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Iterative Decoding of Codes Over Complex Numbers
for Impulsive Noise Channels
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Abstract—We discuss the decoding of error-correcting block used “stand alone.” We can also use CN codes as inner codes in
codes over complex numbers for the transmission over impulsive g product encoding scheme where the outer code is optimized
noise channels. The encoder multiplies a vector of complex i, increase the Euclidean distance between the codewords. This
information sympols resultlng_from a modl_JIatlon scheme, e.g., miaht be a qood approach to desian codes. providing both a
quadrature amplitude modulation (QAM), with a unitary gener- 9 g 9 _pp 9 X ' p g
ator matrix G. Choosing the inverse Fourier transform asG, the g0ood distance profile and a large Euclidean distance between
encoding procedure is similar to orthogonal frequency-division the codewords.
multiplex (OFDM) modulation. The maximum a posteriori(MAP) In the literature, the principle of CN codes have already been
receiver is analyzed and a suboptimum decoder based on the g sjied jn 1963 for the transmission over impulsive noise chan-
turbo decoding principle is derived. Simulation results show the | 141 Th t v ch i t
excellent performance of the iterative decoder. nels, see [14]. The cpncep U_'SG_S aproperly ¢ osep megr rans-

o _ form at the sender side and its inverse at the receiver side. The
__IndexTerms—Complex number codes, diversity, fading channel, ansmitted data passes both transforms and is therefore unaf-
impulsive noise, orthogonalfrequency-division multiplex (OFDM), fected, whereas the impulsive noise passes the receiver’s trans-
rotation, turbo decoding. ' p ; . p g )
form only. The energy of single impulses is therefore dispersed
(smeared) over a portion of information symbols, see [1]. In this
. INTRODUCTION way, the error floor that is typical for uncoded transmission over

N this paper, we discuss the decoding of block codes ov@ppulsive noise channels, see [16], is (partially) eliminated. The
I complex numbers. The input to the encoder is a vector g@nstruction of CN codes in [14] was motivated by a convolu-
complex numbers generated by a quadrature amplitude mo#@nal type of CN codes, the so-called “smearing filters,” that
lation (QAM) or phase-shift keying (PSK) modulation scheméVere originally developed for continuous systems, see [1], [6].
The encoder multiplies this information vector with a unitary The principle of CN codes is also applied in a different area of
generator matrixG, i.e., the codewords are simply rotated ver€ommunication theory. _The orthogonal frequency—d|y|3|on mul-
sions of the information vectors, and the Euclidean distantigl€x (OFDM) modulation scheme, see [3], can be interpreted
between two information vectors is the same as between thia#@ special CN code where the generator mérix chosen to
respective codewords. Hence, on the additive white Gausshgthe inverse Fourier transform. The classical OFDM receiver
noise (AWGN) channel, these codes achieve no coding gafhdesigned for the AVGN channel and, therefore, simply mul-
However, on various other channels, a gain can be achievediplies the received vector wité . On impulsive noise chan-
well-known example is the fading channel with perfect channBglIS. this decoder disperses the energy of single impulses over
state information (CSI). Here, for a fixed Euclidean distanci€veral consecutive symbols, similar to the smearing-filters ap-
d between two codewords ¢/, the pairwise error probability Proach. The typical argumentation is that this makes the trans-
(PEP) can be modified by changing the distané¢ges= |¢, — Mission scheme ropust against impulsive noise, see _[3]. How-
cx| between the code symbols while keepifig= S 7' 42  €ver, |n_[7],.[8], [10], it hgs bgen shown that th|§ “decoding” ap-
constant, see [2]. Such a modification of the “distance profil@foach is highly suboptimal in terms of the achievable decoding
of two codewords is introduced by the encoding operation ¢8or rates since the rich structure of impulsive noise is not ex-

scribed above. Hence, adopting a carefully chosen generdi§itéd in the decoding process.
matrix G can lead to a coding gain. In literature, this coding ndependently, the idea of CN codes has been developed for
gain is also referred to ativersity gain reliable transmission over the slowly Rayleigh-fading channel

Since we consider a linear transform defined over the cofyith perfect CSI. The initial idea of constructing two-dimen-
plex numbers as an encoding operation, the resulting codes $fR1al rotations for QAM signal constellations in [4] was soon

denoted bycomplex number (CN) code€N codes might be generalized to higher dimensions. The construction of rotational
transforms, i.e., CN codes, yielding a good performance is ex-
tensively discussed in [5], [13] and references therein. Refer-
Manuscript received April 26, 2001; revised January 30, 2003.The materighces [13], [15], and [18] address the decoding problem. The
in this paper was presented in part at the IEEE International Symposium 8n di | ith di is b d |atti h
Information Theory, Washington, DC, June 2001. ecoding algorithm presented in [18] is based on lattice theory
The authors are with the Institute for Experimental Mathematics, Univeand suited for codeword lengths< 32. The algorithms derived
sity of Essen, 45(132)6 Essen, Germany (e-mail: j.haering@web.de; vinck@eifp{13] and [15] apply the idea of decision feedback equalization
math.uni-essen.ae). . . .. .
Communicated by R. Urbanke, Associate Editor for Coding Techniques. (DFE). They typically require a larger. Similar to the impul-
Digital Object Identifier 10.1109/TIT.2003.810636 sive noise channel, also a convolutional type of CN codes has
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been developed. A comprehensive study including code camd in the following we use capital letters to denote vectors or

struction, performance analysis, and decoding issues is givesymbols in the domain of the information sequence (information

[19]. domain) and lower case letters in the domain of the codewords
To understand why CN codes can be applied to both, tf@deword domain). The encoding operation is defined by

