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Iterative Decoding of Codes Over Complex Numbers
for Impulsive Noise Channels
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Abstract—We discuss the decoding of error-correcting block
codes over complex numbers for the transmission over impulsive
noise channels. The encoder multiplies a vector of complex
information symbols resulting from a modulation scheme, e.g.,
quadrature amplitude modulation (QAM), with a unitary gener-
ator matrix . Choosing the inverse Fourier transform as , the
encoding procedure is similar to orthogonal frequency-division
multiplex (OFDM) modulation. The maximum a posteriori(MAP)
receiver is analyzed and a suboptimum decoder based on the
turbo decoding principle is derived. Simulation results show the
excellent performance of the iterative decoder.

Index Terms—Complex number codes, diversity, fading channel,
impulsive noise, orthogonal frequency-division multiplex (OFDM),
rotation, turbo decoding.

I. INTRODUCTION

I N this paper, we discuss the decoding of block codes over
complex numbers. The input to the encoder is a vector of

complex numbers generated by a quadrature amplitude modu-
lation (QAM) or phase-shift keying (PSK) modulation scheme.
The encoder multiplies this information vector with a unitary
generator matrix , i.e., the codewords are simply rotated ver-
sions of the information vectors, and the Euclidean distance
between two information vectors is the same as between their
respective codewords. Hence, on the additive white Gaussian
noise (AWGN) channel, these codes achieve no coding gain.
However, on various other channels, a gain can be achieved. A
well-known example is the fading channel with perfect channel
state information (CSI). Here, for a fixed Euclidean distance

between two codewords, , the pairwise error probability
(PEP) can be modified by changing the distances

between the code symbols while keeping
constant, see [2]. Such a modification of the “distance profile”
of two codewords is introduced by the encoding operation de-
scribed above. Hence, adopting a carefully chosen generator
matrix can lead to a coding gain. In literature, this coding
gain is also referred to asdiversity gain.

Since we consider a linear transform defined over the com-
plex numbers as an encoding operation, the resulting codes are
denoted bycomplex number (CN) codes. CN codes might be
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used “stand alone.” We can also use CN codes as inner codes in
a product encoding scheme where the outer code is optimized
to increase the Euclidean distance between the codewords. This
might be a good approach to design codes, providing both a
good distance profile and a large Euclidean distance between
the codewords.

In the literature, the principle of CN codes have already been
applied in 1963 for the transmission over impulsive noise chan-
nels, see [14]. The concept uses a properly chosen linear trans-
form at the sender side and its inverse at the receiver side. The
transmitted data passes both transforms and is therefore unaf-
fected, whereas the impulsive noise passes the receiver’s trans-
form only. The energy of single impulses is therefore dispersed
(smeared) over a portion of information symbols, see [1]. In this
way, the error floor that is typical for uncoded transmission over
impulsive noise channels, see [16], is (partially) eliminated. The
construction of CN codes in [14] was motivated by a convolu-
tional type of CN codes, the so-called “smearing filters,” that
were originally developed for continuous systems, see [1], [6].

The principle of CN codes is also applied in a different area of
communication theory. The orthogonal frequency-division mul-
tiplex (OFDM) modulation scheme, see [3], can be interpreted
as a special CN code where the generator matrixis chosen to
be the inverse Fourier transform. The classical OFDM receiver
is designed for the AWGN channel and, therefore, simply mul-
tiplies the received vector with . On impulsive noise chan-
nels, this decoder disperses the energy of single impulses over
several consecutive symbols, similar to the smearing-filters ap-
proach. The typical argumentation is that this makes the trans-
mission scheme robust against impulsive noise, see [3]. How-
ever, in [7], [8], [10], it has been shown that this “decoding” ap-
proach is highly suboptimal in terms of the achievable decoding
error rates since the rich structure of impulsive noise is not ex-
ploited in the decoding process.

