Soft Decoding Of Integer Codes and Their Application to Coded Modulation*

Hristo KOSTADINOV†, Nonmember, Hiroyoshi MORITA††, Regular Member, Noboru IIJIMA†, A. J. HAN VINCK†††, and Nikolai MANEV†††, Nonmembers

SUMMARY Integer codes are very flexible and can be applied in different modulation schemes. A soft decoding algorithm for integer codes will be introduced. Comparison of symbol error probability (SEP) versus signal-to-noise ratio (SNR) between soft and hard decoding using integer coded modulation shows us that we can obtain at least 2 dB coding gain. Also, we shall compare our results with trellis coded modulation (TCM) because of their similar decoding schemes and complexity.

key words: Finite rings, Integer codes, Coded modulation, QAM, PSK, AWGN, SEP.

1. Introduction

Coded modulation is an efficiently combined scheme of coding and modulation techniques. It has been investigated extensively by Ungerboeck [1], [2], Imai and Hirakawa [3] and others. In 1982, Ungerboeck constructed a trellis code that maps the input sequence into signal points of a fixed signal constellation by a method referred to as set partitioning. This method is called trellis coded modulation (TCM). An alternative which allows us to deal with a variety of constellations is block coded modulation [4], [5]. In block coded modulation, each point of the signal constellation corresponds to a symbol of a finite ring of integers modulo \(A \). An information sequence is mapped into a sequence of symbols in \(A \) and coded by a code over \(A \).

Codes over finite rings and in particular codes over \(A \) are \([8]–[10]\). M. Nilsson [11] discusses linear block codes over integer rings in order to improve the performance of PSK communication systems.

One class of block codes, which we investigate in this paper, is so called integer codes. The original form of integer codes have been found in [12] where an integer code to correct a single insertion/deletion error per codeword was described. A. Han Vinck and H. Morita [5], A. Geyser and H. Morita [13] investigated these codes with a view to frame synchronization and coded modulation.

Integer codes are codes defined over finite rings of integers. Their advantage over the traditional block codes is that integer codes are capable of correcting limited number of error patterns which occur most frequently while the conventional codes intend to correct all possible error patterns. Definitions of "cross", "square" and "big square" type of errors can be found in [14]. Similar to integer codes are codes over Gaussian integers [15], [16] designed for the Mannheim distance and a class of error correcting codes based on the Lee distance given in [17]. The latter codes have very high code rate and have been applied by Nakamura for differentially encoded PSK and QAM channel models [18].

The codes over Gaussian integers with the Mannheim distance 1 can correct error(s) of type "cross", while using single Lee-error correcting codes we are able to correct a "square" type of error on the QAM constellation, where a signal point can be represented as a pair of symbols \((a_1, a_2, \ldots, a_n)\) and \((b_1, b_2, \ldots, b_n)\). Those are the only two cases in which other codes can correct exactly the same type of error(s) as integer codes do.

The aim of this paper is to show the flexibility of integer codes and their application to different modulation schemes for decreasing probability of symbol error over an Additive White Gaussian Noise (AWGN) channel. The integer codes have low encoding and decoding complexity and they will be suitable for application in real communication systems.

We are going to introduce a new upper bound for symbol error probability (SEP) in an AWGN channel for square types of QAM constellations coded independently on the in-phase and the quadrature components by integer codes. Moreover, for improving the performance of SEP of integer codes over an AWGN, we shall present a soft decoding algorithm.

In our algorithm we use a trellis whose states represent all possible syndrome values of the applied integer
code. The idea of the trellis structure comes from Jack Wolf’s work [19], where is given a decoding algorithm for linear block codes using a trellis. In the soft decoding algorithm, as well as in TCM, the core part is the Viterbi algorithm. Hence, the proposed soft decoding algorithm has a linear complexity.

The examples of integer codes which are given in this paper are chosen in such a way that a fair comparison between them and TCM can be demonstrated. Because of that we shall also compare the performance of the codes based on the probability of symbol error versus signal-to-noise ratio (for energy per symbol) instead of probability of bit error versus signal-to-noise ratio (for energy per bit).

