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THE DETERMINATION OF THE CHAIN GOOD WEIGHT
HIERARCHIES WITH HIGH DIMENSION*
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Abstract. There are a large number of linear block codes satisfying the chain condition. Their
weight hierarchies are called chain good and form an important group in classifying all possible
weight hierarchies. In this paper, we present a series of new sufficient conditions to determine which
kinds of sequences are chain good weight hierarchies. Our results are efficient for the determination
of the chain good weight hierarchies with high dimension.
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1. Introduction. The generalized Hamming weight and weight hierarchy were
first introduced by Wei in [7] and Helleseth, Klgve, and Mykkeltveit in [4]. The rth
generalized Hamming weight of a ¢g-ary [n, k] linear block code C' is defined as

d, = min{|x(D,)| : D, is an [n, ] linear subcode of C'},

where x(D,.) is the support set of D,, i.e.,

x(D,) = U {e:c. #0, where c = (c1,...,cn)}
ceD,.

The weight hierarchy of C is denoted by (di,...,d). The chain condition was first
introduced by Wei and Yang in [8]. We say that the code C satisfies the chain
condition if there exist k& subcodes D,.(1 < r < k) C C such that

dim(D,) =r, |x(D;)]=d., and Dy CDyC---C Dy=C.

An integer sequence (aq, ..., ax) is called a “chain good weight hierarchy over GF(q)”
if it is a weight hierarchy of an [n, k] (n = ax) linear block code over GF'(q) satisfying
the chain condition. In this paper, ¢ is a fixed prime power. A chain good weight
hierarchy over GF'(q) is also called a “chain good weight hierarchy.”

There are a large number of linear block codes satisfying the chain condition;
see [1, 2, 3, 5, 6, 8]. Their chain good weight hierarchies form an important group
in classifying all possible weight hierarchies and they receive much attention. In [1]
and [6], some sufficient conditions were given for the determination of the chain good
weight hierarchies with general dimension over GF(q). However, these conditions
are not efficient for the determination of the chain good weight hierarchies with high
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dimension. In many cases, the lower bounds of these conditions increase exponentially
with the dimension k; see the remarks of Theorems 2.1 and 2.2 in section 2.

In this paper, we present a series of new sufficient conditions to determine the
chain good weight hierarchies with general dimension over GF(¢q). The lower bounds
of our new conditions increase linearly with the dimension k; see Corollaries 2.5 and
2.6 of section 2. They are more efficient than previous methods for the determination
of the chain good weight hierarchies with high dimension.

Some preliminaries and our main results are introduced in section 2. In section 3,
some interesting properties are shown. The proofs of our main results are presented
in sections 4 and 5. For ¢ = 3 and k = 6,7,8, the improvements on [1] and [6] are
listed in section 6. Section 7 is the conclusion.

2. Preliminaries and main results. A positive integer sequence (aq,...,ax)
is called chain permissible over GF(q) if gi,—1 > i, > 0 for 1 <r < k — 1, where

(2.1) ip = Qp—yp — Qp—p—1 and ag=0.

We know that the chain good weight hierarchies are chain permissible [3] and there
also exist some chain permissible sequences which do not correspond to any weight
hierarchies [2]. From (2.1), it is easy to see that the parameter sequence (ig, . .., %k—1)
can be determined from the sequence (ay,...,ax) and vice versa. Let

T

r—1
(22)  mo=(1—q)Y ij+ir=» (ij—qijo1)+ig for 0<r<k-—1.
=0

j=1
Then
(2.3) iy = Zr:szm for 0<r<k-—1,

j=0
where S;; = (¢ — 1)¢/~'! for j >, and S;; = 1. For a chain permissible sequence
(a1,...,ax), it is easy to see from (2.2) that
(2.4) o > -+ > mg—1. (7, may be negative for r > 1.)
Denote
(2.5) t-=|ir/q"] and p. =i, —1.¢" for 0<r<k-—1
and

i < <

20 = {1 et

Then for any chain permissible sequence, it was shown in [1] that
(2.7) Ly 2 Lpg1 + O

The following theorems, Theorems 2.1 [1] and 2.2 [6], are two methods for the deter-
mination of the chain good weight hierarchies.