Independently, the idea of CN codes has been developed for
reliable transmission over the slowly Rayleigh-fading channel
with perfect CSI. The initial idea of constructing two-dimen-
sional rotations for QAM signal constellations in [4] was soon
generalized to higher dimensions. The construction of rotational
transforms, i.e., CN codes, yielding a good performance is ex-
tensively discussed in [5], [13] and references therein. Refer-
ences [13], [15], and [18] address the decoding problem. The
decoding algorithm presented in [18] is based on lattice theory
and suited for codeword lengths . The algorithms derived
in [13] and [15] apply the idea of decision feedback equalization
(DFE). They typically require a larger. Similar to the impul-
sive noise channel, also a convolutional type of CN codes has
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been developed. A comprehensive study including code con-
struction, performance analysis, and decoding issues is given in
[19].

To understand why CN codes can be applied to both, the
Rayleigh-fading channel with perfect CSI and impulsive noise
channels, we first compare both channels. Impulsive noise chan-
nels can be modeled as AWGN channels with randomly varying
noise variance. The noise variance is assumed to be unknown
to the receiver, see [12]. For the fading channel with perfect
CSI, basically the same model is used. However, in contrast to
the impulsive noise channel, the receiver is perfectly informed
about the noise variance. The decoding algorithms presented in
[13], [15], and [18] use this information and therefore cannot be
applied to the impulsive noise channel. Hence, in this paper, a
new decoding algorithm for a channel with both impulsive and
AWGN is derived. The decoder is based on the turbo principle.

It is interesting to compare our new decoder and the DFE-
based decoders presented in [13], [15] in more detail. Both con-
cepts apply the idea of iterative decoding. As indicated earlier,
the DFE decoders are provided with perfect CSI. As a conse-
quence, the additive channel noise is Gaussian distributed (con-
ditioned on the known channel state), and therefore the optimum
minimum mean-square error (MMSE) estimators in the forward
and the backward branches of the DFE decoder become linear.
In contrast, on the impulsive noise channel,linear MMSE esti-
mators cannot mitigate the influence of the channel noise, see
[10], [16]. Hence, the DFE principle developed in [13], [15]
cannot be applied to impulsive noise channels.

The paper is organized as follows. We will first define
the encoding procedure (Section I-A), the channel model
(Section I-B), and the optimum maximuma posteriori(MAP)
probability decoder (Section I-C). This is followed by the
definition of our new, iterative decoding algorithm (Section II).
In Section III, we discuss some simulation results and conclude
with Section IV.

A. Encoding

Let , , denote the discrete input alphabet with car-
dinality , where denotes the complex numbers. Let

, , denote the input to the CN encoder.
We call the components , , theinformation
symbols. Assuming that every is transmitted equally
likely, we describe the as independent random variables with
probability distribution

(1)

and assume

and

where denotes the expectation operator.
Each vector is encoded by a CN block codewith code-

words and code symbols . Here

and in the following we use capital letters to denote vectors or
symbols in the domain of the information sequence (information
domain) and lower case letters in the domain of the codewords
(codeword domain). The encoding operation is defined by

(2)

The generator matrix is unitary, i.e., the Euclidean
distance between two information vectors , is
the same as between their respective codewords,

where the asterisk denotes complex conjugate. Note that the en-
coding operation generally increases the alphabet size.

Finding generator matrices with good error correcting
properties is a nontrivial problem. For the MAP decoder it has
been shown in [10] that matrices suited for the Rayleigh-fading
channel with perfect CSI also perform well on impulsive noise
channels. Therefore, references [5], [13] can be used to find
good generator matrices. The decoding algorithm derived in
this paper imposes two additional restrictions for choosing:
first, for the decoder’s derivation it is assumed that each code
symbol is calculated by summing over a large number
of information symbols, see Approximations II.1 and II.2 in-
troduced later. Loosely speaking, this means that the generator
matrix must be nonsparse and sufficiently large. Second,
since matrix–vector multiplications with and determine
both the encoding and decoding complexity, the applicability of
fast transform algorithms should be ensured. For these reasons,
the Fourier- and the Walsh–Hadamard matrix are considered
in this paper. For channels with real input alphabets, e.g., the
discrete cosine transform might be applied.

