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Abstract. There are a large number of linear block codes satisfying the chain condition. Their
weight hierarchies are called chain good and form an important group in classifying all possible
weight hierarchies. In this paper, we present a series of new sufficient conditions to determine which
kinds of sequences are chain good weight hierarchies. Our results are efficient for the determination
of the chain good weight hierarchies with high dimension.
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1. Introduction. The generalized Hamming weight and weight hierarchy were
first introduced by Wei in [7] and Helleseth, Kløve, and Mykkeltveit in [4]. The rth
generalized Hamming weight of a q-ary [n, k] linear block code C is defined as

dr = min{|χ(Dr)| : Dr is an [n, r] linear subcode of C},
where χ(Dr) is the support set of Dr, i.e.,

χ(Dr) =
⋃

c∈Dr

{e : ce �= 0, where c = (c1, . . . , cn)}.

The weight hierarchy of C is denoted by (d1, . . . , dk). The chain condition was first
introduced by Wei and Yang in [8]. We say that the code C satisfies the chain
condition if there exist k subcodes Dr(1 ≤ r ≤ k) ⊆ C such that

dim(Dr) = r, |χ(Dr)| = dr, and D1 ⊂ D2 ⊂ · · · ⊂ Dk = C.

An integer sequence (a1, . . . , ak) is called a “chain good weight hierarchy over GF (q)”
if it is a weight hierarchy of an [n, k] (n = ak) linear block code over GF (q) satisfying
the chain condition. In this paper, q is a fixed prime power. A chain good weight
hierarchy over GF (q) is also called a “chain good weight hierarchy.”

There are a large number of linear block codes satisfying the chain condition;
see [1, 2, 3, 5, 6, 8]. Their chain good weight hierarchies form an important group
in classifying all possible weight hierarchies and they receive much attention. In [1]
and [6], some sufficient conditions were given for the determination of the chain good
weight hierarchies with general dimension over GF (q). However, these conditions
are not efficient for the determination of the chain good weight hierarchies with high
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dimension. In many cases, the lower bounds of these conditions increase exponentially
with the dimension k; see the remarks of Theorems 2.1 and 2.2 in section 2.

In this paper, we present a series of new sufficient conditions to determine the
chain good weight hierarchies with general dimension over GF (q). The lower bounds
of our new conditions increase linearly with the dimension k; see Corollaries 2.5 and
2.6 of section 2. They are more efficient than previous methods for the determination
of the chain good weight hierarchies with high dimension.

Some preliminaries and our main results are introduced in section 2. In section 3,
some interesting properties are shown. The proofs of our main results are presented
in sections 4 and 5. For q = 3 and k = 6, 7, 8, the improvements on [1] and [6] are
listed in section 6. Section 7 is the conclusion.

2. Preliminaries and main results. A positive integer sequence (a1, . . . , ak)
is called chain permissible over GF (q) if qir−1 ≥ ir ≥ 0 for 1 ≤ r ≤ k − 1, where

ir = ak−r − ak−r−1 and a0 = 0.(2.1)

We know that the chain good weight hierarchies are chain permissible [3] and there
also exist some chain permissible sequences which do not correspond to any weight
hierarchies [2]. From (2.1), it is easy to see that the parameter sequence (i0, . . . , ik−1)
can be determined from the sequence (a1, . . . , ak) and vice versa. Let

πr = (1− q)

r−1∑
j=0

ij + ir =

r∑
j=1

(ij − qij−1) + i0 for 0 ≤ r ≤ k − 1.(2.2)

Then

ir =

r∑
j=0

πjSr,j for 0 ≤ r ≤ k − 1,(2.3)

where Sj,l = (q − 1)qj−l−1 for j > l, and Sj,j = 1. For a chain permissible sequence
(a1, . . . , ak), it is easy to see from (2.2) that

π0 ≥ · · · ≥ πk−1. (πr may be negative for r ≥ 1.)(2.4)

Denote

ιr = �ir/qr� and pr = ir − ιrq
r for 0 ≤ r ≤ k − 1(2.5)

and

δr =

{
0 if 0 ≤ pr+1 ≤ prq,
1 if prq < pr+1 < qr+1.

(2.6)

Then for any chain permissible sequence, it was shown in [1] that

ιr ≥ ιr+1 + δr.(2.7)

The following theorems, Theorems 2.1 [1] and 2.2 [6], are two methods for the deter-
mination of the chain good weight hierarchies.

Theorem 2.1 (see [1]). A chain permissible sequence (a1, . . . , ak) is a chain good
weight hierarchy if

ιk−3 ≥ (q − 1) +

k−4∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1).(2.8)
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Remark. For fixed q, it is easy to see that the lower bound of condition (2.8) is
greater than qk−3/2 if δk−4 = 1 and pk−3 − qpk−4 is small positive; it is also greater
than qk−4/2 if δk−5 = 1 and pk−4 − qpk−5 is small positive, and so on. Therefore,
in many cases, the lower bound of the condition (2.8) increases exponentially with
the dimension k. By using (2.7) for a chain permissible sequence, we know that the
exponential increase of ιk−3 with k implies the exponential increase of ιr with k for
0 ≤ r ≤ k − 4.