THEOREM 2.1 (see [1]). A chain permissible sequence (a1, ..., ay) is a chain good
weight hierarchy if

k—

(28) lg—3 2 (q - ]-) + Z(éT(qr+1 - 1) +qpr — pr+1)‘
r=0

W
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Remark. For fixed g, it is easy to see that the lower bound of condition (2.8) is
greater than ¢*=3/2 if 6,4 = 1 and pp_3 — qpr_4 is small positive; it is also greater
than qk*4/2 if 6p_5 = 1 and pr_4 — qpr_5 is small positive, and so on. Therefore,
in many cases, the lower bound of the condition (2.8) increases exponentially with
the dimension k. By using (2.7) for a chain permissible sequence, we know that the
exponential increase of ¢;_3 with k implies the exponential increase of ¢, with k for
0<r<k-—4.

THEOREM 2.2 (see [6]). A chain permissible sequence (a1, ..., ax) is a chain good
weight hierarchy if

B
w

(2.9) 2 > Y _(6:(¢" = 1)+ qpr — prsa).

T

I
o

Remark. By the same arguments as in the remark for Theorem 2.1, we know that
the lower bound of condition (2.9) also increases exponentially with the dimension
k in many cases. The exponential increase of tp_o with k& implies the exponential
increase of ¢, with k for 0 <r <k — 3.

Therefore, Theorems 2.1 and 2.2 are not so efficient for large k. In this paper,
we present a series of new sufficient conditions, the lower bounds of which increase
linearly with the dimension k; see Corollaries 2.5 and 2.6. These new conditions are
more efficient for the determination of the chain good weight hierarchies with high
dimension. The following theorem provides an original idea about how to give a
sufficient condition by using the parameters mg,...,np, where 0 <T' < k — 2.

THEOREM 2.3. For a chain permissible sequence (ai,...,ax) and an integer I’
such that 0 < T' < k — 2, if there exist some integers 0y > 61 > --+ > 0x_o > 0
satisfying

k—2

(2.10) Ih_g = ZelSk;_27l7 where 0<6;,<m for 0<I<T,
1=0

and

(2.11) ij—1>1i;/q+ Sj_10 for T+2<j<k-3,

then the chain permissible sequence is a chain good weight hierarchy.

In Theorem 2.3, condition (2.11) does not exist for ' = k—2, k—3, and k—4. For
I' = k — 2, the corresponding result of Theorem 2.3 was obtained in [6]; i.e., a chain
permissible sequence (ay,...,ax) is a chain good weight hierarchy if m;_o > 0. For
I" = k—4, the corresponding result of Theorem 2.3 includes the cases where I' = k — 2
and k — 3.

Note that the integers Oy, ...,0k_2 satisfying (2.10) do not exist if mp < 0. In

fact, if mp and tx_o are large positive, we can find some suitable 6y, ..., 0;_2 and get
the following theorem.
THEOREM 2.4. Let (ay,...,ax) be a chain permissible sequence and let T' be an

integer such that 0 <T < k—4. Then (a1, ...,ax) is a chain good weight hierarchy if
(2.12) > (k—2)g, w2 2> (k—2)(g—1),
and

(2.13) i1 > ij/q + ijl,O for T+2<j5;<k-3.
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Furthermore, (ai,...,ax) is a chain good weight hierarchy if
r-1

(2.14) i > (k=2)g+ > (6:(¢" = 1) + gpr — pria),
=0

(2.15) 2 > (k=2)(q - 1),

and

(2.16) ij_1>4j/q+ Sj_10 for T+2<j<k-3.

Note that, when I' = k — 4, (2.13) and (2.16) do not exist.

Theorem 2.4 presents a series of new sufficient conditions by using a different
I". A large number of new chain good weight hierarchies are found by using this
theorem (see section 6). In particular, from the second part of Theorem 2.4, we get
two important results, Corollaries 2.5 and 2.6.

COROLLARY 2.5. Let I' be a fized nonnegative integer. A chain permissible

sequence (ay,...,ax), where k > T + 6, is a chain good weight hierarchy if
r-1

(2.17) th—o > (k—2)(g—1)+ Z ¢ and
r=0

(2.18) tji—1 2t +2 for I'+2<j5<k-3.

