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Some Upper Bounds on the Inverse Relative Dimension/Length

Profile*

Peisheng WANG'®, Nonmember, Yuan LUO', Member, and A.J. Han VINCK't, Nonmember

SUMMARY  The generalized Hamming weight played an important
role in coding theory. In the study of the wiretap channel of type II, the
generalized Hamming weight was extended to a two-code format. Two
equivalent concepts of the generalized Hamming weight hierarchy and its
two-code format, are the inverse dimension/length profile (IDLP) and the
inverse relative dimension/length profile (IRDLP), respectively. In this pa-
per, the Singleton upper bound on the IRDLP is improved by using a quo-
tient subcode set and a subset with respect to a generator matrix, respec-
tively. If these new upper bounds on the IRDLP are achieved, in the corre-
sponding coordinated two-party wire-tap channel of type II, the adversary
cannot learn more from the illegitimate party.

key words:  generalized Hamming weight, inverse relative dimen-
sionflength profile, quotient subcode set, wiretap channel of type 11

1. Introduction

The generalized Hamming weight provided by Wei [3] was
widely used in communication theory and coding theory. It
was extended to a two-code format by Luo, Mitrpant, Han
Vinck, and Chen [2], in the study of the wiretap channel of
type II which was invented by Wyner and Ozarow [4], [5].

Two equivalent concepts of the generalized Hamming
weight hierarchy and its two-code format, are the inverse
dimension/length profile (IDLP) [1] and the inverse relative
dimension/length profile (IRDLP) [2], respectively.

In this paper, we consider some upper bounds on the
IRDLP. Some preliminaries about the IDLP and the IRDLP
are introduced in Sect. 2. Section 3 provides a definition of
a quotient subcode set and calculates its cardinality.

The relations between the IDLP and the IRDLP are in-
vestigated in Sect. 4, see Theorem 2, etc. Then, by using the
quotient subcode set, the only known upper bound on the
IRDLP (the generalized Singleton bound {2]) is improved,
see Corollary 1.

Since it is not easy to calculate the upper bound in
Corollary 1, some other upper bounds are studied in Sect. 5,
see Algorithm 1 and Corollary 4. In Sect.6, These new
bounds on the IRDLP are proved to be better than the Sin-
gleton bound.

Section 7 demonstrates that, if these bounds on the
IRDLP are achieved, the adversary cannot learn more from
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Fig.1 A coordinated two-party wire-tap channel of type Il when S are
leaked.

the illegitimate party in the corresponding coordinated two-
party wire-tap channel of type II, see Fig. 1. Conclusions are
presented in Sect. 8.

A summary of this paper was presented at IWSDA’07
[6]. All of the contents after Remark 1 are complementary
materials with proofs for this full paper.

2. Preliminary

In the first part of this section, the IDLP and the IRDLP are
introduced. Then, in the second part, we consider how to
compare two sequences with each other in Definition 1 and
Definition 2, which are useful for the establishment of some
upper bounds on the IRDLP in Sect. 4 and Sect. 5.

In this paper, the linear codes are over GF(2). 0" de-
notes the all-zero vector of length n. ® denotes the empty
set. Let J be a subset of I = {1,2,...,n}. For an [n, k] linear
code C, its projection is denoted by

PJ(C) = {PJ(C) = (C17027 seey Cn) € C}’
where P;(¢); = c;if j € J, and P;(c); = 0if j € I - J.
For example, P;123)(1,0,1,0,1,0) = (1,0,1,0,0,0). The
support of C is denoted by

supp(C) := {j : there exists ¢ € C such thatc; # 0}.

The inverse dimension/length profile (IDLP) of an [n, k] lin-
ear code C, is a sequence (see [1])

K(C) = {k(C): 0 < i < n},
where
ki(C) = min{dim(P;(C)) : [J| = i}. (1)

The inverse relative dimension/length profile IRDLP)

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers



of an [n, k] linear code C and a linear subcode C!, is a se-
quence (see [2])

k(C,C") = (k(C,C"): 0<i<n),

where

ki(C,C") := min{dim[P,(C)] — dim[P,(CHY] : |J| = i}.
2
The IDLP can be retrieved from the IRDLP if dim[{C'] = 0.

Example 1: Let C be a [7, 3] linear code with a generator
matrix A, where

01 001 01
A=]0 01 0 1 O 1}.
1 00 0011

Then k(C) = {0,0,1,1,2,2,3,3}. Let C! be a [7,2] linear
subcode with a generator matrix

A0 1 00 1 01
oo 1010 1)

Then k(C,C') = {0,0,0,0,0,1,1,1}.

