22)

Here the coefficient ofun(n+1)=4 tn=2 vn=4 should be evaluated to
enumerate this class of codes.

The code rate is depicted in Fig. 1, from which it can be seen
that the rate loss is not significant when further constraining thedc2-
constrained codes. (Forn � 12, there is no rate loss.) Note that every
xxx 2 C(8; 9; 0; 4) satisfies both thedc2 and Nyquist null properties.

We next present some propositions on the binary structure of
Nyquist null dc2-constrained codes.

Proposition 8: If n divides by4, all symmetrical codewordsxxx 2
C(n; n + 1; 0; n=2) with xi = xn+1�i, 1 � i � n, are included
in the dc2-code of lengthn.

726 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

Proof: Let each codewordxxx constitute of two equal-length
subwords,(x1; � � � ; x

n=2) and (xn=2+1; � � � xn). Sincexxx is sym-
metrical, each subword containsn=4 ones. Thus there aren=4 pairs
of onesin xxx, which each contributei+ (n+ 1� i) = n + 1 to the
moment ofxxx. Consequently the total moment is

n

i=1

ixi = n(n+ 1)=4

which is the moment of adc2 codeword [4]. Hence,xxx is dc2-
constrained.

In the previous proposition, we divided each codeword into two
equal-length subwords. We now investigate another class of even-
length codewords where the second subword is the inverse of the
first subword, i.e.,

xn=2+i = xi : (23)

Proposition 9: If n divides by4, all codewordsxxx 2 C(n; n +

1; 0; n=2) which have the inverse property, i.e.,xn=2+i = xi, are
included in thedc2-code of lengthn.

Proof:

n

i=1

ixi =

n=2

i=1

ixi +

n

j=n=2+1

jxj

=

n=2

i=1

ixi +

n=2

i=1

i+
n

2
xi

=

n=2

i=1

i(xi + xi) +

n=2

i=1

n

2
xi

=

n=2

i=1

i+
n

4
�
n

2

=
n=2(n=2 + 1)

2
+

n

4
�
n

2

=
n(n+ 1)

4

which is the moment of adc2 codeword. Hencexxx is dc2-constrained.

Proposition 10: All symmetrical balanced codewordsxxx 2

C(n; n + 1; 0; n=2), have a null at the Nyquist frequency.
Proof:

n

i=1

(�1)
i
xi =

n=2

i=1

(�1)
i
xi +

n

i=n=2+1

(�1)
i
xi

=

n=2

i=1

(�1)
i
xi +

n=2

j=1

(�1)
n+1�j

xn+1�j

=

n=2

i=1

(�1)
i
xi �

n=2

j=1

(�1)
j
xn+1�j

=

n=2

i=1

(�1)
i
xi �

n=2

j=1

(�1)
j
xj

=0:

Proposition 11: If n divides by4, all codewordsxxx 2 C(n; n +

1; 0; n=2) which have the inverse property, i.e.,xn=2+i = xi,
1 � i � n=2, have a null at the Nyquist frequency.

Proof:

n

i=1

(�1)
i
xi =

n=2

i=1

(�1)
i
xi +

n

i=n=2+1

(�1)
i
xi:

Substitutei = j + n=2 in the last term. Thus

n

i=1

(�1)
i
xi =

n=2

i=1

(�1)
i
xi +

n=2

j=1

(�1)
n=2+j

xn=2+j

=

n=2

i=1

(�1)
i
xi +

n=2

j=1

(�1)
j
xn=2+j

=

n=2

i=1

(�1)
i
xi +

n=2

i=1

(�1)
i
xn=2+1

=

n=2

i=1

(�1)
i
[xi + xn=2+1]

=

n=2

i=1

(�1)
i
; sincexi + xn=2+i = 1

=0:

Corollary 9: Both the symmetrical and inverse subcodes of
C(n; n + 1; 0; n=2) are included in the Nyquist nulldc2�-
constrained code of lengthn.

C. Spectral Nullrfs=N Subcodes

As shown in [18], spectral nulls at rational submultiplesr=N of
the symbol frequencyfs can be achieved if we restrictN to be a
prime number which dividesn, i.e.,

n = Nz (24)

and constrain every codeword to have

A1 = A2 = � � � = AN (25)

where

Ai =

z�1

�=0

x�N+1; i = 1; � � � ; N: (26)

A spectral null at frequencyfs=N furthermore implies spectral nulls
at frequenciesrfs=N gcd (r; N) = 1, .