B. Impulsive Noise Channel Model

The sender transmits the code symbolsover a memory-
less additive impulsive noise channel. The received symbols are
given by

(3)

where the are independent and identically distributed (i.i.d.)
complex Gaussian random variables with varianceand prob-
ability density function (pdf)

The impulsive noise symbols are also i.i.d. with variance .
Their pdf is given by Middleton’s Class A noise model

(4)
with the Dirac distribution and

(5)
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(see [16]). The parameter is called the impulsive index. For
small , say , the noise is highly structured since only

9.5% of the samples are hit by an impulse. For
, the pdf becomes Gaussian. Furthermore, the parameter

is defined as the ratio between the varianceof
the Gaussian noise and the variance of impulsive noise
component .

C. MAP Decoding of CN Codes

At the receiver, the problem of decoding the received vector
arises. The optimum MAP decoder mini-

mizes the probability of a decoding error, see [20]. It, therefore,
chooses the codeword that maximizes thea posteriori
probability, i.e.,

(6)

where we assumed that every codeword is transmitted with
equal probability . Since the noise is additive,
we obtain

(7)

where is the pdf of the channel noise . Unfortu-
nately, an efficient representation of the code, e.g., in form of
a trellis with a small number of states, is not known. Hence, (7)
can only be solved by brute-force search through all
codewords. MAP decoding is therefore infeasible already for
small .

It is interesting to note that on the AWGN channel, MAP
decoding can be efficiently realized based on the vector

. We consider this vector for the impulsive noise channel

(8)

The MAP decoder now chooses the information vector

(9)

equivalent to (6). Since the componentsof are sta-
tistically dependent, the pdf of the sum cannot
be written as a product similar to (7). Therefore, solving (9) re-
quires the evaluation of for all possible infor-
mation vectors . This results again in a decoding complexity of

. On the one hand, the statistical dependencies among
the make decoding a hard problem, on the other hand, they
are the basis for the error-correcting properties of CN codes.

II. I TERATIVE DECODING ALGORITHM

In this section, we introduce a new, suboptimum decoding al-
gorithm for CN codes. The block diagram of the algorithm is
depicted in Fig. 1. Two information-exchanging estimators, one
in the codeword and one in the information domain, are applied
to obtain an estimate for the impulsive noise. Both estimators
use only partial statistical information from their inputs which

Fig. 1. Block diagram of the iterative decoding algorithm withU denoting the
final result of the decoding operation.

makes a low-complexity realization possible. The result from
the iterative scheme is used to increase the reliability of the de-
cision in the final decoding step. The decoded vectoris an
estimate of the transmitted information vector.

In the following, we will first introduce a linear model
that is used to approximate all random vectors occurring in
the algorithm (Section II-A). In (Section II-B), we will then
discuss the influence of the unitary transformsand
on various signals and introduce two important approxima-
tions. Based on them, the low-complexity codeword- and the
information-domain estimators are designed in (Section II-D)
and (Section II-E). In (Section II-G), we finally give an exact
definition of the algorithm depicted in Fig. 1.

A. Linear Signal Model

To develop the estimators used in the algorithm, see Fig. 1,
knowledge about the statistical properties of their random input
vectors is required. Since an exact description is too difficult, we
approximatethe inputs by the simple linear model introduced in
the following.

First, we consider the codeword domain. Using the indepen-
dent random vectors, , and , any arbitrary random vector
of length can be described by

(10)

where is the error term of the linear model. We
define the average squared error of this representation by

(11)

where is a random variable depending on the actual realiza-
tions of , , . The -coefficients are chosen to minimize
the average error

(12)

where denotes the expectation operator. Calculating this
linear MMSE estimate analytically is difficult. Hence, based on
measured data, we use the linear regression method (linear least
squares estimation) to evaluate the-coefficients and the vari-
ance , see, e.g., [11]. It is well known that the
linear least squares estimate is unbiased, i.e., for the error term
in (10), holds. In the following, we will additionally
assumethat is statistically independent of the linear model.
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The linear signal model is now applied to describe the output
of the codeword domain estimator