Theorem 2.2 (see [6]). A chain permissible sequence (a1, . . . , ak) is a chain good
weight hierarchy if

ιk−2 ≥
k−3∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1).(2.9)

Remark. By the same arguments as in the remark for Theorem 2.1, we know that
the lower bound of condition (2.9) also increases exponentially with the dimension
k in many cases. The exponential increase of ιk−2 with k implies the exponential
increase of ιr with k for 0 ≤ r ≤ k − 3.

Therefore, Theorems 2.1 and 2.2 are not so efficient for large k. In this paper,
we present a series of new sufficient conditions, the lower bounds of which increase
linearly with the dimension k; see Corollaries 2.5 and 2.6. These new conditions are
more efficient for the determination of the chain good weight hierarchies with high
dimension. The following theorem provides an original idea about how to give a
sufficient condition by using the parameters π0, . . . , πΓ, where 0 ≤ Γ ≤ k − 2.

Theorem 2.3. For a chain permissible sequence (a1, . . . , ak) and an integer Γ
such that 0 ≤ Γ ≤ k − 2, if there exist some integers θ0 ≥ θ1 ≥ · · · ≥ θk−2 ≥ 0
satisfying

ik−2 =

k−2∑
l=0

θlSk−2,l, where 0 ≤ θl ≤ πl for 0 ≤ l ≤ Γ,(2.10)

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3,(2.11)

then the chain permissible sequence is a chain good weight hierarchy.
In Theorem 2.3, condition (2.11) does not exist for Γ = k−2, k−3, and k−4. For

Γ = k − 2, the corresponding result of Theorem 2.3 was obtained in [6]; i.e., a chain
permissible sequence (a1, . . . , ak) is a chain good weight hierarchy if πk−2 ≥ 0. For
Γ = k−4, the corresponding result of Theorem 2.3 includes the cases where Γ = k−2
and k − 3.

Note that the integers θ0, . . . , θk−2 satisfying (2.10) do not exist if πΓ < 0. In
fact, if πΓ and ιk−2 are large positive, we can find some suitable θ0, . . . , θk−2 and get
the following theorem.

Theorem 2.4. Let (a1, . . . , ak) be a chain permissible sequence and let Γ be an
integer such that 0 ≤ Γ ≤ k− 4. Then (a1, . . . , ak) is a chain good weight hierarchy if

πΓ ≥ (k − 2)q, ιk−2 ≥ (k − 2)(q − 1),(2.12)

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3.(2.13)
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Furthermore, (a1, . . . , ak) is a chain good weight hierarchy if

ιΓ ≥ (k − 2)q +

Γ−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1),(2.14)

ιk−2 ≥ (k − 2)(q − 1),(2.15)

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3.(2.16)

Note that, when Γ = k − 4, (2.13) and (2.16) do not exist.
Theorem 2.4 presents a series of new sufficient conditions by using a different

Γ. A large number of new chain good weight hierarchies are found by using this
theorem (see section 6). In particular, from the second part of Theorem 2.4, we get
two important results, Corollaries 2.5 and 2.6.

Corollary 2.5. Let Γ be a fixed nonnegative integer. A chain permissible
sequence (a1, . . . , ak), where k ≥ Γ + 6, is a chain good weight hierarchy if

ιk−2 ≥ (k − 2)(q − 1) +

Γ−1∑
r=0

qr+1 and(2.17)

ιj−1 ≥ ιj + 2 for Γ + 2 ≤ j ≤ k − 3.(2.18)

Remark. In Corollary 2.5, the lower bound of condition (2.17) increases linearly
with the dimension k. The linear increase of ιk−2 with k only implies the linear
increase of ιr with k for 0 ≤ r ≤ k − 3. Therefore, in the determination of the chain
good weight hierarchies with high dimension, Corollary 2.5 is more efficient than
Theorems 2.1 and 2.2. By the same arguments, we have Corollary 2.6. In Corollary
2.6, the lower bound on the condition for ιk−2 is smaller, but a larger k is needed.

Corollary 2.6. Let Γ be a fixed nonnegative integer. A chain permissible
sequence (a1, . . . , ak), where k ≥ ∑Γ−1

r=0 qr+1 + 6, is a chain good weight hierarchy if

ιk−2 ≥ (k − 2)(q − 1) and(2.19)

ιj−1 ≥ ιj + 2 for Γ + 2 ≤ j ≤ k − 3.(2.20)

3. Some basic lemmas. In this section, we give some interesting properties,
which are useful in establishing our main results. In section 3.1, two types of expres-
sions are introduced. We show that a nonnegative integer having a type I expression
can also be expressed in type II. Then, in section 3.2, a symbol R(·, ·) is used to
describe the relation of two expressions. In the last subsection, we introduce two new
parameters, π∗

j and Tj , of a chain permissible sequence.