As we shall see later, using integer codes with the introduced soft decoding algorithm, we can gain approximately 2 dB over the hard decoding. Compared to TCM, integer codes with soft decoding have almost same symbol error rate for a given value of SNR.

The paper is organized as follows. In Section 2 we give some necessary definitions and several constructions of integer codes. A new theoretical upper bound for the advantage of using it we are going to compare it against the performance of the codes based on the probability signal point versus signal-to-noise ratio (for energy per bit). We shall see that this construction is very useful for an example that a fair comparison between them and TCM [2] can be demonstrated.

Remark: Without loss of generality in the definitions above we can assume that $d = 0$. For convenience of a notation we shall use C instead of $C(H, O)$.

The following general construction of single error correctable integer code can be found in [20].

Let $G = \{1, g_2, \ldots, g_m\}$ be a subgroup of Z_A^* of even cardinality $|G| = 2n$.

Theorem 2.1. [14] If $e_i e_j^{-1} \notin G$, $e_i, e_j \in Z_A^*$ or the integer e_i divides A, then the integer code $C = (1, g_2, \ldots, g_n)$ is a single error correctable.

Theorem 2.2. The code $C(H, d)$ is a t-multiple ($\pm e_1, \pm e_2, \ldots, \pm e_s$)-error correctable if it can correct up to t errors with values from the set $\{\pm e_1, \pm e_2, \ldots, \pm e_s\}$ which occur in a codeword.

It is clear that the different signal points have not the same chance to be a result of decision process. The probability signal point s_j to appear at the output of the detector depends on the Euclidean distance between s_j and target signal s_i. In terms of codes over Z_A it means that the elements of Z_A are not equally probable as a value taken by e_i. Which elements of Z_A are more probable depends on the chosen indexing of the signal points by the elements of Z_A. Therefore, there is a point in considering the next definition.

Definition 2.2. The code $C(H, d)$ is a t-multiple ($\pm e_1, \pm e_2, \ldots, \pm e_s$)-error correctable if it can correct up to t errors with values from the set $\{\pm e_1, \pm e_2, \ldots, \pm e_s\}$ which occur in a codeword.

Theorem 2.1. [14] If $e_i e_j^{-1} \notin G$, $e_i, e_j \in Z_A^*$ or the integer e_i divides A, then the integer code $C = (1, g_2, \ldots, g_n)$ is a single error correctable.

Let us assume that we have a communication channel (AWGN, Rayleigh) and a modulation scheme (QAM, PSK) we use to transmit the information. Then we investigate the most probable errors that occur at the receiver and we define the type of error we want to correct using an integer code, i.e., we define the values of $e_i, i = 1, \ldots, s$. In that situation, if it is possible, we would like to know the exact form of the parity-check matrix. In general, that is a very difficult problem. In next theorem we shall give the exact form of the parity-check matrix in case of $s = 1$ and $e_i = 1, i = 1, \ldots, s$. We shall see that this construction is very useful for an AWGN channel and PSK modulation schemes.

Theorem 2.2. The integer code C over Z_{2m} with a parity-check matrix $H = (1, 2, 3, \ldots, 2^{m-1} - 1)$ is a single (± 1)-error correctable.

Proof: To prove that the code is (± 1) single error correctable it is enough to show that all possible syndrome values are pairwise disjoint, i.e., $\pm h_i \neq \pm h_j$, where $h_i, h_j \in H$.

From the definition of H it is obvious that $h_i \neq h_j$ and $-h_i \neq -h_j$ over Z_{2m-1}. Also, we have that $-h_i \in \{2^{m-1} + 1, 2^{m-1} + 2, \ldots, 2^m - 1\}$. Hence, $\pm h_i \neq \pm h_j$ with which the proof is completed.