Rayleigh-fading channel with perfect CSI and impulsive noise

channels, we first compare both channels. Impulsive noise chan- s =GS. (2)

nels can be modeled as AWGN channels with randomly varyin o ) ) _

noise variance. The noise variance is assumed to be unknoTEW” X n generator matrbG is unitary, i.e., the Euclidean

to the receiver, see [12]. For the fading channel with perfegistanced(S°, S*) between two information vectors’, S* is

CSl, basically the same model is used. However, in contrastf Same as between their respective codewstds!

the impulsive noise channel, the receiver is perfectly informed 0o 1 R
about the noise variance. The decoding algorithms presented ind(s’, s7) = V/(s° — s1)"(s” — s1)
V(80 = $1)7G"G(S0 — §1) = d(S", §")

[13], [15], and [18] use this information and therefore cannot be
applied to the impulsive noise channel. Hence, in this paper, a
new decoding algorithm for a channel with both impulsive arw
AVX?sl\Iilftedrzg\tliig ;)hso(jn?;g?eerofrbr?:vid dzzgz;u;rr?g '[F;\nen([:)llgl oding operation generally increases the alphabet size.

. . ) “Findin enerator matrices with good error correctin
based decoders presented in [13], [15] in more detail. Both cqp- inding 9 : wih 9 g

cepts apply the idea of iterative decoding. As indicated earli roperties is a nontrivial problem. For the MAP decoder it has
, ) : h in [10] th i ited for the Rayleigh-fadi
the DFE decoders are provided with perfect CSI. As a cons ¢en shown in [10] that matrices sited for the Rayleigh-fading

Fhannel with perfect CSl also perform well on impulsive noise

quence, the additive channel noise is Gaussian distributeq (Ceﬂénnels. Therefore, references [5], [13] can be used to find
ditioned on the known channel state), and therefore the optim od generator matrices. The decoding algorithm derived in

minimum mean-square error (MMSE) estimators in the forwa is paper imposes two additional restrictions for choogihg

and the backward l_Jranch_es of t.he DFE d_ecoder become. I'mﬁ%t, for the decoder’s derivation it is assumed that each code
In contrast, on the impulsive noise chanriglear MMSE esti- E%embmsi € Cis calculated by summing over a large number

here the asterisk denotes complex conjugate. Note that the en-

mators cannot mitigate the influence of the channel noise, sge 0 symbols, see Approximations II.1 and 11.2 in-

[10], [16]. Henge, ths_.\ DFE_pr|nC|_pIe developed in [13], [15 roduced later. Loosely speaking, this means that the generator

cannot be appl_led to |m_puIS|ve noise channels._ _ __matrix must be nonsparse amd sufficiently large. Second,
The paper is organized as follows. We will first defing; o matrix vector multiplications witd' andG* determine

the encodmg procedure. (Section .l'A)’ the c_hapnel MOGSoth the encoding and decoding complexity, the applicability of

(Sect|o_n. I-B), and the optlmum maxmgmpostenon(MAP) fast transform algorithms should be ensured. For these reasons,

probability decoder (Section 1-C). This is followed by th(?he Fourier- and the Walsh—Hadamard matrix are considered

definition of our new, iterative decoding algorithm (Section II)-rn this paper. For channels with real input alphabets, e.g., the
In Section Ill, we discuss some simulation results and Condug%crete cosine transform might be applied ' '

with Section IV.

A. Encoding B. Impulsive Noise Channel Model

The sender transmits the code symbglsover a memory-

Let X, X C C, denote the discrete input alphabet with Carléss additive impulsive noise channel. The received svmbols are
dinality |X'|, whereC denotes the complex numbers. Let= given byl Ve Impuisive not ' veasy

(So, ..., Sn—1), Sk € X, denote the input to the CN encoder:
We call the componentS;,, £ = 0, ..., n — 1, theinformation
symbols Assuming that evenf;,, € X is transmitted equally

likely, we describe thé), as independent random variables withy here they, are independent and identically distributed (i.i.d.)

e = Sk + ik + gk (3

probability distribution complex Gaussian random variables with variasigand prob-
1 ability density function (pdf)
P(Sk) = X @
() o rz*
= —— ex —-—— .
and assume P 2702 P 2072
E{S} =0 The impulsive noise symboig are also i.i.d. with variance?.

B{Re[SK]?} = E{Im[S]?} = % o2 Their pdf is given by Middleton’s Class A noise model

and A L emAAm 1 < zx* )
pi,(z) =e " 6(x) + exp | —

(4

m=1

whereE{-} denotes the expectation operator. with the Dirac distributiors(-) and
Each vectolS is encoded by a CN block codewith code-
wordss = (sq, ..., s,—1) and code symbols; € C. Here o2 =olm/A (5)
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(see [16]). The parametet is called the impulsive index. For r Codew. Domain | 5® G
small A, sayA = 0.1, the noise is highly structured since only " |MMSE Estimator |
(1 —e=4) ~ 9.5% of the samples are hit by an impulse. For =0 30
A — oo, the pdf becomes Gaussian. Furthermore, the parameter [ | 70
T = o2 /0} is defined as the ratio between the variaageof a1 G- > Inform. Domain
the Gaussian noisg and the variance? of impulsive noise Estimator
component. L
R >t Inform. Domain

i » MAP Estimator | 77

C. MAP Decoding of CN Codes M U
At the receiver, the _prOblem of d?COd'ng the received Vedﬁ% 1. Block diagram of the iterative decoding algorithm wittdenoting the

r = (ro, ..., rn—1) arises. The optimum MAP decoder mini-final result of the decoding operation.