We can now set up a generating function to enumerate subcodes
of C(n; n+1; 0), which also conform with (25). Note that (25) can
only be satisfied if the set of bits which contribute to eachAi, have
the same weighth, where0 � h � z. In the following generating
function,xi represents bitxi in (26) andui represents a contribution
to Ai, while t represents one unit of weight as before

f(u1; � � � ; uk; t; x)

=

n=N�1

i=0

(1 + tu1x
1+Ni

)(1 + tu2x
2+Ni

) � � � (1 + tunx
N+Ni

):

(27)

We thus need to evaluate the coefficients ofuh1 u
h

2 � � � u
h

k x
�, 0 �

h � n=N , � � 0mod (n + 1), to obtain the cardinality of the
spectral nullrfs=N subcode ofC(n; n+1; 0), or the coefficients of
uh1 u

h

2 � � � u
h

k t
w x� if we want the cardinality of a weightw subcode

of C(n; n + 1; 0).
Theorem 3: A spectral nullA1 = A2 = � � � = AN subcode of

C(n; n + 1; 0) hasdmin � min f4; Ng.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997 727

Proof: SinceA1 = A2 = � � � = AN , it follows that each of the
N subsets of code bitsfxi; xi+N ; � � � ; xi+n�Ng, i = 1; � � � ; N ,
should have the same weighth, 0 � h � z. Consequently, any
codeword(x1; x2; � � � ; xn) has weightw = Nh. Thus any two
codewords of different weights haved = N . Furthermore, any
two codewords of the same weight haved = 4. It follows that
dmin = min f4; Ng.

Code rates of spectral nullrfs=3 subcodes are also depicted in
Fig. 1.

V. DECODING THE CONSTANT-WEIGHT

AND SPECTRAL SHAPING SUBCODES

The constant weight and spectral shaping subcodesC(n; n+1; a)

are highly structured and the decoding procedures are thus simple.
We propose a decoding process that consists of three phases and
now briefly discuss these three phases. Note that all the codes under
consideration here correct eithers = 1 insertion/deletion error, or
t = 1 reversal error in each codeword.

A. Error Detection

The decoder functions under the assumption that the beginning and
end, and thus also the length of each received word, is known. This
is the assumption also made by Levenshtein when theC(n; m; a)

class of codes was proposed, and it may be achieved in practice by
inserting periodic markers or synchronization words in the transmitted
sequence.

Both the nature of the error and the restored value� 2 f0; 1g of
the affected bit can be determined uniquely from the lengthn

0 and
weight w0 of the received wordx0 as follows:

a) n
0

=n

w
0

=w + 1(w� 1) : reversal error0(1)! 1(0)

b) n
0

=n� 1

w
0

=w(w� 1) : deletion error0(1)! ^

and

c) n
0

=n+ 1;

w
0

=w + 1(w) : insertion error̂ ! 1(0):

Here ^ denotes the empty word and the weightw is known for
constant-weightw codes, or for higher order spectral null subcodes
(w = n=2), while for the spectral nullrfs=N subcodes, we use

w = min fjw
0

�Nhjg; 0 � h � z: (28)

B. Restoration of the Transmitted Codeword

In order to determine the index of the affected bit, we proceed as
follows.

For higher order spectral null subcodes, the restored codeword can
have only one moment,n(n + 1)=4, and the following syndrome
function can always be used:

SSS = n(n+ 1)=4�

n

i=1

ix
0

i : (29)

For constant-weight subcodes, or for spectral nullrfs=N subcodes,
the moment of the restored codeword is determined by the nature of
the error and the restored value� of the affected bit as follows:

If a reversal error with� = 0, or an insertion is detected, select
� to minimize the syndrome function

SSS =

n

i=1

ix
0

i � �; SSS > 0 (30)

thus

SSS =

n

i=1

ix
0

i (modn+ 1): (31)

If a reversal error with� = 1, or a deletion is detected, select� to
minimize the syndrome function

SSS =� �

n

i=1

ix
0

i; SSS > 0 (32)

thus

SSS =(n+ 1)�

n

i=1

ix
0

i (modn+ 1): (33)

The value ofS in one of (29)–(33), as dictated by the class of
codes and�, is then used to determine the index of the corrected
bit as follows:

a) For a reversal error, invert the bit at indexS, since this is the
only way to restore the moment to�.

b) For insertions/deletions we may apply the decoding algorithm
proposed by Levenshtein [2]. However, some simplification
is possible if we make use of the fact that each codeword’s
complement is also included in the codebook and satisfies (1).
(Refer back to Corollary 1.) For insertion/deletion of a zero,
we delete/insert a zero to the right of theSth one from the
left in (x0max; � � � ; x

0

1), this is again the only way to restore
the moment to�. For insertion/deletion of a one, we first
complementxxx0, then computeS and proceed as above for
insertion/deletion of a zero, and again complement the restored
word.