3.1. Two types of expressions. For nonnegative integers z0, . . . , zJ , let [z0,

· · · , zJ ] be the expression
∑J

l=0 zlSJ,l, where J ≥ 1. We say that [z0, . . . , zJ ] =
[y0, . . . , yJ ] if zl = yl for 0 ≤ l ≤ J . We say that [z0, . . . , zJ ] and [y0, . . . , yJ ] have the

same value if
∑J

l=0 zlSJ,l =
∑J

l=0 ylSJ,l. Let

D[z0, . . . , zJ ] = [z0 −∆, z1 +∆(q − 1), . . . , zJ +∆(q − 1)],(3.1)

where ∆ = � z0−z1
q �. Then D[z0, . . . , zJ ] and [z0, . . . , zJ ] have the same value. The

expression [z0, . . . , zJ ] is called type I if

zl ≥ zl+1 ≥ 0 for all 0 ≤ l ≤ J − 1.(3.2)
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It is called type II if

zl+1 + q > zl ≥ zl+1 ≥ 0 for all 0 ≤ l ≤ J − 1.(3.3)

Furthermore, we have the following property.
Lemma 3.1. Let [z0, . . . , zJ ] be an expression of type I; then an expression of type

II having the same value can be given by [z
(J)
0 , . . . , z

(J)
J ], where

[z
(l)
J−l, . . . , z

(l)
J ] = D[zJ−l, z

(l−1)
J−l+1, . . . , z

(l−1)
J ] for 1 ≤ l ≤ J, z

(0)
J = zJ .(3.4)

Proof. For l = 1, it is easy to see that [z
(1)
J−1, z

(1)
J ] = D[zJ−1, zJ ] is type II. For

l = t, suppose [z
(t)
J−t, . . . , z

(t)
J ] is type II. Then for l = t+ 1, the expression

[z
(t+1)
J−t−1, . . . , z

(t+1)
J ] = D[zJ−t−1, z

(t)
J−t, . . . , z

(t)
J ]

is also type II. Therefore, by induction, [z
(J)
0 , . . . , z

(J)
J ] is an expression of type II.

Furthermore, [z
(J)
0 , . . . , z

(J)
J ] and [z0, z1, . . . , zJ ] have the same value since the operator

D does not change the value of an expression.

3.2. A relation R of two expressions. Let SUMj and SUMj+1 be two ex-
pressions such that

SUMj :

j∑
l=0

αj,lSj,l + λj,l and SUMj+1 :

j+1∑
l=0

αj+1,lSj+1,l + λj+1,l,(3.5)

where αj,l, αj+1,l, λj,l(< Sj,l), and λj+1,l(< Sj+1,l) are nonnegative integers. We say
that

R(SUMj , SUMj+1) is true(3.6)

if the coefficients of SUMj and SUMj+1 satisfy

αj,l ≥ αj,l+1 + ε(λj,l+1),(3.7)

αj+1,l ≥ αj+1,l+1 + ε(λj+1,l+1),(3.8)

αj,l ≥ αj+1,l + ε(λj+1,l),(3.9)

where ε(x) = 0 for x = 0 and ε(x) = 1 otherwise. By using the symbol R(·, ·),
Theorem 2 of [6] can be given as follows.

Lemma 3.2 (see [6]). For a chain permissible sequence (a1, . . . , ak), if there exist
nonnegative integers αj,l and λj,l(< Sj,l) such that

Ej : ij =

j∑
l=0

αj,lSj,l + λj,l for 0 ≤ j ≤ k − 1 and(3.10)

R(Ej , Ej+1) is true for 0 ≤ j ≤ k − 2,(3.11)

then it is a chain good weight hierarchy.
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3.3. New parameters: π∗
j and Tj. For a chain permissible sequence (a1, . . . ,

ak), the relation between the parameter sequences (i0, . . . , ik−1) and (π0, . . . , πk−1) is
obtained in (2.2) and (2.3). Now, we introduce a new parameter sequence (π∗

0 , . . . ,
π∗
k−1), which is useful for studying the bound of ij (0 ≤ j ≤ k−1). For 0 ≤ Γ ≤ k−4,

let

π∗
l = πl for 0 ≤ l ≤ Γ and π∗

l = πΓ for Γ + 1 ≤ l ≤ k − 1.(3.12)

Denote

Tj =

j∑
l=0

π∗
l Sj,l for 0 ≤ j ≤ k − 1.(3.13)

Lemma 3.3. For a chain permissible sequence (a1, . . . , ak), we have

ij ≤ Tj for 0 ≤ j ≤ k − 1.(3.14)

If iΓ+1 > iΓ+2/q, we have

ij < Tj for j ≥ Γ + 2.(3.15)

Proof. For a chain permissible sequence (a1, . . . , ak), it is shown in (2.4) that
π0 ≥ · · · ≥ πk−1. Then πl ≤ π∗

l for 0 ≤ l ≤ k − 1 and

ij =

j∑
l=0

πlSj,l ≤ Tj for 0 ≤ j ≤ k − 1.

