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Insertion/Deletion Correction with Spectral Nulls that the boundaries of each codeword, i.e., the location ofhiand
xn, are known. This single insertion/deletion correction capability is
H. C. FerreiraMember, IEEEW. A. Clarke, A. S. J. Helberg,  denoted with the parameter= 1. Furthermore, it is shown in [2]

K. A. S. Abdel-Ghaffar, and A. J. Han Vinck that form > 2n, either a single insertion/deletion error or a single

reversalerror (i.e., modula2 additive error) can be corrected, thus

) ) ) ) . s=1ort =1, if parametert denotes the reversal error-correction
Abstract—Levenshtein proposed a class of single insertion/deletion .,napility. | evenshtein furthermore showed that the cardinality of the

correcting codes, based on the number-theoretic construction due to

Varshamov and Tenengolt's. We present several interesting results on the first class of codes is lower-bounded by

binary structure of these codes, and their relation to constrained codes n
with nulls in the power spectral density function. One surprising result is |C(n, m, a)| > I 2)
that the higher order spectral null codes of Immink and Beenker are sub- n+

codes of balanced Levenshtein codes. Other spectral null subcodes WithSubsequentIy, Ginzberg [3] proved that the code cardinality can be
similar coding rates, may also be constructed. We furthermore present maximized by setting: = 0 and minimized witha = 1

some coding schemes and spectral shaping markers which alleviate the . . .
fundamental restriction on Levenshtein's codes that the boundaries of ~ 1he concept of a subword obtained when deleting bits from a code-

each codeword should be known before insertion/deletion correction can word also plays an important role when investigating the correction of

be effected. deletions/insertions [2]. If a code correctsnsertions/deletions, the
Index Terms—insertion/deletion correction, spectral nulls, constrained following restriction IS imposed on the length of the largest common
codes, balanced codes. subwordé(z, y) obtained from codewords andy:
|6(x, y)] <n —s. 3)
I. INTRODUCTION

, _ For the purpose of this correspondence, let us return to (1). We
In 1965, Varshamov and Tenengolt's [1] proposed the followinggte here that first the serigs iz, which sums all indices where

code construction to correct a singlsymmetricakrror on a channel . _ represents theodeword momen&lso more precisely referred

where the probability of the symbane turing into azerois g s thefirst-order momen4]. By considering the integer codeword

cpn&derably less than the probability ofkaroturning into aone or moment3 iz, beforeit is reduced modulan, as is done in (1) and

vice versaletx = (a1, 22, -+, an), 2; € {0, 1} denote a binary jn most investigations, we present some new insight in the binary

codeword and”" the codebook. Varshamov and Tenengolt's requiregycture of Levenshtein’s codes in Section I1. For related work refer

that to [5]-[9].
z€(C <= Z tx; = a(modm) 1)

— Il. THE BINARY STRUCTURE OF LEVENSHTEIN'S
i=

INSERTIONDELETION CORRECTING CODES
for some fixed integers andm, wherem > n + 1. Note that in -, 4,0 rost of this correspondence we investigate Levenshtein’s first
(1), the n-dimensional vector space is partitioned into different class of codes in [2]. Unless otherwise indicated, weset n + 1
codebooks, all having the desirable error correction capability agdy ., — 0 to maximize the code cardinality. Using the notation

we shall denote each ,Of th,ese codebooks vﬂ(.bv,. m, a). We Sha” introduced in Section |, the results in this section thus mainly pertain
refer to the construction in (1) and other similar constructions 35 the structure of Levenshtein®'(n, n + 1, 0) class of codes
> 9 1

number-theoreticcode constructions. o
. . though some generalizations (n, m, a), m # n + 1, a # 0,
In 1966, Levenshtein [2] described two classes of codes capa% also presented. In later sections, we show that constant-weight

of correcting a single insertion or deletion error in a codeword. Su,cw subcodes of the€'(n, n + 1, 0) codes, which we shall denote by

an error results in the d_el_etion of a bit in g_random position, or tr'te/(n. n+ 1, 0, w), are also important for other coding applications,
insertion of a random bit in a random position, and it, respectwelgueh as the creation of spectral nulls. We shall furthermore apply the

Chan_ges the length (.)f the received wordn.t(} Lorn+ 1'_ results of this section in new code constructions and coding schemes.
Briefly, Levenshtein noted that by setting > n + 1 in (1), a Let

single insertion/deletion error can be corrected under the assumption

(w1, w2, -, an) €EC(n, n+1, a) 4
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First, we are interested in the Hamming weight structure of Leven-Corollary 2: ForC'(n, n+1, 0) with n even, the weight spectrum
shtein’s first class of codes. Using the theory of integer partitions [10§, symmetrical, i.e.,
a simple generating function can be set up to evaluate the number of
codewords of weightv. This follows from the observation that each
nonzero codeword can be associated with a partition with no repeate@:oro”ary 3: If n is even andh 2 Omod (n + 1), thenz and its
parts, and no part greater than of the integero, which represents binary complemen are in different codebooks. 0O
the unreduced codeword moment. Consequently, lettimgpresent  1pq previous results can be generalized as follows:
the integer part, or codeword indéx and « one unit of weight, Proposition 3: If = € C(n, m, a), thenz € C(n, m, ¢ — a)
we can set up the following generating function for determining thgnere n(n +1)/2 = :
weight spectrum: Proof:

N(n—i)=N(). for 0<i<n/2—1 =

e (modm).

7
n

flu, t) = H (14 ut"). (8) Z iz 4 Z T = w = ¢ (modm).
=1 £ £
1=1 1=1
The number of codewordd (w) of weightw can be determined by Since
summation of the coefficient(s) ef"t”,0 < ¢ < n(n+1)/2, in (8). L dm
Several previous workers investigated the cardinality and weight Z tw; = a(modm)
spectrum of Varshamov—Tenengolt's codes: see e.g., [3], [5], [7, =t

It is also interesting to note that Dickson [11, pp. 87-88] presenlgsfOIIOWS that

n

n

a formula which can be used to compute the cardinalityCof, Z iT; =(e — a) (modm). (I
n + 1, a, w), attributed to R. D. von Sterneck (1902). Ror= 0, i=1
it yields

We now investigate the Hamming distance structure. First, we present
|C(n,n+ 1,0, w)| some results which apply to afl = 1 insertion/deletion correcting

_1) ’ . n+1)/d—1 codes.