C. Mapping of the Restored Codeword Onto Information Bits

From Fig. 1 can be seen that the code rates of all the balanced
w = n=2 subcodes which we investigated eventually exceeds rate
R = 1=2. Consequently, it is not possible to always construct a
systematic code: for example the all zeros information word will
require w < n=2 and the all ones information wordw > n=2.
However, for ratesR � 1=2, it may be possible to find a systematic
mapping by inspection [16]. Alternatively, a lookup table should be
used.

VI. I NSERTION/DELETION CORRECTING CODING SCHEMES

The practical application of the class ofC(n; m; a) Levenshtein
codes has been restricted by the requirement that the boundaries of
each received word be known before insertion/deletion correction can
be affected and framing of words be maintained. In this section we
propose two coding schemes which determine the boundaries of each
codeword as long ass = 1 insertion/deletion per codeword is not
exceeded, and if every word with an error is followed by an error-
free word. Though the rate of the second scheme is somewhat less
than the rate of the first scheme, it also offers correction oft = 1

reversal errors.

A. Coding Scheme 1

In this coding scheme, we use a subcode ofC(n; m; a; w),
0 < w < n, such that each codeword has a moment from a set
f�g, wherej�1 � �2j � 2n+ 1 for any distinct�1, �2 in f�g.

Note that it is possible to use adc2-constrained code, since each
codeword hasw = n=2 and fixed�l = n(n+1)=4. We furthermore
need to insert two buffer bits,b1 = b2 = 0, between every two
codewords. In the following description, it is assumed that adc

2-
constrained code is used. The transmitted sequence is thus constituted

728 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

as follows:

� � � x
j�1
n b

j�1
1

b
j�1
2

x
j
1

� � � x
j
n b

j
1
b
j
2
x
j+1
1

� � � x
j+1
n b

j+1
1

b
j+1
2

� � �

(34)
wherexxxj is the jth transmitted codeword.

For each codeword, the receiver establishes a frame ofn+ 1 bits
and computes the moment

� =

n+1

i=1

iyi (35)

where (y1; � � � ; yn+1) is the received word corresponding to
(x1; � � � ; xn; b). When decodingxxxj , we assume that framing up
to xxxj�1 has proceeded correctly. Without any insertion/deletions the
decoder observes

n+1

i=1

iyi = n(n+ 1)=4 (36)

and proceeds toxxxj+1.
If a bit is deleted inxxxj , bbbj

2
replacesbbbj

1
in (35) and the decoder

observes

n+1

i=1

iyi � n(n+ 1)=4: (37)

If a bit is inserted inxxxj , xjn replacesbbbj
1

in (35) and the receiver
observes

n+1

i=1

iyi � n(n+ 1)=4: (38)

Note that equality in (37) and (38) is only achieved if there
are only zeros to the right of the inserted/deleted bit and if the
inserted/deleted bit is a zero. If this is the case, the decoder observes
a word which resemblesxxxj in the firstn bits of the frame and need
not take any action. However, this event will then be reflected as an
insertion/deletion at indexi = 1 in xxxj+1 when the decoder incorrectly
establishes the next frame, and it is corrected ifxxxj+1 is received
error-free.

If inequality is observed in (37) and (38), the decoder detects and
discriminates between an insertion/deletion, and uses the observed
weight w0 to determine the restored value� of the affected bit, as
in Section V.

If one of the buffer bitsbbbj�1 is deleted, this is perceived at the
decoder as the deletion ofxj

1
, while an insertion precedingbbbj�1i , is

perceived as the insertion of a0 at i = 1 in xxxj .
Restoration of the transmitted codeword proceeds as in Section

V and the receiver adjusts the framing if necessary. Note that the
decoder is unable to discriminate between insertions/deletions and
reversal errors, consequently, the capability to do reversal error
correction is lost.