When iΓ+1 > iΓ+2/q, if there exists an integer j ≥ Γ + 2 such that ij = Tj , then

ij =

j∑
l=0

πlSj,l =

j∑
l=0

π∗
l Sj,l

⇒πj = πΓ

⇒
j∑

t=Γ+1

(it − qit−1) = 0

⇒it−1 = it/q for Γ + 1 ≤ t ≤ j,

which is impossible.

4. Proof of Theorem 2.3. In this section, the proof of Theorem 2.3 is given in
two parts. The first part is presented for Γ = k − 4 in Lemma 4.2, i.e., Theorem 4 of
[6]. Now, we have a new description of the proof, which is useful in establishing the
whole proof of Theorem 2.3. The second part is presented for Γ ≤ k− 5. In addition,
the following lemma, which is derived from Lemma 5 of [2], allows us to pay attention
only to some special chain permissible sequences satisfying ik−1 = qik−2.

Lemma 4.1 (see [2]). For fixed integers i∗0, . . . , i
∗
k−2, let A be the set of chain

permissible sequences with dimension k such that ij = i∗j (0 ≤ j ≤ k− 2). Then all of
the sequences in A are chain good weight hierarchies if the sequence in A satisfying
ik−1 = qik−2 is a chain good weight hierarchy.
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Lemma 4.2 (see [6]). For a chain permissible sequence (a1, . . . , ak), if there exist
some integers θ0 ≥ θ1 ≥ · · · ≥ θk−2 ≥ 0 such that

ik−2 =

k−2∑
l=0

θlSk−2,l, where θl ≤ πl for 0 ≤ l ≤ k − 4,(4.1)

then it is a chain good weight hierarchy.
Proof. By using Lemmas 3.1 and 4.1, we can assume that [θk−3, θk−2] is type II

and ik−1 = qik−2. Since

Ej : ij =

j∑
l=0

πlSj,l for 0 ≤ j ≤ k − 4,

Ek−2 : ik−2 =

k−2∑
l=0

θlSk−2,l,

Ek−1 : ik−1 = qik−2 =

k−2∑
l=0

θlSk−1,l + θk−2,

it follows that this lemma can be obtained by using Lemma 3.2 if there exists a suitable
expression Ek−3 for ik−3 such that R(Ek−4, Ek−3) and R(Ek−3, Ek−2) are both true.

In the following paragraphs, after showing two bounds of ik−3, a suitable ex-
pression Ek−3 is given in (4.4). The first bound is an upper bound obtained from
Lemma 3.3:

ik−3 ≤ Tk−3 =

k−3∑
l=0

π∗
l Sk−3,l.(4.2)

The second bound is a lower bound. Denote Λ =
∑k−3

l=0 θlSk−3,l; we have

ik−3 ≥ �ik−2/q� = Λ(4.3)

since ik−3 ≥ ik−2/q and [θk−3, θk−2] is type II. Then a suitable expression Ek−3 for
ik−3 is obtained in (4.4), where the coefficients are less than or equal to those of Tk−3

and greater than or equal to those of Λ. Denote

el = π∗
l − θl for 0 ≤ l ≤ k − 3,

L = max

{
δ : ik−3 ≥ Λ +

δ∑
l=0

elSk−3,l

}
(let L = −1 if δ does not exist),

g = ik−3 − Λ−
L∑

l=0

elSk−3,l;

we have

ik−3 = Λ+

L∑
l=0

elSk−3,l + g

=

L∑
l=0

π∗
l Sk−3,l + ((θL+1 + g1)Sk−3,L+1 + g2) +

k−3∑
l=L+2

θlSk−3,l,(4.4)
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where g1 = �g/Sk−3,L+1� < ek−3 and g2 = g−g1Sk−3,L+1 < Sk−3,L+1. For L = k−4,
the last part of (4.4) does not exist. For L = k − 3, the last two parts of (4.4) do not
exist.

Proof of Theorem 2.3 when Γ ≤ k − 5. By using Lemmas 3.1 and 4.1, we can
assume that [θΓ+1, . . . , θk−2] is type II and ik−1 = qik−2.