= (n +)1 > o=t/ <( Lu!)//dj ) (9 Proposition 4: Any code correcting = 1 insertions/deletions has
d[n+1 dlﬂin > 1.

where ¢ is Euler's function. Proof: If codewordsz andy have Hamming distancé = 1,

For certain weightss, we are also able to obtaii (w) in explicit & common subword of lengt{é(x, y)| = » — 1 can be obtained

form, such as fors = 2. by deleting the distance building bit from each word. However, this
Proposition 1: Leta € C'(n, n+1, 0, 2). The two binary ones in contradicts|é(z, )| < n — 1, as required in (3). g
eachz occur in a symmetrically spaced pair at indicemdn —i+1  Since theall-zeroword is included in the”'(n, n+1, 0) codebook,
and N(2) = |n/2]. we have the following corollary:
Proof: If there are two ones in any binary word of length Corollary 4: There can _be no codewords of weight= 1 in the
bits, the moment is bounded by C(n, n+1, 0) codebook, i.e.N(1) = 0. O
N The following result again applies to asy= 1 insertion/deletion
3 < Z i < 9 — 1. correcting code.

Theorem 1: Any code correctings = 1 insertion/deletion has the

following property: two codewords with weight and j + 1 have
Consequently, the moments of all codewordsCtife. » +1,0,2) ;5 3

=1

have to satisfy Proof: Two codewords with weights and j + 1 have odd
n Hamming distance]. Sinced > 1 (Proposition 4)d > 3. O
Diwi=n+ L The following result is known to hold for the Varshamov—
=1 Tenengolt’s construction (see, e.g., [5], [9)]):
This is only possible if the ones in a codeword occur in a symmetri- Theorem 2: Let C'(n, m > n, a) be a Varshamov—Tenengolt’s
cally spaced pair at indicesandn» — i 4+ 1. Consequently, there are code. Two equal-weight codewords haté 4. O
|n/2] codewords withw = 2. O Corollary 5: The Hamming distance properties in Theorems 1 and
We next investigate when the binary complement of codeword 2 also holds for Levenshtein’s codes. O

i.e., T with 7; = x; + 1(mod 2), is included in the codebook. This We now investigate the image of codewordz. We define the

insight also enables us to further evaluate the weight spectrum. image of a codewore: to be the wordz, found by writing the bits
Proposition 2: Let z € C'(n, n + 1, a) and letn be even. Then in z in reverse order, i.e.,

z € C(n,n+1, —a).

Proof: ;= nt1-j, 1<j<n
L ", n(n+1) The image worde will play a role in coding schemes presented in
Z 1+ Z 1 = — 9 = Omod (n +1). later sections. The proof of the following proposition is straightfor-
i=1 i=1 ward:
Thus Proposition 5: Let z € C(n, n + 1, a). Then it holds for the
n n imagez of z, thatz € C(n, n + 1, —a). O
Z T = — Z iz; = —amod(n 4+ 1). O Corollary 6: If « =0, it follows thatz, # € C'(n, n+ 1, 0). O
i=1 i=1 Note that some codewords of lengthn even, may be their own
Corollary 1: Letz € C(n,n + 1, 0) and letn be even. Then 'Mages, 1.e.,
zeC(n,n+1,0). | 2= Tl 1<j<n.

The codewords thus occur in complementary pairs. This leads to
the following corollary: We shall call these codewords symmetrical.
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Cyclic shifts of codewords play an important role in coding theorgepresents a simpler construction and a simple decoder exists, as can
and in some synchronization recovery schemes. Of particular interkstseen in Section V. In the next section, we shall show that Immink
is if a cyclic shift ofz € C(n, m, a) will also be in the codebook. and Beenker’s code is in fact one possible subcode of this code.

The proof of the following proposition is again straightforward: Using a computer to trim selected code words framl16, 17,

Proposition 6: By cyclic shifting a weightw codewordz € 0, 8) which has cardinality758, we can reduce the maximum
C(n, m, a) to the right (left), the resulting word” (') falls into a runlength of then, k) = (16, 9) code, which needs a codebook with
new codebook as follows: 512 codewords, to a maximum runlength of 5 bits (in comparison to
6 for Immink and Beenker's code). The new code has a running

D #n=0:2"€Cn,m, atw) digital sum bounded by

r =0z € C(n, m, a —w)
, j
2) an=Llz" €C(n,m, a+w—n) 5<% 23 wi<5, 1<j<n w€{-1 +1}
v =1:2' € C(n. m,a—w+n). O i—1

Corollary 7: Forz € C(n, n, 0, n/2), a codeword in the same Where we assume a mappingafe {0. 1} ontox; € {-1, +1}.
codebook is obtained after two cyclic shifts in the same diredfibn.

Corollary 8: For anyz € C'(n, n + 1, 0, /2), shifting z in the IV. SoME SPECTRAL NULL SUBCODES OFLEVENSHTEIN'S
same direction, results in a codeword which belongs to one of two INSERTIONDELETION CORRECTING CODES
other codebooks, as determined:y for right shifts ande, for left

The balanced codes in the previous section have first-order spectral

shifts. nulls at de. In this section, we consider block codes with either
higher order spectral nulls, or spectral nulls at other frequencies.
lll. SoME CONSTANT-WEIGHT SUBCODES OF Note that once we turn to the topic of spectral nulls, the polar
LEVENSHTEIN'S INSERTIONDELETION CORRECTING CODES representation of the binary symbols, i.e;, € {—1, +1} must be
In this section, we consider constant-weight codes, including théed. In contrast, when codes with error-correcting capabilities are
balanced codes which have a spectral nulat investigated, the:;; € {0, 1} representation is often used. By using

the straightforward mapping d0, 1} onto{—1, +1}, the results of

A. Bounds on the Cardinality of Constant-Weight Codes the previous sections, can be applied to this section.

Constant-weight codes have been investigated extensively in beod ith Hiah d |
the past. The cardinalities of these codes are usually denoted'%)ySu codes with Higher Order Spectral Zeros at Zero Frequency