Remark. In Corollary 2.5, the lower bound of condition (2.17) increases linearly
with the dimension k. The linear increase of t;_o with k£ only implies the linear
increase of ¢, with &k for 0 < r < k — 3. Therefore, in the determination of the chain
good weight hierarchies with high dimension, Corollary 2.5 is more efficient than
Theorems 2.1 and 2.2. By the same arguments, we have Corollary 2.6. In Corollary
2.6, the lower bound on the condition for ¢;_5 is smaller, but a larger k is needed.

COROLLARY 2.6. Let I' be a fixzed nonnegative integer. A chain permissible

sequence (aq,...,a), where k > ZE;& ¢t + 6, is a chain good weight hierarchy if
(2.19) th—2> (k—2)(¢—1) and
(2.20) tj—1 20 +2 for T'4+2<5<k—-3.

3. Some basic lemmas. In this section, we give some interesting properties,
which are useful in establishing our main results. In section 3.1, two types of expres-
sions are introduced. We show that a nonnegative integer having a type I expression
can also be expressed in type II. Then, in section 3.2, a symbol R(:,-) is used to
describe the relation of two expressions. In the last subsection, we introduce two new
parameters, 77 and 7T}, of a chain permissible sequence.

3.1. Two types of expressions. For nonnegative integers zo, ..., 2y, let [z,
.-+, zj] be the expression Zi]:() 2151, where J > 1. We say that [zg,...,25] =
[Yo,---,ys] if 2 =y, for 0 <1 < J. We say that [zo,..., 2] and [yo, ..., ys] have the
same value if Zf:o 2185, = ZlJ:o ySyy. Let

(31) D[Z(], RN ZJ] = [Z() — A,z + A(q - ].), e, 27+ A(q — 1)],
where A = [275 | Then Dlz, ..., 2] and [20,...,z,] have the same value. The
expression [z, ..., zy] is called type I if

(3.2) z1>2z41 >0 forall 0<I<J—1.
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It is called type II if
(3.3) 201+ q>21> 2141 >0 forall 0<I<J—1.

Furthermore, we have the following property.

LEMMA 3.1. Let [zo,...,2;] be an expression of type I; then an expression of type
II having the same value can be given by [zé‘]), e ,zSJ)], where
(3.4) [zyll, ce zy)} = Dlzj_i, zyjﬁl, e zy_l)] for1 <i<J, z(JO) =2zj.

Proof. For | = 1, it is easy to see that [251217251)] = D[zj_1, 2j] is type II. For
l = t, suppose [zgtzt, el zgt)] is type II. Then for [ =t + 1, the expression

[z?jtlzl, e ,zy+1)] = Dlzj_4_1, zgtlt, cee, zgt)]

is also type II. Therefore, by induction, [z(()‘]), .. .,zSJ)] is an expression of type II.
Furthermore, [z(()‘]), cel z(JJ)] and [2g, 21, - . ., 2] have the same value since the operator
D does not change the value of an expression. |

3.2. A relation R of two expressions. Let SUM; and SUM;; be two ex-
pressions such that

J J+1
(3.5) SUMj : Z Ozj’lSj,l + >\j,l and SUMJ‘+1 : Z Ozj+1’lSj+1,l + )\j+1,l7
=0 =0

where a1, ajy1.0, (< Sj1), and Ajyq1,(< Sj+1,) are nonnegative integers. We say
that

(3.6) R(SUM,,SUM,4) is true

if the coefficients of SUM; and SUM, 4, satisfy

(3.7) a1 > g+ €(Aj 1),
(3.8) Qi1 2> Qjprir +e(Njr1a41),
(3.9) i > ajirn+ (A1),

where e(x) = 0 for z = 0 and €(z) = 1 otherwise. By using the symbol R(, ),
Theorem 2 of [6] can be given as follows.

LEMMA 3.2 (see [6]). For a chain permissible sequence (a1, ... ,ax), if there exist
nonnegative integers a;; and Aj (< S;1) such that

J

(3.10) Ej: ij=Y ajSju+Xg for 0<j<k—1and
=0

(3.11) R(E;, Eji1) is true for0 < j <k — 2,

then it is a chain good weight hierarchy.
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3.3. New parameters: Tr;‘ and T;. For a chain permissible sequence (a1, ...,
ax), the relation between the parameter sequences (ig, . ..,ix—1) and (mg, ..., Tk—1) is
obtained in (2.2) and (2.3). Now, we introduce a new parameter sequence (7, ...,
7 _1), which is useful for studying the bound of i; (0 < j < k—1). For 0 <T < k—4,
let

(312) wf=m for 0<I<T and =/ =ap for T+1<I<k-1.