In case the set of momentsf�g contains more than one integer,
we see that the decoder needs to discriminate between a deletion
from a codeword with moment�1 or an insertion in a codeword with
moment�2, where�1 > �2, hence in general, forC (n; m; a; w)

we require

j�1 � �2j � 2n+ 1 (39)

for any distinct�1, �2 in f�g. The coding rate of this scheme, when
implemented withdc2-constrained codes, isR = k=(n+ 2), where
k andn can be obtained from Fig. 1 for thedc2-constrained codes.
The overall rate is also depicted in Fig. 1. For example,R = 1=2 is
achieved when using the(n; k) = (16; 9) dc2-constrained code.

B. Coding Scheme 2

Alternatively, we can achieve insertion/deletion correction, by
making use of a symmetrical subcode ofC (n; n + 1; 0), which
has xj = xn+1�j , 1 � j � n, and which was investigated in
Propositions 5, 8, and 10.

If we are furthermore interested in correcting reversal errors,
we require dmin = 4, hence we need a symmetrical constant
weight subcode ofC (n; n+ 1; 0), which then achieves the highest
cardinality for w = n=2. From Propositions 8 and 10 it thus
follows that we shall make use of a subcode of the Nyquist null,
dc2-constrained codes discussed in Section IV.

No buffer bits need to be transmitted. The decoder in this coding
scheme assumes that framing up toxxx(j�1) has proceeded correctly,
establishes a frame ofn bits, inputsxxxj , and checks for the symmetry.
If a deviation from symmetry is observed, it inputsxxx(j+1) . It
performs reversal error correction onxj if x(j+1) is symmetrical.
If xxx(j+1) is not symmetrical, it attempts to restore its symmetry by
means of one bit left shift or one bit right shift. If it is necessary to
perform a right shift onxxx(j+1) , a deletion occurred inxxxj , while a
left shift indicates an insertion.

The decoder thus sets up the correct frame forxxxj , and uses the
observed weightw0 within this frame, to determine the restored
value� of the affected bit. Restoration of the transmitted codeword
proceeds as in Section V.

By careful consideration of candidate symmetrical codewords, it
can be shown that there are four codewords, which may achieve
symmetry inxxx(j+1) again, after two like shifts, which will then lead
to an incorrect decision about the nature of the deletion/insertion in
xxxj . These are the all-zeros and all-ones codewords, and the two
complementary codewords which each constitute only of runs of
length2 like symbols, except forx1 andxn, which each constitute a
run of length1. These words have to be omitted from the codebook.

The cardinality of the codes in this scheme can be determined by
noting that once the first subword(x1; � � � xn=2) of xxx is specified, the
second subword is fixed. Furthermore, any pair of ones(xj ; xn+1�j)

contributes(n + 1) to the codeword moment, hence
n

i=1

ixi � 0 (modn+ 1)

and for any symmetrical wordxxx, xxx 2 C(n; n + 1; 0).
For only insertion/deletion correction, we allow the first subword

to have any weight and then omit the four words discussed

jCCC1j = 2
n=2

� 4 : (40)

To afford reversal correction in addition we need a constant-weight
w subcode and allow the first subword to containw=2 = n=4 ones.
Thus the all-zeros and all-ones codewords are excluded, and

jCCC2j =
n=2

n=4
� 2 : (41)

For both these classes of codes, the asymptotic code rate is

R1 = 1=2: (42)

Code rates for finiten are depicted in Fig. 1. Although these rates
appear low, the minimum-bandwidth property of the second class of
codes, together with the rate, should be considered to evaluate the
efficiency on bandwidth-limited channels.

VII. SPECTRAL NULL MARKERS FOR THE

DETECTION OF DELETION/INSERTION ERRORS

A. Preliminaries

In this section the use of a marker (or synchronization sequence)
is proposed to separate each codeword in the channel. Markers

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997 729

are predetermined sequences used for the alignment of transmitted
sequences. We present markers for use with either unconstrained or
spectral nullC(n; n + 1; a) codes. Sellers [19] introduced the idea
of a marker for deletion/insertion error control. No data is usually
mapped onto a marker and therefore the overall rate is reduced.
Sellers’ method needed to wait for two markers before any detection
could be done. In this section, a merging of Sellers’ method and the
Levenshtein codes is proposed. The goal of the markers introduced
in this section is to afford spectral nulls when necessary, as well as to
detect errors. The correction of errors must be done by the decoding
procedures for the insertion/deletion error correcting code.