Below we consider how to compare two sequences
with each other by using two methods. In Definition 1, each
component of the two sequences is investigated. Definition
2 depends on a dictionary order.

Definition 1: For any two integer sequences s :=
{s0, ..., S»} and t := {10, ..., 1,} with the same length, we say
that s is upper-bounded (lower-bounded) by t, if s; < ;(s; =
t)for0<i<n.

Definition 2: For any two integer sequences s :=
{s0, ..., 8y} and t := {19, ..., t,,} with the same length, we say
that s > t, if there exists j(0 < j < n) such that s; > ¢; and
si=t;for0<i<j—1. Denotethats > tifs>tors=t.

It is easy to verify that, any two integer sequences with
the same length could be compared with each other by the
dictionary order relation “>.” Therefore, if S is a finite set of
sequences with the same length, we can define a minimum
sequence

min{s : s € S}
bt

by the relation “>) i.e., t > min{s :
>

s € S} for any
t € S. Note that, “s > t” doesn’t mean that t is uppet-
bounded by s. For example, let s = {0,0,1,1,1,2,3} and
t=1{0,0,0,1,2,2,3}. Thens > t, but t is not upper-bounded
by s.

3. Quotient Subcode Set

In order to study the relations between the IDLP and the
IRDLP, we introduce a definition of a quotient subcode set
in this section. The cardinality of the quotient subcode set is
investigated in Theorem 1.
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Definition 3: Let C be a linear code with length #, and C'
be its subcode. A quotient subcode set of C to C!, is denoted
by

Mee = {C?:C=C'a(C?,

C? is a linear subcode of C},

where C!' ® C? is the direct sum of C' and C2. The direct
sum implies the condition C! N C? = {0"}.

IfC! = C, Meer = {{07}). IEC! = {0}, Mo = (C).

For any C? € M1, C? and C/C" are isomorphic. An
example is presented as follows.

Example 2: Let C and C' be linear codes of Example 1.
Then, the quotient subcode set M ¢ is a set of four linear
codes C?,C3, C*, C° with generator matrices Ay, Az, As, As,
respectively, where

Ay =(1000011), A3=(1100110),

As=(1010110), As=(1110011).

Generally, the number of elements in M is calcu-

lated in Theorem 1. Lemma 1 presents the number of all
generator matrices of all of the linear codes in M¢ 1.

Lemma 1: For an [n, k] linear code C and an [n, k] sub-
code C', let GM¢c1 be a set

{G : G is a generator matrix of any code in M¢c1}.
Then,
IGMceil = (24 - 2)(2¢ - 2871y ... 2F - 27,

o
Proof. Let Ay = be a generator matrix of C'. Then
(73
B
a matrix A; = P2 is a generator matrix of any code in
ki

Mc o, if and only if a1, @2, ..., @, B1, 52, ..., Bi are linearly
independent for any 1 < i < k — k;, where 8; € C. This
lemma follows from the fact that, if we determine the matrix
A, from f3; to Bk-«, one by one, the number of all possible S;
is 2k — 2ki+i-1, ]
Theorem 1: For an [n, k] linear code C and an [n, k;] sub-
code C!, |M¢ci| = 282 where ky = k — k.

Proof. 1t follows from Lemma 1 that,

GMcr| = (2F =22 = 281, 2F = 286,
and

IGMe2| = (2% - 2%y 2% - 21)...2% — 2k7y,

where C? is any fixed code with dimension k, in M1,
and GM= is a set of all generator matrices of the code C?.
Therefore,

IGMc il

Mccl = -

=2k,
IGM |

In Example 2, we have [M¢ | = 4.
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4. Relations between the IDLP and the IRDLP

In this section, a relation between the IDLP and the IRDLP
is studied in Theorem 2. Then, an upper bound on the
IRDLP is obtained in Corollary 1 by using the quotient sub-
code set. A necessary and sufficient condition for achieving
the bound is provided. This bound is proved to be better than
the generalized Singleton bound [2] in Sect. 6. Corollary 1
follows from Lemma 2 and Theorem 2.

For the proofs of Lemma 2, Theorem 2 and Corollary
1, please refer to our summary paper [6].