Denote
J
(3.13) Ty =Y S for 0<j<k-1.
1=0
LEMMA 3.3. For a chain permissible sequence (ay, . ..,ax), we have
(3.14) i; <T; for 0<j<k—1.

If iry1 > iry2/q, we have
(3.15) i; <T; for j>T+2.

Proof. For a chain permissible sequence (aq,...,ax), it is shown in (2.4) that
mg > - > mp—1. Then m <7 for 0 <1 <k —1and

i
ij=Y mS; <T; for 0<j<k-1
=0

When irq1 > iry2/q, if there exists an integer j > I' + 2 such that i; = T}, then

J J
ij =) mSju=) S
1=0 1=0
=Tj = T
j
= Y (iv—qir—1) =0
t=T+1
=i =1;/q for T+1<t<y,

which is impossible. 0

4. Proof of Theorem 2.3. In this section, the proof of Theorem 2.3 is given in
two parts. The first part is presented for I' = k — 4 in Lemma 4.2, i.e., Theorem 4 of
[6]. Now, we have a new description of the proof, which is useful in establishing the
whole proof of Theorem 2.3. The second part is presented for I' < k — 5. In addition,
the following lemma, which is derived from Lemma 5 of [2], allows us to pay attention
only to some special chain permissible sequences satisfying ix_1 = qig_o.

LEMMA 4.1 (see [2]). For fized integers iy,...,i5_,, let A be the set of chain
permissible sequences with dimension k such that i; =i (0 <j <k—2). Then all of
the sequences in A are chain good weight hierarchies if the sequence in A satisfying
ik—1 = qlg—o 1S a chain good weight hierarchy.
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LEMMA 4.2 (see [6]). For a chain permissible sequence (a1, ... ,ax), if there exist
some integers 0y > 01 > -+ > 0x_o > 0 such that
k—2
(4.1) iho = Z 01Sk_21, where 6, <m for 0<I1<k—4,
1=0
then it is a chain good weight hierarchy.

Proof. By using Lemmas 3.1 and 4.1, we can assume that [0;_3,05_2] is type II
and ip_1 = qig_o. Since
J
E;: ij:ZmSj,l for 0<j<k-—4,
1=0

k—2
Ep_o: Tp—2 = E 01Sk—2,1,
=0

k—2
Ep_1: g1 = Qqig—2 = Zezskq,z + Op—2,

1=0
it follows that this lemma can be obtained by using Lemma 3.2 if there exists a suitable
expression Ej_3 for ix_3 such that R(Fy_4, Fx—3) and R(Fx_3, Fx_2) are both true.

In the following paragraphs, after showing two bounds of i;x_3, a suitable ex-

pression Ej_3 is given in (4.4). The first bound is an upper bound obtained from
Lemma 3.3:

k-3

(4.2) i3 < Tp3 = ZWfSk—g,z-
1=0

The second bound is a lower bound. Denote A = Zf;og 0,Sk—3,; we have
(4.3) tp_3 > Hk_g/q] =A

since ig_3 > ig_2/q and [fy_3,0;_2] is type II. Then a suitable expression Ej_5 for
i)—3 is obtained in (4.4), where the coefficients are less than or equal to those of Tj_3
and greater than or equal to those of A. Denote

ee=m —0 for 0<I<k-3,

s
L = max {(5 Sip_3 > A+ ZelSk_g)l} (let L = —1 if 6 does not exist),

=0
L

g=1ip3—A— E e1SK_3,1;
1=0
we have
L

k-3 =N+ Z e1Sk—31+g

=0

L k=3
(4.4) => i Sk—si+ (041 +91)Sk—s.L41+92) + Y Sk,
1=0 I=L+2
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where g1 = |g/Sk—3,141] < ex—z and g2 = g—91Sk—3,041 < Sk—3,041. For L = k—4,
the last part of (4.4) does not exist. For L = k — 3, the last two parts of (4.4) do not
exist. ]

Proof of Theorem 2.3 when I' < k — 5. By using Lemmas 3.1 and 4.1, we can
assume that [Op41,...,0k—2] is type IT and i1 = qig_o.