(13)

(see Fig. 1) with the scalar coefficients and the error vector
. The superscript denotes the iteration step in the algo-

rithm. Using (13), it is straightforward to calculate the transform
as done in the algorithm (see Fig. 1)

(14)

where the notation , , ,
and is used. Obviously, the scalar coefficients are
invariant to the transform and only the “basis” vectors of the
linear expansion changed, i.e., in the information domain all
vectors are represented as a linear combination of, , and .
Hence, the output of the information domain estimator is
modeled by

(15)

with the scalar coefficients and the error term . With
the notation the transformation is
given by

(16)

In the next section, it will be shown that for deriving the de-
coding algorithm, it is sufficient to know the variances of the
error terms and . With this, the advantage of the linear
signal model is obvious: all random vectors are sufficiently de-
scribed by only four parameters, i.e., three scalar coefficients
and the variance of the error term. Since these parameters are
invariant to the multiplication with and , respectively,
they also describe the transformed random vectors.

B. Signal Transformation

The decoding algorithm employs two estimators, see Fig. 1.
Their complexity will be high if the components of their input
vectors are statistically dependent, see e.g., Section I-C, where
MAP decoding in the information domain is discussed. In our
case, the inputs, , , and of the estimators are all
vectors with statistically dependent components as shown by the
linear signal representations in (3), (8), (14), and (16): in every
representation at least one vector with statistically dependent
components is used, e.g., in (14). In all cases, the
statistical dependencies are introduced by the linear transforms

and , respectively.
To make a low-complexity estimator realization possible, we

approximate all “basis” vectors and error terms in the linear
signal models and, therefore, also the inputs to the estimators
as vectors of i.i.d. components. Since the linear transform intro-
duces the dependencies, the following approximation is intro-
duced.

Approximation II.1: Let be a vector
of i.i.d. complex random variables with and

. Then, the components of the vector

TABLE I
EXACT AND APPROXIMATED MARGINAL PDFS FOR THEVECTORS

USED IN THE LINEAR SIGNAL MODEL

are approximated as i.i.d. complex random variables
with and . The same is assumed for
the transform . This approximation is motivated by
Lemma V.1 given in the Appendix. Here, with some additional
assumptions about the , it is shown that for the
are i.i.d. Gaussian random variables.

If we apply the approximation, the marginal pdf of the
vector components has to be determined. The pdf is usu-
ally obtained by integrating over all , , in the joint pdf

. In general, this calculation is a difficult task.
Therefore, another approximation is introduced.

Approximation II.2: Let be a vector
of i.i.d. complex random variables with ,

, and
. Then, the components , of the

vectors and are approximated as complex
Gaussian random variables with ,

, and , respectively.
Let denote this pdf. In the limiting case when

, the approximation is exact since the statement follows
from the central limit theorem, see Lemma V.1 given in the
Appendix. For finite , the accuracy of the approximation
strongly depends on the size ofand the shape of the pdf of.

We now apply both approximations and then resume the re-
sults in Table I.

1) Consider the transform (encoding operation). The
components of the information vector are i.i.d. random
variables. Their probability distribution is given by (1). Since

fulfills all assumptions to apply the approximations, we ap-
proximate as a vector of i.i.d. random variables with pdf

.
2) The impulsive noiseis a vector of i.i.d. random variables

distributed according to (4). Sincefulfills the assumptions to
apply the approximations, we model as a vector of
i.i.d. random variables with pdf .

3) Since is a vector of i.i.d. complex Gaussian random vari-
ables, the components of are also i.i.d. complex
Gaussian distributed. This means that the Gaussian distribution
is invariant to the multiplication with and and no ap-
proximation is needed, see, e.g., [11].