Lemma 2: For an [n, k] linear code C and an [n, k;] sub-
code C!, we have

dim[P,(C)] - dim[P,(C")] < dim[P(C?)], 3)

where C2 € Mg and J € [ = {1,2,...,n}. For a given
J C 1, the equality (3) holds if and only if dim{P,;(C') N
P;(CH] = 0. The equality (3) holds for any subset J if and
only if supp(C") N supp(C?) = ®.

By using Lemma 2, a relation between the components
of the IRDLP and the IDLP is investigated in Theorem 2.

Theorem 2: Let C be an [n, k] linear code and C! be an
[n, k1] subcode. Then for any C? € M1,

k(C,CY) < ki(C), 4)

where 0 < i < n. The equality (4) holds if supp(C') N
supp(C?) = @.

Example 3: The first part of Theorem 2 can be verified by
Example 2 as follows, where C? is replaced with the sub-
codes C2, C3,C* and C? in Example 2, respectively.

k(C,CcY =10,0,0,0,0,1,1, 1},
k(C% ={0,0,0,0,0,1,1, 1},
k(C% ={0,0,0,0,1,1,1,1},
k(C* =1{0,0,0,0,1,1,1,1},
k(C% ={0,0,0,1,1,1,1, 1}.

It is easy to see from Theorem 2 that, E(C, C) is upper-
bounded by k(C?) if C* € M, see Corollary 1.

Corollary 1: For an [n, k] linear code C and an [n, k;] sub-
code C!, k(C, C') is upper-bounded by

UPK(C,CY) := mgn{iz(cz) :C? e Mcci).

Furthermore, U P(E(C, Cch) is achieved if and only if there
exists a code C** € M such that k(C*) = k(C, C').

Remark 1: It follows from Theorem 2 and Corollary 1
that, if there exists C2 € Mce such that supp(C') N
supp(C?) = @, then the upper bound UP(E(C, chHy) is
achieved.

In Example 3, K(C,C") = {0,0,0,0,0,1,1,1} =
UP(C,C")),i.e. UPK(C, C"))is achieved, but supp(CHN
supp(C?) # ®. Therefore, supp(C") N supp(C?) = @ in
Remark 1 is only a sufficient but not necessary condition for
achieving the bound UP(k(C, C")).

Furthermore, UP(k(C,C")) is clarified in the case of
dim[C?] = 1, see Corollary 2.

Corollary 2: For an [n, k] linear code C and an [n,k — 1]
subcode C', UPk(C,C")) = k(C?), where C* is a one-
dimension subcode of C and the only nonzero codeword c in
C?*" is the one with the smallest Hamming weight in C \ C'.
Proof. Denoted by wy(C**) the Hamming weight of the
codeword ¢. Then k(C?) = {n; : 0 < i < n} =
{0,..,0,1,..., 1}, where min{i : m; = 1} = n — wy(C? + 1.
Furthermore, C?* € Mcci. Therefore m>in{k(C2) 1 C? €

Mcei) = K(C?), and
UPK(C,C") = k(C?).

5. Some Other Upper Bounds on the IRDLP

An upper bound UP(K(C, C!)) on the IRDLP is introduced
in Corollary 1. But it is unrealistic to calculate the bound
through exhaustive search in M1 when k is large.

In this section, by using Algorithm 1, some new up-
per bounds on the IRDLP are introduced in Remark 2 and
Corollary 4, which are also better than the generalized Sin-
gleton bound (see Sect. 6). Compared with Corollary 1, the
new bounds can be calculated more easily, see Remark 2.
But the bounds of Corollaries 1 and 4 cannot be compared
with each other by Definition.1.

In order to get some new bounds on the IRDLP in poly-
nomial time, Algorithm 1 is provided in the following to se-
lect acode C? € M¢ci.

Algorithm 1: Given a generator matrix G of an [n, k]

i
linear code C and an [n, k;] subcode C!, where G = @2
Xk kxn
There are four steps to find &, row vectors of G, where k, =
k — k1, which span a linear code of M¢ci:

B
1. Let Gy = B be a generator matrix of C 1 which
ky kyxn
is not necessarily a part of G. Since C! is a subcode of
b1
C, there exists a matrix P = P2 satisfying
Pl ek
G, = PG, (5)

where p; is obtained by solving a system of linear equa-
tions B3; = p;G. P is unique and has rank ;.