The idea of a marker is better understood by first introduc-
ing the concept of asynchronization error correcting sequence.
A synchronization error correcting sequence consists of an inser-
tion/deletion correcting codeword (e.g., a Levenshtein codeword)
xxx = (xn; � � � ; x1) of lengthn followed by a markerbbb = bM � � � b2b1

of lengthMs. The insertion/deletion correcting codewordxxx will be
called theinformation segmentbecause this is the part of the sequence
carrying the information. The total length of the synchronization
error-correcting sequence is thus

n+Ms : (43)

Sellers [19] showed that the minimum length of a markerbbb must be

Ms � 2s+ 1; s � 1 (44)

wheres is the insertion/deletion correcting ability of the code. For
an s = 1 code the minimum length of the marker must be3. Before
constructing the markers, it is necessary to investigate the function of
a marker. Similarly as for the coding schemes in the previous section,
the assumption is made that any synchronization error-correcting
sequence with error should be followed by one without error.

A marker must enable the receiver to detect the occurrence of
an error, be that an insertion/deletion or a reversal error. The order
of detection is also important. An insertion/deletion shifts the rest
of the symbols in a codeword up or down, depending on the error.
Up to the point of the error, the symbols will be correct. From the
insertion/deletion error positioni onwards all the symbols may be
wrong. If the receiver first checks for reversal errors, the incorrectly
framed received wordxxx0 may appear to contain a maximum of
n� i+1 reversal errors. If the reversal error-correcting ability of the
code ist andt < n�i+1, then the receiver will be unable to correct
or even detect the errors. The word may even look like another valid
codeword, only witht or fewer additive errors and the receiver may
then map it onto a wrong codeword. If, however, the receiver first
checks for insertion/deletion errors by evaluating a marker, it will
first detect and correct the insertion/deletion error if it exists. The
next codeword will then again be correctly framed.

B. Rules for the Construction of Markers

It is assumed that when codewords are transmitted, thenx1 is sent
first andxn last. (Refer to (34).) LetB be a marker codebook and
b̂bb 2 B be a marker of lengthMs, Ms � 3, and

bbb = b1b2 � � � bM (45)

with bi 2 f0; 1g for a binary marker. The resulting marker after a
single deletion in theprevious codeword is

bbb
d = b2b3 � � � bM x1 (46)

wherex1 is the first symbol from the next codeword. The first symbol
of bbb, b1 is shifted out and becomes the last symbol of the previous
information segment. The last symbol ofbbbd now contains the first
symbol of the following information segment. Note thatx1 may

assume any binary value. The wordbbbd, which will be called adeletion
indicator, is the resulting markerbbb due to a deletion in the preceding
information segment. Similarly, the resulting marker after an insertion
in the previous information segment is

bbb
i = xnb1b2 � � � bM �1 (47)

wherexn is the last symbol from the preceding information segment.
The wordbbbi will be called aninsertion indicator. For a sequencebbb
to be considered as a marker, the following rules must be valid:

1) bbbi 6= bbbd

2) bbbi 6= bbb; bbbd 6= bbb.

Rule 1) ensures that the decoder candifferentiatebetween insertion
and deletion errors. Rule 2) enables the receiver todetect the
occurrence of a insertion/deletion.

If more than one marker is to be used together in the same
transmission, the detection and differentiation rules must still be valid.
Let bbb1 andbbb2 be two markers of equal length. Forbbb1 andbbb2 to be
valid markers in the same marker codebookB, they must first comply
with Rules 1) and 2) and with the following additional rules, where
bbbij is the insertion indicator for markerj, bbbdj is the deletion indicator
of marker j and bbb 2 fbbb1; bbb2g:

3) bbbi
1
6= bbbd

2
; bbbd

1
6= bbbi

2

4) bbbi
1
6= bbb; bbbd

1
6= bbb; bbbi

2
6= bbb; bbbd

2
6= bbb:

Again, Rule 3) ensures that the receiver will be able to differentiate
between insertion and deletion errors. Rule 4) enables the receiver to
detect synchronization errors.

For a 3-bit marker code book, only four codewords comply with
both Rules 1) and 2), i.e.,001; 100;011; and 110. The markers
001 and 100 are the ones which Sellers [19] proposed in his
insertion/deletion correcting codes. The marker 011 was the one
Ullman [20] used in his codes. None of these valid markers however
can be used together in a marker codebook because any two markers
violate Rules 3) and 4).