4) The pdf of the error term in (3) is not known and it is
difficult to calculate from the formulas of the estimators devel-
oped in the next section. As we will see in Section II-D, can
be approximated as a vector of i.i.d. random variables. For sym-
metry reasons, all assumptions of the approximations hold, and
we model as a vector of i.i.d. random variables
with pdf .
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5) The pdf of the error term in (15) is also not known.
Using the same arguments as before, is ap-
proximated as a vector of i.i.d. random variables with pdf

.

C. Estimation Criteria

To design the estimators used within the algorithm, see
Fig. 1, a cost function or estimation criterion has to be chosen
for each estimator. In order to minimize the probability of a
decoding error, the estimator in the final decoding step is based
on the MAP criterion. For both other estimators, the MAP
and the MMSE criteria are considered. The MMSE estimator
minimizes the error , where denotes
the estimate obtained for the actual value. In the information
domain, both the MAP and the MMSE estimator are derived
and their performance will be compared. In the codeword
domain, the mixed-type random variablehas to be estimated,
i.e., has a discrete and a continuous part, see (4). Hence,
using the MAP estimator is not reasonable, and we, therefore,
only consider MMSE estimation.

D. Codeword Domain MMSE Estimation

The codeword domain estimator uses the input vectors

(17)

(18)

where is the received vector, and is an estimate for
provided by the information domain estimator in the preceding
iteration, see (16). To simplify the notation, the superscript
will be omitted in the following.

According to the approximations summarized in Table I, the
highly structured impulsive noise is the only non-Gaussian
signal component in the codeword domain and can, therefore,
be well distinguished from , , and . As a consequence, the
codeword domain estimator is applied to estimate the impulsive
noise vector . According to Approximation II-1, the inputs
and to the codeword domain estimator are both modeled as
vectors of i.i.d. random variables. Hence, the MMSE estimate
for each is a function of only two complex numbers, i.e.,
and . It is given by the conditional expected value

(see [11], [17]). Note that the above integral is two-dimensional
since is complex. With (17), (18), and Table I, straightforward
evaluation of the integral yields

(19)

with variances and covariance

respectively. The functions and are given by

In (19), the abbreviations

and

are used, where the operators and evaluate the
real and imaginary parts of a complex number, respectively.
The same abbreviation is used for and . Note
that in (19), the values , , and the covariance are different
for every sum term since changes according to (5). More-
over, the sum terms rapidly decrease asincreases due to the
“ ”-term in the denominator. Hence, in a practical situation, it
is sufficient to compute only the first few sum terms.

To estimate the whole vector, (19) has to be calculated once
for every component . The complexity of this procedure grows
linear with the codeword length.

The result of the estimation procedure is now expressed in
terms of the linear signal model, see (13). Here, the error term

is modeled as a vector of i.i.d. random variables since all
estimates have been calculated independently. We used this
i.i.d. model already to justify the approximation of the pdf of

given in Table I.
Finally, it should be noted that the calculation of gives

the MMSE estimate for . Since the information domain
estimator uses as an input, see Fig. 1, the MMSE estimator
for and in the codeword domain lead to equivalent algo-
rithms, respectively.

E. Information Domain MMSE Estimation

The information domain estimator uses the inputs

(20)

(21)

where is the received vector transformed into the information
domain, and is the transformed output of the codeword do-
main estimator, see (14). To simplify notation, the superscript
will be omitted in the following.

Equivalent to the estimator in the codeword domain, the
MMSE estimate of each is given by the conditional expec-
tation

(22)
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Using (20), (21), and Table I, the integral is solved by a straight-
forward calculation

(23)

With the moments

we define the functions

(24)

Again, the subscripts and indicate that only the real and
imaginary parts of the complex arguments are used in the func-
tion, respectively.

Similarly to the codeword domain, the estimation has to be
carried out times to obtain all components of the vector. The
result of the estimation procedure is now represented with the
linear signal model already given in (15). Because the estimates

are calculated from random variables approximated as i.i.d.,
we also model the components of the vectorand the error
term as i.i.d. This model has already been used to justify
the approximation for the pdf of given in Table I.