From Lemma 3.2, we know that this theorem can be obtained if there exist the
following expressions:

J
(4.5) Bj:ij=Y S for 0<j<T,
1=0
u;—1 i
(46) Ej : ij = Z ’/Tl*Sj,l + Z OéjJSj’l + /\jﬂ?j forT'+1< j<k-3,

l:u]'

=0
k—2

Ep ot ip_o= E 01Sk—2.1,
—0

o~

—2
Ep_q: ip—1 = 29151@71,1 + Or—2,
1=0
where a1, uj, 7;(> uj), and A; . (< Sj,;) are nonnegative integers to be determined
under the true condition R(E;, Ej;1). Note that expression (4.5) is fixed.

In the following paragraphs, the construction for (4.6) is given in three steps. In
Step 1, an expression E; is obtained from E;;; by induction in (4.8). Then, in Step
2, we show that R(E;, Ej41) is true. However, in some cases, E; should be changed.
The changes are given in the last step.

Step 1. Now, we show how to get the expression (4.6) by induction. By the same
arguments as in the proof of Lemma 4.2, we get an expression Ej_3 from Ej_5 such
that

R(Ek_3, Ex—2) is true and ug_3 = ng_s.
For any integer j : I' +1 < j < k —4, assume that F; ., has been obtained from F;
satisfying

R(Ej+1, Ej+2) is true and Uj+1 = Nj+1-
Then, by the same arguments as in the proof of Lemma 4.2, we get an expression I;
in (4.8) from F,; if
(47) [O{j+17u;+1, RN 7Otj+17j+1] is type II,
where u},; = max{u;1,I' + 1}. The corresponding arguments are

uj+1—1 J

A= >0 wiSu+ Y aaSi < firi/gl <id;  (by using (4.7)),

=0 l=uj 1
e = 71'1* — Q541 for Uj41 S l S j,

6
L=max{6:9; > A+ Z erSj; ¢ (if 6 doesn’t exist, let L = ujpq — 1),
I=uj41
L

g = ij —A - Z elSjJ.

l=ujt1
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Denote g1 = |g/S;,0+1] and g2 = g — 1.5, 1.+1; we have
L
ij =A+ Z elSj,l+g
I=uj+1

J
Sia 4 (@j41,400 +91)Sj001 +92) + > 451155
I=L+2

Mh ] M“

J
*
jl+ § a]lsjl+>\jL+17
=0 l=L+1

(4.8)

where QjL+1 = Qj4+1,L+1191, 01 = Qi1 for L+2 <[ < jand /\j,L+1 =g9 < Sj7L+1.
Note that in (4.8) the coefficients are greater than or equal to those of A and less than
or equal to those of T}. In addition,

(4.9) uj =1 =L+12>uj41 =041

Step 2. By analyzing two cases of (4.9), we know that R(E;, E;11) is true.
o If L +1> ujiq, then it is easy to verify that R(E;, E;y1) is true.
e Assume that L+1 = u;41. By using (2.11), we have i; —i;11/q > Sj 0. Then
g=1i;—A=>i;—[ij+1/q] = Sjpo and

(4.10) g1 > [Sj0/Sj,L+1] > 1,

which implies that R(E;, Ej4+1) is true.

Step 3. In Step 1, we construct E; from Ej,; by induction when Ej;;, satisfies
(4.7). For E)_o, condition (4.7) is obvious since [fpi1,...,0k_2] is type II. Now we
should make E; have the same property, where I' +2 < 7 <k — 3.

Suppose Ej;1 has property (4.7), and Ej is obtained in Step 1. In the following
two cases, we present a method to make [ozj,u;,...,aj7j] a type II expression. Note
that u} denotes max{u;, I'+ 1}.

e (Casel. uj < j.
— Ifu; <T'+1, then, from (4.8) and (4.9), we know that uj = I'+1 = uj, 4,
and [ajyu;, co g g] = [ogiga, Wy ,a41,5] is type 1L
— Ifu; > '+ 1, then uj = u;. Let

[a}yuj, o 0] = Dy, -]
Then it is easy to verify that [} ugr e o’ ;] is type Il since [t ;415 - - -
;] = [0i1u41, -5 QGp1,5) 18 type II. Now, we get a new expression
for i;:
u;—1
(4.11) B zjfzwl Jl+zajlsﬂ+>\juj
l=u;
Ej can be replaced with E} since R(EY, Ej41) is true and [ ..., o ]
is type II.