A(n, d, w), wheren is the length of the binary block code with a Immink and Beenker [4] described a subclass of balanced
minimum Hamming distance of.... (denoted here withl = d,,;,) codes, sometimes called higher orderconstrained codes, which
and weightw. Upper bounds on the cardinalities of these codegippresses low-frequency components in the code’s power spectral
appear, e.g., in [6], [12], [13]. density function. Briefly, they investigated codewordsz; &€

The Varshamov—Tenengolt's construction has previously been efi=1, +1}, of Kth-order zero disparity, i.e., with the firdt’ + 1
ployed to construct good constant-weight codes with, = 4 and codeword moments atc all zero, or

dmin = 6 (See, e.g., [5], [6].) The rate efficiency of the constant- n
weight Levenshtein codeeer secan be appreciated if the cardinalities up =Y i'ai=0 ke{0,1,---, K} (11)
are compared with the latest results dnin, d, w) in [12]. From i=1

Corollary 5_it can be_ seen that th_e co_nstant-weight Levenshteilis class of codes then has the property that the fifst+ 1
subcodes will have minimum Hamming distanée.. = 4. derivatives of the power spectral density vanishdator w = 0,

By evaluating the generating function in (8), it can be seen thﬁﬁd they show that codewords have minimum Hamming distance
the cardinality of the class of'(n, n + 1, 0, w) codes compares

favorably to the upper bounds. In fact, the achievable code rates of dmin > 2(K + 1). (12)
interest for implementation are often the same, i.e.,
_k _ logy [C(n, n+1,0, w)|] _ [log, A(n, 4, w)]

n n n

Furthermore, it is shown in [4] that should be divisible by, and
that

(10) ze(C & Z i, = — Z iz, =n(n+1)/4. (23)
=+1

or differ at the most with one unit in the numerator. It is thus

often possible to construct an optimal rake = k/n, dwin = 4

constant-weight code, and also be able to correct insertions/deletidhgve assume a straightforward mapping {f1, +1} onto {0, 1},
setn = 4e, and consider the first-order spectral null, it follows that

B. Balanced Block Codes with = 16, dyni, = 4 for any one of thek'th-order zero disparity codes

z;=—1

xEC@Zimi =e(n+1)=0mod(n+1). (14)

=1

In [14], we presented the construction of &m, k) = (16, 8)
balanced ordc-free block code withd,.;, = 4. Blaum improved
on this result by constructing afn, k) = (16, 9) balanced code
in [15], while the bounds in, e.g., [12] indicates the existence of Consequently, the moment of any higher ordeiconstrained code
an (n, k) = (16, 10) code. Immink and Beenker [4] proposed ans ¢ = e(n + 1) and the code is a subcode ©f{n, n + 1, 0, n/2),

n = 16 dc?-constrained code with cardinaliy26 for this purpose. which may also contain codewords with other moments.

By evaluating (8) forn = 16 andw = 8, it can be seen that an We thus conclude that the class of higher orderconstrained

(n, k) = (16, 9) balanced code with,.,,, = 4 can be constructed codes are capable of correcting a single insertion/deletion error, a
usingC'(16, 17, 0, 8). This code improves on the results in [14] androperty which seems to be hitherto unknown.

[15], since it can correct either a single insertion/deletion in error or We now present a result on the binary structure of higher order
the single reversal error considered in [14] and [15]. Furthermore dit-constrainedcodes.
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Fig. 1. The number of information symbols versus codeword length of some Levenshtein subcodes.

Proposition 7: Let = be dc¢*-constrained. TherE is also dc¢?- Since each codeword is balanced, we may also write
constrained. RDS = N(p°) + N(p°) = N(n*) = N(n) =0.  (17)

Proof:
n n Furthermore, since the codeword lengthis even, there are equal
. —  n(n+1) .
S iwi4 Y iw = - numbers of even and odd indices, thus
=1 i=1
n Nn)Y+ N(p)=N(n")+ N(p°). 18
) _ _nn+1) nan+1) (n%) ) (n”) ") (18)
Z Wi = T T There aren indices in total, or
=1
_n(n+1) Np)+ N )+ Nn)+ N’ =n. (19)
4 Solving (16)—(19) yields
which indicates tha¥ is alsodc*-constrained. O e e . e
Np)=N(@p°)=Nn)=Nn")=n/4 (20)
B. Nyquist Nulldc*-Constrained Subcodes The Nyquist nulldc?-constrained codes are thus defined by
It is possible to further constrain thk*-constrained codes in the n/4 n/4 n/4 n/4
previous section, in order to obtain codes with a null at the Nyquistz € C < > pf + > pi = > ni+ > nf =n(n+1)/4.
frequency f,. This class of codes is sometimes called minimum- i=1 i=1 i=1 i=1
bandwidth codes. The Nyquist nullc*-constrained subcodes of (21)

C(n, n + 1, 0) were first described in [16]. . . .
' . . . . Referring back to (8), and assuming a mapping{efl, +1} onto
Fo_llovylng K'.”? [17], who investigated a zeroth-orc_ier nullfat we 10, 1}, the generating function for this class of codes can be set up.
require in addition to (11) and (13), that the running alternate sutn

. et t account for one unit of Weighui for indexi andwv for p°
for each codeword is zero, or
n v fuyt, v) = (1 +uto)(14+ v )1+ t0) - (1 +u"t)
RAS = (=D)'ax; =0, x; € {—1, +1}. (15) n o
; = H (14 u'to' 20720, (22)

=1

By applying the theory of integer partitions, the structure of code-
words can be analyzed and a generating function for enumeratidgre the coefficient of,(**1/4 #/2 /4 should be evaluated to
codewords can be set up. Refer back to (13) and consider the indieasmerate this class of codes.

p; Wherex; = +1. Sincew = n/2, there aren/2 of these indices  The code rate is depicted in Fig. 1, from which it can be seen
which partition the integen(n + 1)/4 such that there are exactly that the rate loss is not significant when further constraining/tfie
n/2 parts, with no repeated parts and no part larger thaiThe constrained codes. (Far< 12, there is no rate loss.) Note that every

same structure applies to the indiceswherex; = —1. z € C(8,9, 0, 4) satisfies both théc® and Nyquist null properties.
A moment’s reflection reveals that (15) can be written in terms of We next present some propositions on the binary structure of
these indices, as Nyquist null dc*-constrained codes.