4
q1
2. Let Q = 2 be the row reduced echelon (RRE)
G/ gk
form of P. It can be proved that Q only depends on
G and C' later. Assume that the positions of the first
non-zero elements (leading 1) of its row vectors are
ay <ay <--- < ay,respectively.
3. Denote
[i - Supp(%) n {1’ 2’ s Qi — 1} - {aiy e Q] T 1}’
(6
where 1 <i<kjandag 41 = k+ 1. It’s easy to see that
aieliandliﬁlj Zq)lfl;ﬁ]
4. Let
J =i} €L =1{1,2, ..k}, (7N
where Ji is any element of I;. Then the sequence
J1s s Jk, 18 strictly increasing and
InJ={j}. ®
Denote L — J by {l1,h,...,I,}). It follows that
a,, ..,a/lkz,ﬁx,ﬁz, .. Bk, are linearly independent. Let
C? be the code spanned by s, - Then, C?is a
linear code of M¢ 1.
Remark 2:

o

For given G and G, Algorithm 1 can be completed in
polynomial time. Then it is easy to construct a code
C? € M such that k(C?) is an upper bound on
k(C,CY).

The matrix Q only depends on G and C',see Corollary
3. For given G and C!, the set J of (7) is not unique,
and therefore the code C? is not unique too. Denote
by Mg the set of all possible C? in Algorithm 1 for
given G and C'. Then

MG,C' - MC’Cl and ]MG,C'l < IMC,C"‘

Theorem 2 implies that k(C, C') is upper-bounded by
k(C?). In the proof of Theorem 4, it is shown that, if G
is RRE and C? € M 1, then the bound k(C?) is better

than the generalized Singleton bound on k(C,C h.

The correctness of Algorithm 1 is presented in Lemma 3.

Lemma 3: The vectorsa, ..., @, obtained in step 4 of Al-
gorithm 1 satisfy that gy, ..., @y, Bi, ..., Bk, are linearly inde-
pendent.

Proof. There are 3 steps to prove the lemma, using the argu-
ments of Algorithm 1.

1.

The proof of this lemma is converted to the prove that
the matrix (10) is reversible.

a,

o L
Assume that G, = l , where [; is given in step 4

a’lkz kyxn
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r
of Algorithm 1. Denote R = 2 such that
ko joxk
G» = RG. 9

Note that, R has full row rank and is unique, G; is a
submatrix of G and supp(r;) = {;}for1 < i < k. It
follows from (5) and (9) that

&)
= G.
(G2 kxn R kxk

Therefore, to prove “ay,, ..., a, B, ..., By, are linearly
independent” in Algorithm 1, we only need to prove

that
P
10
(R)kxk ( )

is reversible.

. To prove that matrix (10) is reversible, we only need to

prove that matrix (11) is reversible.

Since Q is the RRE matrix of P, (g) can be re-
ksxk

) P .
trieved from ( through elementary linear transfor-

R
kxk
mation. It follow>s< from supp(r;) = {I;} and supp(R) =

{1, Ly, ..., I} = L — J that, (g) can be transformed into

)
through elementary linear transformation, where
supp(Q) N supp(R) = ©. (12)
4
Denote that Q' = qz , then
q;ﬂ fy ke

supp(q;) = supp(q;) — supp(R)

supp(gi) — (L= J)

supp(gd) NL—J

supp(qi) N J, (13)

~ where g; is given in step 3 of Algorithm 1.
. It will be shown that matrix (11) is reversible.

It follows from (13), (6), (8) that,

{1 s ey Ajr] — 1} N Supp(q;)

{1,..,ai1 = 1} Nsupp(gy N J

LnJ

= {ih (14)

Then, for 1 < i < ki, j; is the position of the leading 1

1l
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in g, i.e. the leading 1 positions in the rows of Q" are
{J1s--» j&, }» which implies that Q' has full row rank and
dim[Q'] = k;. Then it follows from (12) that

dim[(g)] = dim[Q'] + dim[R] = k; + k» = k.

’

Then matrix (Q

. . P
R) is reversible, so are (R) and

kxk

(%) , 1.e., the rows of G, are linearly independent
kxk '

to thé rows of Gy. ]

Remark 3: To conduct Algorithm 1, we need to determine
the generator matrices G of C and the subcode C' in ad-
vance. But the result of Algorithm 1 is independent on G!
after step 2 of Algorithm 1. Moreover Corollary 3 demon-
strates that Q is only dependent on G and C!. Thus Algo-
rithm 1 is independent on the form of the generator matrix

of C!, i.e., if the generator matrix G of C and the subcode

C! are given, then the result of Algorithm 1 is fixed.