F. Information Domain MAP Estimation

The MAP estimator chooses the symbolsatisfying

The distribution has already been calculated in
the derivation of the MMSE information domain estimator, see
(22). Using this result, straightforward calculation yields

(25)

with given by (24). Note that computing the MAP estimate
is much simpler than computing the MMSE estimate.

G. Algorithm

Based on the previous sections, the main idea of the decoding
algorithm can now be explained. The approximation of the in-
puts to the estimators as i.i.d. random variables, see Approxi-
mation II.1, is the basis for the design of low-complexity es-
timators. However, the estimators are suboptimum: the code-
word domain estimator neglects the dependencies among the
code symbols , while treating the i.i.d. impulsive noise sym-
bols correctly. Conversely, the information domain estimator
neglects the dependence among the impulsive noise samples,
while treating the information symbols correctly. The idea is
that by alternately using both estimators, at least to some ex-
tend, the whole statistical information provided by the received
vector about the transmitted codeword is exploited in the de-

Fig. 2. The iterative decoding algorithm with decoding resultU and�
denoting the number of iterations.

coding process. Approximation II.1 plays the central role in the
derivation of the decoding algorithm.

This idea is similar to the idea of turbo decoding: here, instead
of jointly decoding a concatenated code, two component-code
decoders are used alternately. Each decoder exploits only the
parity-check equations of one component code and neglects the
dependencies introduced by the other. By alternately using both
decoders, at least to some extend, the whole statistical informa-
tion about the transmitted codeword is exploited. The argument
that the dependencies of one component code can be neglected
is justified by using an interleaver. In our algorithm, the unitary
transform plays the role of the interleaver, and Approxima-
tion II.1 is used to justify that only partial statistical information
is used in the estimators.

The exact definition of the decoding algorithm is given in
Fig. 2. The input to the decoder is the received vector. Before
using the algorithm, the coefficients , , , , ,

, as well as the variances of the error terms and
have to be determined for all iterations . This
is done by the following procedure: based on the parameters in
the initialization part of the decoding algorithm, the vector
is evaluated for randomly selected codewords and random noise.
The values of are then used to measure the parameters,

, , and employing least squares estimation as de-
scribed in Section II-A. Given the -values, the same method
is applied to determine the -parameters. This procedure is
repeated until the coefficients are known for all iterations.

The decoding algorithm includes a special case. Choosing
, the algorithm is equivalent to the “smearing fil-

ters” decoder described in the Introduction. Then, theare
determined based only on the components of the vector

. Due to Approximations II.1 and II.2, the are ap-
proximately Gaussian distributed with variance
and mean . Hence, as the codeword lengthincreases, the
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performance of this decoder approaches the performance of un-
coded transmission over an AWGN channel with variance.
When is taken as the inverse Fourier matrix , this decoder
is even more equivalent to the conventional OFDM demodulator
applied in an impulsive noise environment. For more detailed
discussion, see [10].

Finally, the decoder’s complexity is analyzed. It is mainly de-
termined by the matrix–vector products and

. For general, nonsparse generator matrices, the
decoding complexity is therefore given by . If
a generator matrix is applied for which fast transform algo-
rithms such as the fast Fourier transform (FFT) with complexity
order are available, the decoder’s complexity reduces
to .

III. SIMULATION RESULTS AND DISCUSSION

In this section, simulation results for the decoding symbol-
error rate (SER) obtained by our algorithm are presented. The
SER is defined as the probability that
is transmitted but , , is erroneously decoded.
In Figs. 3–5, the SER is plotted for different numbers of itera-
tions as a function of the signal-to-noise ratio (SNR) SNR

, where and holds. Ad-
ditionally, the SER achieved by uncoded transmission, a lower
bound denoted by “Gauss bound,” and the performance of un-
coded transmission over the AWGN channel with noise variance

(“AWGN uncoded”) is plotted, where is defined by (5).
The bound “Gauss bound” is derived by assuming that only the
Gaussian noise is present on the channel, i.e., the impulsive
noise part is set to zero, see [10]. The comparison with uncoded
transmission over the AWGN channel with variance is
motivated by [9], [10]. Here, it is shown that the PEP of a CN
code, i.e., the probability of a decoding error in the binary deci-
sion between any two codewords of the code, is lower-bounded
by the PEP achieved on the AWGN channel with noise variance

.
For all simulations, 4-QAM modulation has been applied to

generate the information symbols, and has been
chosen, where is the Fourier matrix. For the Walsh–Hadamard
matrix (almost) the same performance was observed.