For multiple error correcting integer codes the situation is more complicated. Even in the simplest case, namely double (± 1) error correctable integer code, it is rather difficult to define the exact form of the parity-check matrix H.
At the other end a detector estimates the received signal. The received signal is sequentially decoded symbols in the in-phase component. A construction of double \((\pm 1)\) correctable integer codes can be found in [21].

In this section we are going to introduce a technique for obtaining an upper bound on the average symbol error probability on square type of a QAM constellation coded by integer code \(C\) in case of a single/multiple error correctable code can be found in [20]. There is given a lower bound of SEP in case of uncoded \(K\) and coded \(C\), respectively). The average symbol error probability \(P_S(C)\) of the code \(C\) is defined as

\[
P_S(C) = 1 - (1 - P_S(C^{in}))(1 - P_S(C^q))
\]

where

\[
P_S(C^{in}) = \sum_{e \in C^{in}} \frac{1}{|C^{in}|} \frac{E[X^{in}(e)]}{n}
\]

and \(n\) is the length of code \(C\).

In our case we encode the in-phase and the quadrature components by same integer code, i.e., \(q_u = q_u^2\), \(q_c = q_c^2\) and \(P_S(C^{in}) = P_S(C^q)\). Hence, we can rewrite (2) as

\[
P_S(C) = 2P_S(C^{in}) - P_S(C^{in})^2.
\]

Let \(r_i\) be the received signal when \(x_i\) is transmitted over the channel, and let \(U(a) = \{U(a^{in}), U(a^q)\}\) and \(D(a) = \{D(a^{in}), D(a^q)\}\) be the decision region of a signal point \(a\) of \(K\) in case of uncoded \(K\) and coded \(C\), respectively.

Let us suppose that we use single error correctable integer code. Then we can decode \(x\) correctly if either of the following two conditions holds:

1. All the received signals \(r_i (1 \leq i \leq n)\) are in \(U(x_i)\).
2. An \(r_i\) is in \(D(x_i)\backslash U(x_i)\) and others in \(U(x_i)\) (\(i \neq k\)).

But if a single \(r_k\) is out of \(D(x_k)\) and others are in \(U(x_k)\) (\(i \neq k\)), then we have at most two erroneous symbols in the decoded codeword \(y\). In fact, since we use syndrome decoding, the syndrome may correspond incorrectly to a wrong single error vector.

Moreover, if \(\ell\) signals \(r_k\) (\(2 \leq \ell < n, 1 \leq j \leq \ell\)) are out of \(U(x_k)\) and others in \(U(x_k)\) (\(i \neq k, 1 \leq j \leq \ell\)), then we have at most \(\ell + 1\) erroneous symbols. Finally, in case that an \(r_k\) is in \(U(x_k)\) and other \(r_i\) are out of \(U(x_k)\) (\(i \neq k\)) or all \(n\) signals are out of their decision regions \(U(x_k)(1 \leq i \leq n)\), then all the symbols of the decoded codeword may be erroneous.

Now we approximate the probability that each component of the received signal \(r^{in}\) is in \(U(x^{in})\) and \(D(x^{in})\) by \(q_u^{in}\) and \(q_c^{in}\), respectively. This means that \(X^{in}(e)\) for \(e \in C^{in}\) is replaced by a common random variable \(X^{in}\) that has the probability distribution based on \(q_u^{in}\) and \(q_c^{in}\). That is, (3) is rewritten as

\[
P_S(C^{in}) \approx \frac{1}{n} E[X^{in}].
\]

Moreover, we obtain

\[
H = \begin{pmatrix}
 h_{11} & h_{12} & h_{13} & h_{14} & \ldots & h_{1n} \\
 h_{21} & h_{22} & h_{23} & h_{24} & \ldots & h_{2n}
\end{pmatrix}.
\]

The conditions for \(C\) to be double \((\pm 1)\) error correctable code are the following:

\[
\begin{align*}
 h_{ij} & \neq \pm h_{im}, \quad j \neq m \\
 h_{ij} & \pm h_{im} \neq \pm (h_{il} \pm h_{ik}), \quad (j, m) \neq (l, k).
\end{align*}
\]

In fact, since we use syndrome decoding, the syndrome may correspond incorrectly to a wrong single error vector.
In soft decoding we utilize the analog received samples y_i, $1 \leq i \leq n$, to find the most probable codeword to be transmitted in the sense of the maximum likelihood estimation.