Corollary 3: For a given generator matrix G of a linear
code C and a subcode C', Gy and Gy; are assumed as any
two generator matrices of C'. Denote matrices Pyo and P,
such that Gy = P;oG and G; = P;;G, where the corre-
sponding RRE generator matrices of Pjp and Py; are Qg
and Qi respectively, then Q0 = Q1. .

Proof. Since both Gy and Gy are the generator matrices
of C!, it can be assumed that Gi9p = AGj;, where A is
a basic elementary transformation matrix. Then we have
(P10 — AP11)G = O(zero matrix). In addition, G has full
row rank. Therefore P;g = AP;;. Moreover, it is easy to
know that both Py¢ and P;; have full row rank, then the
linear space generated by Pjo and Py; are the same. There-
fore the RRE form matrices of Pig and Py, are identical, i.e.

Q10 = O11- o

Corollary 4: For a given generator matrix G of an [, k]
linear code C and an [n, k;] subcode C*, k(C, C!) is upper-
bounded by k(CZ) where C? € Mg . Furthermore,

k(C, C?) is upper-bounded by
UPS(K(C,CY) := min(k(C?) : C* € Mgc1).
If G is RRE, UPS(K(C, C')) is denoted by
UPRRE(k(C, C")).
In Example 1, the RRE generator matrix of C is
1 00 0 0 1 1
G=[0100101].
0 010101
Then by using Algorithm 1,

01 0
Q=(0 0 1)'

{2}, = {3L,J = {2,3,L—-J = {1} and

Therefore, I;

@, = ay. It follows that [Mg 1| = 1. The linear code C? is
generated by (1 00 0 0 1 1). Thus,

UPRRE(k(C, C")) = k(C?) = {0,0,0,0,0,1,1,1},

which is the true value of k(C, Ch, i.e. the upper bounds
UPRRE(K(C, C")) and K(C?) are both achieved.

6. Comparison with the Generalized Singleton Bound

In this section, the upper bounds in Sect.4 and Sect. 5,
are compared with the generalized Singleton bound on
the IRDLP. Theorem 4 shows that UP(k(C,C')) and
UPRRE(k(C, C")) are both upper-bounded by the generalized
Singleton bound.

Lemma 4: ([2]) Let {n; : 0 < i < n} be an integer sequence
with length n. If 7; is nondecreasing with i from 5 = 0 to
7, = k where k < n, and the increment of each step is at
most 1, then {my, ..., m,} is upper-bounded by

{0,1,2, ..k, ...k}

and lower-bounded by
{0,..,0,1,2,..,k}.

The generalized Singleton bound on the IRDLP was
introduced in [2], see Theorem 3.
Theorem 3: ([2]) For an [n, k] linear code C and an [n, k]
subcode C!, their IRDLP is upper-bounded by U P(k)

({UPK); :0<i<n}:={0,..,0,1,2, ... ks, ... ka},

where max(i : UP(K); = 0} = k; and k; = k — ky. UP(K) is
achieved if and only if ky(C, C!) = k — k;.

Theorem 4: For an [n,k] linear code C and an [n,k]
subcode C!, UP(K(C,C!)) and UPRRE(K(C, C")) are both
upper-bounded by the generalized Singleton bound U P(K).

Proof. UP(k(C, C")) and UPRRE(k(C, C')) are both nonde-
creasing with i from
UPy(K(C,C")) = UPRRE((C,C1)) = 0
to
UP(K(C,C") = UPFFE(K(C, CY)) = ks,

and the increment at each step is at most 1, where k; =
k— lg . Then it follows frog Lemma 4 and Theorem 3 that,
UP(k(C,C")) and UPRRE(K(C, C")) are upper-bounded by
UP(K) if

UP, (K(C,CY) = UPFRE(K(C,C")) = 0. (15)
Let C? be the code obtained by Algorithm 1, i.e.,
Cte Mger CMce,

where G is the RRE generator matrix of C. It will be shown



in the next paragraph that

K, (C?) = 0. (16)
a
According to Algorithm 1, denote G = a2 be the
o
o,
RRE generator matrix of the code C, and denote G, = %,
@,

be the generator matrix of the code C? LetT = { J1s e Ji}
be the index set of the leading 1s in the row vectors of G.
Let Ty = {ji, ..., j,kz} C T be the index set of the leading 1s
in the row vectors of G,. Then, for 1 <i <k,

supp(ai) N'T = {ji}.
Therefore, for 1 <i < ko,

supp(ay) N(T —T2) = supp(a,) N\T N (T - T)