e Case2. uj =j=wu; >T+1. Now Ej has the form i; = Zl.io TS+ oy
and \j,, = 0. In order to have the type II property as before, E; should be
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replaced with a new expression:

j—2
(412) Ej : ij = Z’R—:Sj’t + &j7j_15j7j_1 + &jyj,
t=0

where [ j—1, @] = Dlrj_y, a4, Le.,

Q-1 =T — Ay, a5 =0+ (@—1)A;, A= (7]

J o1 ajg)/al

It is easy to see that [& j_1,@; ;] is type II. However, we do not know if
R(E;, E;+1) is true. In order to make R(E;, Ej41) true, all of the expressions
E;(j <1 < w) should be changed, where w is the integer such that

J=Uj = Ujyp] = = Uy > Ut 1-

The new expressions for 4; are given by

j—2 l
(413) Er: iy=Y 7w S+ > @St Ay, for j<I<w,
t=0 t=j—1

where q; ;1 = g — Ajand gy = oy + (g — DA, for j <t <1 Ny, s
the same as the corresponding term in Ej. Let u; = j — 1. It is easy to verify
that R(E;, Ej11) is true for j <1 <w —1 and that R(E,, F,+1) is also true.

Now, the induction given by Steps 1, 2, and 3 ends the proof. ]
Note that, when we construct F; from F;; by induction, if Case 2 of Step 3
occurs, then Case 1 of Step 3 will not appear in the next cycle. This is because,
in the next cycle, the expression for i;_; obtained by using Step 1 has the form

Ejy i1 =Y 0 mSj-10+ @141

5. Proofs of Theorem 2.4 and two corollaries. The proof of Theorem 2.4
is based on Theorem 2.3 and the following three lemmas: Lemmas 5.1, 5.2, and 5.3.
Lemma 5.1 leads to the first part of Theorem 2.4. It tells us how to make use of
Theorem 2.3.

LEMMA 5.1. For a chain permissible sequence (ai,...,ar) and a fized integer
r:o<r<k—4,if

ar > (k—2)q and 12> (k—2)(g—1),

then there exist integers 0y > 61 > -+ > 0x_o > 0 such that
k—2

(5.1) Ip_o = Zalsk—z,h where 0, <m; for 0<I<T.
1=0

Proof. The proof of Lemma 5.1 is given in two steps. In the first step, an
initial expression for ip_o is presented in (5.3). In the second step, the parameters
6o, ..., 0;_o satisfying (5.1) are obtained in (5.5) and (5.8), respectively. Denote

r=0

p
(5.2) z=max {Pi lh—2 = ZW:Skz,r} (if ik—2 < M5 Sk—2,0, let z = —1),
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where 7" is defined in (3.12). If z = k — 2 or k — 3, by using Lemma 3.3, the proof is
trivial since we can select 0, = 7 for 0 <r < k—3 and 0,_» < 7}_,. In the following
paragraphs, the proof is presented for z < k — 4.

First, by using (5.2), an initial expression for i;_o is obtained:

z k—2
(53> lp—2 = E 7T;k‘s’/’cf&r + E O-’I‘Sk}72,7“7
r=0 r=z+1
where 0,41,...,0,_2 are nonnegative integers such that

Oz41 < 7T2+17
Or < Sk72,r71/sk72,r =4q for z24+2<r<k- 3,
Ok—2 < Sk—2k-3/Sk—2k-2=¢q—1.

In particular, for z = —1, we have ix_5 = Zf;g 0,Sk—2,r, Where og is selected as
lik—2/Sk—2,0]. From the condition ix_2 > (k — 2)qSk—_2,0, we know that
(5.4) 00> (k—2)g when z=-—1.

Second, by adjusting (5.3) in the following two cases, (5.1) is obtained in (5.5)
and (5.8), respectively.
e Assume that 0,41 > 0,49+ (kK — z — 4)g + 1; then we have

0, = mr for 0<r <z,

(5.5) 041 = 0ap1—(k—2-4),
0, = o.+k-r—2)g—(k—r—3) for 2+2<r<k-3,
Op—2 = o0Op_2.