We propose the following algorithm for soft decoding of a $(\pm l_1, \pm l_2, \ldots, \pm l_t)$ error correctable integer code C of length n over \mathbb{Z}_A.

Basic Soft Decoding Algorithm for Integer Codes:

In: The channel output $y = (y_1, y_2, \ldots, y_n)$ and the received sequence $r = (r_1, r_2, \ldots, r_n)$.

Out: The decoded codeword $\hat{c} = (\hat{c}_1, \hat{c}_2, \ldots, \hat{c}_n)$.

Step 1. Calculate the squared distance $\Delta^2[i, \epsilon]$ between y_i and each of the signal points associated with $r_j + \epsilon (\mod A)$ where $\epsilon \in \mathcal{L} = \{ -l_1, -l_2, \ldots, -l_s, 0, l_1, l_2, \ldots, l_t \}$.

Step 2. Compute the syndrome value $s = rH^T \ (\mod A)$, $s \in \mathbb{Z}_A^m$.

Step 3. Let $E[s]$ be the set of all the vectors $e = (e_1, e_2, \ldots, e_n) \in \mathcal{L}^n$ such that $eH^T = s \ (\mod A)$. Then find the vector $e^* = (e_1^*, e_2^*, \ldots, e_n^*) \in E[s]$ that minimizes $\sum_{i=1}^{n} \Delta^2[i, e_i^*]$.

Step 4. Output $\hat{c} = r - e^*$ and stop. \(\Box\)

The above algorithm accomplishes the maximum likelihood decoding for an AWGN channel. In Step 3 an exhaustive search is performed to find e^* among $E[s]$. It is reasonable if n is relatively small, say $n = 4$. For a large value of n, we can utilize a trellis of $n + 1$ layers, in each of which there are A^m states. In our algorithm each state in the i-th layer for $i = 0, 1, \ldots, n$ is indexed by $k = (k_1, k_2, \ldots, k_n) \in \mathbb{Z}_A^n$. A pair of numbers $(e_k(i), e_k(s))$ is attached to the k-th state in the i-th layer. Here $d_k^{(0)} = 0$ and $d_k^{(\infty)} = \infty$ for $k \in \mathbb{Z}_A^n \setminus \{0\}$ and $d_k^{(i)}$ is given by

$$d_k^{(i)} = \min_{\epsilon \in \mathcal{L}} \left\{ d_k^{(i-1)} + \Delta^2[i, \epsilon] \right\},$$

where h_k is the i-th row of the parity-check matrix H, $i = 1, 2, \ldots, n$ and $k \in \mathbb{Z}_A^n$. The addition in $k + \epsilon h_k$ is in the ring \mathbb{Z}_A^n. Moreover, $e_k^{(i)} = e^*$ where e^* is an element in \mathcal{L} that achieves the minimum value of (9). The Viterbi algorithm can sequentially calculate $\{(e_k(i), e_k(s)) \in \mathbb{Z}_A^n \}$ for $i = 1, 2, \ldots, n$ in a similar way discussed in [19], [23]. After the calculation is completed, e_n^* is given by the value of $e_n^{(s)}$ associated to the s-th state in the n-th layer where s is the syndrome value obtained in Step 2. The other e_{n-1}^*, \ldots, e_1^* are computed in descending order by using the following
recursive equations on \(k^{(i)}\), \(i = n - 1, \ldots, 1\) with the initial value \(k^{(n)} = s:\)

\[
k^{(i)} = k^{(i+1)} + e_{i+1} h_{i+1}, \quad k^{(i)} \in \mathbb{Z}_A^n, \\
e_i = c(i).
\]

It is well known that the computational complexity of the Viterbi algorithm (VA) grows only linearly with the length of the information sequence [24].