Proposition 8: If » divides by4, all symmetrical codewords €
C(n,n+1,0,n/2) with z; = 2,41—;, 1 < i < n, are included
where the superscript denotes even and odd. in the de?-code of lengthn.

RAS=N(p )= N@p°)+ Nn’)—=N@»)=0  (16)
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Proof: Let each codewordr constitute of two equal-length
subwords,(z1, -+, z,2) and (z, 241, ---x,). Sincez is sym-
metrical, each subword containg4 ones Thus there are /4 pairs
of onesin z, which each contributé+ (n+1 —i) = n+ 1 to the
moment ofz. Consequently the total moment is

n

Z ivi =n(n+1)/4

=1

which is the moment of aic?
constrained.

codeword [4]. Henceg is dc*-
O

In the previous proposition, we divided each codeword into two
equal-length subwords. We now investigate another class of even-
length codewords where the second subword is the inverse of the

first subword, i.e

;L’n/2+,j =x;. (23)
Proposition 9: If » divides by4, all codewordsz € C(n, n +
1, 0, n/2) which have the inverse property, i.e.,/>4; = T, are
included in thedc*-code of lengthn.
Proof:

n n/2

i=1 i=1 j=n /241
/2 . o2 . ny _
= ;zxi-i—; (1-1—5)'177:
n/2 n/2
= Z )+ Z 5T
2

. n n
2 ity

=1

_77/2(77/2+1)+ﬁ n
- 2 4 2
n(n—+1)

4

which is the moment of d¢* codeword. Hence is dc¢?-constrained.
O
Proposition 10: All symmetrical balanced codewords €

C(n, n+1,0, n/2), have a null at the Nyquist frequency.

Proof:
T 'L/")
2 (W= (e > -
i=1 i=n /241
n/2 n/2
= Z (—1)T;L’L' + Z (—1)”+17]"IT“+1_J'
=1 Jj=1
n/2 n/2
= (=D =Y (=) g
=1 j=1
n/2 n/2

1)

Z(UL

= ().

> (=

J=1

|

Proposition 11: If n divides by4, all codewordst € C(n, n +
1,0, n/2) which have the inverse property, i.er,/24; = 7,
1 <i < n/2, have a null at the Nyquist frequency.
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Proof:

S (-1 =
=1

Substitute; = j + »/2 in the last term. Thus

n/2

2 (et >

i=n/2+1

n n/2 n/2
Z(_l)l-h = Z(—l)t;m + Z(_ ”/ +j=rn/2+]
i=1 i=1 J=1
n/2 . n/2 )
= Z(_l)ll’i + Z(—l)].['n/Q_H
i=1 =1
n/2 v n/2 )
= Z (=)' + Z (=)@ o1
i=1 =1
n/2
= Z (_1)Z[$i =+ ;B7l/2+1]
=1
n/2
=> (-1, sincew; +wnoq; =1
=1
=0. o

Corollary 9: Both the symmetrical and inverse subcodes of
C(n,n + 1,0,n/2) are included in the Nyquist nulkc*~-
constrained code of length. O

C. Spectral Nullrfs /N Subcodes

As shown in [18], spectral nulls at rational submultipleSV of
the symbol frequencys can be achieved if we restricY to be a
prime number which divides, i.e.,

n=DNz (24)
and constrain every codeword to have
A=Ay =---=An (25)
where
z—1
A=Y o, i=lee, N (26)

A=0

A spectral null at frequency. /N furthermore implies spectral nulls
at frequencies f /N ged (r, N) = 1

We can now set up a generating function to enumerate subcodes

of C'(n, n+1, 0), which also conform with (25). Note that (25) can
only be satisfied if the set of bits which contribute to eath have
the same weight,, where0 < h < z. In the following generating
function,z" represents bit; in (26) andu, represents a contribution
to A;, while ¢t represents one unit of weight as before

f(’uh e, Uk, ta 'l)
n/N—1 ] ) )
H (1 + tu .771+N'/)(1 o tuga 2tV Yoo (14 tu, o NV ).
=0
(27
We thus need to evaluate the coefficientsudful - -- v? 27, 0 <

h < n/N,o Omod (n + 1), to obtain the cardlnallty of the
spectral null- s /N subcode of”'(n, n+1, 0), or the coefficients of
TLETLIN if we want the cardinality of a weight subcode
of C(n, n+ 1, 0).

Theorem 3: A spectral null4; = 4, = ---

C(n,n+1,0) hasdmin > min {4, N}.

BT

= Ax subcode of
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Proof: Sinced, = A, = --- = Ay, it follows that each of the thus
N subsets of code bit§z;, ziyn, -, Tign-n}, ¢ =1, -, N, n’
should have the same weight 0 < h < z. Consequently, any 5= Z i} (modn + 1). (31)
codeword(xy, x2, -+, x,) has weightw = Nh. Thus any two i=1

codewords of different weights havé = N. Furthermore, any f 5 reversal error withs = 1, or a deletion is detected, selectto
two codewords of the same weight have= 4. It follows that inimize the syndrome function
O

dmin = min {4, N'}.