This assumption implies that 6,11 > 6.45. In addition, the condition (k —
2)q < mp implies that 6,9 < 7p since 6,42 < (k — 2)q.
e Assume that 0,41 < 0,42+ (k — 2z — 4)q + 1; we have

(5.6) 2> 0.

If z = —1, then the assumption denotes that g < o1+ (k—3)g+1 < (k—2)q,
which is opposite to (5.4). Let u = |o,+1/¢]; then

(5.7) k—z—pu—3>0.

If k—2z—p—3 < 0, then the assumption denotes that 0,11 < (k—2—3)q < ug,
which is also impossible. By using (5.6), (5.7), and the condition (k—2)g < 7,

we have
0, = 7y for 0<r<z-1,
0. = 7mi—(k—z—pn—3),
(5.8) Opp1 = opp1+(k—2z—p—-3)q—(k—2z-14),
0, = o +k—-1r—-2)g—(k—r—=3) for z24+2<r<k-3,
Op—2 = o0Ok_2.
Note that, in (5.8), since 0,41 = (0,41 —pq) + (k—2—3)q— (k —z—4), we
have

(k—2z-2)g—(k—2-3)20,11>(k—2-3)¢g— (k—2z—4),

which implies that 6, > 60,,1 > 0,45 and 7p > 0,41. 0
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In the following lemma, i.e., Lemma 5 of [1], a relation between the parameters
t; and m; is introduced. Using this lemma, the second part of Theorem 2.4 can be
obtained from the first part of Theorem 2.4.

LEMMA 5.2 (see [1]). For a chain permissible sequence with dimension k, if there
exists a positive integer | such that 1, = tp41 + 6 for 0 <r <1 —1, then

(5.9) b=+ Z ¢ = 1) +apr = pria)-

Lemma 5.3, a special case of Lemma 8 of [6], allows us to pay attention to some
special chain permissible sequences.

LEMMA 5.3. For fized nonnegative integers (< k — 1), s, and F, if each chain
permissible sequence such that

(5.10) ':Lj+1+6' for 0<j<Il-1,

(5.11) 0>s+ Z ¢ =1) +qpr — pria),
(5.12) i1 > zj/q+ Sj—10 for 1+2<j<k-3,
(5.13) ig—2 2 F

is a chain good weight hierarchy, then the chain permissible sequences which satisfy
only (5.11), (5.12), and (5.13) are chain good weight hierarchies.

Proof of Theorem 2.4. For 0 < T' < k — 4, by Lemma 5.1 and Theorem 2.3, we
know that the chain permissible sequences such that

mr > (k—2)q, w2 > (k—2)(g—1),
and
(5.14) ij_l Z’L'j/q-‘rSj_l)o for F+2§j Skj—?)

are chain good weight hierarchies. This is the first part of Theorem 2.4. Then by
Lemma 5.2, the chain permissible sequences such that

by = byt1 + Oy for 0<u<I-—-1,

k-2 q+z ¢ =1 +qpr — pria),

ko > (k— 2)q5k—2,07
(5.15) Z'j,1 Zij/q-f—Sj,l}o for F+2§]§k—3

are chain good weight hierarchies. Finally, by using Lemma 5.3 with parameters{ =T,
s = (k—2)q and F = (k — 2)¢gSk_2,0, the second part of this theorem is obtained.
Note that, for I' = k — 4, conditions (5.14) and (5.15) do not exist. O

Proof of Corollary 2.5. Corollary 2.5 follows from the second part of Theorem
2.4. Condition (2.15) is satisfied by (2.17). Condition (2.16) can be obtained by using
(2.18) and the inequality i;_1 /¢’ =1 > 1;_1 > ;42 > i;/¢°+1, where [+2 < j < k—3.
We will show that the condition (2.14) is also satisfied.

For a chain permissible sequence (a1, ..., ax), it follows from (2.7) and (2.18) that

(5.16) tr > irp1 g3 +2k—4-T)> 1, o+2(k—4-T).



208 YUAN LUO, WENDE CHEN, AND A. J. HAN VINCK

Then by using (5.16) and (2.17), we have

r-1 r—1
ir > (k*Q)(qfl)Jqu”“+2(k7471“) > (k72)q+2(qr+172)
r=0 r=0

since k > T' + 6. Therefore, (2.14) is satisfied since
qr+1 -2> 6r(qT+1 - 1) + qpr — Pr+1- a

The proof of Corollary 2.6 uses the same arguments as that of Corollary 2.5.