Fig. 3 depicts simulation results for employing
MMSE estimation in the information domain. It can be observed
that large coding gains are obtained already after only one itera-
tion. After two iterations, the “AWGN-uncoded” curve and the
lower bound are almost achieved. This basically means that the
errors introduced by the impulsive noise are (almost) completely
corrected. As an example, Table II shows some selected- and

-parameters used in the simulation. The parameters have been
evaluated as described in Section II-G using vectors for the
least squares estimation method. This value was found to be suf-
ficient to obtain reliable parameter estimates for SERs greater
than . However, instead of using the expected value of
as specified by (12), we use , where is
the variance of the error term , see Table I, and is

Fig. 3. Simulation results obtained with MMSE estimation,n = 1024, A =

0:1, T = 10 .

Fig. 4. Simulation results obtained with MAP estimation,n = 1024, A =

0:1, T = 10 .

the maximum average error of the linear least squares estima-
tion method. When using the expected value of, the algorithm
is not able to correct all errors in the high-SNR domain and an
error floor remains. We explain this by the fact that the pdf of
the error term , see (15), is very spiky if the SER becomes
small (i.e., SER ) during the iterations. As a consequence,
Approximation II.2 used to describe the pdf of becomes in-
accurate. Using the maximuminstead of the expected value
“covers” this inaccuracy. The variance might also be inter-
preted as a parameter that determines how much the informa-
tion domain estimate influences the codeword domain estima-
tion process.

For the result depicted in Fig. 4, we used the MAP estimator
in the information domain. It can be observed that the perfor-
mance is slightly worse than for the MMSE estimator. However,
in practice, the MAP detector might be preferred due to its much
simpler structure.
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TABLE II
PARAMETERS APPLIED FOR THESIMULATION DEPICTED IN FIG. 3 (INFORMATION DOMAIN MMSE ESTIMATION,

n = 1024, A = 0:1, T = 10 )

Fig. 5. Simulation results obtained with MMSE estimation,n = 256, A =

0:1, T = 10 .

Finally, Fig. 5 shows the SER achieved for the codeword
length . For the first iteration, the convergence speed
is significantly reduced compared to the previously discussed
cases. However, after four iterations, the same performance as
for is achieved.

Based on the above results and numerous other simulations
employing different values for, , and , the following three
characteristics were identified to determine the algorithm’s con-
vergence behavior:

1) The codeword length plays an important role for the con-
vergence of the algorithm. Increasingleads to a faster conver-
gence, whereas for small, the algorithm converges slowly or

not at all. This can be expected since the derivation of the algo-
rithm is mainly based on Approximations II.1 and II.2, and these
approximations become more accurate asincreases. Typi-
cally, if the algorithm does not converge for a given param-
eter set , , and , convergence can be achieved by suffi-
ciently increasing . As an example, for , ,
and the algorithm converges, see Fig. 3, whereas for

convergence cannot be achieved.
2) The algorithms convergence speed is almost invariant with

respect to the channel parameter.
3) It is important that at least one estimator, i.e., the code-

word-domain or the information-domain estimator, evaluates
reliable estimates. If this is not ensured, the algorithm’s con-
vergence behavior is poor. This statement is supported by two
observations.

First, in Fig. 5 as well as for various other parameter sets,
it can be observed that the algorithm converges slower around
SNR 0 dB. Here, the noise power and, therefore, also the
average height of the impulses becomes smaller. Hence,
the codeword domain estimator can barely distinguish the
code symbols from the impulsive noise and therefore
evaluates unreliable estimates. Additionally, the estimates in
the information domain are unreliable since the SNR is still
relatively small. Since both estimators give unreliable results,
the convergence is slow. In other regions, this problem does
not occur since here at least one of both estimators gives good
estimates.