From Lemma 3.2, we know that this theorem can be obtained if there exist the
following expressions:

Ej : ij =

j∑
l=0

π∗
l Sj,l for 0 ≤ j ≤ Γ,(4.5)

Ej : ij =

uj−1∑
l=0

π∗
l Sj,l +

j∑
l=uj

αj,lSj,l + λj,ηj for Γ + 1 ≤ j ≤ k − 3,(4.6)

Ek−2 : ik−2 =

k−2∑
l=0

θlSk−2,l,

Ek−1 : ik−1 =

k−2∑
l=0

θlSk−1,l + θk−2,

where αj,l, uj , ηj(≥ uj), and λj,ηj
(< Sj,ηj

) are nonnegative integers to be determined
under the true condition R(Ej , Ej+1). Note that expression (4.5) is fixed.

In the following paragraphs, the construction for (4.6) is given in three steps. In
Step 1, an expression Ej is obtained from Ej+1 by induction in (4.8). Then, in Step
2, we show that R(Ej , Ej+1) is true. However, in some cases, Ej should be changed.
The changes are given in the last step.

Step 1. Now, we show how to get the expression (4.6) by induction. By the same
arguments as in the proof of Lemma 4.2, we get an expression Ek−3 from Ek−2 such
that

R(Ek−3, Ek−2) is true and uk−3 = ηk−3.

For any integer j : Γ+1 ≤ j ≤ k− 4, assume that Ej+1 has been obtained from Ej+2

satisfying

R(Ej+1, Ej+2) is true and uj+1 = ηj+1.

Then, by the same arguments as in the proof of Lemma 4.2, we get an expression Ej

in (4.8) from Ej+1 if

[αj+1,u∗
j+1

, . . . , αj+1,j+1] is type II,(4.7)

where u∗
j+1 = max{uj+1,Γ + 1}. The corresponding arguments are

Λ =

uj+1−1∑
l=0

π∗
l Sj,l +

j∑
l=uj+1

αj+1,lSj,l ≤ �ij+1/q� ≤ ij (by using (4.7)),

el = π∗
l − αj+1,l for uj+1 ≤ l ≤ j,

L = max

δ : ij ≥ Λ +

δ∑
l=uj+1

elSj,l

 (if δ doesn’t exist, let L = uj+1 − 1),

g = ij − Λ−
L∑

l=uj+1

elSj,l.
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Denote g1 = �g/Sj,L+1� and g2 = g − g1Sj,L+1; we have

ij = Λ+

L∑
l=uj+1

elSj,l + g

=

L∑
l=0

π∗
l Sj,l + ((aj+1,L+1 + g1)Sj,L+1 + g2) +

j∑
l=L+2

aj+1,lSj,l

=

L∑
l=0

π∗
l Sj,l +

j∑
l=L+1

αj,lSj,l + λj,L+1,(4.8)

where αj,L+1 = αj+1,L+1+g1, αj,l = αj+1,l for L+2 ≤ l ≤ j and λj,L+1 = g2 < Sj,L+1.
Note that in (4.8) the coefficients are greater than or equal to those of Λ and less than
or equal to those of Tj . In addition,

uj = ηj = L+ 1 ≥ uj+1 = ηj+1.(4.9)

Step 2. By analyzing two cases of (4.9), we know that R(Ej , Ej+1) is true.
• If L+ 1 > uj+1, then it is easy to verify that R(Ej , Ej+1) is true.
• Assume that L+1 = uj+1. By using (2.11), we have ij − ij+1/q ≥ Sj,0. Then

g = ij − Λ ≥ ij − �ij+1/q� ≥ Sj,0 and

g1 ≥ �Sj,0/Sj,L+1� ≥ 1,(4.10)

which implies that R(Ej , Ej+1) is true.
Step 3. In Step 1, we construct Ej from Ej+1 by induction when Ej+1 satisfies

(4.7). For Ek−2, condition (4.7) is obvious since [θΓ+1, . . . , θk−2] is type II. Now we
should make Ej have the same property, where Γ + 2 ≤ j ≤ k − 3.

Suppose Ej+1 has property (4.7), and Ej is obtained in Step 1. In the following
two cases, we present a method to make [αj,u∗

j
, . . . , αj,j ] a type II expression. Note

that u∗
j denotes max{µj ,Γ + 1}.
• Case 1. u∗

j < j.
– If uj < Γ+1, then, from (4.8) and (4.9), we know that u∗

j = Γ+1 = u∗
j+1,

and [αj,u∗
j
, . . . , αj,j ] = [αj+1,u∗

j+1
, . . . , αj+1,j ] is type II.

– If uj ≥ Γ + 1, then u∗
j = uj . Let

[α′
j,uj

, . . . , α′
j,j ] = D[αj,uj , . . . , αj,j ].

Then it is easy to verify that [α′
j,uj

, . . . , α′
j,j ] is type II since [αj,uj+1, . . . ,

αj,j ] = [αj+1,uj+1, . . . , αj+1,j ] is type II. Now, we get a new expression
for ij :

E′
j : ij =

uj−1∑
l=0

π∗
l Sj,l +

j∑
l=uj

α′
j,lSj,l + λj,uj .(4.11)

Ej can be replaced with E′
j since R(E

′
j , Ej+1) is true and [α′

j,uj
, . . . , α′

j,j ]
is type II.