Let us suppose we want to transmit \(n\) symbols over an AWGN channel and a constellation (PSK, QAM) with \(2^k\) signal points using two different codes, that is, integer code of length \(n_1, n_1\) over \(\mathbb{Z}_{2^k}\) with a parity-check matrix \(H \in \mathbb{Z}_n^{m \times n}\) and a \(2^{k-1}\) state TCM of length \(n_2\) (in bits), \(n_2\).

In this paper we apply the soft decoding algorithm (SDA) only for single and double error correctable integer codes, so that we have \(m = 1\) or \(m = 2\). Moreover, if \(k/2\) we encode independently the in-phase and quadrature components of a QAM constellation by a double error correctable integer code \(c\) over \(\mathbb{Z}_{2^k/2}\). So, the transition matrix of the trellis for the SDA, using single/double error correctable integer codes, has a size \(2^k \times 2^k\), while the TCM has a transition matrix of size \(2^{k-1} \times 2^{k-1}\).

We can say that the SDA for integer codes is a modified VA. The main difference is that some operations (addition, multiplication) in the SDA are in \(\mathbb{Z}_A\), while in the TCM they are in \(\mathbb{Z}_n\). Hence, we can conclude that the two algorithms have linear complexity with respect to \(n\).

Note that we can apply the soft decoding algorithm to any modulation schemes (QAM, ASK, PSK).

Below, with several examples, we shall demonstrate how the soft decoding algorithm works for PSK and QAM modulation schemes. As we mentioned above, to make the comparison between TCM and integer codes fair, we use a \(2^{k-1}\) -state TCM to encode a constellation consisting of \(2^k\) signal points. For more accurate results of SEP in our experiments, for a given value of SNR we transmit \(10^8\) bits over a signal constellation coded separately by TCM and an integer code.

Example 1. (8-PSK constellation) Let us assume that the signal points of 8-PSK constellation are numbered by integers from 1 to 8 (consecutively).

Substituting \(m = 3\) in Theorem 2.2 we obtain a \((\pm 1)\) single error correctable integer code of length \(n = 3\) over \(\mathbb{Z}_8\) with a parity-check matrix \(H = (1,2,3)\).

In Figure 1 we show the comparison of the simulation results on symbol error probability for TCM, uncoded and coded (using hard and soft decoding algorithms) 8-PSK. From the simulation results we can conclude that using the soft decoding algorithm for a coded 8-PSK with a single \((\pm 1)\) error correcting integer code we gain approximately 2 dB compared to the hard decoding. In this case the TCM (8 state TCM with code rate 2/3 given by Ungerboeck [2]) has slightly better performance than the integer code.

Example 2. (16-QAM constellation) Let us assume that the points of a 16-QAM constellation are numbered by the integers from 1 to 16 beginning from the left upper corner to the bottom right corner. Index each signal point. Using Theorem 2.1 we can construct a single \((\pm 1, \pm 3, \pm 4, \pm 5)\)-error correctable code \(C\) of length \(n = 2\) over \(\mathbb{Z}_17\) with a parity-check matrix \(H = (1,2)\). In this case the code is perfect and the error type it can correct is a “square”.

Note that to assign each symbol in a codeword with a signal point in the constellation, we exclude codewords that contain zeros. In this case it is only one codeword \(c = (0,0)\). The rate of the code is 1/2.

The comparison of our simulation results of symbol error probability versus signal-to-noise ratio using that code (applying hard and soft decoding), an 8-state TCM [2] and an uncoded 16-QAM is given in Figure 3.

Fig. 1 A comparison of symbol error probability versus signal-to-noise ratio between 8 state TCM, uncoded and coded 8-PSK (using the integer code in Example 1 with the hard and soft decoding algorithms).

Fig. 2 Indexing of the signal points in a 64-QAM.
Here, because the rate of the code is relatively low, applying the soft decoding algorithm we gain approximately 4 dB compared with hard decoding and about 0.5 dB more than TCM.

Let us consider an M-QAM constellation of square type. In this case we have that $M = 2^k$, $k = 1, 2, \ldots$.