Second, it can be observed that the choice of the parameter
has a strong influence on the performance of the decoder. De-
creasing increases the convergence speed, whereas increasing

has the opposite effect. For small, the impulsive noise be-
comes more structured or impulsive, and thus, the codeword and
the impulsive noise can be clearly distinguished in the codeword
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domain. Hence, the codeword domain estimator evaluates reli-
able results. In contrast, when increasing, the channel noise
converges towards the Gaussian distribution. Hence, the code-
word and the noise can barely be separated by the codeword-do-
main estimator, and the convergence speed is reduced. This ef-
fect can be observed especially in the region around SNR
0 dB. As an example, for , , and ,
the lower bound is almost achieved within three iterations, see
Fig. 3. In contrast, for the same parameters and , within
five iterations the algorithm achieves significant coding gains
only for SNR 4 dB. For SNR 4 dB, the performance is al-
most similar to uncoded transmission.

IV. CONCLUSION

In this paper, we discuss the usage of CN codes for the
transmission over an impulsive noise channel. The derivation
of the optimum MAP receiver shows that, even for small,
MAP decoding is infeasible in practical applications because
of the exponentially growing complexity. We therefore derive
a new, suboptimum decoding algorithm applying the idea of
turbo decoding. If a generator matrix is used for which
a fast transform algorithm with complexity order
is known, the decoder’s complexity order is determined by

, where denotes the number of
iterations.

The simulation results show that increasing the codeword
length leads to a better performance. We explain this behavior
by noting that the accuracy of the approximations used to de-
rive the algorithm increases with increasing. As an example,
for codeword lengths and parameters ,

, the lower bound is almost reached after only two it-
erations. Furthermore, we conclude from the simulation results
that using the MMSE estimator in the information domain leads
to only slightly better results than using the MAP estimator. Of
course, these results are only confirmed by simulations so we
cannot make any statements about SERs below .

Since the main idea of the iterative decoding algorithm is
quite general, we believe that it can be applied to various other
channels by adjusting the codeword-domain estimator. As an ex-
ample, if the transmission over an AWGN channel is corrupted
by a memoryless amplifier nonlinearity, the codeword-domain
estimator must be designed to estimate this disturbance for each
received symbol. The algorithm might also be applied to the
whole class of Gaussian mixture noise channels, see [10], [12];
this class includes the impulsive noise channel discussed in this
paper as well as the fading channel with perfect CSI.

The close relation between CN codes and the OFDM mod-
ulation scheme is very interesting. By applying the iterative
decoding scheme introduced in this paper, errors that are typical
for OFDM systems, e.g., due to clipping the OFDM symbols,
channel nonlinearities, and also impulsive noise, can be
corrected without employing “conventional” error-correcting
codes designed for the AWGN channel.

Finally, it should be noted that there are many ways to
simplify the algorithm by further simplifying the informa-
tion-domain and codeword-domain estimators. For example,
in the information domain, an estimator with only one input

might be used. This approach is related to decision
feedback theory where an estimate of the channel noise ob-
tained in a previous iteration is fed back and subtracted from
the received vector. This significantly reduces the number of
parameters needed in the linear signal model to derive the es-
timator. As discussed in the Introduction, such an DFE-related
decoder has to use nonlinear estimators instead of the linear
forward and backward matrices applied in the DFE decoder
designed for the fading channel with perfect CSI, see [13], [15].

APPENDIX

Lemma V.1:Let be a vector of i.i.d.
complex random variables with

and

We calculate the vectors and
, respectively. For , the are i.i.d. complex

Gaussian random variables with ,
, and .

Proof of Lemma V.1:The proof of this lemma splits into
two parts. In the first step, the central limit theorem is used to
show that and approach a Gaussian distribution.
Using that is a unitary matrix it is shown in the second step
by straightforward calculation that

and

From the two steps the statement of the lemma follows, see [10].
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