mizes the probability of a decoding error, see [20]. It, therefore,

chooses the codeword € C that maximizes the posteriori  makes a low-complexity realization possible. The result from
probability, i.e., the iterative scheme is used to increase the reliability of the de-
cision in the final decoding step. The decoded veéfos an
estimate of the transmitted information vecgor

In the following, we will first introduce a linear model
where we assumed that every codeword is transmitted wiiat is used to approximate all random vectors occurring in
equal probabilityP(s = ¢) = 1/|C|. Since the noise is additive, the algorithm (Section 1I-A). In (Section 1I-B), we will then

¢ = argmax P(s = ¢|r) = arg max p(r|s = ¢) (6)
ceC ceC

we obtain discuss the influence of the unitary transfor@sand G™*
ne1 on various signals and introduce two important approxima-
¢ = arg max H Dirtge (Th — Ck) (7) fcions. qued on them, .the Iow-comple>l<ity codeword—. and the
ceC 1 information-domain estimators are designed in (Section 1I-D)

) . and (Section II-E). In (Section 1I-G), we finally give an exact
wherep;, 1, (-) is the pdf of the channel noisg-+ g.. Unfortu-  gefinition of the algorithm depicted in Fig. 1.
nately, an efficient representation of the cae.g., in form of
a trellis with a small number of states, is not known. Hence, (A). Linear Signal Model

can only be solved by brute-force search throughtali= | X" To develop the estimators used in the algorithm, see Fig. 1,

codewords. MAP decoding is therefore infeasible already f%owledge about the statistical properties of their random input

S”:?I.I - i ting t te that the AWGN ch | I\/lAFyectors is required. Since an exact description is too difficult, we
IS interesting 1o note that on the channet, approximatehe inputs by the simple linear model introduced in
decoding can be efficiently realized based on the veBtoe

. . . ; : the following.
G~ 'r. We consider this vector for the impulsive noise channep First, we gonsider the codeword domain. Using the indepen-
R=G Yr=5+GYi+Gy dent random vectors, i, z_:mdg, any arbitrary random vector
of lengthn can be described by
=S+I1+G. (8)
y=y+e=oass+ot+a,g+e (10)

The MAP decoder now chooses the information vector . . -
wheree = y — g is the error term of the linear modgl We

U = argmaxp(R|S = U) = argmaxpryq(R—U) (9) define the average squared error of this representation by

Uvexn Uexn 1
1« ,
equivalent to (6). Since the componefitof I = G~ i are sta- ¢=_ D lyk — sk — ik — aggil? (11)
tistically dependent, the paf;;.(-) of the suml + G cannot k=0

be written as a product similar to (7). Therefore, solving (9) r§ghere¢ is a random variable depending on the actual realiza-

quires the evaluation gf( 12| S = U) for all | X" possible infor-  tions of s, i, g. The a-coefficients are chosen to minimize
mation vector$/. This results again in a decoding complexity ofhe average error

O(|X|™). On the one hand, the statistical dependencies among -
the I;, make decoding a hard problem, on the other hand, they E{¢) = / op(y, s, i, g)dyds di dg (12)
are the basis for the error-correcting properties of CN codes. e T ‘

where E{-} denotes the expectation operator. Calculating this
linear MMSE estimate analytically is difficult. Hence, based on

In this section, we introduce a new, suboptimum decoding aieasured data, we use the linear regression method (linear least
gorithm for CN codes. The block diagram of the algorithm isquares estimation) to evaluate theoefficients and the vari-
depicted in Fig. 1. Two information-exchanging estimators, ormececr? := 1 E{|e;|*}, see, e.g., [11]. It is well known that the
in the codeword and one in the information domain, are appliidear least squares estimate is unbiased, i.e., for the error term
to obtain an estimate for the impulsive nois®oth estimators in (10), E{ex} = 0 holds. In the following, we will additionally
use only partial statistical information from their inputs whiclassumehate is statistically independent of the linear mogel

Il. I TERATIVE DECODING ALGORITHM
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_ The linear signal model is now applied to describe the output TABLE |
1 O of the codeword domain estimator EXACT AND APPROXIMATED MARGINAL PDFS FOR THEVECTORS
USED IN THE LINEAR SIGNAL MODEL
() _ (1 (OF 1 1 codeword domain | information domain
iV =als+ai+alg+el (13) % N(0,0%) P(Sk), see eq. (1)
ir | p(ix), see eq. (4) N(0,07)
(see Fig. 1) with the scalar coefficient§) and the error vector 9k N(0,02) N(0,02)
e, The superscript!) denotes the iteration step in the algo- d /\1(0,03(1)) p(/:l\ﬁunkr;own
rithm. Using (13), it is straightforward to calculate the transform ¢k | pdf unknown 0.7w)

I =@ 1 ® as done in the algorithm (see Fig. 1)

y = Gz are approximated as i.i.d. complex random variables
with E{yx} = 0andE{y,y;} = 202. The same is assumed for
_ -1, ) . . f .

where the notatio?® = G~ 1. § = @ s, 1 = G4, the transformz_/ = G x. This ap_prOX|mat|0_n is motlvateq_by

1. . . Lemma V.1 given in the Appendix. Here, with some additional
andG = G "¢ is used. Obviously, the scalar coefficients are ) o
. . e assumptions about the, it is shown that fom — oo the y;
invariant to the transform and only the “basis” vectors of the ™" . .

re i.i.d. Gaussian random variables.