Let us index each signal point s_{ij} in an M-QAM constellation with a pair $(i, j) \in \mathbb{Z}_k \times \mathbb{Z}_k$ of elements of \mathbb{Z}_k where i is the number of the row and j is the number of the column which s_{ij} is placed in. The counting begins from the left bottom corner and goes upwards and to the right, respectively (see Fig. 2 for the case $M = 64$). A given byte is mapped into a signal point s_{ij}, if its left k bits and its right k bits are the binary representation of i and j, respectively.

Example 3. (64-QAM constellation) Let us index each signal point s_{ij} with a pair $(i, j) \in \mathbb{Z}_8 \times \mathbb{Z}_8$ as we described above (see Fig. 2). Using (1) it is easy to check that we can construct a double (± 1)-error correctable code C of length $n = 4$ over \mathbb{Z}_9 with a parity-check matrix

$$
H = \begin{pmatrix}
0 & 1 & 2 & 3 \\
3 & 1 & 0 & 2
\end{pmatrix}.
$$

In this case, any two signal points $s_{i_1j_1}$ and $s_{i_2j_2}$ are followed by two additional signals $s_{a_1b_1}$ and $s_{a_2b_2}$ such that (i_1, i_2, a_1, a_2) and (j_1, j_2, b_1, b_2) are codewords of C.

Note that we cannot use all the codewords of the code C. The error type the code C can correct is a “square” type.

We can obtain a theoretical bound for this code using (7) and (4) with values of q_{u}^{in} and q_{c}^{in} [20]:

$$
q_{u}^{in} = \frac{1 + 7 \text{erf}(\gamma)}{8},
q_{c}^{in} = \frac{1 + 3 \text{erf}(3\gamma)}{4},
$$

where $\gamma = \sqrt{E_s/170N_0}$.

The SEP of our simulation results and the theoretical bound as well as the approximation of error probability given in [20] are plotted in Figure 4. In Figure 5 we show the comparison of the simulation results on SEP versus the signal-to-noise ratio of uncoded, coded 16-QAM (using the integer code with hard and soft decoding), and TCM with 32 states [2]. Here, using the soft decoding algorithm we gain about 3 dB over the hard decoding and 2 dB over the TCM with 128 states [2].

Example 4. (256-QAM constellation) Let us index each signal point s_{ij} with a pair $(i, j) \in \mathbb{Z}_{17} \times \mathbb{Z}_{17}$ as we did in the previous example. Using (1) we can check that the code over \mathbb{Z}_{17} with a parity-check matrix

$$
H = \begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
1 & 5 & 8 & 7 & 3 & 6 & 2 & 0
\end{pmatrix}.
$$

is a double (± 1)-error correctable code C of length 8.

As in the previous two examples we cannot use all the codewords of the code. We exclude the codewords that contain a zero as a symbol. Because of that the information rate slightly decreases - from $R=3/4$ to $R=17/24$ (in bits).

The theoretical bound of the code is given by (7) and (4) with values of q_{u}^{in} and q_{c}^{in} [20]:

$$
q_{u}^{in} = \frac{1 + 15 \text{erf}(\gamma)}{16},
q_{c}^{in} = \frac{1 + 7 \text{erf}(3\gamma)}{8},
$$

where $\gamma = \sqrt{E_s/42N_0}$.

The SEP obtained by the simulations, the theoretical bound, and the approximation of error probability given in [20] are plotted in Figure 4. The symbol error probability versus the signal-to-noise ratio obtained by simulations of uncoded 256-QAM, 128-states TCM [2], and coded modulation with the aforesaid integer code (applying hard and soft decoding), are given in Figure 6. These results show that applying the soft decoding algorithm we gain 2 dB in SNR over the hard decoding for a given value of symbol error probability. The TCM with 128-state [2] has the same performance as the soft decoding.