Until now, valid markers only enabled the decoder to detect and
differentiate insertion/deletion errors in the previous information seg-
ment. It is also possible for an insertion/deletion or reversal error to
occur in the marker itself. To combat this situation, it is first necessary
for the marker codebook to have a minimum Hamming distance of
dmin � 2. This will guarantee that a reversal error in a marker
codeword will be detected. To combat insertion/deletion errors, the
marker codebook must furthermore have insertion/deletion-detecting
capabilities. It is proposed to use markers from a Levenshtein code.
Note that these markers will then also have minimum Hamming
distance ofdmin � 2.

C. Example of Some 4-Bit Marker Codebooks

Table I presents eight 4-bit marker codebooks. These marker
codebooks comply with the marker construction rules (1)–(4) given
in the previous section. The markers may be used to detect as well as
identify the type of synchronization error in thepreviousinformation
segmentexclusively.

Table II lists all the valid 4-bit marker codebooks which further-
more has ans = 1 insertion/deletion correcting ability (and thus
alsodmin � 2). Note when used with the unconstrained Levenshtein
code, the rate of the coding scheme with marker can be increased by
mapping one information bit onto a set of two marker words chosen
from Table I or II.

D. Decoding Procedure

The decoding of the synchronization error-correcting sequence
consists of two steps. A lookup table is necessary for the marker

730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

TABLE I
VALID BINARY 4-BIT MARKER CODEBOOKS

TABLE II
VALID 4-BIT MARKER CODEBOOKS

codebook and its error indicators. When a synchronization error-
correcting sequence is received, the decoder separately checks if
there are any errors in the information segment or in the marker.
By applying (1) to the information segment, the receiver can detect
whether an error has occurred or not. If the received information
segment does not comply with (1), the receiver knows that an error
has occurred in that information segment. Letri be the output of the
information segment check andrm the output of the marker check
and ri; rm 2 f0; 1g. The values orri and rm are zero when there
are no errors andone if there are any errors. Table III lists the result
of the variablesri and rm and also the meanings and remedies. It
assumed that the information segment is represented by a codeword
from C(n; m � 2n; a), or fromC(n; n + 1; 0; w), hence reversal
error correction can be achieved.

The deletion/insertion error correction for the information segment
may be done by the procedures given by Levenshtein [2].

If a marker indicates that a deletion occurred, then bits of the
information segment preceding the beginning of the marker are taken
to be the information segment in error. For the correction, however,
the last symbol of the information segment must be left out, because
this will be the first symbol from the original marker. The total length
of the information sequence passed on to the correcting procedure will
therefore ben� 1. The framing must then be adjusted accordingly.

For an insertion the same procedure is followed. Then symbols
of the information segment preceding the beginning of the marker,
together with the first symbol of the marker, are taken as the received
word to be corrected by the insertion correcting procedure. The first

TABLE III
DECODING SYNCHRONIZATION ERROR CORRESPONDINGSEQUENCES

Fig. 2. Power spectral density of a 9-bit Levenshtein subcodes with spectral
zeros at multiples offs=3.

symbol of the marker must be included because it is the last symbol
of the original information segment. The total length of the word to
be corrected is thusn + 1 symbols. The decoder framing must be
adjusted to correct the framing of subsequent codewords.

If the error is a reversal error in the information segment, then

symbols preceding the beginning of the marker are taken to be the
word to be corrected by the reversal error-correcting procedure.

Sometimes it may happen that a reversal or insertion/deletion
error in the marker appears to be the same as an insertion or
deletion indicator. In these cases, the decoder simply ignores the
indicator and continues with the next codeword. If the error was
an insertion/deletion, the next codeword will be corrupted because
of this insertion/deletion. If the next synchronization error-correcting
sequence is received error-free, the marker in this sequence will detect
the error and the decoder will be able to correct the error.

If more than one insertion/deletion occur per synchronization error-
correcting sequence, the decoder will be unable to correct these errors
and the framing will be lost. If more than one reversal error occur per
sequence, or if two consecutive sequences with errors are received,
the decoder will be unable to correct the errors, but word framing
will still be intact.

E. Spectral Shaping Parameters of Markers

The question may arise why a markercodebookis needed, when
traditionally only one marker was used. If one uses an arbitrary
single marker, the spectral properties of the channel sequence may
be altered. The marker, or set of markers, must therefore be chosen
carefully to match the spectral properties of the insertion/deletion
error correcting code. Table IV lists the values of the running digital
sum, second-order moment atdc, running alternate sum and second-

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997 731

Fig. 3. Some spectra ofdc-free Levenshtein subcodes.