7

Code rates of spectral nullf, /3 subcodes are also depicted in LA
Fig. 1. S=0- Z i, §>0 (32)
=1
thus
V. DECODING THE CONSTANT-WEIGHT n
AND SPECTRAL SHAPING SUBCODES S=(n+1)- Z iz (modn 4 1). (33)

The constant weight and spectral shaping subcédes n+1, a) =1
are highly structured and the decoding procedures are thus simplerhe value ofS in one of (29)-(33), as dictated by the class of
We propose a decoding process that consists of three phases @jifks ands, is then used to determine the index of the corrected
now briefly discuss these three phases. Note that all the codes urgleras follows:
consideration here correct either= 1 insertion/deletion error, or

) a) For a reversal error, invert the bit at ind8x since this is the
t = 1 reversal error in each codeword.

only way to restore the moment to.
) b) For insertions/deletions we may apply the decoding algorithm
A. Error Detection proposed by Levenshtein [2]. However, some simplification
The decoder functions under the assumption that the beginning and is possible if we make use of the fact that each codeword’s
end, and thus also the length of each received word, is known. This complement is also included in the codebook and satisfies (1).

is the assumption also made by Levenshtein whenGhe, m, a) (Refer back to Corollary 1.) For insertion/deletion of a zero,
class of codes was proposed, and it may be achieved in practice by we delete/insert a zero to the right of ti%¢h one from the
inserting periodic markers or synchronization words in the transmitted  left in (a],.., - -+, 21 ), this is again the only way to restore
sequence. the moment tos. For insertion/deletion of a one, we first

Both the nature of the error and the restored value {0, 1} of complementz’, then computeS and proceed as above for
the affected bit can be determined uniquely from the lengtland insertion/deletion of a zero, and again complement the restored
weight w' of the received word:’ as follows: word.

!
a n =n
) C. Mapping of the Restored Codeword Onto Information Bits

w' =w+ 1(w—1) : reversal errof(1) — 1(0) )
b ;L 1 From Fig. 1 can be seen that the code rates of all the balanced
) nl =n . w = n/2 subcodes which we investigated eventually exceeds rate
w =w(w—1) : deletion error0(1) — A R = 1/2. Consequently, it is not possible to always construct a
and systematic code: for example the all zeros information word will
Q) ' =n+1 requirew < n/2 and the all ones information word > n/2.
, ’ ) ) However, for rates? < 1/2, it may be possible to find a systematic
w =w+ L(w) : insertion errorA — 1(0).

mapping by inspection [16]. Alternatively, a lookup table should be

Here A denotes the empty word and the weightis known for used.
constant-weightv codes, or for higher order spectral null subcodes

(w = n/2), while for the spectral null f; /N subcodes, we use VI. INSERTIONDELETION CORRECTING CODING SCHEMES
w = min {|w’ — Nh|}, 0<h<z. (28) The practical application of the class 6f(n, m, «) Levenshtein
codes has been restricted by the requirement that the boundaries of
B. Restoration of the Transmitted Codeword each received word be known before insertion/deletion correction can

In order to determine the index of the affected bit, we proceed Bg affected and _framlng of wordg be malnt_amed. In this sgctlon we
follows. propose two coding schemes which determine the boundaries of each

For higher order spectral null subcodes, the restored codeword ggrqleword as long as = 1 insertion/deletion per codeword is not

have only one moment;(n 4+ 1)/4, and the following syndrome fexceede((jj, _?_‘Ed if E\;Ery Wtord fV\i':]h an err(c)jr |sr:‘ollowgd by an r?riolr-
function can always be used: ree word. Thoug e rate of the second scheme is somewhat less

than the rate of the first scheme, it also offers correction of 1

7

n , reversal errors.
S=|nn+1)/4=Y x| (29)
=t A. Coding Scheme 1
For constant-weight subcodes, or for spectral nill/N subcodes, |, this coding scheme, we use a subcodefn, m, a, w)
the moment of the restored codeword is determined by the naturejof. ,, « ,, such that each codeword has a moment from a set
the error and the restored valyeof the affected bit as follows: {o}, where|oy — 0| > 2n + 1 for any distinctos, o> in {o}.
If a reversal error withp = 0, or an insertion is detected, select’ Ngte that it is possible to use &:2-constrained code. since each
7 to minimize the syndrome function codeword hasv = n/2 and fixedo; = n(n +1)/4. We furthermore
n’ need to insert two buffer bitd}; = b, = 0, between every two
S= Z iz, — o, $>0 (30) codewords. In the following description, it is assumed thatca
i=1 constrained code is used. The transmitted sequence is thus constituted
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as follows: B. Coding Scheme 2

Alternatively, we can achieve insertion/deletion correction, by
making use of a symmetrical subcode @f(n, n + 1, 0), which
has«; = wny1—5, 1 < j < n, and which was investigated in
Propositions 5, 8, and 10.

If we are furthermore interested in correcting reversal errors,

R e e A - = ARl Rl AP
(34)
wherez’ is the jth transmitted codeword.
For each codeword, the receiver establishes a frame-gfl bits
and computes the moment

we require dmin = 4, hence we need a symmetrical constant
ntl weight subcode o€ (n, n + 1, 0), which then achieves the highest
o= Z i (35) cardinality for w = n/2. From Propositions 8 and 10 it thus
i=1 follows that we shall make use of a subcode of the Nyquist null,
where (y1,---, yns1) is the received word corresponding toalr:Q-constraand codes discussed in Section IV. o _
(21, +-. n, b). When decodingz’, we assume that framing up No buffer bits need to bg transml_tt?d,. The decoder in this coding
to =’ has proceeded correctly. Without any insertion/deletions téheme assumes that framing uprt6™")" has proceeded correctly,
decoder observes establishes a frame efbits, inputsz’ , and checks for the symmetry.
il If a deviation from symmetry is observ?d%;t, inpuiéfﬂ)’, It
Z igi = n(n +1)/4 (36) perf(oil?)_j, _reversal error c_;orre_ctlon of if 2V is _symmetrlcal.
P If =Y is not symmetrical, it attempts to restore its symmetry by
v means of one bit left shift or one bit right shift. If it is necessary to
and proceeds ta’/*'. , perform a right shift oneU+)’ | a deletion occurred in’’, while a
If a bit is deleted inz’, b} replacesb] in (35) and the decoder left shift indicates an insertion.
observes The decoder thus sets up the correct frameafor and uses the
nt1 observed weighty’ within this frame, to determine the restored
Z iyi < n(n+1)/4. (37) value¢ of the affected bit. Restoration of the transmitted codeword
i=1 proceeds as in Section V.