5. Conclusions

In this paper we presented applications of integer codes in different modulation schemes. A new upper bound on symbol error probability was derived in the case of square QAM constellations coded by an integer code. This bound is very tight compared with simulation results, and even better than the known bound [20] for small values of SNR. For a high SNR, these two bounds as well as the simulation results give almost same value.
of SEP. Moreover, to improve the error rate of integer codes we proposed a soft decoding algorithm.

Experimental results of the comparison on the symbol error probability versus the signal-to-noise ratio over an AWGN channel between integer codes and TCM schemes show us that they have very similar error performances. In some case using the soft decoding we can gain up to 2 dB over the TCM in Example 4, while in another TCM scheme is better than the integer code (Example 1). That gives us a motivation to continue our research on multiple error correcting integer codes with different types of errors.

Also, we can conclude that the proposed soft decoding algorithm, compared with the hard decoding, has a better performance for a small value of code length \(n \). For a larger value of \(n \) the soft decision decoder is substantially more complex than the hard decision decoder. However, in this case the hard decision decoder has more space complexity, which can result in increasing the circuit complexity in case of a hardware implementation.

Integer codes could be applied for fading channels (Rayleigh, Rician). For our future research plans we consider to start with slow-fading channels, which are similar to AWGN channels.

As a conclusion we can say that because of their flexibility integer codes will be very suitable for application in real communication systems.

6. Acknowledgement

This work was partially supported by “FY2007 Japan Society for the Promotional Science (JSPS) Postdoctoral Fellowship for Foreign Researchers”. The authors would like to thank the anonymous reviewers for their helpful comments which improved the quality of this paper.

References

H. Kostadinov, H. Morita and N. Manev, “Integers Correcting Single Errors of Specific Types ($\pm e_1, \pm e_2, \ldots, \pm e_s$),” *IEICE Trans. on Fundamentals*, vol. E86-A, No. 7, pp. 1843-1849, July 2003.

Hristo Kostadinov was born in Sofia, Bulgaria, in 1974. He received the B. Sc. degree and M. Sc. degree in 1998, and 2001, respectively at Sofia University, Sofia, Bulgaria. In March 2005, he received his Ph. D. degree at the University of Electro-Communications, Tokyo, Japan. Since April 2005 he is Assistant Professor at the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences. Currently he is a Postdoctoral Fellow at the University of Electro-Communications, Tokyo. His research interests are in coding theory, information theory and communication theory and signals.

Hiroyoshi Morita received the B. Eng. degree, the M. Eng. degree, and D. Eng. degree from Osaka University, in 1978, 1980 and 1983, respectively. In 1983, he joined Toyohashi University of Technology, Aichi, Japan as a Research Associate in the School of Production System Engineering. In 1990, he joined University of Electro-Communications, Tokyo, Japan, first as an Assistant Professor at the Department of Computer Science and Information Mathematics, where from 1992, he was an Associate Professor. Since 1995 he has been with the Graduate School of Information Systems. He was Visiting Fellow at the Institute of Experimental Mathematics, University of Essen, Essen, Germany during 1993-1994. His research interests are in combinatorial theory, information theory, and coding theory, with applications to the digital communication systems.

A. J. Han Vinck was born in Breda, The Netherlands, in 1949. He received the M. Sc. degree in 1974 and his Ph. D. degree in 1980, both from the Technical University of Eindhoven, Eindhoven, The Netherlands. From 1985 to 1990, he was an Associate Professor at the University of Eindhoven, and became a Full Professor at 1990 at the university of Essen, Essen, Germany. From 1992 to 1994, he was Director of the Institute for Experimental Mathematics at the University of Essen. His interest is digital communications. He organized the Veldhoven Workshop on Information Theory in 1990 and was Cochairman of the International Symposium on Information Theory (ISIT’97) in Ulm, Germany.

Nikolai Manev received his M.Sci. in mathematics in 1977 from Sofia University and Ph. D. in 1984 from the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences. In 1977 he joined the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences as a Researcher. Since 1990 he is an Associate Professor in the same institute. His research interests are in algebraic and combinatorial coding theory, cryptography and their applications to the digital communication systems.