TABLE IV
SPECTRAL PROPERTIES OFMARKERS

order moment at the Nyquist frequency for every candidate marker.
Note that the binary symbols0 and 1 are mapped onto�1 and 1,
respectively. The markers for which these spectral shaping parameters
have valuezero, are of particular interest, for using as a single marker
in conjunction with the subcodes in this paper.

VIII. C ONCLUSIONS

In this correspondence we have presented some new insight into
the structure of a class of Varshamov–Tenengolt’s codes, as well as
several important subclasses. We have shown that there is a relation
between Levenshtein’s codes for correcting deletions/insertions and
some classes of codes with nulls in the power spectral density
function. Some of these power spectral density functions are depicted
in Figs. 2–4.

From Fig. 1 we see that the rates of the Nyquist-null subcodes are
indeed higher than those of thedc-free subcodes. Another observation
is that the null notch width decreases as the codeword length increases

Fig. 4. Spectra of minimum-bandwidth Levenshtein subcodes.

in both thedc-free and Nyquist-null Levenshtein subcodes. This can
be explained by the fact that the digital sum variation increases.

Although we have presented some results to this effect, future work
can focus on improving the rates of coding schemes which alleviate
the restriction on Levenshtein’s codes that the boundaries of each
codeword should be known.

REFERENCES

[1] R. R. Varshamov and G. M. Tenengolt’s, “Correction code for single
asymmetrical errors,”Avtom. Telemekh., vol. 26, no. 2, pp. 288–292,
Feb. 1965.

[2] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,”Sov. Phys.–Dokl., vol. 10, no. 8, pp. 707–710, Feb.
1966.

[3] B. D. Ginzburg, “A number-theoretic function with an application in
the theory of coding,”Probl. Cybern., vol. 19, pp. 249–252, 1967, in
Russian.

[4] K. A. S. Immink and G. F. M. Beenker, “Binary transmission codes
with higher order spectral zeros at zero frequency,”IEEE Trans. Inform.
Theory, vol. IT-33, no. 3, pp. 452–454, May 1987.

732 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 43, NO. 2, MARCH 1997

[5] P. H. Delsarte and P. H. Piret, “Spectral enumerators for certain additive-
error-correcting codes over integer alphabets,”Inform. Contr., vol. 48,
pp. 193–210, 1981.

[6] R. L. Graham and N. J. A. Sloane, “Lower bounds for constant weight
codes,”IEEE Trans. Inform. Theory, vol. IT-26, no. 1, pp. 37–41, Jan.
1980.

[7] T. Helleseth and T. Kløve, “On group-theoretic codes for asymmetric
channels,”Inform. Contr.,vol. 49, pp. 1–9, 1981.

[8] L. E. Mazur, “Correcting codes for asymmetric errors,”Probl. Pered.
Inform., vol. 10, no. 4, pp. 40–46, Oct.–Dec. 1974.

[9] W. H. Kautz and B. Elspas, “Single-error-correcting codes for constant-
weight data words,”IEEE Trans. Inform. Theory, vol. IT-11, no. 1, pp.
132–141, Jan. 1965.

[10] J. Riordan,An Introduction to Combinatorial Analysis.Princeton, NJ:
Princeton Univ. Press, 1980.

[11] L. E. Dickson,History of the Theory of Numbers, vol. 2. New York:
Chelsea, 1952.

[12] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith, “A
new table of constant weight codes,”IEEE Trans. Inform. Theory, vol.
36, no. 6, pp. 1334–1380, Nov. 1990.

[13] F. J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting
Codes. New York: North-Holland, 1988.

[14] H. C. Ferreira, “Lower bounds on the minimum Hamming distance
achievable with runlength constrained or dc-free block codes and the
synthesis of a(16; 8) dmin = 4 dc-free block code,”IEEE Trans.
Magn., vol. MAG-20, no. 5, pp. 881–883, Sept. 1984.

[15] M. Blaum, “A (16;9; 6; 5; 4) error-correcting dc free block code,”IEEE
Trans. Inform. Theory, vol. 34, no. 1, pp. 138–141, Jan. 1988.

[16] A. S. J. Helberg, W. A. Clarke, H. C. Ferreira, and A. S. J. Vinck, “A
class of dc free synchronization error correcting codes,”IEEE Trans.
Magn., vol. 29, no. 6, pp. 4048–4049, 1993.