linear expansion changed, i.e., in the information domain &

10 =005+ a1 +aPG + EO (14)

vectors are represented as a linear combinatia$, df andG. If we apply the approximation, the marginal pgf, (-) of the
Hence, the outpu$ (V) of the information domain estimator isvector componentg;, has to be determined. The pdf is usu-
modeled by ally obtained by integrating over ajl;, j # k, in the joint pdf
~ p(%o, -- -, yn—1). In general, this calculation is a difficult task.
S = ﬂ(SI)S + ﬂ}l)l + /3g)G + D" (15) Therefore, another approximation is introduced.
with the scalar coefficients(® and the error ternrD® . With Approximation 11.2: Let =z = {zo, ...=,_1} be a vector
the notationd® = @D @ the transformation @) = @3 ® jg Of i.i.d. complex random variables wittE{z;} = 0,
given by E{Re[z:]?} = E{Im[z])?} = 02, and E{Re[z}]Im[z;]} =
0. Then, the componentg;, i = 0,1,...,n — 1 of the
50 =p0s 4 /31(1),- + /3§l>g +d0, (16) Vectorsy = Gz andy = G~ 'z are approximated as complex
Gaussian random variables withi{y,} = 0, E{Re[y:]*}

In the next section, it will be shown that for deriving the de= E{Im[y;]*} = 02, andE{Re[yx]Im[y:]} = 0, respectively.
coding algorithm, it is sufficient to know the variances of théet A (0, o2) denote this pdf. In the limiting case when
error terms() and D). With this, the advantage of the linearn — oo, the approximation is exact since the statement follows
signal model is obvious: all random vectors are sufficiently déom the central limit theorem, see Lemma V.1 given in the
scribed by only four parameters, i.e., three scalar coefficiesfigpendix. For finiten, the accuracy of the approximation
and the variance of the error term. Since these parameterssifengly depends on the size:ofind the shape of the pdf of.
invariant to the multiplication withG and G™", respectively,

. We now apply both approximations and then resume the re-
they also describe the transformed random vectors.

sults in Table I.
1) Consider the transform= GS (encoding operation). The
componentsS,, of the information vectoiS are i.i.d. random
The decoding algorithm employs two estimators, see Fig. Jariables. Their probability distribution is given by (1). Since
Their complexity will be high if the components of their inputg fylfills all assumptions to apply the approximations, we ap-
vectors are statistically dependent, see e.g., Section I-C, whgfgximates as a vector of i.i.d. random variableg with pdf
MAP deco_ding in the information domain is (_jiscussed. Inow (0, 02).
case, the inputs, 3, R, and7 (") of the estimators are all ) The impulsive noiséis a vector of i.i.d. random variables
vectors with statistically dependent components as shown by figiributed according to (4). Sinadulfills the assumptions to

linear signal representations in (3), (8), (14), and (16): in eveRhnly the approximations, we modgl= G i as a vector of
representation at least one vector with statistically dependeny random variableg;, with pdf A'(0, o?)

components is used, e.g.,= G~ i in (14). In all cases, the

istical d denci introduced by the i ¢ 3) Sincey is a vector of i.i.d. complex Gaussian random vari-
staustlca_1 ependencies are introduced by the linear trans Of%es. the components 6f = G~'g are also i.i.d. complex
G andG™ ", respectively.

T ke al lexi : lizati bl Gaussian distributed. This means that the Gaussian distribution
0 Mmake a ow;comp,,eX|ty estimator realization POSSIDIE, W invariant to the multiplication with@ andG~" and no ap-
approximate all “basis” vectors and error terms in the line roximation is needed, see, e.g., [11]

signal models and, therefore, also the inputs to the estimat ri) The pdf of the error term® in (3) is not known and it is

as vectors of i.i.d. components. Since the linear transform mtrgﬁ‘ficult to calculate from the formulas of the estimators devel-

gﬂgzé the dependencies, the following approximation is 'mrgbed in the next section. As we will see in Section llef) can

be approximated as a vector of i.i.d. random variables. For sym-
Approximation 1l.1: Let z = {zy, ...z,—1} be a vector metry reasons, all assumptions of the approximations hold, and
of i.i.d. complex random variables witi{z,} = 0 and we modelE® = G~ 'e® as a vector of i.i.d. random variables
E{xzpxy} = 202. Then, the componentg, of the vector with pdf A'(0, 62,)).

B. Signal Transformation
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5) The pdf of the error ternD(") in (15) is also not known. of = B0l + Biol, + B0l + o
Using the same arguments as befat€) = GD® is ap-
proximated as a vector of i.i.d. random variables with pdf
N(0, O'QD(Z)).

cov(r, §) = Bs02 + Bior, + Be0,

respectively. The functionsr, §) andj(r, $) are given by
C. Estimation Criteria

b(r, 5) =202, [(02—p; .8 02—
To design the estimators used within the algorithm, see (r, §) =207, [(05 Bicov(r, S)) H_(ﬂ oy —cov(r, S)) 8]