L o . ] By careful consideration of candidate symmetrical codewords, it
If a bit is inserted inz’, 27, replacesb in (35) and the receiver can pe shown that there are four codewords, which may achieve

observes symmetry inzU+)" again, after two like shifts, which will then lead
n+1 to an incorrect decision about the nature of the deletion/insertion in
Z iy; > n(n+1)/4. (38) z'". These are the afterosand allones codewords, and the two
i=1 complementary codewords which each constitute only of runs of

it therdength? like symbols, except for, andz.,, which each constitute a

are only zeros to the right of the inserted/deleted bit and if tH&" r?f Ieng;_hl.I_The?ehword; have L‘? be Em'tted frort? tt;e codc_ebo;l;.
inserted/deleted bit is a zero. If this is the case, the decoder observes"® (;]ar ina |tyho ft € cobes 'g this sc emefcap e e,ft,erdm'rr‘]e y
a word which resembles’ in the firstn bits of the frame and need notlngdt atbonctzt_ ef_ ws(; su Wﬁr 111t Tng2) 0 xf's ;pem ied, the
not take any action. However, this event will then be reflected as icorc SUBWOrd s fixed. Furthermore, any pair of adngs xy,+1—;)
insertion/deletion at index= 1 in z/** when the decoder incorrectly CONtributes(» + 1) to the codeword moment, hence
. . . ] 1 : . n

establishes the next frame, and it is correctea’if' is received Zizvi = 0 (modn +1)
error-free. gt
y If |_ne_quallty l|)s observed in (37) ar/1éi $3E_3), the o(ljecoder ?letecgs agﬂg for any symmetrical word, = € C(n, n + 1, 0).

|spr|r]m|n’fatesd etwegn a;: |nsert|ond € izgn]; T]n ijfses L E,O SENVeLor only insertion/deletion correction, we allow the first subword
mege(t:tligntc\)/ etermine the restored valyeot the affected bit, as to have any weight and then omit the four words discussed

) . _ on/2 y

If one of the buffer bitsbf1 is deleted, this is perceived at the ICi] =2 -4 (40)

decoder as the deletion af , while an insertion precediny ~', is  To afford reversal correction in addition we need a constant-weight

Note that equality in (37) and (38) is only achieved

perceived as the insertion of(aati = 1 in =’. w subcode and allow the first subword to contaifi2 = n/4 ones.
Restoration of the transmitted codeword proceeds as in Sectibnus the all-zeros and all-ones codewords are excluded, and

V and the receiver adjusts the framing if necessary. Note that the _ (n/2 .

decoder is unable to discriminate between insertions/deletions and €2 = <n/4) -2 (41)

reversal errors, consequently, the capability to do reversal er¥r hoth these classes of codes, the asymptotic code rate is
correction is lost. R =1/2 (42)

In case the set of momen{sr} contains more than one integer,

we see that the decoder needs to discriminate between a delefigie rates for finite: are depicted in Fig. 1. Although these rates
from a codeword with moment, or an insertion in a codeword with @Ppear low, the minimum-bandwidth property of the second class of
moments, wheres; > o2, hence in general, fo€ (n, m, a, w) C0des, together with the rate, should be considered to evaluate the
we require efficiency on bandwidth-limited channels.

|lor —o2] 2 20 +1 (39) VII. SPECTRAL NULL MARKERS FOR THE

for any distinctsy, o2 in {o}. The coding rate of this scheme, when DETECTION OF DELETION/INSERTION ERRORS

implemented withic®-constrained codes, B = k/(n + 2), where o

%k andn can be obtained from Fig. 1 for th&2-constrained codes. A- Preliminaries

The overall rate is also depicted in Fig. 1. For exampies 1/2 is In this section the use of a marker (or synchronization sequence)
achieved when using the:, k) = (16, 9) dc?-constrained code. is proposed to separate each codeword in the channel. Markers
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are predetermined sequences used for the alignment of transmitissume any binary value. The wdt] which will be called aleletion
sequences. We present markers for use with either unconstrainedhdicator, is the resulting marker due to a deletion in the preceding
spectral nullC(n, n + 1, a) codes. Sellers [19] introduced the ideanformation segment. Similarly, the resulting marker after an insertion
of a marker for deletion/insertion error control. No data is usuallyp the previous information segment is

mapped onto a marker and therefore the overall rate is reduced. .

Sellers’ method needed to wait for two markers before any detection b' = wnbiby - bar,—1 (47)

could be done. In this section, a merging of Sellers’ method and the ) o .
rex,, is the last symbol from the preceding information segment.

Levenshtein codes is proposed. The goal of the markers introdu A X v PIELE
in this section is to afford spectral nulls when necessary, as well asitg¢ Worde® will be called aninsertion indicator For a sequencé

detect errors. The correction of errors must be done by the decodifig°® considered as a marker, the following rules must be valid:
procedures for the insertion/deletion error correcting code. )b # b’

The idea of a marker is better understood by first introduc- 2) b" # b, b" # b.
ing the concept of asynchronization error correcting sequenceRule 1) ensures that the decoder chfferentiatebetween insertion
A synchronization error correcting sequence consists of an insand deletion errors. Rule 2) enables the receiverdédect the
tion/deletion correcting codeword (e.g., a Levenshtein codeworodcurrence of a insertion/deletion.
z = (xn, -+, x1) of lengthn followed by a markeb = bas, - - - baby If more than one marker is to be used together in the same
of length M,. The insertion/deletion correcting codewaedwill be  transmission, the detection and differentiation rules must still be valid.
called theinformation segmeriiecause this is the part of the sequencket b; andb. be two markers of equal length. Fbr andb. to be
carrying the information. The total length of the synchronizatiomalid markers in the same marker codebddkthey must first comply
error-correcting sequence is thus with Rules 1) and 2) and with the following additional rules, where
b} is the insertion indicator for marke, b7 is the deletion indicator
of markerj andb € {b,, b2}:
Sellers [19] showed that the minimum length of a markenust be ~ 3) b) # b3, b # b}