6. Improvements on [1] and [6]. Theorem 2.4 presents a series of sufficient
conditions for determining the chain good weight hierarchies by using different I'’s.
In this section, using Theorem 2.4, we find many new chain good weight hierarchies,
which cannot be investigated using Theorems 2.1 and 2.2. For ¢ =3 and k£ =6,7,8,
three examples of the improvements are given by using Corollaries 6.1, 6.2, and 6.3,
respectively.

Let (a1,...,ax) be a chain permissible sequence and let I" be an integer such that
0 < T < k—4. From the second part of Theorem 2.4, we know that (a1, ..., ax) is chain
good if (2.14), (2.15), and (2.16) are satisfied. Since 8, (¢"™1 —1)+qp,—pry1 < ¢"1 =2,

it is easy to see that a chain permissible (aq,...,a) is chain good if
r—1
> (k=2)g+ Y (¢ —2),
r=0

th—2 > (k—=2)(¢g—1),
and
ij,lzij/q—ij,l,o for T+2<j<k-3.

Then, Corollaries 6.1, 6.2, and 6.3 are obtained for ¢ = 3 and I' = k-5 = 1,
I'=k—-6=1,and I' = k — 7 =1, respectively.

COROLLARY 6.1. For g =3 and k = 6, a chain permissible sequence is a chain
good weight hierarchy if

(6.1) 11 > 13, 14 >8, and iy >i3/3+6.

Ezample. From Corollary 6.1, we find that, for each pair of parameters (is,i4)
such that 648 < 44 < 1997 and i4/3 < i3 < 695, there exist many new chain good
weight hierarchies which cannot be investigated using Theorems 2.1 and 2.2. For
instance, if 74 = 648 and i3 = 216, all the corresponding chain permissible sequences
with dimension 6 such that i € {115,116} | J{l: 120+ 9t <1 < 125+ 9¢,0 < ¢ < 13}
are new chain good weight hierarchies.

COROLLARY 6.2. For q =3 and k = 7, a chain permissible sequence is a chain
good weight hierarchy if

(6.2) 1 >16, 15>10, and ij_q >1i;/3+2-372 forj=3,4.

Ezample. From Corollary 6.2, we find that, for each pair of parameters (iy,1is5)
satisfying 2430 < i5 < 19013 and i5/3 < iy < 6419, many new chain good weight
hierarchies cannot be checked with Theorems 2.1 and 2.2. For instance, if i5 = 2430
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and i4 = 810, all the corresponding chain permissible sequences with dimension 7
such that i5 > i35/3+ 6 and i3 € {l : 409 + 27t <[ < 431 4 27,0 < ¢t < 65} are new
chain good weight hierarchies.

COROLLARY 6.3. For g =3 and k = 8, a chain permissible sequence is a chain
good weight hierarchy if

(6.3) 1 >19, 16>12, and ;-1 >i;/3+2-372 forj =3,4,5.

Ezample. From Corollary 6.3, we find that, for each pair of parameters (is,1ig)
such that 8748 < ig < 174695 and ig/3 < i5 < 58475, there are also many new chain
good weight hierarchies which cannot be investigated using Theorems 2.1 and 2.2.
For instance, if ig = 8748 and i5 = 2916, all the corresponding chain permissible
sequences with dimension 8 such that is > i3/3 + 6, i3 > i4/3 + 18, and iy € {I :
1405 <1 < 1457} J{l : 1463 + 81t <1 < 1538 + 81¢,0 < ¢t < 224} are new chain good
weight hierarchies.

7. Conclusion. The determination of chain good weight hierarchies was studied
several years ago. For the binary codes with dimension up to 5 and the ternary codes
with dimension up to 4, the problem was solved in [3] and [2], respectively. As for
linear codes with general dimension over GF(q), some research was done in [1] and
[6]. However, these results are not efficient for the determination of the chain good
weight hierarchies with high dimension since in many cases the lower bounds on the
conditions for ¢g,...,tx—3(0r¢g—o) increase exponentially with the dimension k. In
this paper, we present a method to deal with the high dimension cases; see Corollaries
2.5 and 2.6. Our lower bounds on the conditions for ¢q, ..., tx_o only increase linearly
with the dimension k.
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