• Case 2. u∗
j = j = uj > Γ + 1. Now Ej has the form ij =

∑j−1
l=0 π∗

l Sj,l + αj,j

and λj,ηj = 0. In order to have the type II property as before, Ej should be
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replaced with a new expression:

Ẽj : ij =

j−2∑
t=0

π∗
t Sj,t + α̃j,j−1Sj,j−1 + α̃j,j ,(4.12)

where [α̃j,j−1, α̃j,j ] = D[π∗
j−1, αj,j ], i.e.,

α̃j,j−1 = π∗
j−1 −∆j , α̃j,j = αj,j + (q − 1)∆j , ∆j = �(π∗

j−1 − αj,j)/q�.

It is easy to see that [α̃j,j−1, α̃j,j ] is type II. However, we do not know if

R(Ẽj , Ej+1) is true. In order to make R(Ẽj , Ej+1) true, all of the expressions
El(j ≤ l ≤ ω) should be changed, where ω is the integer such that

j = uj = uj+1 = · · · = uω > uω+1.

The new expressions for il are given by

Ẽl : il =

j−2∑
t=0

π∗
t Sl,t +

l∑
t=j−1

α̃l,tSl,t + λl,ηl
for j ≤ l ≤ ω,(4.13)

where α̃l,j−1 = π∗
j−1 −∆j and α̃l,t = αl,t + (q − 1)∆j for j ≤ t ≤ l. λl,ηl

is
the same as the corresponding term in El. Let ũl = j− 1. It is easy to verify
that R(Ẽl, Ẽl+1) is true for j ≤ l ≤ ω − 1 and that R(Ẽω, Eω+1) is also true.

Now, the induction given by Steps 1, 2, and 3 ends the proof.
Note that, when we construct Ej from Ej+1 by induction, if Case 2 of Step 3

occurs, then Case 1 of Step 3 will not appear in the next cycle. This is because,
in the next cycle, the expression for ij−1 obtained by using Step 1 has the form

Ej−1 : ij−1 =
∑j−2

l=0 π∗
l Sj−1,l + αj−1,j−1.

5. Proofs of Theorem 2.4 and two corollaries. The proof of Theorem 2.4
is based on Theorem 2.3 and the following three lemmas: Lemmas 5.1, 5.2, and 5.3.
Lemma 5.1 leads to the first part of Theorem 2.4. It tells us how to make use of
Theorem 2.3.

Lemma 5.1. For a chain permissible sequence (a1, . . . , ak) and a fixed integer
Γ : 0 ≤ Γ ≤ k − 4, if

πΓ ≥ (k − 2)q and ιk−2 ≥ (k − 2)(q − 1),

then there exist integers θ0 ≥ θ1 ≥ · · · ≥ θk−2 ≥ 0 such that

ik−2 =

k−2∑
l=0

θlSk−2,l, where θl ≤ πl for 0 ≤ l ≤ Γ.(5.1)

Proof. The proof of Lemma 5.1 is given in two steps. In the first step, an
initial expression for ik−2 is presented in (5.3). In the second step, the parameters
θ0, . . . , θk−2 satisfying (5.1) are obtained in (5.5) and (5.8), respectively. Denote

z = max

{
ρ : ik−2 ≥

ρ∑
r=0

π∗
rSk−2,r

}
(if ik−2 < π∗

0Sk−2,0, let z = −1),(5.2)
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where π∗
r is defined in (3.12). If z = k − 2 or k − 3, by using Lemma 3.3, the proof is

trivial since we can select θr = π∗
r for 0 ≤ r ≤ k−3 and θk−2 ≤ π∗

k−2. In the following
paragraphs, the proof is presented for z ≤ k − 4.

First, by using (5.2), an initial expression for ik−2 is obtained:

ik−2 =

z∑
r=0

π∗
rSk−2,r +

k−2∑
r=z+1

σrSk−2,r,(5.3)

where σz+1, . . . , σk−2 are nonnegative integers such that

σz+1 < π∗
z+1,

σr < Sk−2,r−1/Sk−2,r = q for z + 2 ≤ r ≤ k − 3,

σk−2 < Sk−2,k−3/Sk−2,k−2 = q − 1.

In particular, for z = −1, we have ik−2 =
∑k−2

r=0 σrSk−2,r, where σ0 is selected as
�ik−2/Sk−2,0�. From the condition ik−2 ≥ (k − 2)qSk−2,0, we know that

σ0 ≥ (k − 2)q when z = −1.(5.4)

Second, by adjusting (5.3) in the following two cases, (5.1) is obtained in (5.5)
and (5.8), respectively.

• Assume that σz+1 ≥ σz+2 + (k − z − 4)q + 1; then we have
θr = π∗

r for 0 ≤ r ≤ z,

θz+1 = σz+1 − (k − z − 4),

θr = σr + (k − r − 2)q − (k − r − 3) for z + 2 ≤ r ≤ k − 3,

θk−2 = σk−2.