[17] D. J. Kim and J. Kim, “A condition for stable minimum bandwidth line
codes,”IEEE Trans. Commun., vol. COM-33, no. 2, pp. 152–157, 1985.

[18] K. A. S. Immink, Coding Techniques for Digital Recorders.Engle-
wood Cliffs, NJ: Prentice-Hall, 1991.

[19] F. F. Sellers, Jr, “Bit loss and gain correction code,”IRE Trans. Inform.
Theory, vol. IT-8, no. 1, pp. 35–38, Jan. 1962.

[20] J. D. Ullman, “Near-optimal, single-synchronization-error-correcting
code,” IEEE Trans. Inform. Theory, vol. IT-12, no. 4, pp. 418–424,
Oct. 1966.

A Note on the -ary Image of a
-ary Repeated-Root Cyclic Code

Li-zhong Tang, Cheong Boon Soh, and Erry Gunawan

Abstract—For (n; q) = ps, where p = ch (Fq); s � 1; V a qm-ary
repeated-root cyclic code of lengthn with generator polynomial g(x), we
give a partial answer about whether theq-ary image ofV is cyclic or not
with respect to a certain basis forFq over Fq .

Index Terms—Cyclic code, q-ary image, ideal, rings, repeated-root
cyclic code.

I. INTRODUCTION

Let m andn be two positive integers, and letFq be aq-ary finite
field of characteristicp. Then we know thatq is a power ofp. Now
let � = (�0; �1; � � � ; �m�1) be a basis (ordered) forFq over Fq

Manuscript received February 16, 1996; revised August 5, 1996.
The authors are with the School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore 639798.
Publisher Item Identifier S 0018-9448(97)00629-9.

and define the mapping

d(�;m;n) : Fq [z]=(zn � 1) �! Fq[z]=(z
mn

� 1)

as follows:

d(�;m;n)(a(z)) =

m�1

i=0

n�1

j=0

ai;jz
mj+i

where

a(z) =

n�1

j=0

ajz
j

and

aj =

m�1

i=0

ai;j�i; ai;j 2 Fq:

Then d(�;m;n) has the following properties:

i) It is a bijective map (injective and surjective).
ii) It is q-ary linear (i.e., linear overFq).

iii)

d(�;m;n)(g(z)a(z)) = g(zm)d(�;m;n)(a(z))

for any g(z) 2 Fq[z] anda(z) 2 Fq [z].

If V is a qm-ary [n; k] cyclic code, then itsq-ary image with
respect to the basis� is d(�;m;n)(V) where

d(�;m;n)(V) = fd(�;m;n)(a(z)) j a(z) 2 V g:

It follows that d(�;m;n)(V) is a q-ary [mn; km] linear code
invariant under multiplication byzm; henced(�;m;n)(V) is a q-ary
quasicyclic code [1], [2]. Then the general problem is as follows:

For which pair(�; V), whereV —a qm-ary cyclic code and� a
basis forFq over Fq, is d(�;m;n)(V) a cyclic code?

Several authors attacked this problem [3]–[11]. Especially, in [11],
under the only restriction(n; q) = 1, Séguin gave a very simple
characterization of all the cyclic codesV for which there exists a
basis� such thatd(�;m;n)(V) is cyclic. His main result is quoted
as follows:

Lemma 1.1 ([11, Theorem 10]):Let (n; q) = 1 and let V be a
qm-ary cyclic code of lengthn with generator polynomialg(z). Then
there exists a basis� for Fq over Fq for which d(�;m;n)(V) is
cyclic if and only if:

i) g(z) 2 Fq[z], in which cased(�;m;n)(V) is cyclic for every
basis � and the generator polynomial ofd(�;m;n)(V) is
g(ym); or

ii) g(z) = g0(z)(z � �q); g0(z) 2 Fq[z]; Fq 6= Fq =
Fq() � Fq ; v 2 Zk, and!m � has a divisor overFq
of degreee = m=k. In this case,d(�;m;n)(V) is cyclic if and
only if �m�1; �m�2; � � � ; �m�e areFq -independent and

�j =

e

i=1

a
q
i �j+i; 0 � j < m� e

and

a(!) = !
e
� a1!

e�1
� � � � � ae 2 Fq [!]

divides !m � . Moreover, the generator polynomial of
d(�;m;n)(V) is a

�1(y)g0(y
m), wherea

�1(y) is the recip-
rocal of a(y); or

0018–9448/97$10.00 1997 IEEE