Fig. 1, a cost function or estimation criterion has to be chosen exp (_1 oir’ —2cov(r, 5)T§~+;’r52)
for each estimator. In order to minimize the probability of a j(r, 3)= 2 "f”S’COV(’:’ 5)° .
decoding error, the estimator in the final decoding step is based \/030§—C0V(7“7 8)

on the MAP criterion. For both other estimators, the MAP o
and the MMSE criteria are considered. The MMSE estimatdt (19), the abbreviations
minimizes the erroeysg = E{|ly — 9|*}, whereg denotes

the estimate obtained for the actual vajudn the information Pre(r; 8) := p(Re{r}Re{s})
domain, both the MAP and the MMSE estimator are deriveghd
and their performance will be compared. In the codeword Pr(r, 8) = p(Im{r}Im{3)})

domain, the mixed-type random varialjehas to be estimated,

i.€., ik has a d|scr¢te anq a continuous part, see (4). Hengg, used, where the operatds{-} andIm{-} evaluate the
using the 'MAP esumator. is npt reasonable, and we, therefolrgal and imaginary parts of a complex number, respectively.
only consider MMSE estimation. The same abbreviation is used far.(r, §) andby, (r, ). Note
) o that in (19), the values?, o2, and the covariance are different
D. Codeword Domain MMSE Estimation for every sum term since2, changes according to (5). More-
The codeword domain estimator uses the input vectors  over, the sum terms rapidly decreaseramcreases due to the
“m!”-term in the denominator. Hence, in a practical situation, it
r=s+i+g (17) s sufficient to compute only the first few sum terms.
o B 1. B B To estimate the whole vectar(19) has to be calculated once
3D =g s+ 8TVi g Vg4 at D (18) for every componeni,. The complexity of this procedure grows
) ) ] ] linear with the codeword length.
wherer is the received vector, and'~") is an estimate fos  The result of the estimation procedure is now expressed in
provided by the information domain estimator in the precedingyms of the linear signal model, see (13). Here, the error term
iteration, see (16). To simplify the notation, the supersdiipt .() js modeled as a vector of i.i.d. random variables since all
will be omitted in the following. estimates;, have been calculated independently. We used this

~According to the approximations summarized in Table |, thg 4. model already to justify the approximation of the pdf of
highly structured impulsive noisg, is the only non-Gaussian (1) given in Table I.

signal component in the codeword domain and can, thereforeg;naiy it should be noted that the calculationof- 7 gives
be well distinguished fromy, g;, andd,.. As aconsequence, the,e \MSE estimate fos + ¢. Since the information domain
codeword domain estimator is applied to estimate the impulsi¥€imator use® as an input, see Fig. 1, the MMSE estimator

noise vectori. According to Approximation II-1, the Inputs ¢4 < 1, and; in the codeword domain lead to equivalent algo-
and s to the codeword domain estimator are both modeled Afhms respectively.

vectors of i.i.d. random variables. Hence, the MMSE estimate
for eachiy, is a function of only two complex numbers, i.ey,

andsy. It is given by the conditional expected value E. Information Domain MMSE Estimation

The information domain estimator uses the inputs

i = Elilr. 5V = op (ix = xlry, 31) du

Uk {Lk|7“k/ Sk} /foo LP(Zk ~L|7"k Sk) v R—G ' — S+I+C (20)
(see [11], [17]). Note that the above integral is two-dimensional IO =a®s+aV1+ alVa + EY (21)
sinceiy, is complex. With (17), (18), and Table I, straightforward

evaluation of the integral yields whereR is the received vector transformed into the information

domain, and () is the transformed output of the codeword do-
main estimator, see (14). To simplify notation, the superscript

§ A™ bre(r, 3)+jbim (7, 3) ~ : ] ' )
will be omitted in the following.

m!  2(c202—cov(r,3)) pRC(T’ g)ﬁIm(T’./ §)

Y _ m=0
= X am NS N (19) Equivalent to the estimator in the codeword domain, the
mZ:O St PRe (T 5)P1m(7 5) MMSE estimate of eacld, is given by the conditional expec-
tation

with variances and covariance
) ) Sy = E{Sk|Rk, I} = Z zP (Sk = z| Ry, Ik) - (22

2 2
0, =04 + Om + Ug reX
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Using (20), (21), and Table I, the integral is solved by a straight-  Initialization

. _ (0) _ 5(0) _ 5(0) . _
forward calculation set | o ﬁs(o)— B; o Pe =0
~ R. I” N R. I” setas’ =a; ' =ag =0
& :EGZX wpre(f, I, )Pt (R, 1, @) calculate R = G™1r.
Sk = — — = . (23) while (I <= Nmaz)
Z pRe(R7 I> II?)pIm(R 17 il?) =141
) zeX MMSE Codeword Domain Estimation
With the moments vk iV = E {iklrk, éff_l)}, see eq. (19)
012% = Oiz + 03 inverse Transform
2_ 22 292, 2 0 = @40
o7 =00y + oo, + o if (I < maz)

N MMSE/MAP Information Domain Estimation
cov(R, I) = Ozia,? + ay 03 if MMSE estimation is used
. . .o i@
we define the functions Vk: S = E{Sk|Rk7Ik } see eq. (23)

- o 2 ~ _ if MAP estimation is used
C<R7 I, LL’) =03 (R ”E) 2COV<R’ I)<R $>’ Vk : S',(Cl) = argmax p(Sx = x|Rk,I~,£l)), see eq. (25)
TEX

(i —asx) + Ulzz(i — 045:1?)2 (24) Transform
50 =Gg3s®
1 c(R,1,x) end if
N - exp ( 2 (r%o’%fcov(R, I)2> end while
p(R7 I, LL’) = — . MAP Information Domain Estimation
\/U,%U% —cov(R, I)? Vk : Uy = argmax P(Sy = lek,I',(cl)), see eq. (25)
TEX

Again, the subscriptRe andlm indicate that only the real and
imaginary parts of the complex arguments are used in the fum@. 2. The iterative decoding algorithm with decoding re&fland 7.
tion, respectively. denoting the number of iterations.