(5.5)

This assumption implies that θz+1 ≥ θz+2. In addition, the condition (k −
2)q ≤ πΓ implies that θz+2 ≤ πΓ since θz+2 ≤ (k − 2)q.

• Assume that σz+1 < σz+2 + (k − z − 4)q + 1; we have

z ≥ 0.(5.6)

If z = −1, then the assumption denotes that σ0 < σ1+(k−3)q+1 ≤ (k−2)q,
which is opposite to (5.4). Let µ = �σz+1/q�; then

k − z − µ− 3 ≥ 0.(5.7)

If k−z−µ−3 < 0, then the assumption denotes that σz+1 < (k−z−3)q ≤ µq,
which is also impossible. By using (5.6), (5.7), and the condition (k−2)q ≤ πΓ,
we have



θr = π∗
r for 0 ≤ r ≤ z − 1,

θz = π∗
z − (k − z − µ− 3),

θz+1 = σz+1 + (k − z − µ− 3)q − (k − z − 4),

θr = σr + (k − r − 2)q − (k − r − 3) for z + 2 ≤ r ≤ k − 3,

θk−2 = σk−2.

(5.8)

Note that, in (5.8), since θz+1 = (σz+1 − µq) + (k− z − 3)q − (k− z − 4), we
have

(k − z − 2)q − (k − z − 3) ≥ θz+1 ≥ (k − z − 3)q − (k − z − 4),

which implies that θz ≥ θz+1 ≥ θz+2 and πΓ ≥ θz+1.
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In the following lemma, i.e., Lemma 5 of [1], a relation between the parameters
ιl and πl is introduced. Using this lemma, the second part of Theorem 2.4 can be
obtained from the first part of Theorem 2.4.

Lemma 5.2 (see [1]). For a chain permissible sequence with dimension k, if there
exists a positive integer l such that ιr = ιr+1 + δr for 0 ≤ r ≤ l − 1, then

ιl = πl +

l−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1).(5.9)

Lemma 5.3, a special case of Lemma 8 of [6], allows us to pay attention to some
special chain permissible sequences.

Lemma 5.3. For fixed nonnegative integers l(≤ k − 1), s, and F , if each chain
permissible sequence such that

ιj = ιj+1 + δj for 0 ≤ j ≤ l − 1,(5.10)

ιl ≥ s+

l−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1),(5.11)

ij−1 ≥ ij/q + Sj−1,0 for l + 2 ≤ j ≤ k − 3,(5.12)

ik−2 ≥ F(5.13)

is a chain good weight hierarchy, then the chain permissible sequences which satisfy
only (5.11), (5.12), and (5.13) are chain good weight hierarchies.

Proof of Theorem 2.4. For 0 ≤ Γ ≤ k − 4, by Lemma 5.1 and Theorem 2.3, we
know that the chain permissible sequences such that

πΓ ≥ (k − 2)q, ιk−2 ≥ (k − 2)(q − 1),

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3(5.14)

are chain good weight hierarchies. This is the first part of Theorem 2.4. Then by
Lemma 5.2, the chain permissible sequences such that

ιu = ιu+1 + δu for 0 ≤ u ≤ Γ− 1,

ιΓ ≥ (k − 2)q +

Γ−1∑
r=0

(δr(q
r+1 − 1) + qpr − pr+1),

ik−2 ≥ (k − 2)qSk−2,0,

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3(5.15)

are chain good weight hierarchies. Finally, by using Lemma 5.3 with parameters l = Γ,
s = (k − 2)q, and F = (k − 2)qSk−2,0, the second part of this theorem is obtained.
Note that, for Γ = k − 4, conditions (5.14) and (5.15) do not exist.

Proof of Corollary 2.5. Corollary 2.5 follows from the second part of Theorem
2.4. Condition (2.15) is satisfied by (2.17). Condition (2.16) can be obtained by using
(2.18) and the inequality ij−1/q

j−1 ≥ ιj−1 ≥ ιj+2 ≥ ij/q
j+1, where Γ+2 ≤ j ≤ k−3.

We will show that the condition (2.14) is also satisfied.
For a chain permissible sequence (a1, . . . , ak), it follows from (2.7) and (2.18) that

ιΓ ≥ ιΓ+1 ≥ ιk−3 + 2(k − 4− Γ) ≥ ιk−2 + 2(k − 4− Γ).(5.16)
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Then by using (5.16) and (2.17), we have

ιΓ ≥ (k − 2)(q − 1) +

Γ−1∑
r=0

qr+1 + 2(k − 4− Γ) ≥ (k − 2)q +

Γ−1∑
r=0

(qr+1 − 2)

since k ≥ Γ + 6. Therefore, (2.14) is satisfied since

qr+1 − 2 ≥ δr(q
r+1 − 1) + qpr − pr+1.