4) by # b, b #£b,bs #b b§ £b.
Again, Rule 3) ensures that the receiver will be able to differentiate
where s is the insertion/deletion correcting ability of the code. Fobetween insertion and deletion errors. Rule 4) enables the receiver to
ans = 1 code the minimum length of the marker mustheBefore detect synchronization errors.
constructing the markers, it is necessary to investigate the function of-or a 3-bit marker code book, only four codewords comply with
a marker. Similarly as for the coding schemes in the previous secti®®th Rules 1) and 2), i.e001,100,011, and 110. The markers
the assumption is made that any synchronization error-correctidgl and 100 are the ones which Sellers [19] proposed in his
sequence with error should be followed by one without error. insertion/deletion correcting codes. The marker 011 was the one

A marker must enable the receiver to detect the occurrence Wiman [20] used in his codes. None of these valid markers however
an error, be that an insertion/deletion or a reversal error. The ordé@n be used together in a marker codebook because any two markers
of detection is also important. An insertion/deletion shifts the resgiolate Rules 3) and 4).
of the symbols in a codeword up or down, depending on the error.Until now, valid markers only enabled the decoder to detect and
Up to the point of the error, the symbols will be correct. From thdifferentiate insertion/deletion errors in the previous information seg-
insertion/deletion error positioh onwards all the symbols may bement. It is also possible for an insertion/deletion or reversal error to
wrong. If the receiver first checks for reversal errors, the incorrectBecur in the marker itself. To combat this situation, it is first necessary
framed received words’ may appear to contain a maximum offor the marker codebook to have a minimum Hamming distance of
n—i+1 reversal errors. If the reversal error-correcting ability of thémin > 2. This will guarantee that a reversal error in a marker
code ist andt < n—i+ 1, then the receiver will be unable to correctcodeword will be detected. To combat insertion/deletion errors, the
or even detect the errors. The word may even look like another vafigarker codebook must furthermore have insertion/deledietecting
codeword, only witht or fewer additive errors and the receiver maycapabilities. It is proposed to use markers from a Levenshtein code.
then map it onto a wrong codeword. If, however, the receiver firbtote that these markers will then also have minimum Hamming
checks for insertion/deletion errors by evaluating a marker, it willistance ofd..i, > 2.
first detect and correct the insertion/deletion error if it exists. The

n+ M. (43)

M;>2s+1, s>1 (44)

next codeword will then again be correctly framed. C. Example of Some 4-Bit Marker Codebooks
) Table | presents eight 4-bit marker codebooks. These marker
B. Rules for the Construction of Markers codebooks comply with the marker construction rules (1)—(4) given

It is assumed that when codewords are transmitted, theéa sent in the previous section. The markers may be used to detect as well as
first andz,, last. (Refer to (34).) LeB be a marker codebook andidentify the type of synchronization error in tipeeviousinformation
b € B be a marker of lengtd{,, M, > 3, and segmentexclusively
Table I lists all the valid 4-bit marker codebooks which further-

b="0b1by---bu, (45)  more has ans = 1 insertion/deletion correcting ability (and thus
with b; € {0, 1} for a binary marker. The resulting marker after £/S0dmin > 2). Note when used with the unconstrained Levenshtein
single deletion in theyrevious codeword is code, the rate of the coding scheme with marker can be increased by
mapping one information bit onto a set of two marker words chosen
b = baby -+ bag,an (46) from Table | or II.

wherez; is the first symbol from the next codeword. The first symbol )

of b, by is shifted out and becomes the last symbol of the previokd Decoding Procedure

information segment. The last symbol bt now contains the first  The decoding of the synchronization error-correcting sequence
symbol of the following information segment. Note that may consists of two steps. A lookup table is necessary for the marker
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TABLE | TABLE 1l
VALID BINARY 4-BiT MARKER CODEBOOKS DECODING SYNCHRONIZATION ERROR CORRESPONDINGSEQUENCES
CODE MARKER WORDS r Iy MEANING AND REMEDY
BOOK 0 0 No error - continue.
! 0001 1001 1011 0 1 Error in marker - leave as is and continue. If it was an
2 0001 1001 1101 deletion/insertion error, it will be corrected when decoding
the next synchronization error correcting sequence.
3 0010 0110 0111 — - -
1 0 Reversal error in information segment - correct and continue.
4 0010 0110 1110 _— -
1 1 Error in information and marker segment - assume a
5 0100 0110 1110 synchronization error and compare marker with error
indicators. Use the appropriate correction procedure and
6 0100 0110 0111 adjust the framing.
7 1000 1001 1011
8 1000 1001 1101 -
1.8 4
N
TABLE 1 w16 4 \
VALID 4-BiT MARKER CODEBOOKS E
Z 14
o
BOOK # MARKER #1 MARKER #2 o /\/\ /
3 12 /\
1 0001 1011 3 \ /
E 1 / \
2 0001 1101 2
5 084 / \
3 0001 1110 4 \ /
o
4 0010 o111 2 06 1)/ /
e
5 0010 1101 0.4 4 /
6 0010 1110 0.2 - \ /
7 0100 0111 L aaaa xS
0 01 02 03 04 05 06 0.7 08 09 1
8 0100 1011 NORMALIZED FREQUENCY
9 0100 1110 Fig. 2. Power spectral density of a 9-bit Levenshtein subcodes with spectral
10 1000 1011 zeros at multiples offs/3.
1" 1000 1101
12 1000 0111 symbol of the marker must be included because it is the last symbol

of the original information segment. The total length of the word to
be corrected is thus 4+ 1 symbols. The decoder framing must be

codebook and its error indicators. When a synchronization errddiusted to correct the framing of subsequent codewords.
correcting sequence is received, the decoder separately checks if the error is a reversal error in the information segment, sthe
there are any errors in the information segment or in the mark&yMPols preceding the beginning of the marker are taken to be the
By applying (1) to the information segment, the receiver can deteiprd to t_Je cor_rected by the reversal error-correctln_g pro_cedure. _
whether an error has occurred or not. If the received informationSOMetimes it may happen that a reversal or insertion/deletion
segment does not comply with (1), the receiver knows that an erfJfr in the marker appears to be the same as an insertion or
has occurred in that information segment. kebe the output of the deletion indicator. In these cases, the decoder simply ignores the

information segment check and, the output of the marker Checkindicator and continues with the next codeword. If the error was
andri, r,, € {0, 1}. The values or; andr,, arezerowhen there a0 insertion/deletion, the next codeword will be corrupted because