Similarly to the codeword domain, the estimation has to be

carried out times to obtain all components of the vectofThe - coding process. Approximation I1.1 plays the central role in the
resultS of the estimation procedure is now represented with thgrivation of the decoding algorithm.
linear signal model already given in (15). Because the estimatesryjs jdea is similar to the idea of turbo decoding: here, instead
S}, are calculated from random variables approximated as i.i.gf,joinﬂy decoding a concatenated code, two component-code
we also model the components of the vectoand the error gecoders are used alternately. Each decoder exploits only the
term D) as i.i.d. This model hals already been used to justifyarity-check equations of one component code and neglects the
the approximation for the pdf o, given in Table I. dependencies introduced by the other. By alternately using both
decoders, at least to some extend, the whole statistical informa-
~ tion about the transmitted codeword is exploited. The argument
The MAP estimator chooses the symisql satisfying that the dependencies of one component code can be neglected
is justified by using an interleaver. In our algorithm, the unitary
transform@G plays the role of the interleaver, and Approxima-
The distributionP(Sy,| Ry, fk) has already been calculated irfion 1.1 is used to justify that only partial statistical information
the derivation of the MMSE information domain estimator, séé used in the estimators.
(22). Using this result, straightforward calculation yields The exact definition of the decoding algorithm is given in

S,k’MAP _ argmin {cRe(R i )+ ct(R, i x)} (25) Fig. 2. The input to the decoder is the received vectd@efore

rzeX

using the algorithm, the coefficientél), o aﬁ,l), /3,5”, ﬂfl),
with ¢(-) given by (24). Note that computing the MAP estimaté’’, as well as the variances of the error term&) ande()

F. Information Domain MAP Estimation

Sy = arg max p (Sk = z| Ry, jk) :
reX

7 1

is much simpler than computing the MMSE estimate. have to be determined for all iteratiohs= 0, ..., Jmax. ThiS
_ is done by the following procedure: based on the parameters in
G. Algorithm the initialization part of the decoding algorithm, the vectdt

Based on the previous sections, the main idea of the decodifigvaluated for randomly selected codewords and random noise.
algorithm can now be explained. The approximation of the ifhe values of(1) are then used to measure the parametérs
puts to the estimators as i.i.d. random variables, see Approaf—l), a§1), andoz(1> employing least squares estimation as de-
mation 11.1, is the basis for the design of low-complexity esscribed in Section II-A. Given the(")-values, the same method
timators. However, the estimators are suboptimum: the codg-applied to determine thé(*)-parameters. This procedure is
word domain estimator neglects the dependencies among itepeated until the coefficients are known for all iterations.
code symbols,, while treating the i.i.d. impulsive noise sym- The decoding algorithm includes a special case. Choosing
bolsi, correctly. Conversely, the information domain estimatof,.x = —1, the algorithm is equivalent to the “smearing fil-
neglects the dependence among the impulsive noise safmplesers” decoder described in the Introduction. Then, &heare
while treating the information symbolg, correctly. The ideais determined based only on the componeRis of the vector
that by alternately using both estimators, at least to some &= G~'r. Due to Approximations 1.1 and 1.2, th&,, are ap-
tend, the whole statistical information provided by the receivgmtoximately Gaussian distributed with variance = o? + og
vectorr about the transmitted codeword is exploited in the dend meanS,. Hence, as the codeword lengthincreases, the
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performance of this decoder approaches the performance of | 10°
coded transmission over an AWGN channel with variant¢e
WhenG is taken as the inverse Fourier matFix !, this decoder .
is even more equivalent to the conventional OFDM demodulat  107F:::::: RS
applied in an impulsive noise environment. For more detaile 3
discussion, see [10].

Finally, the decoder’s complexity is analyzed. It is mainly de 107
termined by the matrix-vector produci$” = G 'i® and &
3 = @S, For general, nonsparse generator matrices, t/
decoding complexity is therefore given 09m,,. + 3)n>. If
a generator matri& is applied for which fast transform algo-
rithms such as the fast Fourier transform (FFT) with complexit
ordern log,(n) are available, the decoder’s complexity reduce

t0 (29max + 3)nlogy(n).

| = uncoded
i~ Mma”™

s - Tlrnax=o
sl e Mma™

| = Mpa=2
% nmax 4
{H] =>- AWGN uncoded | ii
--:| —— Gauss bound -

107k

107 E

l1l. SIMULATION RESULTS AND DISCUSSION w BB S e 0 50

In this section, simulation results for the decoding symbol-

error rate (SER) obtained by our algorithm are presented. (ﬁ% 3. Sllr(r)luLatlon results obtained with MMSE estimation= 1024, A =
SER is defined as the probabilify(S, # Uy) thatS, € X

is transmitted but/;, # Sy, Uy € X, is erroneously decoded.

In Figs. 3-5, the SER is plotted for different numbers of itere 10 &
tions as a function of the signal-to-noise ratio (SNR) SNR IR
E{|Sk]*}/(20?), whereS), € X ando? = o7 + o holds. Ad-
ditionally, the SER achieved by uncoded transmission, alow ' &
bound denoted by “Gauss bound,” and the performance of L o
coded transmission over the AWGN channel with noise variani [

ciwen =1/ ) (74 A™)/(mlo?,) i

m=0

[ uncoded |

(“AWGN uncoded”) is plotted, where2, is defined by (5).
The bound “Gauss bound” is derived by assuming that only tt R " .
Gaussian noisg is present on the channel, i.e., the impulsive 107}.. : ] > AWGN uncoded |
noise part is set to zero, see [10]. The comparison with uncod : 2| =~ Gauss bound
transmission over the AWGN channel with variarcgy gy is ROUOPUSONRI USRS
motivated by [9], [10]. Here, it is shown that the PEP ofa C}  -— " —— . L m
code, i.e., the probability of a decoding error in the binary dec SNR [dB]

sion between any two codewords of the code, is lower-bounded

by the PEP achieved on the AWGN channel with noise varianf§ 7; _S/muiation restlts obtained with MAP estimatian= 1024, 4 =