The proof of Corollary 2.6 uses the same arguments as that of Corollary 2.5.

6. Improvements on [1] and [6]. Theorem 2.4 presents a series of sufficient
conditions for determining the chain good weight hierarchies by using different Γ’s.
In this section, using Theorem 2.4, we find many new chain good weight hierarchies,
which cannot be investigated using Theorems 2.1 and 2.2. For q = 3 and k = 6, 7, 8,
three examples of the improvements are given by using Corollaries 6.1, 6.2, and 6.3,
respectively.

Let (a1, . . . , ak) be a chain permissible sequence and let Γ be an integer such that
0 ≤ Γ ≤ k−4. From the second part of Theorem 2.4, we know that (a1, . . . , ak) is chain
good if (2.14), (2.15), and (2.16) are satisfied. Since δr(q

r+1−1)+qpr−pr+1 ≤ qr+1−2,
it is easy to see that a chain permissible (a1, . . . , ak) is chain good if

ιΓ ≥ (k − 2)q +

Γ−1∑
r=0

(qr+1 − 2),

ιk−2 ≥ (k − 2)(q − 1),

and

ij−1 ≥ ij/q + Sj−1,0 for Γ + 2 ≤ j ≤ k − 3.

Then, Corollaries 6.1, 6.2, and 6.3 are obtained for q = 3 and Γ = k − 5 = 1,
Γ = k − 6 = 1, and Γ = k − 7 = 1, respectively.

Corollary 6.1. For q = 3 and k = 6, a chain permissible sequence is a chain
good weight hierarchy if

ι1 ≥ 13, ι4 ≥ 8, and i2 ≥ i3/3 + 6.(6.1)

Example. From Corollary 6.1, we find that, for each pair of parameters (i3, i4)
such that 648 ≤ i4 ≤ 1997 and i4/3 ≤ i3 ≤ 695, there exist many new chain good
weight hierarchies which cannot be investigated using Theorems 2.1 and 2.2. For
instance, if i4 = 648 and i3 = 216, all the corresponding chain permissible sequences
with dimension 6 such that i2 ∈ {115, 116}⋃{l : 120 + 9t ≤ l ≤ 125 + 9t, 0 ≤ t ≤ 13}
are new chain good weight hierarchies.

Corollary 6.2. For q = 3 and k = 7, a chain permissible sequence is a chain
good weight hierarchy if

ι1 ≥ 16, ι5 ≥ 10, and ij−1 ≥ ij/3 + 2 · 3j−2 for j = 3, 4.(6.2)

Example. From Corollary 6.2, we find that, for each pair of parameters (i4, i5)
satisfying 2430 ≤ i5 ≤ 19013 and i5/3 ≤ i4 ≤ 6419, many new chain good weight
hierarchies cannot be checked with Theorems 2.1 and 2.2. For instance, if i5 = 2430
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and i4 = 810, all the corresponding chain permissible sequences with dimension 7
such that i2 ≥ i3/3 + 6 and i3 ∈ {l : 409 + 27t ≤ l ≤ 431 + 27t, 0 ≤ t ≤ 65} are new
chain good weight hierarchies.

Corollary 6.3. For q = 3 and k = 8, a chain permissible sequence is a chain
good weight hierarchy if

ι1 ≥ 19, ι6 ≥ 12, and ij−1 ≥ ij/3 + 2 · 3j−2 for j = 3, 4, 5.(6.3)

Example. From Corollary 6.3, we find that, for each pair of parameters (i5, i6)
such that 8748 ≤ i6 ≤ 174695 and i6/3 ≤ i5 ≤ 58475, there are also many new chain
good weight hierarchies which cannot be investigated using Theorems 2.1 and 2.2.
For instance, if i6 = 8748 and i5 = 2916, all the corresponding chain permissible
sequences with dimension 8 such that i2 ≥ i3/3 + 6, i3 ≥ i4/3 + 18, and i4 ∈ {l :
1405 ≤ l ≤ 1457}⋃{l : 1463 + 81t ≤ l ≤ 1538 + 81t, 0 ≤ t ≤ 224} are new chain good
weight hierarchies.

7. Conclusion. The determination of chain good weight hierarchies was studied
several years ago. For the binary codes with dimension up to 5 and the ternary codes
with dimension up to 4, the problem was solved in [3] and [2], respectively. As for
linear codes with general dimension over GF (q), some research was done in [1] and
[6]. However, these results are not efficient for the determination of the chain good
weight hierarchies with high dimension since in many cases the lower bounds on the
conditions for ι0, . . . , ιk−3(or ιk−2) increase exponentially with the dimension k. In
this paper, we present a method to deal with the high dimension cases; see Corollaries
2.5 and 2.6. Our lower bounds on the conditions for ι0, . . . , ιk−2 only increase linearly
with the dimension k.
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