are no errors andneif there are any errors. Table Ill lists the resultof this insertion/deletion. If the next synchronization error-correcting
of the variables: andr.. and also the méanings and remedies. feduence is received error-free, the marker in this sequence will detect

assumed that the information segment is represented by a codevxmﬁ?error and the d.ecodgr will be_ ahle to correct the error..
from C(n, m > 2n, a), or from C(n, n + 1, 0, w), hence reversal If more than one insertion/deletion occur per synchronization error-

error correction can be achieved. correcting sequence, the decoder will be unable to correct these errors
The deletion/insertion error correction for the information segmeﬁpd the framm.gfg will be lost. If.more than one reyﬁrsal error occur per

may be done by the procedures given by Levenshtein [2]. fﬁql:jem%‘ or |_”tvl\;o Const;?cuttlve sequtetrkl}ces wit ebrrct)rs arg ]crece.lved,
If a marker indicates that a deletion occurred, théits of the & decoder will be unable to correct the errors, bul word framing

information segment preceding the beginning of the marker are takvt\a”rlll still be intact.

to be the information segment in error. For the correction, however,

the last symbol of the information segment must be left out, because Spectral Shaping Parameters of Markers

this will be the first symbol from the original marker. The total length The question may arise why a markesdebookis needed, when

of the information sequence passed on to the correcting procedure wilditionally only one marker was used. If one uses an arbitrary

therefore ber» — 1. The framing must then be adjusted accordinglysingle marker, the spectral properties of the channel sequence may
For an insertion the same procedure is followed. Theymbols be altered. The marker, or set of markers, must therefore be chosen

of the information segment preceding the beginning of the markearefully to match the spectral properties of the insertion/deletion

together with the first symbol of the marker, are taken as the receivedor correcting code. Table 1V lists the values of the running digital

word to be corrected by the insertion correcting procedure. The fimtm, second-order momentdt, running alternate sum and second-
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3 — n=4
2.8 4
2.6 4
24 A
22 A

~---n=12
— n=14

18
16
14
12

Power Spectral Density

0.8 -
0.6 4
0.4 4
0.2 4

0 ” 0.1 02 03 04 05 06 07 08 09 1
Normalized Frequency

Fig. 3. Some spectra ofc-free Levenshtein subcodes.

TABLE IV
SPECTRAL PROPERTIES OFMARKERS
MARKER 2 3 ix, Y (-1, I (-Dyix,
i=1 i=1 i=1 i=1
0001 2 2 2 -6 2
@n
0010 2 -4 2 8 g
0011 0 4 0 0 s
0100 2 -6 2 2 g
w2
0110 0 0 0 4 5
£3
0111 2 8 -2 -4 £
1000 2 -8 2 4
1001 0 0 0 -4
1011 2 6 2 2
1100 0 -4 0 0
0 01 02 03 04 0.5 06 07 08 0.9 1
1101 2 4 2 -8 Normalized Frequency
1110 2 2 2 6 . .. . .
Fig. 4. Spectra of minimum-bandwidth Levenshtein subcodes.

order moment at the Nyquist frequency for every candidate market.both thedc-free and Nyquist-null Levenshtein subcodes. This can

Note that the binary symbold and1 are mapped onte-1 and1, be explained by the fact that the digital sum variation increases.

respectively. The markers for which these spectral shaping parameteralthough we have presented some results to this effect, future work

have valuezerg are of particular interest, for using as a single markeyan focus on improving the rates of coding schemes which alleviate

in conjunction with the subcodes in this paper. the restriction on Levenshtein’s codes that the boundaries of each
codeword should be known.
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If V' is aq¢™-ary [n, k] cyclic code, then itsy-ary image with
respect to the basis is da,n.,») (V) where

da,m,m) (V) = {d(a,mm(a(z))|a(z) €V}

It follows that do (V) is a g-ary [mn,km] linear code
invariant under multiplication by™; henced, m ) (V) is ag-ary
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A Note on the g-ary Image of a
q™-ary Repeated-Root Cyclic Code

Li-zhong Tang, Cheong Boon Soh, and Erry Gunawan

Abstract—For (n,q) = p°, wherep = ch(Fy), s > 1, V a ¢™-ary
repeated-root cyclic code of lengthm with generator polynomial g(x), we
give a partial answer about whether theg-ary image of V' is cyclic or not
with respect to a certain basis for ;= over Fy.

Index Terms—Cyclic code, ¢g-ary image, ideal, rings, repeated-root
cyclic code.

. INTRODUCTION

Let m andn be two positive integers, and I€t, be ag-ary finite
field of characteristip. Then we know thay is a power ofp. Now
let @ = (ap, a1, -, au—1) be a basis (ordered) faf,~ over F,
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For which pair(«, V'), whereV—a ¢™-ary cyclic code andx a
basis for ;= over Fy, is d(a,m,»)(V) @ cyclic code?

Several authors attacked this problem [3]-[11]. Especially, in [11],
under the only restrictior{n, q) = 1, Séguin gave a very simple
characterization of all the cyclic codés for which there exists a
basisa such thatd , . ») (V) is cyclic. His main result is quoted
as follows:

Lemma 1.1 ([11, Theorem 10])Let (n,q) = 1 and letV be a
¢ -ary cyclic code of lengtl with generator polynomiajf(z). Then
there exists a basia for Fy~ over Iy for which d(g ,n ) (V) is
cyclic if and only if:

i) g(z) € F,[z], in which casel(.,... (V') is cyclic for every
basis « and the generator polynomial af(s m,.)(V) is
g(y™); or .

i) g9(z) = go(2)(z — v " ), 90(2) € Fyle]. Fy # Fye =
Fy(v) C Fym,v € Zi, andw™ — + has a divisor over.
of degreee = m /k. In this casedq,m,») (V) is cyclic if and
only if am—1,@m—2,+, ¥m—_. areF, ,-independent and

e

aj = Za? Ajpi, 0<j<m—e
=1

and
a(w)=w —aw - —a. € Fi[w]

divides w™ — ~. Moreover, the generator polynomial of
dia,m,n)(V) is a=1(y)go(y™), wherea—i(y) is the recip-

rocal of a(y); or
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