Tiwax-

For all simulations, 4-QAM modulation has been applied to
generate the information symbdis, andG := F~! has been the maximum average error of the linear least squares estima-
chosen, wher#' is the Fourier matrix. For the Walsh—Hadamar#ion method. When using the expected valug ghe algorithm
matrix (almost) the same performance was observed. is not able to correct all errors in the high-SNR domain and an

Fig. 3 depicts simulation results far = 1024 employing error floor remains. We explain this by the fact that the pdf of
MMSE estimation in the information domain. It can be observeébe error termD,ﬂ ), see (15), is very spiky if the SER becomes
that large coding gains are obtained already after only one itegarall (i.e.,n- SER= 1) during the iterations. As aconsequence
tion. After two iterations, the “AWGN-uncoded” curve and theApproximation 11.2 used to describe the pdfdﬁj becomes in-
lower bound are almost achieved. This basically means that tiurate. Using the maximuthinstead of the expected value
errors introduced by the impulsive noise are (almost) completéhovers” this inaccuracy. The varianeg,,, might also be inter-
corrected. As an example, Table Il shows some seleeteshd preted as a parameter that determines how much the informa-
(B-parameters used in the simulation. The parameters have bem domain estimate influences the codeword domain estima-
evaluated as described in Section II-G usifg vectors for the tion process.
least squares estimation method. This value was found to be sufFor the result depicted in Fig. 4, we used the MAP estimator
ficient to obtain reliable parameter estimates for SERs greaterthe information domain. It can be observed that the perfor-
than10—°. However, instead of using the expected value)of mance is slightly worse than for the MMSE estimator. However,
as specified by (12), we usé;(,) = 5 max{¢}, whereagm is inpractice, the MAP detector might be preferred due to its much
the variance of the error teray,, see Table |, anchax{¢} is simpler structure.
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TABLE I
PARAMETERS APPLIED FOR THE SIMULATION DEPICTED IN FIG. 3 (INFORMATION DOMAIN MMSE ESTIMATION,
n =1024, A =0.1,T = 1073)

SR I o [ @ [ oW [ o2 [ A7 [ 87 | 87 | o2 | SER
1072 | (109 | (102 | 1672 | 1071 | 10-%] | 107 | [0~

—24dB | 1 14.414 | 1.000 | 4.048 | 11.090 | 8.423 35.602 | 41.288 | 120.41 | 1.044-107!
—24dB | 2 9.758 1.000 | 3.775 5.597 8.957 | 28.574 | 34.629 | 109.703 | 7.836 - 102
—24dB | 3 7.342 1.000 | 3.722 4.204 9.121 26.061 | 31.793 | 107.313 | 6.981-10~2
—24dB | 4 6.337 1.000 | 3.705 3.858 9.177 17.614 | 30.695 | 105.383 | 6.664 - 102
—24dB | 5 5.914 1.000 | 3.707 3.775 - - — - 6.529 - 10~2
—-22dB | 1 10.029 | 0.999 | 18.915 | 10.177 | 9.090 25.536 | 31.415 | 95.391 | 5.887-10"2
—22dB | 2 4.134 1.000 | 18.600 | 3.411 9.637 5.565 18.062 | 56.233 | 2.836-10"2
—22dB | 3 1.569 1.000 | 18.592 | 2.019 9.750 3.303 13.972 | 49.959 | 2.085-10"2
—22dB | 4 0.924 1.000 | 18.589 | 1.794 9.778 3.195 12.835 | 47.685 | 1.879-10"2
—-22dB | 5 0.727 1.000 | 18.590 | 1.747 — - - — 1.826 - 1072
—20dB | 1 10.056 | 0.999 | 9.376 9.770 9.496 | 28.912 | 23.061 | 83.831 | 3.262-10~2
—20dB | 2 3.036 1.000 | 8.733 1.984 9.924 2.063 6.303 20.203 | 6.040 - 1073
—20dB | 3 0.749 1.000 | 8.667 0.976 9.963 0.268 3.719 14.346 | 3.296-1073
—20dB | 4 0.481 1.000 | 8.670 0.913 9.970 | —0.136 | 3.206 12.938 | 2.739-1073
—20dB | 5 0.427 1.000 | 8.678 0.905 - - - - 2.563-10~3
—18dB | 1 9.523 | 0.998 | 10.133 | 9.646 9.705 | 26.412 | 16.181 | 76.372 | 1.930- 102
—18dB | 2 1.502 1.000 | 9.640 1.218 9.991 | —7.651 | 1.191 15.843 | 7.298 -10~*
—18dB | 3 || —0.440 | 1.000 | 9.683 0.564 9.997 | —8.157 | 0.509 4.851 2.464-10~4
—18dB | 4 || —0.502 | 1.000 | 9.692 0.555 9.998 | —8.222 | 0.428 5.156 1.946 - 104
—18dB | 5 || —0.513 | 1.000 | 9.695 0.554 — - - - 1.767-104
—16dB | 1 10.339 | 0.997 | 9.622 9.617 9.810 | 35.297 | 11.729 | 87.952 | 1.255.10"2
—16dB | 2 1.697 1.000 | 8.825 0.802 | 10.000 | —0.002 [ 0.030 8.099 3.710-107°
—16dB | 3 0.058 1.000 | 8.851 0.346 — - - - <107°

not at all. This can be expected since the derivation of the algo-

[ uncoded : i ) St
s "mafa‘ rithm is mainly based on Approximations Il.1 and 11.2, and these
11 = . . . .
g » j no=t approximations become more accuratenasicreases. Typi-
107 ke ONRGRHIG g i e M, =2 i cally, if the algorithm does not converge for a given param-
N\ SRR i eter setA, T, andn, convergence can be achieved by suffi-
—b- AWGN uncoded ' ' !
—-— Gauss bound

7 ciently increasing:. As an example, ford = 0.1, T = 1073,

i andn > 128 the algorithm converges, see Fig. 3, whereas for

n < 64 convergence cannot be achieved.