(i} N (T - Ty)
= (D,

It

which implies that supp(C?) N (T — T) = D, i.e.
dim[Pr_r,(C*H] = 0. amn

Thus the formula (16) follows from (17) since |T — T,| =
k — ky = k;. Furthermore, the formula (15) follows from
(16). O

Remark 4: Theorem 4 shows that, if ”lE(C,C‘) achieves
the g;neralized Singleton bound, then the upper bounds
UP(K(C,C")) and UPRRE(K(C, C!)) are both achieved. In
Example 1,

UP(K) = {0,0,0,1,1,1,1,1},
UPK(C, Ch) = UPRREXK(C, C1Y)
=1{0,0,0,0,0,1,1,1}.

It is easy to see that UP(k(C, C!)) and UPRRE(K(C, C")) are
better than the generalized Singleton bound U P(k).

7. The Coordinated Two-Party Wire-Tap Channel of
Type II

In this section, we will apply above results to the model
of the coordinated two-party wire-tap channel of type II in
Fig. 1.

In the coordinated two-party wire-tap channel of type
II, let S = (S, S7) be the data bits of the senders, where S 1
is the data bits of the first sendler, and S2 is the data bits of

the second sender. Let A = A

coding scheme of [2], [4]. The transmitted bits are one of the
solutions X in the equations A'X7 = ST and A2XT = ST.
An adversary Z; has full knowledge about A and has ability

- | be the matrix of the coset
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to tap any y transmitted bits of X, where 7 is the index set of
the p tapped bits. The index set of the components of X is
{1,2,...,n}

Assume that the first sender is illegitimate, i.e. S! is
leaked to the adversary. Then the equivocation of the legiti-
mate party’s data bits S2 to the adversary is (see [2])

Agiiy = min H($*Z,,S") = k,u(C,C). (18)
Ti|Tl=u

In addition, if S! is not leaked to the adversary, the equivo-
cation is

Aoy = mm H(SZy) = Ky u(CH), (19)

where C, C! and C? are the linear codes with generator ma-
trices A, A' and A%, respectlvely

If k(Cz) =Kk(C,C"), i.e. the upper bound UP(k(C cy)
is achieved, then for any g, in the corresponding model of
Fig. 1 with the encoder (with respect to C, C' and C?), the
adversary Z, cannot learn more about the legitimate party
S? from the illegitimate party S, see Corollary 5.

Corollary 5: In the coordinated two-party wire-tap chan-
nel of type I, if Agjiy = Agy, i.e., Kuey(C,CY) = kyp(CP),
there exists a set 7o(|7o| = ) such that

min H(S*Z., ') =

ilrl=p

H(S%Z,, S1) = H(S?|Z,,)

min H(S*Z,).
7l=p

Proof. Assume that v} and 75(J71] = 1| = u) are two subsets
of {1,2,---, n} such that,

min H(S*|Z,,S') = H(S?|Z.,,S 1),

TifT]=p

min H(S*|Z,) = H(S'|Z,).

Tiltl=p
Since Agj1,, = Agy,, we have
H(S?Z.,,S$Y) < H(S?Z,,,S") < H(S?|Z.,)
= Aoy = Nojiye = H(S?|Z,,, S1).
Therefore,
H(S?Z;,,S") = H(S?|Z,,,S1) = H(S?|Z,,), i.e.
n;lxgﬂ H(S*|Z,SY) = H(S?|Z.,, S 1)

= H(S|Z,) = min H(S*|Zy).
Ti|T|=1

Denotes 79 = 77, then this corollary follows.

8. Conclusions

The known results about the upper bounds on the IRDLP are
very few. In this paper, the generalized Singleton bound is
improved in Corollaries 1 and 4, and Remark 2, respectively.
Some conditions for achieving the bounds are considered. If
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these bounds on the IRDLP are achieved, in the correspond-
ing coordinated two-party wire-tap channel of type II, the
adversary cannot learn more from the illegitimate party. In
addition, by using the quotient subcode sets, a relation be-
tween the IDLP and the IRDLP is investigated in Theorem
2, which are useful for the study of the generalized Ham-
ming weight, the wiretap channel of type II and the trellis
complexity, etc.
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