2) The algorithms convergence speed is almost invariant with
respect to the channel parameteér

3) It is important that at least one estimator, i.e., the code-
word-domain or the information-domain estimator, evaluates
reliable estimates. If this is not ensured, the algorithm’s con-
vergence behavior is poor. This statement is supported by two

: observations.

8% 25 20 15 -0 -5 0 5 10 First, in Fig. 5 as well as for various other parameter sets,
SNR [dB] . .

it can be observed that the algorithm converges slower around

i ) ) ) ) o SNR =~ 0 dB. Here, the noise power and, therefore, also the

Fig. 5. Simulation results obtained with MMSE estimation= 256, A = . . .

01.T = 10-2, average height of the impulsés becomes smaller. Hence,
the codeword domain estimator can barely distinguish the
code symbolss; from the impulsive noise; and therefore

Finally, Fig. 5 shows the SER achieved for the codewokglajyates unreliable estimates. Additionally, the estimates in
lengthn = 256. For the first iteration, the convergence speeghe information domain are unreliable since the SNR is still
is significantly reduced compared to the previously discussggjatively small. Since both estimators give unreliable results,
cases. However, after four iterations, the same performanceas convergence is slow. In other regions, this problem does
for n = 1024 is achieved. not occur since here at least one of both estimators gives good

Based on the above results and numerous other simulatiegsimates.

employing different values fai, A, andT', the following three  Second, it can be observed that the choice of the parameter

characteristics were identified to determine the algorithm’s copas a strong influence on the performance of the decoder. De-

vergence behavior: creasingd increases the convergence speed, whereas increasing

1) The codeword length plays an important role for the con- A has the opposite effect. For smadl| the impulsive noise be-
vergence of the algorithm. Increasindeads to a faster conver-comes more structured or impulsive, and thus, the codeword and
gence, whereas for small the algorithm converges slowly orthe impulsive noise can be clearly distinguished in the codeword
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domain. Hence, the codeword domain estimator evaluates réti— I () might be used. This approach is related to decision

able results. In contrast, when increasitigthe channel noise feedback theory where an estimate of the channel noise ob-
converges towards the Gaussian distribution. Hence, the cotiéned in a previous iteration is fed back and subtracted from

word and the noise can barely be separated by the codeword-the- received vector. This significantly reduces the number of

main estimator, and the convergence speed is reduced. Thigaiameters needed in the linear signal model to derive the es-
fect can be observed especially in the region around SNRtimator. As discussed in the Introduction, such an DFE-related

0 dB. As an example, for = 1024, 7' = 10~2, andA = 0.1, decoder has to use nonlinear estimators instead of the linear
the lower bound is almost achieved within three iterations, seeward and backward matrices applied in the DFE decoder

Fig. 3. In contrast, for the same parameters And 0.5, within  designed for the fading channel with perfect CSl, see [13], [15].

five iterations the algorithm achieves significant coding gains

only for SNR> 4 dB. For SNR< 4 dB, the performance is al- APPENDIX

most similar to uncoded transmission. ..
Lemma V.1:Let z = {xzo, ...x,—1} be a vector of i.i.d.

complex random variables with

E{J)k} = 0
In this paper, we discuss the usage of CN codes for the E{Re[z]*} = E{Im[z]*} = 02
transmission over an impulsive noise channel. The derivatigﬂd
of the optimum MAP receiver shows that, even for small
MAP decoding is infeasible in practical applications because E{Re[z]Im(z,]} = 0.
of the exponentially growing complexity. We therefore derivgve calculate the vectorgs = Gz = {yo, v1, ...} andy =
a new, suboptimum decoding algorithm applying the idea ¢f 'z, respectively. Fom — oo, they, are i.i.d. complex
turbo decoding. If a generator matré is used for which Gaussian random variables wiff{y,.} = 0, E{Re[yx]?} =
a fast transform algorithm with complexity orderlog,(n) E{Im[y:]?} = o2, andE{Re[z]Im[z;]} = 0.
is known, the decoder’s complexity order is determined by Proof of Lemma V.1:The proof of this lemma splits into
(2Nmax + 3)nlogy(n), where nma. denotes the number of two parts. In the first step, the central limit theorem is used to
iterations. show thatRe[y;] andIm]y;] approach a Gaussian distribution.
The simulation results show that increasing the codewousking thatG is a unitary matrix it is shown in the second step
lengthn leads to a better performance. We explain this behavipy straightforward calculation that
by noting that the accuracy of the approximations used to de-

IV. CONCLUSION

rive the algorithm increases with increasimgAs an example, E{y’;} =0 ) )
for codeword lengths: > 1024 and parameterst < 0.1, E{Re[yx]"} = E{Im[y,]"} = o,
T = 1073, the lower bound is almost reached after only two it- E{Re[yx]Im[y]} =0

erations. Furthermore, we conclude from the simulation resul{g
that using the MMSE estimator in the information domain leads 2
to only slightly better results than using the MAP estimator. Of E{Relye]Refy]} = E{Im{y]Tm{y]} = 030k,
course, these results are only confirmed by simulations so Wem the two steps the statement of the lemma follows, see [10].
cannot make any statements about SERs bélgy < 107°.
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